xref: /titanic_50/usr/src/lib/libproc/common/Psymtab.c (revision 590e52814d2f65bcabaee34da1edbcfcdda4218c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <stdio.h>
30 #include <stdlib.h>
31 #include <stddef.h>
32 #include <unistd.h>
33 #include <ctype.h>
34 #include <fcntl.h>
35 #include <string.h>
36 #include <strings.h>
37 #include <memory.h>
38 #include <errno.h>
39 #include <dirent.h>
40 #include <signal.h>
41 #include <limits.h>
42 #include <libgen.h>
43 #include <zone.h>
44 #include <sys/types.h>
45 #include <sys/stat.h>
46 #include <sys/systeminfo.h>
47 #include <sys/sysmacros.h>
48 
49 #include "libproc.h"
50 #include "Pcontrol.h"
51 #include "Putil.h"
52 
53 static file_info_t *build_map_symtab(struct ps_prochandle *, map_info_t *);
54 static map_info_t *exec_map(struct ps_prochandle *);
55 static map_info_t *object_to_map(struct ps_prochandle *, Lmid_t, const char *);
56 static map_info_t *object_name_to_map(struct ps_prochandle *,
57 	Lmid_t, const char *);
58 static GElf_Sym *sym_by_name(sym_tbl_t *, const char *, GElf_Sym *, uint_t *);
59 static int read_ehdr32(struct ps_prochandle *, Elf32_Ehdr *, uintptr_t);
60 #ifdef _LP64
61 static int read_ehdr64(struct ps_prochandle *, Elf64_Ehdr *, uintptr_t);
62 #endif
63 
64 #define	DATA_TYPES	\
65 	((1 << STT_OBJECT) | (1 << STT_FUNC) | \
66 	(1 << STT_COMMON) | (1 << STT_TLS))
67 #define	IS_DATA_TYPE(tp)	(((1 << (tp)) & DATA_TYPES) != 0)
68 
69 #define	MA_RWX	(MA_READ | MA_WRITE | MA_EXEC)
70 
71 typedef enum {
72 	PRO_NATURAL,
73 	PRO_BYADDR,
74 	PRO_BYNAME
75 } pr_order_t;
76 
77 static int
78 addr_cmp(const void *aa, const void *bb)
79 {
80 	uintptr_t a = *((uintptr_t *)aa);
81 	uintptr_t b = *((uintptr_t *)bb);
82 
83 	if (a > b)
84 		return (1);
85 	if (a < b)
86 		return (-1);
87 	return (0);
88 }
89 
90 /*
91  * Allocation function for a new file_info_t
92  */
93 static file_info_t *
94 file_info_new(struct ps_prochandle *P, map_info_t *mptr)
95 {
96 	file_info_t *fptr;
97 	map_info_t *mp;
98 	uintptr_t a, addr, *addrs, last = 0;
99 	uint_t i, j, naddrs = 0, unordered = 0;
100 
101 	if ((fptr = calloc(1, sizeof (file_info_t))) == NULL)
102 		return (NULL);
103 
104 	list_link(fptr, &P->file_head);
105 	(void) strcpy(fptr->file_pname, mptr->map_pmap.pr_mapname);
106 	mptr->map_file = fptr;
107 	fptr->file_ref = 1;
108 	fptr->file_fd = -1;
109 	P->num_files++;
110 
111 	/*
112 	 * To figure out which map_info_t instances correspond to the mappings
113 	 * for this load object, we look at the in-memory ELF image in the
114 	 * base mapping (usually the program text). We examine the program
115 	 * headers to find the addresses at the beginning and end of each
116 	 * section and store them in a list which we then sort. Finally, we
117 	 * walk down the list of addresses and the list of map_info_t
118 	 * instances in lock step to correctly find the mappings that
119 	 * correspond to this load object.
120 	 */
121 	if (P->status.pr_dmodel == PR_MODEL_ILP32) {
122 		Elf32_Ehdr ehdr;
123 		Elf32_Phdr phdr;
124 
125 		if (read_ehdr32(P, &ehdr, mptr->map_pmap.pr_vaddr) != 0)
126 			return (fptr);
127 
128 		addrs = malloc(sizeof (uintptr_t) * ehdr.e_phnum * 2);
129 		a = mptr->map_pmap.pr_vaddr + ehdr.e_phoff;
130 		for (i = 0; i < ehdr.e_phnum; i++, a += ehdr.e_phentsize) {
131 			if (Pread(P, &phdr, sizeof (phdr), a) != sizeof (phdr))
132 				goto out;
133 			if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0)
134 				continue;
135 
136 			addr = phdr.p_vaddr;
137 			if (ehdr.e_type == ET_DYN)
138 				addr += mptr->map_pmap.pr_vaddr;
139 			if (last > addr)
140 				unordered = 1;
141 			addrs[naddrs++] = addr;
142 			addrs[naddrs++] = last = addr + phdr.p_memsz - 1;
143 		}
144 #ifdef _LP64
145 	} else {
146 		Elf64_Ehdr ehdr;
147 		Elf64_Phdr phdr;
148 
149 		if (read_ehdr64(P, &ehdr, mptr->map_pmap.pr_vaddr) != 0)
150 			return (fptr);
151 
152 		addrs = malloc(sizeof (uintptr_t) * ehdr.e_phnum * 2);
153 		a = mptr->map_pmap.pr_vaddr + ehdr.e_phoff;
154 		for (i = 0; i < ehdr.e_phnum; i++, a += ehdr.e_phentsize) {
155 			if (Pread(P, &phdr, sizeof (phdr), a) != sizeof (phdr))
156 				goto out;
157 			if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0)
158 				continue;
159 
160 			addr = phdr.p_vaddr;
161 			if (ehdr.e_type == ET_DYN)
162 				addr += mptr->map_pmap.pr_vaddr;
163 			if (last > addr)
164 				unordered = 1;
165 			addrs[naddrs++] = addr;
166 			addrs[naddrs++] = last = addr + phdr.p_memsz - 1;
167 		}
168 #endif
169 	}
170 
171 	if (unordered)
172 		qsort(addrs, naddrs, sizeof (uintptr_t), addr_cmp);
173 
174 
175 	i = j = 0;
176 	mp = P->mappings;
177 	while (j < P->map_count && i < naddrs) {
178 		addr = addrs[i];
179 		if (addr >= mp->map_pmap.pr_vaddr &&
180 		    addr < mp->map_pmap.pr_vaddr + mp->map_pmap.pr_size &&
181 		    mp->map_file == NULL) {
182 			mp->map_file = fptr;
183 			fptr->file_ref++;
184 		}
185 
186 		if (addr < mp->map_pmap.pr_vaddr + mp->map_pmap.pr_size) {
187 			i++;
188 		} else {
189 			mp++;
190 			j++;
191 		}
192 	}
193 
194 out:
195 	free(addrs);
196 	return (fptr);
197 }
198 
199 /*
200  * Deallocation function for a file_info_t
201  */
202 static void
203 file_info_free(struct ps_prochandle *P, file_info_t *fptr)
204 {
205 	if (--fptr->file_ref == 0) {
206 		list_unlink(fptr);
207 		if (fptr->file_symtab.sym_elf) {
208 			(void) elf_end(fptr->file_symtab.sym_elf);
209 			free(fptr->file_symtab.sym_elfmem);
210 		}
211 		if (fptr->file_symtab.sym_byname)
212 			free(fptr->file_symtab.sym_byname);
213 		if (fptr->file_symtab.sym_byaddr)
214 			free(fptr->file_symtab.sym_byaddr);
215 
216 		if (fptr->file_dynsym.sym_elf) {
217 			(void) elf_end(fptr->file_dynsym.sym_elf);
218 			free(fptr->file_dynsym.sym_elfmem);
219 		}
220 		if (fptr->file_dynsym.sym_byname)
221 			free(fptr->file_dynsym.sym_byname);
222 		if (fptr->file_dynsym.sym_byaddr)
223 			free(fptr->file_dynsym.sym_byaddr);
224 
225 		if (fptr->file_lo)
226 			free(fptr->file_lo);
227 		if (fptr->file_lname)
228 			free(fptr->file_lname);
229 		if (fptr->file_elf)
230 			(void) elf_end(fptr->file_elf);
231 		if (fptr->file_elfmem != NULL)
232 			free(fptr->file_elfmem);
233 		if (fptr->file_fd >= 0)
234 			(void) close(fptr->file_fd);
235 		if (fptr->file_ctfp) {
236 			ctf_close(fptr->file_ctfp);
237 			free(fptr->file_ctf_buf);
238 		}
239 		free(fptr);
240 		P->num_files--;
241 	}
242 }
243 
244 /*
245  * Deallocation function for a map_info_t
246  */
247 static void
248 map_info_free(struct ps_prochandle *P, map_info_t *mptr)
249 {
250 	file_info_t *fptr;
251 
252 	if ((fptr = mptr->map_file) != NULL) {
253 		if (fptr->file_map == mptr)
254 			fptr->file_map = NULL;
255 		file_info_free(P, fptr);
256 	}
257 	if (P->execname && mptr == P->map_exec) {
258 		free(P->execname);
259 		P->execname = NULL;
260 	}
261 	if (P->auxv && (mptr == P->map_exec || mptr == P->map_ldso)) {
262 		free(P->auxv);
263 		P->auxv = NULL;
264 		P->nauxv = 0;
265 	}
266 	if (mptr == P->map_exec)
267 		P->map_exec = NULL;
268 	if (mptr == P->map_ldso)
269 		P->map_ldso = NULL;
270 }
271 
272 /*
273  * Call-back function for librtld_db to iterate through all of its shared
274  * libraries.  We use this to get the load object names for the mappings.
275  */
276 static int
277 map_iter(const rd_loadobj_t *lop, void *cd)
278 {
279 	char buf[PATH_MAX];
280 	struct ps_prochandle *P = cd;
281 	map_info_t *mptr;
282 	file_info_t *fptr;
283 
284 	dprintf("encountered rd object at %p\n", (void *)lop->rl_base);
285 
286 	if ((mptr = Paddr2mptr(P, lop->rl_base)) == NULL)
287 		return (1); /* Base address does not match any mapping */
288 
289 	if ((fptr = mptr->map_file) == NULL &&
290 	    (fptr = file_info_new(P, mptr)) == NULL)
291 		return (1); /* Failed to allocate a new file_info_t */
292 
293 	if ((fptr->file_lo == NULL) &&
294 	    (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) {
295 		file_info_free(P, fptr);
296 		return (1); /* Failed to allocate rd_loadobj_t */
297 	}
298 
299 	fptr->file_map = mptr;
300 	*fptr->file_lo = *lop;
301 
302 	fptr->file_lo->rl_plt_base = fptr->file_plt_base;
303 	fptr->file_lo->rl_plt_size = fptr->file_plt_size;
304 
305 	if (fptr->file_lname) {
306 		free(fptr->file_lname);
307 		fptr->file_lname = NULL;
308 	}
309 
310 	if (Pread_string(P, buf, sizeof (buf), lop->rl_nameaddr) > 0) {
311 		if ((fptr->file_lname = strdup(buf)) != NULL)
312 			fptr->file_lbase = basename(fptr->file_lname);
313 	}
314 
315 	dprintf("loaded rd object %s lmid %lx\n",
316 	    fptr->file_lname ? fptr->file_lname : "<NULL>", lop->rl_lmident);
317 	return (1);
318 }
319 
320 static void
321 map_set(struct ps_prochandle *P, map_info_t *mptr, const char *lname)
322 {
323 	file_info_t *fptr;
324 
325 	if ((fptr = mptr->map_file) == NULL &&
326 	    (fptr = file_info_new(P, mptr)) == NULL)
327 		return; /* Failed to allocate a new file_info_t */
328 
329 	fptr->file_map = mptr;
330 
331 	if ((fptr->file_lo == NULL) &&
332 	    (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) {
333 		file_info_free(P, fptr);
334 		return; /* Failed to allocate rd_loadobj_t */
335 	}
336 
337 	(void) memset(fptr->file_lo, 0, sizeof (rd_loadobj_t));
338 	fptr->file_lo->rl_base = mptr->map_pmap.pr_vaddr;
339 	fptr->file_lo->rl_bend =
340 		mptr->map_pmap.pr_vaddr + mptr->map_pmap.pr_size;
341 
342 	fptr->file_lo->rl_plt_base = fptr->file_plt_base;
343 	fptr->file_lo->rl_plt_size = fptr->file_plt_size;
344 
345 	if (fptr->file_lname) {
346 		free(fptr->file_lname);
347 		fptr->file_lname = NULL;
348 	}
349 
350 	if ((fptr->file_lname = strdup(lname)) != NULL)
351 		fptr->file_lbase = basename(fptr->file_lname);
352 }
353 
354 static void
355 load_static_maps(struct ps_prochandle *P)
356 {
357 	map_info_t *mptr;
358 
359 	/*
360 	 * Construct the map for the a.out.
361 	 */
362 	if ((mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_EXEC)) != NULL)
363 		map_set(P, mptr, "a.out");
364 
365 	/*
366 	 * If the dynamic linker exists for this process,
367 	 * construct the map for it.
368 	 */
369 	if (Pgetauxval(P, AT_BASE) != -1L &&
370 	    (mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_LDSO)) != NULL)
371 		map_set(P, mptr, "ld.so.1");
372 }
373 
374 /*
375  * Go through all the address space mappings, validating or updating
376  * the information already gathered, or gathering new information.
377  *
378  * This function is only called when we suspect that the mappings have changed
379  * because this is the first time we're calling it or because of rtld activity.
380  */
381 void
382 Pupdate_maps(struct ps_prochandle *P)
383 {
384 	char mapfile[64];
385 	int mapfd;
386 	struct stat statb;
387 	prmap_t *Pmap = NULL;
388 	prmap_t *pmap;
389 	ssize_t nmap;
390 	int i;
391 	uint_t oldmapcount;
392 	map_info_t *newmap, *newp;
393 	map_info_t *mptr;
394 
395 	if (P->info_valid || P->state == PS_UNDEAD)
396 		return;
397 
398 	Preadauxvec(P);
399 
400 	(void) sprintf(mapfile, "/proc/%d/map", (int)P->pid);
401 	if ((mapfd = open(mapfile, O_RDONLY)) < 0 ||
402 	    fstat(mapfd, &statb) != 0 ||
403 	    statb.st_size < sizeof (prmap_t) ||
404 	    (Pmap = malloc(statb.st_size)) == NULL ||
405 	    (nmap = pread(mapfd, Pmap, statb.st_size, 0L)) <= 0 ||
406 	    (nmap /= sizeof (prmap_t)) == 0) {
407 		if (Pmap != NULL)
408 			free(Pmap);
409 		if (mapfd >= 0)
410 			(void) close(mapfd);
411 		Preset_maps(P);	/* utter failure; destroy tables */
412 		return;
413 	}
414 	(void) close(mapfd);
415 
416 	if ((newmap = calloc(1, nmap * sizeof (map_info_t))) == NULL)
417 		return;
418 
419 	/*
420 	 * We try to merge any file information we may have for existing
421 	 * mappings, to avoid having to rebuild the file info.
422 	 */
423 	mptr = P->mappings;
424 	pmap = Pmap;
425 	newp = newmap;
426 	oldmapcount = P->map_count;
427 	for (i = 0; i < nmap; i++, pmap++, newp++) {
428 
429 		if (oldmapcount == 0) {
430 			/*
431 			 * We've exhausted all the old mappings.  Every new
432 			 * mapping should be added.
433 			 */
434 			newp->map_pmap = *pmap;
435 
436 		} else if (pmap->pr_vaddr == mptr->map_pmap.pr_vaddr &&
437 		    pmap->pr_size == mptr->map_pmap.pr_size &&
438 		    pmap->pr_offset == mptr->map_pmap.pr_offset &&
439 		    (pmap->pr_mflags & ~(MA_BREAK | MA_STACK)) ==
440 		    (mptr->map_pmap.pr_mflags & ~(MA_BREAK | MA_STACK)) &&
441 		    pmap->pr_pagesize == mptr->map_pmap.pr_pagesize &&
442 		    pmap->pr_shmid == mptr->map_pmap.pr_shmid &&
443 		    strcmp(pmap->pr_mapname, mptr->map_pmap.pr_mapname) == 0) {
444 
445 			/*
446 			 * This mapping matches exactly.  Copy over the old
447 			 * mapping, taking care to get the latest flags.
448 			 * Make sure the associated file_info_t is updated
449 			 * appropriately.
450 			 */
451 			*newp = *mptr;
452 			if (P->map_exec == mptr)
453 				P->map_exec = newp;
454 			if (P->map_ldso == mptr)
455 				P->map_ldso = newp;
456 			newp->map_pmap.pr_mflags = pmap->pr_mflags;
457 			if (mptr->map_file != NULL &&
458 			    mptr->map_file->file_map == mptr)
459 				mptr->map_file->file_map = newp;
460 			oldmapcount--;
461 			mptr++;
462 
463 		} else if (pmap->pr_vaddr + pmap->pr_size >
464 		    mptr->map_pmap.pr_vaddr) {
465 
466 			/*
467 			 * The old mapping doesn't exist any more, remove it
468 			 * from the list.
469 			 */
470 			map_info_free(P, mptr);
471 			oldmapcount--;
472 			i--;
473 			newp--;
474 			pmap--;
475 			mptr++;
476 
477 		} else {
478 
479 			/*
480 			 * This is a new mapping, add it directly.
481 			 */
482 			newp->map_pmap = *pmap;
483 		}
484 	}
485 
486 	/*
487 	 * Free any old maps
488 	 */
489 	while (oldmapcount) {
490 		map_info_free(P, mptr);
491 		oldmapcount--;
492 		mptr++;
493 	}
494 
495 	free(Pmap);
496 	if (P->mappings != NULL)
497 		free(P->mappings);
498 	P->mappings = newmap;
499 	P->map_count = P->map_alloc = nmap;
500 	P->info_valid = 1;
501 
502 	/*
503 	 * Consult librtld_db to get the load object
504 	 * names for all of the shared libraries.
505 	 */
506 	if (P->rap != NULL)
507 		(void) rd_loadobj_iter(P->rap, map_iter, P);
508 }
509 
510 /*
511  * Update all of the mappings and rtld_db as if by Pupdate_maps(), and then
512  * forcibly cache all of the symbol tables associated with all object files.
513  */
514 void
515 Pupdate_syms(struct ps_prochandle *P)
516 {
517 	file_info_t *fptr = list_next(&P->file_head);
518 	int i;
519 
520 	Pupdate_maps(P);
521 
522 	for (i = 0; i < P->num_files; i++, fptr = list_next(fptr)) {
523 		Pbuild_file_symtab(P, fptr);
524 		(void) Pbuild_file_ctf(P, fptr);
525 	}
526 }
527 
528 /*
529  * Return the librtld_db agent handle for the victim process.
530  * The handle will become invalid at the next successful exec() and the
531  * client (caller of proc_rd_agent()) must not use it beyond that point.
532  * If the process is already dead, we've already tried our best to
533  * create the agent during core file initialization.
534  */
535 rd_agent_t *
536 Prd_agent(struct ps_prochandle *P)
537 {
538 	if (P->rap == NULL && P->state != PS_DEAD && P->state != PS_IDLE) {
539 		Pupdate_maps(P);
540 		if (P->num_files == 0)
541 			load_static_maps(P);
542 		rd_log(_libproc_debug);
543 		if ((P->rap = rd_new(P)) != NULL)
544 			(void) rd_loadobj_iter(P->rap, map_iter, P);
545 	}
546 	return (P->rap);
547 }
548 
549 /*
550  * Return the prmap_t structure containing 'addr', but only if it
551  * is in the dynamic linker's link map and is the text section.
552  */
553 const prmap_t *
554 Paddr_to_text_map(struct ps_prochandle *P, uintptr_t addr)
555 {
556 	map_info_t *mptr;
557 
558 	if (!P->info_valid)
559 		Pupdate_maps(P);
560 
561 	if ((mptr = Paddr2mptr(P, addr)) != NULL) {
562 		file_info_t *fptr = build_map_symtab(P, mptr);
563 		const prmap_t *pmp = &mptr->map_pmap;
564 
565 		if (fptr != NULL && fptr->file_lo != NULL &&
566 		    fptr->file_lo->rl_base >= pmp->pr_vaddr &&
567 		    fptr->file_lo->rl_base < pmp->pr_vaddr + pmp->pr_size)
568 			return (pmp);
569 	}
570 
571 	return (NULL);
572 }
573 
574 /*
575  * Return the prmap_t structure containing 'addr' (no restrictions on
576  * the type of mapping).
577  */
578 const prmap_t *
579 Paddr_to_map(struct ps_prochandle *P, uintptr_t addr)
580 {
581 	map_info_t *mptr;
582 
583 	if (!P->info_valid)
584 		Pupdate_maps(P);
585 
586 	if ((mptr = Paddr2mptr(P, addr)) != NULL)
587 		return (&mptr->map_pmap);
588 
589 	return (NULL);
590 }
591 
592 /*
593  * Convert a full or partial load object name to the prmap_t for its
594  * corresponding primary text mapping.
595  */
596 const prmap_t *
597 Plmid_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name)
598 {
599 	map_info_t *mptr;
600 
601 	if (name == PR_OBJ_EVERY)
602 		return (NULL); /* A reasonable mistake */
603 
604 	if ((mptr = object_name_to_map(P, lmid, name)) != NULL)
605 		return (&mptr->map_pmap);
606 
607 	return (NULL);
608 }
609 
610 const prmap_t *
611 Pname_to_map(struct ps_prochandle *P, const char *name)
612 {
613 	return (Plmid_to_map(P, PR_LMID_EVERY, name));
614 }
615 
616 const rd_loadobj_t *
617 Paddr_to_loadobj(struct ps_prochandle *P, uintptr_t addr)
618 {
619 	map_info_t *mptr;
620 
621 	if (!P->info_valid)
622 		Pupdate_maps(P);
623 
624 	if ((mptr = Paddr2mptr(P, addr)) == NULL)
625 		return (NULL);
626 
627 	/*
628 	 * By building the symbol table, we implicitly bring the PLT
629 	 * information up to date in the load object.
630 	 */
631 	(void) build_map_symtab(P, mptr);
632 
633 	return (mptr->map_file->file_lo);
634 }
635 
636 const rd_loadobj_t *
637 Plmid_to_loadobj(struct ps_prochandle *P, Lmid_t lmid, const char *name)
638 {
639 	map_info_t *mptr;
640 
641 	if (name == PR_OBJ_EVERY)
642 		return (NULL);
643 
644 	if ((mptr = object_name_to_map(P, lmid, name)) == NULL)
645 		return (NULL);
646 
647 	/*
648 	 * By building the symbol table, we implicitly bring the PLT
649 	 * information up to date in the load object.
650 	 */
651 	(void) build_map_symtab(P, mptr);
652 
653 	return (mptr->map_file->file_lo);
654 }
655 
656 const rd_loadobj_t *
657 Pname_to_loadobj(struct ps_prochandle *P, const char *name)
658 {
659 	return (Plmid_to_loadobj(P, PR_LMID_EVERY, name));
660 }
661 
662 ctf_file_t *
663 Pbuild_file_ctf(struct ps_prochandle *P, file_info_t *fptr)
664 {
665 	ctf_sect_t ctdata, symtab, strtab;
666 	sym_tbl_t *symp;
667 	int err;
668 
669 	if (fptr->file_ctfp != NULL)
670 		return (fptr->file_ctfp);
671 
672 	Pbuild_file_symtab(P, fptr);
673 
674 	if (fptr->file_ctf_size == 0)
675 		return (NULL);
676 
677 	symp = fptr->file_ctf_dyn ? &fptr->file_dynsym : &fptr->file_symtab;
678 	if (symp->sym_data == NULL)
679 		return (NULL);
680 
681 	/*
682 	 * The buffer may alread be allocated if this is a core file that
683 	 * contained CTF data for this file.
684 	 */
685 	if (fptr->file_ctf_buf == NULL) {
686 		fptr->file_ctf_buf = malloc(fptr->file_ctf_size);
687 		if (fptr->file_ctf_buf == NULL) {
688 			dprintf("failed to allocate ctf buffer\n");
689 			return (NULL);
690 		}
691 
692 		if (pread(fptr->file_fd, fptr->file_ctf_buf,
693 		    fptr->file_ctf_size, fptr->file_ctf_off) !=
694 		    fptr->file_ctf_size) {
695 			free(fptr->file_ctf_buf);
696 			fptr->file_ctf_buf = NULL;
697 			dprintf("failed to read ctf data\n");
698 			return (NULL);
699 		}
700 	}
701 
702 	ctdata.cts_name = ".SUNW_ctf";
703 	ctdata.cts_type = SHT_PROGBITS;
704 	ctdata.cts_flags = 0;
705 	ctdata.cts_data = fptr->file_ctf_buf;
706 	ctdata.cts_size = fptr->file_ctf_size;
707 	ctdata.cts_entsize = 1;
708 	ctdata.cts_offset = 0;
709 
710 	symtab.cts_name = fptr->file_ctf_dyn ? ".dynsym" : ".symtab";
711 	symtab.cts_type = symp->sym_hdr.sh_type;
712 	symtab.cts_flags = symp->sym_hdr.sh_flags;
713 	symtab.cts_data = symp->sym_data->d_buf;
714 	symtab.cts_size = symp->sym_hdr.sh_size;
715 	symtab.cts_entsize = symp->sym_hdr.sh_entsize;
716 	symtab.cts_offset = symp->sym_hdr.sh_offset;
717 
718 	strtab.cts_name = fptr->file_ctf_dyn ? ".dynstr" : ".strtab";
719 	strtab.cts_type = symp->sym_strhdr.sh_type;
720 	strtab.cts_flags = symp->sym_strhdr.sh_flags;
721 	strtab.cts_data = symp->sym_strs;
722 	strtab.cts_size = symp->sym_strhdr.sh_size;
723 	strtab.cts_entsize = symp->sym_strhdr.sh_entsize;
724 	strtab.cts_offset = symp->sym_strhdr.sh_offset;
725 
726 	fptr->file_ctfp = ctf_bufopen(&ctdata, &symtab, &strtab, &err);
727 	if (fptr->file_ctfp == NULL) {
728 		free(fptr->file_ctf_buf);
729 		fptr->file_ctf_buf = NULL;
730 		return (NULL);
731 	}
732 
733 	dprintf("loaded %lu bytes of CTF data for %s\n",
734 	    (ulong_t)fptr->file_ctf_size, fptr->file_pname);
735 
736 	return (fptr->file_ctfp);
737 }
738 
739 ctf_file_t *
740 Paddr_to_ctf(struct ps_prochandle *P, uintptr_t addr)
741 {
742 	map_info_t *mptr;
743 	file_info_t *fptr;
744 
745 	if (!P->info_valid)
746 		Pupdate_maps(P);
747 
748 	if ((mptr = Paddr2mptr(P, addr)) == NULL ||
749 	    (fptr = mptr->map_file) == NULL)
750 		return (NULL);
751 
752 	return (Pbuild_file_ctf(P, fptr));
753 }
754 
755 ctf_file_t *
756 Plmid_to_ctf(struct ps_prochandle *P, Lmid_t lmid, const char *name)
757 {
758 	map_info_t *mptr;
759 	file_info_t *fptr;
760 
761 	if (name == PR_OBJ_EVERY)
762 		return (NULL);
763 
764 	if ((mptr = object_name_to_map(P, lmid, name)) == NULL ||
765 	    (fptr = mptr->map_file) == NULL)
766 		return (NULL);
767 
768 	return (Pbuild_file_ctf(P, fptr));
769 }
770 
771 ctf_file_t *
772 Pname_to_ctf(struct ps_prochandle *P, const char *name)
773 {
774 	return (Plmid_to_ctf(P, PR_LMID_EVERY, name));
775 }
776 
777 /*
778  * If we're not a core file, re-read the /proc/<pid>/auxv file and store
779  * its contents in P->auxv.  In the case of a core file, we either
780  * initialized P->auxv in Pcore() from the NT_AUXV, or we don't have an
781  * auxv because the note was missing.
782  */
783 void
784 Preadauxvec(struct ps_prochandle *P)
785 {
786 	char auxfile[64];
787 	struct stat statb;
788 	ssize_t naux;
789 	int fd;
790 
791 	if (P->state == PS_DEAD)
792 		return; /* Already read during Pgrab_core() */
793 	if (P->state == PS_IDLE)
794 		return; /* No aux vec for Pgrab_file() */
795 
796 	if (P->auxv != NULL) {
797 		free(P->auxv);
798 		P->auxv = NULL;
799 		P->nauxv = 0;
800 	}
801 
802 	(void) sprintf(auxfile, "/proc/%d/auxv", (int)P->pid);
803 	if ((fd = open(auxfile, O_RDONLY)) < 0)
804 		return;
805 
806 	if (fstat(fd, &statb) == 0 &&
807 	    statb.st_size >= sizeof (auxv_t) &&
808 	    (P->auxv = malloc(statb.st_size + sizeof (auxv_t))) != NULL) {
809 		if ((naux = read(fd, P->auxv, statb.st_size)) < 0 ||
810 		    (naux /= sizeof (auxv_t)) < 1) {
811 			free(P->auxv);
812 			P->auxv = NULL;
813 		} else {
814 			P->auxv[naux].a_type = AT_NULL;
815 			P->auxv[naux].a_un.a_val = 0L;
816 			P->nauxv = (int)naux;
817 		}
818 	}
819 
820 	(void) close(fd);
821 }
822 
823 /*
824  * Return a requested element from the process's aux vector.
825  * Return -1 on failure (this is adequate for our purposes).
826  */
827 long
828 Pgetauxval(struct ps_prochandle *P, int type)
829 {
830 	auxv_t *auxv;
831 
832 	if (P->auxv == NULL)
833 		Preadauxvec(P);
834 
835 	if (P->auxv == NULL)
836 		return (-1);
837 
838 	for (auxv = P->auxv; auxv->a_type != AT_NULL; auxv++) {
839 		if (auxv->a_type == type)
840 			return (auxv->a_un.a_val);
841 	}
842 
843 	return (-1);
844 }
845 
846 /*
847  * Return a pointer to our internal copy of the process's aux vector.
848  * The caller should not hold on to this pointer across any libproc calls.
849  */
850 const auxv_t *
851 Pgetauxvec(struct ps_prochandle *P)
852 {
853 	static const auxv_t empty = { AT_NULL, 0L };
854 
855 	if (P->auxv == NULL)
856 		Preadauxvec(P);
857 
858 	if (P->auxv == NULL)
859 		return (&empty);
860 
861 	return (P->auxv);
862 }
863 
864 /*
865  * Find or build the symbol table for the given mapping.
866  */
867 static file_info_t *
868 build_map_symtab(struct ps_prochandle *P, map_info_t *mptr)
869 {
870 	prmap_t *pmap = &mptr->map_pmap;
871 	file_info_t *fptr;
872 	rd_loadobj_t *lop;
873 	uint_t i;
874 
875 	if ((fptr = mptr->map_file) != NULL) {
876 		Pbuild_file_symtab(P, fptr);
877 		return (fptr);
878 	}
879 
880 	if (pmap->pr_mapname[0] == '\0')
881 		return (NULL);
882 
883 	/*
884 	 * Attempt to find a matching file.
885 	 * (A file can be mapped at several different addresses.)
886 	 */
887 	for (i = 0, fptr = list_next(&P->file_head); i < P->num_files;
888 	    i++, fptr = list_next(fptr)) {
889 		if (strcmp(fptr->file_pname, pmap->pr_mapname) == 0 &&
890 		    (lop = fptr->file_lo) != NULL &&
891 		    ((pmap->pr_vaddr <= lop->rl_base &&
892 		    lop->rl_base < pmap->pr_vaddr + pmap->pr_size) ||
893 		    (pmap->pr_vaddr <= lop->rl_data_base &&
894 		    lop->rl_data_base < pmap->pr_vaddr + pmap->pr_size))) {
895 			mptr->map_file = fptr;
896 			fptr->file_ref++;
897 			Pbuild_file_symtab(P, fptr);
898 			return (fptr);
899 		}
900 	}
901 
902 	/*
903 	 * If we need to create a new file_info structure, iterate
904 	 * through the load objects in order to attempt to connect
905 	 * this new file with its primary text mapping.  We again
906 	 * need to handle ld.so as a special case because we need
907 	 * to be able to bootstrap librtld_db.
908 	 */
909 	if ((fptr = file_info_new(P, mptr)) == NULL)
910 		return (NULL);
911 
912 	if (P->map_ldso != mptr) {
913 		if (P->rap != NULL)
914 			(void) rd_loadobj_iter(P->rap, map_iter, P);
915 		else
916 			(void) Prd_agent(P);
917 	} else {
918 		fptr->file_map = mptr;
919 	}
920 
921 	/*
922 	 * If librtld_db wasn't able to help us connect the file to a primary
923 	 * text mapping, set file_map to the current mapping because we require
924 	 * fptr->file_map to be set in Pbuild_file_symtab.  librtld_db may be
925 	 * unaware of what's going on in the rare case that a legitimate ELF
926 	 * file has been mmap(2)ed into the process address space *without*
927 	 * the use of dlopen(3x).  Why would this happen?  See pwdx ... :)
928 	 */
929 	if (fptr->file_map == NULL)
930 		fptr->file_map = mptr;
931 
932 	Pbuild_file_symtab(P, fptr);
933 
934 	return (fptr);
935 }
936 
937 static int
938 read_ehdr32(struct ps_prochandle *P, Elf32_Ehdr *ehdr, uintptr_t addr)
939 {
940 	if (Pread(P, ehdr, sizeof (*ehdr), addr) != sizeof (*ehdr))
941 		return (-1);
942 
943 	if (ehdr->e_ident[EI_MAG0] != ELFMAG0 ||
944 	    ehdr->e_ident[EI_MAG1] != ELFMAG1 ||
945 	    ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
946 	    ehdr->e_ident[EI_MAG3] != ELFMAG3 ||
947 	    ehdr->e_ident[EI_CLASS] != ELFCLASS32 ||
948 #ifdef _BIG_ENDIAN
949 	    ehdr->e_ident[EI_DATA] != ELFDATA2MSB ||
950 #else
951 	    ehdr->e_ident[EI_DATA] != ELFDATA2LSB ||
952 #endif
953 	    ehdr->e_ident[EI_VERSION] != EV_CURRENT)
954 		return (-1);
955 
956 	return (0);
957 }
958 
959 static int
960 read_dynamic_phdr32(struct ps_prochandle *P, const Elf32_Ehdr *ehdr,
961     Elf32_Phdr *phdr, uintptr_t addr)
962 {
963 	uint_t i;
964 
965 	for (i = 0; i < ehdr->e_phnum; i++) {
966 		uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize;
967 		if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr))
968 			return (-1);
969 
970 		if (phdr->p_type == PT_DYNAMIC)
971 			return (0);
972 	}
973 
974 	return (-1);
975 }
976 
977 #ifdef _LP64
978 static int
979 read_ehdr64(struct ps_prochandle *P, Elf64_Ehdr *ehdr, uintptr_t addr)
980 {
981 	if (Pread(P, ehdr, sizeof (Elf64_Ehdr), addr) != sizeof (Elf64_Ehdr))
982 		return (-1);
983 
984 	if (ehdr->e_ident[EI_MAG0] != ELFMAG0 ||
985 	    ehdr->e_ident[EI_MAG1] != ELFMAG1 ||
986 	    ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
987 	    ehdr->e_ident[EI_MAG3] != ELFMAG3 ||
988 	    ehdr->e_ident[EI_CLASS] != ELFCLASS64 ||
989 #ifdef _BIG_ENDIAN
990 	    ehdr->e_ident[EI_DATA] != ELFDATA2MSB ||
991 #else
992 	    ehdr->e_ident[EI_DATA] != ELFDATA2LSB ||
993 #endif
994 	    ehdr->e_ident[EI_VERSION] != EV_CURRENT)
995 		return (-1);
996 
997 	return (0);
998 }
999 
1000 static int
1001 read_dynamic_phdr64(struct ps_prochandle *P, const Elf64_Ehdr *ehdr,
1002     Elf64_Phdr *phdr, uintptr_t addr)
1003 {
1004 	uint_t i;
1005 
1006 	for (i = 0; i < ehdr->e_phnum; i++) {
1007 		uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize;
1008 		if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr))
1009 			return (-1);
1010 
1011 		if (phdr->p_type == PT_DYNAMIC)
1012 			return (0);
1013 	}
1014 
1015 	return (-1);
1016 }
1017 #endif	/* _LP64 */
1018 
1019 /*
1020  * The text segment for each load object contains the elf header and
1021  * program headers. We can use this information to determine if the
1022  * file that corresponds to the load object is the same file that
1023  * was loaded into the process's address space. There can be a discrepency
1024  * if a file is recompiled after the process is started or if the target
1025  * represents a core file from a differently configured system -- two
1026  * common examples. The DT_CHECKSUM entry in the dynamic section
1027  * provides an easy method of comparison. It is important to note that
1028  * the dynamic section usually lives in the data segment, but the meta
1029  * data we use to find the dynamic section lives in the text segment so
1030  * if either of those segments is absent we can't proceed.
1031  *
1032  * We're looking through the elf file for several items: the symbol tables
1033  * (both dynsym and symtab), the procedure linkage table (PLT) base,
1034  * size, and relocation base, and the CTF information. Most of this can
1035  * be recovered from the loaded image of the file itself, the exceptions
1036  * being the symtab and CTF data.
1037  *
1038  * First we try to open the file that we think corresponds to the load
1039  * object, if the DT_CHECKSUM values match, we're all set, and can simply
1040  * recover all the information we need from the file. If the values of
1041  * DT_CHECKSUM don't match, or if we can't access the file for whatever
1042  * reasaon, we fake up a elf file to use in its stead. If we can't read
1043  * the elf data in the process's address space, we fall back to using
1044  * the file even though it may give inaccurate information.
1045  *
1046  * The elf file that we fake up has to consist of sections for the
1047  * dynsym, the PLT and the dynamic section. Note that in the case of a
1048  * core file, we'll get the CTF data in the file_info_t later on from
1049  * a section embedded the core file (if it's present).
1050  *
1051  * file_differs() conservatively looks for mismatched files, identifying
1052  * a match when there is any ambiguity (since that's the legacy behavior).
1053  */
1054 static int
1055 file_differs(struct ps_prochandle *P, Elf *elf, file_info_t *fptr)
1056 {
1057 	Elf_Scn *scn;
1058 	GElf_Shdr shdr;
1059 	GElf_Dyn dyn;
1060 	Elf_Data *data;
1061 	uint_t i, ndyn;
1062 	GElf_Xword cksum;
1063 	uintptr_t addr;
1064 
1065 	if (fptr->file_map == NULL)
1066 		return (0);
1067 
1068 	if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) !=
1069 	    (CC_CONTENT_TEXT | CC_CONTENT_DATA))
1070 		return (0);
1071 
1072 	/*
1073 	 * First, we find the checksum value in the elf file.
1074 	 */
1075 	scn = NULL;
1076 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
1077 		if (gelf_getshdr(scn, &shdr) != NULL &&
1078 		    shdr.sh_type == SHT_DYNAMIC)
1079 			goto found_shdr;
1080 	}
1081 	return (0);
1082 
1083 found_shdr:
1084 	if ((data = elf_getdata(scn, NULL)) == NULL)
1085 		return (0);
1086 
1087 	if (P->status.pr_dmodel == PR_MODEL_ILP32)
1088 		ndyn = shdr.sh_size / sizeof (Elf32_Dyn);
1089 #ifdef _LP64
1090 	else if (P->status.pr_dmodel == PR_MODEL_LP64)
1091 		ndyn = shdr.sh_size / sizeof (Elf64_Dyn);
1092 #endif
1093 	else
1094 		return (0);
1095 
1096 	for (i = 0; i < ndyn; i++) {
1097 		if (gelf_getdyn(data, i, &dyn) != NULL &&
1098 		    dyn.d_tag == DT_CHECKSUM)
1099 			goto found_cksum;
1100 	}
1101 	return (0);
1102 
1103 found_cksum:
1104 	cksum = dyn.d_un.d_val;
1105 	dprintf("elf cksum value is %llx\n", (u_longlong_t)cksum);
1106 
1107 	/*
1108 	 * Get the base of the text mapping that corresponds to this file.
1109 	 */
1110 	addr = fptr->file_map->map_pmap.pr_vaddr;
1111 
1112 	if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1113 		Elf32_Ehdr ehdr;
1114 		Elf32_Phdr phdr;
1115 		Elf32_Dyn dync, *dynp;
1116 		uint_t i;
1117 
1118 		if (read_ehdr32(P, &ehdr, addr) != 0 ||
1119 		    read_dynamic_phdr32(P, &ehdr, &phdr, addr) != 0)
1120 			return (0);
1121 
1122 		if (ehdr.e_type == ET_DYN)
1123 			phdr.p_vaddr += addr;
1124 		if ((dynp = malloc(phdr.p_filesz)) == NULL)
1125 			return (0);
1126 		dync.d_tag = DT_NULL;
1127 		if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) !=
1128 		    phdr.p_filesz) {
1129 			free(dynp);
1130 			return (0);
1131 		}
1132 
1133 		for (i = 0; i < phdr.p_filesz / sizeof (Elf32_Dyn); i++) {
1134 			if (dynp[i].d_tag == DT_CHECKSUM)
1135 				dync = dynp[i];
1136 		}
1137 
1138 		free(dynp);
1139 
1140 		if (dync.d_tag != DT_CHECKSUM)
1141 			return (0);
1142 
1143 		dprintf("image cksum value is %llx\n",
1144 		    (u_longlong_t)dync.d_un.d_val);
1145 		return (dync.d_un.d_val != cksum);
1146 #ifdef _LP64
1147 	} else if (P->status.pr_dmodel == PR_MODEL_LP64) {
1148 		Elf64_Ehdr ehdr;
1149 		Elf64_Phdr phdr;
1150 		Elf64_Dyn dync, *dynp;
1151 		uint_t i;
1152 
1153 		if (read_ehdr64(P, &ehdr, addr) != 0 ||
1154 		    read_dynamic_phdr64(P, &ehdr, &phdr, addr) != 0)
1155 			return (0);
1156 
1157 		if (ehdr.e_type == ET_DYN)
1158 			phdr.p_vaddr += addr;
1159 		if ((dynp = malloc(phdr.p_filesz)) == NULL)
1160 			return (0);
1161 		dync.d_tag = DT_NULL;
1162 		if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) !=
1163 		    phdr.p_filesz) {
1164 			free(dynp);
1165 			return (0);
1166 		}
1167 
1168 		for (i = 0; i < phdr.p_filesz / sizeof (Elf64_Dyn); i++) {
1169 			if (dynp[i].d_tag == DT_CHECKSUM)
1170 				dync = dynp[i];
1171 		}
1172 
1173 		free(dynp);
1174 
1175 		if (dync.d_tag != DT_CHECKSUM)
1176 			return (0);
1177 
1178 		dprintf("image cksum value is %llx\n",
1179 		    (u_longlong_t)dync.d_un.d_val);
1180 		return (dync.d_un.d_val != cksum);
1181 #endif	/* _LP64 */
1182 	}
1183 
1184 	return (0);
1185 }
1186 
1187 static Elf *
1188 fake_elf(struct ps_prochandle *P, file_info_t *fptr)
1189 {
1190 	enum {
1191 		DI_PLTGOT = 0,
1192 		DI_JMPREL,
1193 		DI_PLTRELSZ,
1194 		DI_PLTREL,
1195 		DI_SYMTAB,
1196 		DI_HASH,
1197 		DI_SYMENT,
1198 		DI_STRTAB,
1199 		DI_STRSZ,
1200 		DI_NENT
1201 	};
1202 	uintptr_t addr;
1203 	size_t size = 0;
1204 	caddr_t elfdata = NULL;
1205 	Elf *elf;
1206 	Elf32_Word nchain;
1207 	static char shstr[] = ".shstrtab\0.dynsym\0.dynstr\0.dynamic\0.plt";
1208 
1209 	if (fptr->file_map == NULL)
1210 		return (NULL);
1211 
1212 	if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) !=
1213 	    (CC_CONTENT_TEXT | CC_CONTENT_DATA))
1214 		return (NULL);
1215 
1216 	addr = fptr->file_map->map_pmap.pr_vaddr;
1217 
1218 	/*
1219 	 * We're building a in memory elf file that will let us use libelf
1220 	 * for most of the work we need to later (e.g. symbol table lookups).
1221 	 * We need sections for the dynsym, dynstr, and plt, and we need
1222 	 * the program headers from the text section. The former is used in
1223 	 * Pbuild_file_symtab(); the latter is used in several functions in
1224 	 * Pcore.c to reconstruct the origin of each mapping from the load
1225 	 * object that spawned it.
1226 	 *
1227 	 * Here are some useful pieces of elf trivia that will help
1228 	 * to elucidate this code.
1229 	 *
1230 	 * All the information we need about the dynstr can be found in these
1231 	 * two entries in the dynamic section:
1232 	 *
1233 	 *	DT_STRTAB	base of dynstr
1234 	 *	DT_STRSZ	size of dynstr
1235 	 *
1236 	 * So deciphering the dynstr is pretty straightforward.
1237 	 *
1238 	 * The dynsym is a little trickier.
1239 	 *
1240 	 *	DT_SYMTAB	base of dynsym
1241 	 *	DT_SYMENT	size of a dynstr entry (Elf{32,64}_Sym)
1242 	 *	DT_HASH		base of hash table for dynamic lookups
1243 	 *
1244 	 * The DT_SYMTAB entry gives us any easy way of getting to the base
1245 	 * of the dynsym, but getting the size involves rooting around in the
1246 	 * dynamic lookup hash table. Here's the layout of the hash table:
1247 	 *
1248 	 *		+-------------------+
1249 	 *		|	nbucket	    |	All values are of type
1250 	 *		+-------------------+	Elf32_Word
1251 	 *		|	nchain	    |
1252 	 *		+-------------------+
1253 	 *		|	bucket[0]   |
1254 	 *		|	. . .	    |
1255 	 *		| bucket[nbucket-1] |
1256 	 *		+-------------------+
1257 	 *		|	chain[0]    |
1258 	 *		|	. . .	    |
1259 	 *		|  chain[nchain-1]  |
1260 	 *		+-------------------+
1261 	 *	(figure 5-12 from the SYS V Generic ABI)
1262 	 *
1263 	 * Symbols names are hashed into a particular bucket which contains
1264 	 * an index into the symbol table. Each entry in the symbol table
1265 	 * has a corresponding entry in the chain table which tells the
1266 	 * consumer where the next entry in the hash chain is. We can use
1267 	 * the nchain field to find out the size of the dynsym.
1268 	 *
1269 	 * We can figure out the size of the .plt section, but it takes some
1270 	 * doing. We need to use the following information:
1271 	 *
1272 	 *	DT_PLTGOT	base of the PLT
1273 	 *	DT_JMPREL	base of the PLT's relocation section
1274 	 *	DT_PLTRELSZ	size of the PLT's relocation section
1275 	 *	DT_PLTREL	type of the PLT's relocation section
1276 	 *
1277 	 * We can use the relocation section to figure out the address of the
1278 	 * last entry and subtract off the value of DT_PLTGOT to calculate
1279 	 * the size of the PLT.
1280 	 *
1281 	 * For more information, check out the System V Generic ABI.
1282 	 */
1283 
1284 	if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1285 		Elf32_Ehdr ehdr, *ep;
1286 		Elf32_Phdr phdr;
1287 		Elf32_Shdr *sp;
1288 		Elf32_Dyn *dp;
1289 		Elf32_Dyn *d[DI_NENT] = { 0 };
1290 		uint_t i, dcount = 0;
1291 		uint32_t off;
1292 		size_t pltsz = 0, pltentsz;
1293 
1294 		if (read_ehdr32(P, &ehdr, addr) != 0 ||
1295 		    read_dynamic_phdr32(P, &ehdr, &phdr, addr) != 0)
1296 			return (NULL);
1297 
1298 		if (ehdr.e_type == ET_DYN)
1299 			phdr.p_vaddr += addr;
1300 
1301 		if ((dp = malloc(phdr.p_filesz)) == NULL)
1302 			return (NULL);
1303 
1304 		if (Pread(P, dp, phdr.p_filesz, phdr.p_vaddr) !=
1305 		    phdr.p_filesz) {
1306 			free(dp);
1307 			return (NULL);
1308 		}
1309 
1310 		for (i = 0; i < phdr.p_filesz / sizeof (Elf32_Dyn); i++) {
1311 			switch (dp[i].d_tag) {
1312 			/*
1313 			 * For the .plt section.
1314 			 */
1315 			case DT_PLTGOT:
1316 				d[DI_PLTGOT] = &dp[i];
1317 				continue;
1318 			case DT_JMPREL:
1319 				d[DI_JMPREL] = &dp[i];
1320 				continue;
1321 			case DT_PLTRELSZ:
1322 				d[DI_PLTRELSZ] = &dp[i];
1323 				continue;
1324 			case DT_PLTREL:
1325 				d[DI_PLTREL] = &dp[i];
1326 				continue;
1327 			default:
1328 				continue;
1329 
1330 			/*
1331 			 * For the .dynsym section.
1332 			 */
1333 			case DT_SYMTAB:
1334 				d[DI_SYMTAB] = &dp[i];
1335 				break;
1336 			case DT_HASH:
1337 				d[DI_HASH] = &dp[i];
1338 				break;
1339 			case DT_SYMENT:
1340 				d[DI_SYMENT] = &dp[i];
1341 				break;
1342 
1343 			/*
1344 			 * For the .dynstr section.
1345 			 */
1346 			case DT_STRTAB:
1347 				d[DI_STRTAB] = &dp[i];
1348 				break;
1349 			case DT_STRSZ:
1350 				d[DI_STRSZ] = &dp[i];
1351 				break;
1352 			}
1353 
1354 			dcount++;
1355 		}
1356 
1357 		/*
1358 		 * We need all of those dynamic entries in order to put
1359 		 * together a complete set of elf sections, but we'll
1360 		 * let the PLT section slide if need be. The dynsym- and
1361 		 * dynstr-related dynamic entries are mandatory in both
1362 		 * executables and shared objects so if one of those is
1363 		 * missing, we're in some trouble and should abort.
1364 		 */
1365 		if (dcount + 4 != DI_NENT) {
1366 			dprintf("text section missing required dynamic "
1367 			    "entries\n");
1368 			return (NULL);
1369 		}
1370 
1371 		if (ehdr.e_type == ET_DYN) {
1372 			if (d[DI_PLTGOT] != NULL)
1373 				d[DI_PLTGOT]->d_un.d_ptr += addr;
1374 			if (d[DI_JMPREL] != NULL)
1375 				d[DI_JMPREL]->d_un.d_ptr += addr;
1376 			d[DI_SYMTAB]->d_un.d_ptr += addr;
1377 			d[DI_HASH]->d_un.d_ptr += addr;
1378 			d[DI_STRTAB]->d_un.d_ptr += addr;
1379 		}
1380 
1381 		/* elf header */
1382 		size = sizeof (Elf32_Ehdr);
1383 
1384 		/* program headers from in-core elf fragment */
1385 		size += ehdr.e_phnum * ehdr.e_phentsize;
1386 
1387 		/* unused shdr, and .shstrtab section */
1388 		size += sizeof (Elf32_Shdr);
1389 		size += sizeof (Elf32_Shdr);
1390 		size += roundup(sizeof (shstr), 4);
1391 
1392 		/* .dynsym section */
1393 		size += sizeof (Elf32_Shdr);
1394 		if (Pread(P, &nchain, sizeof (nchain),
1395 		    d[DI_HASH]->d_un.d_ptr + 4) != sizeof (nchain))
1396 			goto bad32;
1397 		size += sizeof (Elf32_Sym) * nchain;
1398 
1399 		/* .dynstr section */
1400 		size += sizeof (Elf32_Shdr);
1401 		size += roundup(d[DI_STRSZ]->d_un.d_val, 4);
1402 
1403 		/* .dynamic section */
1404 		size += sizeof (Elf32_Shdr);
1405 		size += roundup(phdr.p_filesz, 4);
1406 
1407 		/* .plt section */
1408 		if (d[DI_PLTGOT] != NULL && d[DI_JMPREL] != NULL &&
1409 		    d[DI_PLTRELSZ] != NULL && d[DI_PLTREL] != NULL) {
1410 			uintptr_t penult, ult;
1411 			uintptr_t jmprel = d[DI_JMPREL]->d_un.d_ptr;
1412 			size_t pltrelsz = d[DI_PLTRELSZ]->d_un.d_val;
1413 
1414 			if (d[DI_PLTREL]->d_un.d_val == DT_RELA) {
1415 				uint_t ndx = pltrelsz / sizeof (Elf32_Rela) - 2;
1416 				Elf32_Rela r[2];
1417 
1418 				if (Pread(P, r, sizeof (r), jmprel +
1419 				    sizeof (r[0]) * ndx) != sizeof (r))
1420 					goto bad32;
1421 
1422 				penult = r[0].r_offset;
1423 				ult = r[1].r_offset;
1424 
1425 			} else if (d[DI_PLTREL]->d_un.d_val == DT_REL) {
1426 				uint_t ndx = pltrelsz / sizeof (Elf32_Rel) - 2;
1427 				Elf32_Rel r[2];
1428 
1429 				if (Pread(P, r, sizeof (r), jmprel +
1430 				    sizeof (r[0]) * ndx) != sizeof (r))
1431 					goto bad32;
1432 
1433 				penult = r[0].r_offset;
1434 				ult = r[1].r_offset;
1435 			} else {
1436 				goto bad32;
1437 			}
1438 
1439 			pltentsz = ult - penult;
1440 
1441 			if (ehdr.e_type == ET_DYN)
1442 				ult += addr;
1443 
1444 			pltsz = ult - d[DI_PLTGOT]->d_un.d_ptr + pltentsz;
1445 
1446 			size += sizeof (Elf32_Shdr);
1447 			size += roundup(pltsz, 4);
1448 		}
1449 
1450 		if ((elfdata = calloc(1, size)) == NULL)
1451 			goto bad32;
1452 
1453 		/* LINTED - alignment */
1454 		ep = (Elf32_Ehdr *)elfdata;
1455 		(void) memcpy(ep, &ehdr, offsetof(Elf32_Ehdr, e_phoff));
1456 
1457 		ep->e_ehsize = sizeof (Elf32_Ehdr);
1458 		ep->e_phoff = sizeof (Elf32_Ehdr);
1459 		ep->e_phentsize = ehdr.e_phentsize;
1460 		ep->e_phnum = ehdr.e_phnum;
1461 		ep->e_shoff = ep->e_phoff + ep->e_phnum * ep->e_phentsize;
1462 		ep->e_shentsize = sizeof (Elf32_Shdr);
1463 		ep->e_shnum = (pltsz == 0) ? 5 : 6;
1464 		ep->e_shstrndx = 1;
1465 
1466 		/* LINTED - alignment */
1467 		sp = (Elf32_Shdr *)(elfdata + ep->e_shoff);
1468 		off = ep->e_shoff + ep->e_shentsize * ep->e_shnum;
1469 
1470 		/*
1471 		 * Copying the program headers directly from the process's
1472 		 * address space is a little suspect, but since we only
1473 		 * use them for their address and size values, this is fine.
1474 		 */
1475 		if (Pread(P, &elfdata[ep->e_phoff],
1476 		    ep->e_phnum * ep->e_phentsize, addr + ehdr.e_phoff) !=
1477 		    ep->e_phnum * ep->e_phentsize) {
1478 			free(elfdata);
1479 			goto bad32;
1480 		}
1481 
1482 		/*
1483 		 * The first elf section is always skipped.
1484 		 */
1485 		sp++;
1486 
1487 		/*
1488 		 * Section Header[1]  sh_name: .shstrtab
1489 		 */
1490 		sp->sh_name = 0;
1491 		sp->sh_type = SHT_STRTAB;
1492 		sp->sh_flags = SHF_STRINGS;
1493 		sp->sh_addr = 0;
1494 		sp->sh_offset = off;
1495 		sp->sh_size = sizeof (shstr);
1496 		sp->sh_link = 0;
1497 		sp->sh_info = 0;
1498 		sp->sh_addralign = 1;
1499 		sp->sh_entsize = 0;
1500 
1501 		(void) memcpy(&elfdata[off], shstr, sizeof (shstr));
1502 		off += roundup(sp->sh_size, 4);
1503 		sp++;
1504 
1505 		/*
1506 		 * Section Header[2]  sh_name: .dynsym
1507 		 */
1508 		sp->sh_name = 10;
1509 		sp->sh_type = SHT_DYNSYM;
1510 		sp->sh_flags = SHF_ALLOC;
1511 		sp->sh_addr = d[DI_SYMTAB]->d_un.d_ptr;
1512 		if (ehdr.e_type == ET_DYN)
1513 			sp->sh_addr -= addr;
1514 		sp->sh_offset = off;
1515 		sp->sh_size = nchain * sizeof (Elf32_Sym);
1516 		sp->sh_link = 3;
1517 		sp->sh_info = 1;
1518 		sp->sh_addralign = 4;
1519 		sp->sh_entsize = sizeof (Elf32_Sym);
1520 
1521 		if (Pread(P, &elfdata[off], sp->sh_size,
1522 		    d[DI_SYMTAB]->d_un.d_ptr) != sp->sh_size) {
1523 			free(elfdata);
1524 			goto bad32;
1525 		}
1526 
1527 		off += roundup(sp->sh_size, 4);
1528 		sp++;
1529 
1530 		/*
1531 		 * Section Header[3]  sh_name: .dynstr
1532 		 */
1533 		sp->sh_name = 18;
1534 		sp->sh_type = SHT_STRTAB;
1535 		sp->sh_flags = SHF_ALLOC | SHF_STRINGS;
1536 		sp->sh_addr = d[DI_STRTAB]->d_un.d_ptr;
1537 		if (ehdr.e_type == ET_DYN)
1538 			sp->sh_addr -= addr;
1539 		sp->sh_offset = off;
1540 		sp->sh_size = d[DI_STRSZ]->d_un.d_val;
1541 		sp->sh_link = 0;
1542 		sp->sh_info = 0;
1543 		sp->sh_addralign = 1;
1544 		sp->sh_entsize = 0;
1545 
1546 		if (Pread(P, &elfdata[off], sp->sh_size,
1547 		    d[DI_STRTAB]->d_un.d_ptr) != sp->sh_size) {
1548 			free(elfdata);
1549 			goto bad32;
1550 		}
1551 		off += roundup(sp->sh_size, 4);
1552 		sp++;
1553 
1554 		/*
1555 		 * Section Header[4]  sh_name: .dynamic
1556 		 */
1557 		sp->sh_name = 26;
1558 		sp->sh_type = SHT_DYNAMIC;
1559 		sp->sh_flags = SHF_WRITE | SHF_ALLOC;
1560 		sp->sh_addr = phdr.p_vaddr;
1561 		if (ehdr.e_type == ET_DYN)
1562 			sp->sh_addr -= addr;
1563 		sp->sh_offset = off;
1564 		sp->sh_size = phdr.p_filesz;
1565 		sp->sh_link = 3;
1566 		sp->sh_info = 0;
1567 		sp->sh_addralign = 4;
1568 		sp->sh_entsize = sizeof (Elf32_Dyn);
1569 
1570 		(void) memcpy(&elfdata[off], dp, sp->sh_size);
1571 		off += roundup(sp->sh_size, 4);
1572 		sp++;
1573 
1574 		/*
1575 		 * Section Header[5]  sh_name: .plt
1576 		 */
1577 		if (pltsz != 0) {
1578 			sp->sh_name = 35;
1579 			sp->sh_type = SHT_PROGBITS;
1580 			sp->sh_flags = SHF_WRITE | SHF_ALLOC | SHF_EXECINSTR;
1581 			sp->sh_addr = d[DI_PLTGOT]->d_un.d_ptr;
1582 			if (ehdr.e_type == ET_DYN)
1583 				sp->sh_addr -= addr;
1584 			sp->sh_offset = off;
1585 			sp->sh_size = pltsz;
1586 			sp->sh_link = 0;
1587 			sp->sh_info = 0;
1588 			sp->sh_addralign = 4;
1589 			sp->sh_entsize = pltentsz;
1590 
1591 			if (Pread(P, &elfdata[off], sp->sh_size,
1592 			    d[DI_PLTGOT]->d_un.d_ptr) != sp->sh_size) {
1593 				free(elfdata);
1594 				goto bad32;
1595 			}
1596 			off += roundup(sp->sh_size, 4);
1597 			sp++;
1598 		}
1599 
1600 		free(dp);
1601 		goto good;
1602 
1603 bad32:
1604 		free(dp);
1605 		return (NULL);
1606 #ifdef _LP64
1607 	} else if (P->status.pr_dmodel == PR_MODEL_LP64) {
1608 		Elf64_Ehdr ehdr, *ep;
1609 		Elf64_Phdr phdr;
1610 		Elf64_Shdr *sp;
1611 		Elf64_Dyn *dp;
1612 		Elf64_Dyn *d[DI_NENT] = { 0 };
1613 		uint_t i, dcount = 0;
1614 		uint64_t off;
1615 		size_t pltsz = 0, pltentsz;
1616 
1617 		if (read_ehdr64(P, &ehdr, addr) != 0 ||
1618 		    read_dynamic_phdr64(P, &ehdr, &phdr, addr) != 0)
1619 			return (NULL);
1620 
1621 		if (ehdr.e_type == ET_DYN)
1622 			phdr.p_vaddr += addr;
1623 
1624 		if ((dp = malloc(phdr.p_filesz)) == NULL)
1625 			return (NULL);
1626 
1627 		if (Pread(P, dp, phdr.p_filesz, phdr.p_vaddr) !=
1628 		    phdr.p_filesz) {
1629 			free(dp);
1630 			return (NULL);
1631 		}
1632 
1633 		for (i = 0; i < phdr.p_filesz / sizeof (Elf64_Dyn); i++) {
1634 			switch (dp[i].d_tag) {
1635 			/*
1636 			 * For the .plt section.
1637 			 */
1638 			case DT_PLTGOT:
1639 				d[DI_PLTGOT] = &dp[i];
1640 				continue;
1641 			case DT_JMPREL:
1642 				d[DI_JMPREL] = &dp[i];
1643 				continue;
1644 			case DT_PLTRELSZ:
1645 				d[DI_PLTRELSZ] = &dp[i];
1646 				continue;
1647 			case DT_PLTREL:
1648 				d[DI_PLTREL] = &dp[i];
1649 				continue;
1650 			default:
1651 				continue;
1652 
1653 			/*
1654 			 * For the .dynsym section.
1655 			 */
1656 			case DT_SYMTAB:
1657 				d[DI_SYMTAB] = &dp[i];
1658 				break;
1659 			case DT_HASH:
1660 				d[DI_HASH] = &dp[i];
1661 				break;
1662 			case DT_SYMENT:
1663 				d[DI_SYMENT] = &dp[i];
1664 				break;
1665 
1666 			/*
1667 			 * For the .dynstr section.
1668 			 */
1669 			case DT_STRTAB:
1670 				d[DI_STRTAB] = &dp[i];
1671 				break;
1672 			case DT_STRSZ:
1673 				d[DI_STRSZ] = &dp[i];
1674 				break;
1675 			}
1676 
1677 			dcount++;
1678 		}
1679 
1680 		/*
1681 		 * We need all of those dynamic entries in order to put
1682 		 * together a complete set of elf sections, but we'll
1683 		 * let the PLT section slide if need be. The dynsym- and
1684 		 * dynstr-related dynamic entries are mandatory in both
1685 		 * executables and shared objects so if one of those is
1686 		 * missing, we're in some trouble and should abort.
1687 		 */
1688 		if (dcount + 4 != DI_NENT) {
1689 			dprintf("text section missing required dynamic "
1690 			    "entries\n");
1691 			return (NULL);
1692 		}
1693 
1694 		if (ehdr.e_type == ET_DYN) {
1695 			if (d[DI_PLTGOT] != NULL)
1696 				d[DI_PLTGOT]->d_un.d_ptr += addr;
1697 			if (d[DI_JMPREL] != NULL)
1698 				d[DI_JMPREL]->d_un.d_ptr += addr;
1699 			d[DI_SYMTAB]->d_un.d_ptr += addr;
1700 			d[DI_HASH]->d_un.d_ptr += addr;
1701 			d[DI_STRTAB]->d_un.d_ptr += addr;
1702 		}
1703 
1704 		/* elf header */
1705 		size = sizeof (Elf64_Ehdr);
1706 
1707 		/* program headers from in-core elf fragment */
1708 		size += ehdr.e_phnum * ehdr.e_phentsize;
1709 
1710 		/* unused shdr, and .shstrtab section */
1711 		size += sizeof (Elf64_Shdr);
1712 		size += sizeof (Elf64_Shdr);
1713 		size += roundup(sizeof (shstr), 8);
1714 
1715 		/* .dynsym section */
1716 		size += sizeof (Elf64_Shdr);
1717 		if (Pread(P, &nchain, sizeof (nchain),
1718 		    d[DI_HASH]->d_un.d_ptr + 4) != sizeof (nchain))
1719 			goto bad64;
1720 		size += sizeof (Elf64_Sym) * nchain;
1721 
1722 		/* .dynstr section */
1723 		size += sizeof (Elf64_Shdr);
1724 		size += roundup(d[DI_STRSZ]->d_un.d_val, 8);
1725 
1726 		/* .dynamic section */
1727 		size += sizeof (Elf64_Shdr);
1728 		size += roundup(phdr.p_filesz, 8);
1729 
1730 		/* .plt section */
1731 		if (d[DI_PLTGOT] != NULL && d[DI_JMPREL] != NULL &&
1732 		    d[DI_PLTRELSZ] != NULL && d[DI_PLTREL] != NULL) {
1733 			uintptr_t penult, ult;
1734 			uintptr_t jmprel = d[DI_JMPREL]->d_un.d_ptr;
1735 			size_t pltrelsz = d[DI_PLTRELSZ]->d_un.d_val;
1736 
1737 			if (d[DI_PLTREL]->d_un.d_val == DT_RELA) {
1738 				uint_t ndx = pltrelsz / sizeof (Elf64_Rela) - 2;
1739 				Elf64_Rela r[2];
1740 
1741 				if (Pread(P, r, sizeof (r), jmprel +
1742 				    sizeof (r[0]) * ndx) != sizeof (r))
1743 					goto bad64;
1744 
1745 				penult = r[0].r_offset;
1746 				ult = r[1].r_offset;
1747 
1748 			} else if (d[DI_PLTREL]->d_un.d_val == DT_REL) {
1749 				uint_t ndx = pltrelsz / sizeof (Elf64_Rel) - 2;
1750 				Elf64_Rel r[2];
1751 
1752 				if (Pread(P, r, sizeof (r), jmprel +
1753 				    sizeof (r[0]) * ndx) != sizeof (r))
1754 					goto bad64;
1755 
1756 				penult = r[0].r_offset;
1757 				ult = r[1].r_offset;
1758 			} else {
1759 				goto bad64;
1760 			}
1761 
1762 			pltentsz = ult - penult;
1763 
1764 			if (ehdr.e_type == ET_DYN)
1765 				ult += addr;
1766 
1767 			pltsz = ult - d[DI_PLTGOT]->d_un.d_ptr + pltentsz;
1768 
1769 			size += sizeof (Elf64_Shdr);
1770 			size += roundup(pltsz, 8);
1771 		}
1772 
1773 		if ((elfdata = calloc(1, size)) == NULL)
1774 			goto bad64;
1775 
1776 		/* LINTED - alignment */
1777 		ep = (Elf64_Ehdr *)elfdata;
1778 		(void) memcpy(ep, &ehdr, offsetof(Elf64_Ehdr, e_phoff));
1779 
1780 		ep->e_ehsize = sizeof (Elf64_Ehdr);
1781 		ep->e_phoff = sizeof (Elf64_Ehdr);
1782 		ep->e_phentsize = ehdr.e_phentsize;
1783 		ep->e_phnum = ehdr.e_phnum;
1784 		ep->e_shoff = ep->e_phoff + ep->e_phnum * ep->e_phentsize;
1785 		ep->e_shentsize = sizeof (Elf64_Shdr);
1786 		ep->e_shnum = (pltsz == 0) ? 5 : 6;
1787 		ep->e_shstrndx = 1;
1788 
1789 		/* LINTED - alignment */
1790 		sp = (Elf64_Shdr *)(elfdata + ep->e_shoff);
1791 		off = ep->e_shoff + ep->e_shentsize * ep->e_shnum;
1792 
1793 		/*
1794 		 * Copying the program headers directly from the process's
1795 		 * address space is a little suspect, but since we only
1796 		 * use them for their address and size values, this is fine.
1797 		 */
1798 		if (Pread(P, &elfdata[ep->e_phoff],
1799 		    ep->e_phnum * ep->e_phentsize, addr + ehdr.e_phoff) !=
1800 		    ep->e_phnum * ep->e_phentsize) {
1801 			free(elfdata);
1802 			goto bad64;
1803 		}
1804 
1805 		/*
1806 		 * The first elf section is always skipped.
1807 		 */
1808 		sp++;
1809 
1810 		/*
1811 		 * Section Header[1]  sh_name: .shstrtab
1812 		 */
1813 		sp->sh_name = 0;
1814 		sp->sh_type = SHT_STRTAB;
1815 		sp->sh_flags = SHF_STRINGS;
1816 		sp->sh_addr = 0;
1817 		sp->sh_offset = off;
1818 		sp->sh_size = sizeof (shstr);
1819 		sp->sh_link = 0;
1820 		sp->sh_info = 0;
1821 		sp->sh_addralign = 1;
1822 		sp->sh_entsize = 0;
1823 
1824 		(void) memcpy(&elfdata[off], shstr, sizeof (shstr));
1825 		off += roundup(sp->sh_size, 8);
1826 		sp++;
1827 
1828 		/*
1829 		 * Section Header[2]  sh_name: .dynsym
1830 		 */
1831 		sp->sh_name = 10;
1832 		sp->sh_type = SHT_DYNSYM;
1833 		sp->sh_flags = SHF_ALLOC;
1834 		sp->sh_addr = d[DI_SYMTAB]->d_un.d_ptr;
1835 		if (ehdr.e_type == ET_DYN)
1836 			sp->sh_addr -= addr;
1837 		sp->sh_offset = off;
1838 		sp->sh_size = nchain * sizeof (Elf64_Sym);
1839 		sp->sh_link = 3;
1840 		sp->sh_info = 1;
1841 		sp->sh_addralign = 8;
1842 		sp->sh_entsize = sizeof (Elf64_Sym);
1843 
1844 		if (Pread(P, &elfdata[off], sp->sh_size,
1845 		    d[DI_SYMTAB]->d_un.d_ptr) != sp->sh_size) {
1846 			free(elfdata);
1847 			goto bad64;
1848 		}
1849 
1850 		off += roundup(sp->sh_size, 8);
1851 		sp++;
1852 
1853 		/*
1854 		 * Section Header[3]  sh_name: .dynstr
1855 		 */
1856 		sp->sh_name = 18;
1857 		sp->sh_type = SHT_STRTAB;
1858 		sp->sh_flags = SHF_ALLOC | SHF_STRINGS;
1859 		sp->sh_addr = d[DI_STRTAB]->d_un.d_ptr;
1860 		if (ehdr.e_type == ET_DYN)
1861 			sp->sh_addr -= addr;
1862 		sp->sh_offset = off;
1863 		sp->sh_size = d[DI_STRSZ]->d_un.d_val;
1864 		sp->sh_link = 0;
1865 		sp->sh_info = 0;
1866 		sp->sh_addralign = 1;
1867 		sp->sh_entsize = 0;
1868 
1869 		if (Pread(P, &elfdata[off], sp->sh_size,
1870 		    d[DI_STRTAB]->d_un.d_ptr) != sp->sh_size) {
1871 			free(elfdata);
1872 			goto bad64;
1873 		}
1874 		off += roundup(sp->sh_size, 8);
1875 		sp++;
1876 
1877 		/*
1878 		 * Section Header[4]  sh_name: .dynamic
1879 		 */
1880 		sp->sh_name = 26;
1881 		sp->sh_type = SHT_DYNAMIC;
1882 		sp->sh_flags = SHF_WRITE | SHF_ALLOC;
1883 		sp->sh_addr = phdr.p_vaddr;
1884 		if (ehdr.e_type == ET_DYN)
1885 			sp->sh_addr -= addr;
1886 		sp->sh_offset = off;
1887 		sp->sh_size = phdr.p_filesz;
1888 		sp->sh_link = 3;
1889 		sp->sh_info = 0;
1890 		sp->sh_addralign = 8;
1891 		sp->sh_entsize = sizeof (Elf64_Dyn);
1892 
1893 		(void) memcpy(&elfdata[off], dp, sp->sh_size);
1894 		off += roundup(sp->sh_size, 8);
1895 		sp++;
1896 
1897 		/*
1898 		 * Section Header[5]  sh_name: .plt
1899 		 */
1900 		if (pltsz != 0) {
1901 			sp->sh_name = 35;
1902 			sp->sh_type = SHT_PROGBITS;
1903 			sp->sh_flags = SHF_WRITE | SHF_ALLOC | SHF_EXECINSTR;
1904 			sp->sh_addr = d[DI_PLTGOT]->d_un.d_ptr;
1905 			if (ehdr.e_type == ET_DYN)
1906 				sp->sh_addr -= addr;
1907 			sp->sh_offset = off;
1908 			sp->sh_size = pltsz;
1909 			sp->sh_link = 0;
1910 			sp->sh_info = 0;
1911 			sp->sh_addralign = 8;
1912 			sp->sh_entsize = pltentsz;
1913 
1914 			if (Pread(P, &elfdata[off], sp->sh_size,
1915 			    d[DI_PLTGOT]->d_un.d_ptr) != sp->sh_size) {
1916 				free(elfdata);
1917 				goto bad64;
1918 			}
1919 			off += roundup(sp->sh_size, 8);
1920 			sp++;
1921 		}
1922 
1923 		free(dp);
1924 		goto good;
1925 
1926 bad64:
1927 		free(dp);
1928 		return (NULL);
1929 #endif	/* _LP64 */
1930 	}
1931 good:
1932 	if ((elf = elf_memory(elfdata, size)) == NULL) {
1933 		free(elfdata);
1934 		return (NULL);
1935 	}
1936 
1937 	fptr->file_elfmem = elfdata;
1938 
1939 	return (elf);
1940 }
1941 
1942 /*
1943  * We wouldn't need these if qsort(3C) took an argument for the callback...
1944  */
1945 static mutex_t sort_mtx = DEFAULTMUTEX;
1946 static char *sort_strs;
1947 static GElf_Sym *sort_syms;
1948 
1949 int
1950 byaddr_cmp_common(GElf_Sym *a, char *aname, GElf_Sym *b, char *bname)
1951 {
1952 	if (a->st_value < b->st_value)
1953 		return (-1);
1954 	if (a->st_value > b->st_value)
1955 		return (1);
1956 
1957 	/*
1958 	 * Prefer the function to the non-function.
1959 	 */
1960 	if (GELF_ST_TYPE(a->st_info) != GELF_ST_TYPE(b->st_info)) {
1961 		if (GELF_ST_TYPE(a->st_info) == STT_FUNC)
1962 			return (-1);
1963 		if (GELF_ST_TYPE(b->st_info) == STT_FUNC)
1964 			return (1);
1965 	}
1966 
1967 	/*
1968 	 * Prefer the weak or strong global symbol to the local symbol.
1969 	 */
1970 	if (GELF_ST_BIND(a->st_info) != GELF_ST_BIND(b->st_info)) {
1971 		if (GELF_ST_BIND(b->st_info) == STB_LOCAL)
1972 			return (-1);
1973 		if (GELF_ST_BIND(a->st_info) == STB_LOCAL)
1974 			return (1);
1975 	}
1976 
1977 	/*
1978 	 * Prefer the name with fewer leading underscores in the name.
1979 	 */
1980 	while (*aname == '_' && *bname == '_') {
1981 		aname++;
1982 		bname++;
1983 	}
1984 
1985 	if (*bname == '_')
1986 		return (-1);
1987 	if (*aname == '_')
1988 		return (1);
1989 
1990 	/*
1991 	 * Prefer the symbol with the smaller size.
1992 	 */
1993 	if (a->st_size < b->st_size)
1994 		return (-1);
1995 	if (a->st_size > b->st_size)
1996 		return (1);
1997 
1998 	/*
1999 	 * All other factors being equal, fall back to lexicographic order.
2000 	 */
2001 	return (strcmp(aname, bname));
2002 }
2003 
2004 static int
2005 byaddr_cmp(const void *aa, const void *bb)
2006 {
2007 	GElf_Sym *a = &sort_syms[*(uint_t *)aa];
2008 	GElf_Sym *b = &sort_syms[*(uint_t *)bb];
2009 	char *aname = sort_strs + a->st_name;
2010 	char *bname = sort_strs + b->st_name;
2011 
2012 	return (byaddr_cmp_common(a, aname, b, bname));
2013 }
2014 
2015 static int
2016 byname_cmp(const void *aa, const void *bb)
2017 {
2018 	GElf_Sym *a = &sort_syms[*(uint_t *)aa];
2019 	GElf_Sym *b = &sort_syms[*(uint_t *)bb];
2020 	char *aname = sort_strs + a->st_name;
2021 	char *bname = sort_strs + b->st_name;
2022 
2023 	return (strcmp(aname, bname));
2024 }
2025 
2026 void
2027 optimize_symtab(sym_tbl_t *symtab)
2028 {
2029 	GElf_Sym *symp, *syms;
2030 	uint_t i, *indexa, *indexb;
2031 	Elf_Data *data;
2032 	size_t symn, strsz, count;
2033 
2034 	if (symtab == NULL || symtab->sym_data == NULL ||
2035 	    symtab->sym_byaddr != NULL)
2036 		return;
2037 
2038 	data = symtab->sym_data;
2039 	symn = symtab->sym_symn;
2040 	strsz = symtab->sym_strsz;
2041 
2042 	symp = syms = malloc(sizeof (GElf_Sym) * symn);
2043 
2044 	/*
2045 	 * First record all the symbols into a table and count up the ones
2046 	 * that we're interested in. We mark symbols as invalid by setting
2047 	 * the st_name to an illegal value.
2048 	 */
2049 	for (i = 0, count = 0; i < symn; i++, symp++) {
2050 		if (gelf_getsym(data, i, symp) != NULL &&
2051 		    symp->st_name < strsz &&
2052 		    IS_DATA_TYPE(GELF_ST_TYPE(symp->st_info)))
2053 			count++;
2054 		else
2055 			symp->st_name = strsz;
2056 	}
2057 
2058 	/*
2059 	 * Allocate sufficient space for both tables and populate them
2060 	 * with the same symbols we just counted.
2061 	 */
2062 	symtab->sym_count = count;
2063 	indexa = symtab->sym_byaddr = calloc(sizeof (uint_t), count);
2064 	indexb = symtab->sym_byname = calloc(sizeof (uint_t), count);
2065 
2066 	for (i = 0, symp = syms; i < symn; i++, symp++) {
2067 		if (symp->st_name < strsz)
2068 			*indexa++ = *indexb++ = i;
2069 	}
2070 
2071 	/*
2072 	 * Sort the two tables according to the appropriate criteria.
2073 	 */
2074 	(void) mutex_lock(&sort_mtx);
2075 	sort_strs = symtab->sym_strs;
2076 	sort_syms = syms;
2077 
2078 	qsort(symtab->sym_byaddr, count, sizeof (uint_t), byaddr_cmp);
2079 	qsort(symtab->sym_byname, count, sizeof (uint_t), byname_cmp);
2080 
2081 	sort_strs = NULL;
2082 	sort_syms = NULL;
2083 	(void) mutex_unlock(&sort_mtx);
2084 
2085 	free(syms);
2086 }
2087 
2088 /*
2089  * Build the symbol table for the given mapped file.
2090  */
2091 void
2092 Pbuild_file_symtab(struct ps_prochandle *P, file_info_t *fptr)
2093 {
2094 	char objectfile[PATH_MAX];
2095 	uint_t i;
2096 
2097 	GElf_Ehdr ehdr;
2098 	GElf_Sym s;
2099 
2100 	Elf_Data *shdata;
2101 	Elf_Scn *scn;
2102 	Elf *elf;
2103 
2104 	struct {
2105 		GElf_Shdr c_shdr;
2106 		Elf_Data *c_data;
2107 		const char *c_name;
2108 	} *cp, *cache = NULL, *dyn = NULL, *plt = NULL, *ctf = NULL;
2109 
2110 	if (fptr->file_init)
2111 		return;	/* We've already processed this file */
2112 
2113 	/*
2114 	 * Mark the file_info struct as having the symbol table initialized
2115 	 * even if we fail below.  We tried once; we don't try again.
2116 	 */
2117 	fptr->file_init = 1;
2118 
2119 	if (elf_version(EV_CURRENT) == EV_NONE) {
2120 		dprintf("libproc ELF version is more recent than libelf\n");
2121 		return;
2122 	}
2123 
2124 	if (P->state == PS_DEAD || P->state == PS_IDLE) {
2125 		/*
2126 		 * If we're a not live, we can't open files from the /proc
2127 		 * object directory; we have only the mapping and file names
2128 		 * to guide us.  We prefer the file_lname, but need to handle
2129 		 * the case of it being NULL in order to bootstrap: we first
2130 		 * come here during rd_new() when the only information we have
2131 		 * is interpreter name associated with the AT_BASE mapping.
2132 		 */
2133 		(void) snprintf(objectfile, sizeof (objectfile), "%s",
2134 		    fptr->file_lname ? fptr->file_lname : fptr->file_pname);
2135 	} else {
2136 		(void) snprintf(objectfile, sizeof (objectfile),
2137 		    "/proc/%d/object/%s", (int)P->pid, fptr->file_pname);
2138 	}
2139 
2140 	/*
2141 	 * Open the object file, create the elf file, and then get the elf
2142 	 * header and .shstrtab data buffer so we can process sections by
2143 	 * name. If anything goes wrong try to fake up an elf file from
2144 	 * the in-core elf image.
2145 	 */
2146 	if ((fptr->file_fd = open(objectfile, O_RDONLY)) < 0) {
2147 		dprintf("Pbuild_file_symtab: failed to open %s: %s\n",
2148 		    objectfile, strerror(errno));
2149 
2150 		if ((elf = fake_elf(P, fptr)) == NULL ||
2151 		    elf_kind(elf) != ELF_K_ELF ||
2152 		    gelf_getehdr(elf, &ehdr) == NULL ||
2153 		    (scn = elf_getscn(elf, ehdr.e_shstrndx)) == NULL ||
2154 		    (shdata = elf_getdata(scn, NULL)) == NULL) {
2155 			dprintf("failed to fake up ELF file\n");
2156 			return;
2157 		}
2158 
2159 	} else if ((elf = elf_begin(fptr->file_fd, ELF_C_READ, NULL)) == NULL ||
2160 	    elf_kind(elf) != ELF_K_ELF ||
2161 	    gelf_getehdr(elf, &ehdr) == NULL ||
2162 	    (scn = elf_getscn(elf, ehdr.e_shstrndx)) == NULL ||
2163 	    (shdata = elf_getdata(scn, NULL)) == NULL) {
2164 		dprintf("failed to process ELF file %s: %s\n",
2165 		    objectfile, elf_errmsg(elf_errno()));
2166 
2167 		if ((elf = fake_elf(P, fptr)) == NULL ||
2168 		    elf_kind(elf) != ELF_K_ELF ||
2169 		    gelf_getehdr(elf, &ehdr) == NULL ||
2170 		    (scn = elf_getscn(elf, ehdr.e_shstrndx)) == NULL ||
2171 		    (shdata = elf_getdata(scn, NULL)) == NULL) {
2172 			dprintf("failed to fake up ELF file\n");
2173 			goto bad;
2174 		}
2175 
2176 	} else if (file_differs(P, elf, fptr)) {
2177 		Elf *newelf;
2178 
2179 		/*
2180 		 * Before we get too excited about this elf file, we'll check
2181 		 * its checksum value against the value we have in memory. If
2182 		 * they don't agree, we try to fake up a new elf file and
2183 		 * proceed with that instead.
2184 		 */
2185 
2186 		dprintf("ELF file %s (%lx) doesn't match in-core image\n",
2187 		    fptr->file_pname,
2188 		    (ulong_t)fptr->file_map->map_pmap.pr_vaddr);
2189 
2190 		if ((newelf = fake_elf(P, fptr)) == NULL ||
2191 		    elf_kind(newelf) != ELF_K_ELF ||
2192 		    gelf_getehdr(newelf, &ehdr) == NULL ||
2193 		    (scn = elf_getscn(newelf, ehdr.e_shstrndx)) == NULL ||
2194 		    (shdata = elf_getdata(scn, NULL)) == NULL) {
2195 			dprintf("failed to fake up ELF file\n");
2196 		} else {
2197 			(void) elf_end(elf);
2198 			elf = newelf;
2199 
2200 			dprintf("switched to faked up ELF file\n");
2201 		}
2202 	}
2203 
2204 	if ((cache = malloc(ehdr.e_shnum * sizeof (*cache))) == NULL) {
2205 		dprintf("failed to malloc section cache for %s\n", objectfile);
2206 		goto bad;
2207 	}
2208 
2209 	dprintf("processing ELF file %s\n", objectfile);
2210 	fptr->file_class = ehdr.e_ident[EI_CLASS];
2211 	fptr->file_etype = ehdr.e_type;
2212 	fptr->file_elf = elf;
2213 
2214 	/*
2215 	 * Iterate through each section, caching its section header, data
2216 	 * pointer, and name.  We use this for handling sh_link values below.
2217 	 */
2218 	for (cp = cache + 1, scn = NULL; scn = elf_nextscn(elf, scn); cp++) {
2219 		if (gelf_getshdr(scn, &cp->c_shdr) == NULL)
2220 			goto bad; /* Failed to get section header */
2221 
2222 		if ((cp->c_data = elf_getdata(scn, NULL)) == NULL)
2223 			goto bad; /* Failed to get section data */
2224 
2225 		if (cp->c_shdr.sh_name >= shdata->d_size)
2226 			goto bad; /* Corrupt section name */
2227 
2228 		cp->c_name = (const char *)shdata->d_buf + cp->c_shdr.sh_name;
2229 	}
2230 
2231 	/*
2232 	 * Now iterate through the section cache in order to locate info
2233 	 * for the .symtab, .dynsym, .dynamic, .plt, and .SUNW_ctf sections:
2234 	 */
2235 	for (i = 1, cp = cache + 1; i < ehdr.e_shnum; i++, cp++) {
2236 		GElf_Shdr *shp = &cp->c_shdr;
2237 
2238 		if (shp->sh_type == SHT_SYMTAB || shp->sh_type == SHT_DYNSYM) {
2239 			sym_tbl_t *symp = shp->sh_type == SHT_SYMTAB ?
2240 			    &fptr->file_symtab : &fptr->file_dynsym;
2241 
2242 			/*
2243 			 * It's possible that the we already got the symbol
2244 			 * table from the core file itself. Either the file
2245 			 * differs in which case our faked up elf file will
2246 			 * only contain the dynsym (not the symtab) or the
2247 			 * file matches in which case we'll just be replacing
2248 			 * the symbol table we pulled out of the core file
2249 			 * with an equivalent one. In either case, this
2250 			 * check isn't essential, but it's a good idea.
2251 			 */
2252 			if (symp->sym_data == NULL) {
2253 				symp->sym_data = cp->c_data;
2254 				symp->sym_symn = shp->sh_size / shp->sh_entsize;
2255 				symp->sym_strs =
2256 				    cache[shp->sh_link].c_data->d_buf;
2257 				symp->sym_strsz =
2258 				    cache[shp->sh_link].c_data->d_size;
2259 				symp->sym_hdr = cp->c_shdr;
2260 				symp->sym_strhdr = cache[shp->sh_link].c_shdr;
2261 			}
2262 
2263 		} else if (shp->sh_type == SHT_DYNAMIC) {
2264 			dyn = cp;
2265 
2266 		} else if (strcmp(cp->c_name, ".plt") == 0) {
2267 			plt = cp;
2268 
2269 		} else if (strcmp(cp->c_name, ".SUNW_ctf") == 0) {
2270 			/*
2271 			 * Skip over bogus CTF sections so they don't come back
2272 			 * to haunt us later.
2273 			 */
2274 			if (shp->sh_link == 0 ||
2275 			    shp->sh_link > ehdr.e_shnum ||
2276 			    (cache[shp->sh_link].c_shdr.sh_type != SHT_DYNSYM &&
2277 			    cache[shp->sh_link].c_shdr.sh_type != SHT_SYMTAB)) {
2278 				dprintf("Bad sh_link %d for "
2279 				    "CTF\n", shp->sh_link);
2280 				continue;
2281 			}
2282 			ctf = cp;
2283 		}
2284 	}
2285 
2286 	/*
2287 	 * At this point, we've found all the symbol tables we're ever going
2288 	 * to find: the ones in the loop above and possibly the symtab that
2289 	 * was included in the core file. Before we perform any lookups, we
2290 	 * create sorted versions to optimize for lookups.
2291 	 */
2292 	optimize_symtab(&fptr->file_symtab);
2293 	optimize_symtab(&fptr->file_dynsym);
2294 
2295 	/*
2296 	 * Fill in the base address of the text mapping for shared libraries.
2297 	 * This allows us to translate symbols before librtld_db is ready.
2298 	 */
2299 	if (fptr->file_etype == ET_DYN) {
2300 		fptr->file_dyn_base = fptr->file_map->map_pmap.pr_vaddr -
2301 		    fptr->file_map->map_pmap.pr_offset;
2302 		dprintf("setting file_dyn_base for %s to %p\n",
2303 		    objectfile, (void *)fptr->file_dyn_base);
2304 	}
2305 
2306 	/*
2307 	 * Record the CTF section information in the file info structure.
2308 	 */
2309 	if (ctf != NULL) {
2310 		fptr->file_ctf_off = ctf->c_shdr.sh_offset;
2311 		fptr->file_ctf_size = ctf->c_shdr.sh_size;
2312 		if (ctf->c_shdr.sh_link != 0 &&
2313 		    cache[ctf->c_shdr.sh_link].c_shdr.sh_type == SHT_DYNSYM)
2314 			fptr->file_ctf_dyn = 1;
2315 	}
2316 
2317 	if (fptr->file_lo == NULL)
2318 		goto done; /* Nothing else to do if no load object info */
2319 
2320 	/*
2321 	 * If the object is a shared library and we have a different rl_base
2322 	 * value, reset file_dyn_base according to librtld_db's information.
2323 	 */
2324 	if (fptr->file_etype == ET_DYN &&
2325 	    fptr->file_lo->rl_base != fptr->file_dyn_base) {
2326 		dprintf("resetting file_dyn_base for %s to %p\n",
2327 		    objectfile, (void *)fptr->file_lo->rl_base);
2328 		fptr->file_dyn_base = fptr->file_lo->rl_base;
2329 	}
2330 
2331 	/*
2332 	 * Fill in the PLT information for this file if a PLT symbol is found.
2333 	 */
2334 	if (sym_by_name(&fptr->file_dynsym, "_PROCEDURE_LINKAGE_TABLE_", &s,
2335 	    NULL) != NULL) {
2336 		fptr->file_plt_base = s.st_value + fptr->file_dyn_base;
2337 		fptr->file_plt_size = (plt != NULL) ? plt->c_shdr.sh_size : 0;
2338 
2339 		/*
2340 		 * Bring the load object up to date; it is the only way the
2341 		 * user has to access the PLT data. The PLT information in the
2342 		 * rd_loadobj_t is not set in the call to map_iter() (the
2343 		 * callback for rd_loadobj_iter) where we set file_lo.
2344 		 */
2345 		fptr->file_lo->rl_plt_base = fptr->file_plt_base;
2346 		fptr->file_lo->rl_plt_size = fptr->file_plt_size;
2347 
2348 		dprintf("PLT found at %p, size = %lu\n",
2349 		    (void *)fptr->file_plt_base, (ulong_t)fptr->file_plt_size);
2350 	}
2351 
2352 	/*
2353 	 * Fill in the PLT information.
2354 	 */
2355 	if (dyn != NULL) {
2356 		uintptr_t dynaddr = dyn->c_shdr.sh_addr + fptr->file_dyn_base;
2357 		size_t ndyn = dyn->c_shdr.sh_size / dyn->c_shdr.sh_entsize;
2358 		GElf_Dyn d;
2359 
2360 		for (i = 0; i < ndyn; i++) {
2361 			if (gelf_getdyn(dyn->c_data, i, &d) != NULL &&
2362 			    d.d_tag == DT_JMPREL) {
2363 				fptr->file_jmp_rel =
2364 				    d.d_un.d_ptr + fptr->file_dyn_base;
2365 				break;
2366 			}
2367 		}
2368 
2369 		dprintf("_DYNAMIC found at %p, %lu entries, DT_JMPREL = %p\n",
2370 		    (void *)dynaddr, (ulong_t)ndyn, (void *)fptr->file_jmp_rel);
2371 	}
2372 
2373 done:
2374 	free(cache);
2375 	return;
2376 
2377 bad:
2378 	if (cache != NULL)
2379 		free(cache);
2380 
2381 	(void) elf_end(elf);
2382 	fptr->file_elf = NULL;
2383 	if (fptr->file_elfmem != NULL) {
2384 		free(fptr->file_elfmem);
2385 		fptr->file_elfmem = NULL;
2386 	}
2387 	(void) close(fptr->file_fd);
2388 	fptr->file_fd = -1;
2389 }
2390 
2391 /*
2392  * Given a process virtual address, return the map_info_t containing it.
2393  * If none found, return NULL.
2394  */
2395 map_info_t *
2396 Paddr2mptr(struct ps_prochandle *P, uintptr_t addr)
2397 {
2398 	int lo = 0;
2399 	int hi = P->map_count - 1;
2400 	int mid;
2401 	map_info_t *mp;
2402 
2403 	while (lo <= hi) {
2404 
2405 		mid = (lo + hi) / 2;
2406 		mp = &P->mappings[mid];
2407 
2408 		/* check that addr is in [vaddr, vaddr + size) */
2409 		if ((addr - mp->map_pmap.pr_vaddr) < mp->map_pmap.pr_size)
2410 			return (mp);
2411 
2412 		if (addr < mp->map_pmap.pr_vaddr)
2413 			hi = mid - 1;
2414 		else
2415 			lo = mid + 1;
2416 	}
2417 
2418 	return (NULL);
2419 }
2420 
2421 /*
2422  * Return the map_info_t for the executable file.
2423  * If not found, return NULL.
2424  */
2425 static map_info_t *
2426 exec_map(struct ps_prochandle *P)
2427 {
2428 	uint_t i;
2429 	map_info_t *mptr;
2430 	map_info_t *mold = NULL;
2431 	file_info_t *fptr;
2432 	uintptr_t base;
2433 
2434 	for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) {
2435 		if (mptr->map_pmap.pr_mapname[0] == '\0')
2436 			continue;
2437 		if (strcmp(mptr->map_pmap.pr_mapname, "a.out") == 0) {
2438 			if ((fptr = mptr->map_file) != NULL &&
2439 			    fptr->file_lo != NULL) {
2440 				base = fptr->file_lo->rl_base;
2441 				if (base >= mptr->map_pmap.pr_vaddr &&
2442 				    base < mptr->map_pmap.pr_vaddr +
2443 				    mptr->map_pmap.pr_size)	/* text space */
2444 					return (mptr);
2445 				mold = mptr;	/* must be the data */
2446 				continue;
2447 			}
2448 			/* This is a poor way to test for text space */
2449 			if (!(mptr->map_pmap.pr_mflags & MA_EXEC) ||
2450 			    (mptr->map_pmap.pr_mflags & MA_WRITE)) {
2451 				mold = mptr;
2452 				continue;
2453 			}
2454 			return (mptr);
2455 		}
2456 	}
2457 
2458 	return (mold);
2459 }
2460 
2461 /*
2462  * Given a shared object name, return the map_info_t for it.  If no matching
2463  * object is found, return NULL.  Normally, the link maps contain the full
2464  * object pathname, e.g. /usr/lib/libc.so.1.  We allow the object name to
2465  * take one of the following forms:
2466  *
2467  * 1. An exact match (i.e. a full pathname): "/usr/lib/libc.so.1"
2468  * 2. An exact basename match: "libc.so.1"
2469  * 3. An initial basename match up to a '.' suffix: "libc.so" or "libc"
2470  * 4. The literal string "a.out" is an alias for the executable mapping
2471  *
2472  * The third case is a convenience for callers and may not be necessary.
2473  *
2474  * As the exact same object name may be loaded on different link maps (see
2475  * dlmopen(3DL)), we also allow the caller to resolve the object name by
2476  * specifying a particular link map id.  If lmid is PR_LMID_EVERY, the
2477  * first matching name will be returned, regardless of the link map id.
2478  */
2479 static map_info_t *
2480 object_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *objname)
2481 {
2482 	map_info_t *mp;
2483 	file_info_t *fp;
2484 	size_t objlen;
2485 	uint_t i;
2486 
2487 	/*
2488 	 * First pass: look for exact matches of the entire pathname or
2489 	 * basename (cases 1 and 2 above):
2490 	 */
2491 	for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) {
2492 
2493 		if (mp->map_pmap.pr_mapname[0] == '\0' ||
2494 		    (fp = mp->map_file) == NULL || fp->file_lname == NULL)
2495 			continue;
2496 
2497 		if (lmid != PR_LMID_EVERY &&
2498 		    (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident))
2499 			continue;
2500 
2501 		/*
2502 		 * If we match, return the primary text mapping; otherwise
2503 		 * just return the mapping we matched.
2504 		 */
2505 		if (strcmp(fp->file_lname, objname) == 0 ||
2506 		    strcmp(fp->file_lbase, objname) == 0)
2507 			return (fp->file_map ? fp->file_map : mp);
2508 	}
2509 
2510 	objlen = strlen(objname);
2511 
2512 	/*
2513 	 * Second pass: look for partial matches (case 3 above):
2514 	 */
2515 	for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) {
2516 
2517 		if (mp->map_pmap.pr_mapname[0] == '\0' ||
2518 		    (fp = mp->map_file) == NULL || fp->file_lname == NULL)
2519 			continue;
2520 
2521 		if (lmid != PR_LMID_EVERY &&
2522 		    (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident))
2523 			continue;
2524 
2525 		/*
2526 		 * If we match, return the primary text mapping; otherwise
2527 		 * just return the mapping we matched.
2528 		 */
2529 		if (strncmp(fp->file_lbase, objname, objlen) == 0 &&
2530 		    fp->file_lbase[objlen] == '.')
2531 			return (fp->file_map ? fp->file_map : mp);
2532 	}
2533 
2534 	/*
2535 	 * One last check: we allow "a.out" to always alias the executable,
2536 	 * assuming this name was not in use for something else.
2537 	 */
2538 	if ((lmid == PR_LMID_EVERY || lmid == LM_ID_BASE) &&
2539 	    (strcmp(objname, "a.out") == 0))
2540 		return (P->map_exec);
2541 
2542 	return (NULL);
2543 }
2544 
2545 static map_info_t *
2546 object_name_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name)
2547 {
2548 	map_info_t *mptr;
2549 
2550 	if (!P->info_valid)
2551 		Pupdate_maps(P);
2552 
2553 	if (P->map_exec == NULL && ((mptr = Paddr2mptr(P,
2554 	    Pgetauxval(P, AT_ENTRY))) != NULL || (mptr = exec_map(P)) != NULL))
2555 		P->map_exec = mptr;
2556 
2557 	if (P->map_ldso == NULL && (mptr = Paddr2mptr(P,
2558 	    Pgetauxval(P, AT_BASE))) != NULL)
2559 		P->map_ldso = mptr;
2560 
2561 	if (name == PR_OBJ_EXEC)
2562 		mptr = P->map_exec;
2563 	else if (name == PR_OBJ_LDSO)
2564 		mptr = P->map_ldso;
2565 	else if (Prd_agent(P) != NULL || P->state == PS_IDLE)
2566 		mptr = object_to_map(P, lmid, name);
2567 	else
2568 		mptr = NULL;
2569 
2570 	return (mptr);
2571 }
2572 
2573 /*
2574  * When two symbols are found by address, decide which one is to be preferred.
2575  */
2576 static GElf_Sym *
2577 sym_prefer(GElf_Sym *sym1, char *name1, GElf_Sym *sym2, char *name2)
2578 {
2579 	/*
2580 	 * Prefer the non-NULL symbol.
2581 	 */
2582 	if (sym1 == NULL)
2583 		return (sym2);
2584 	if (sym2 == NULL)
2585 		return (sym1);
2586 
2587 	/*
2588 	 * Defer to the sort ordering...
2589 	 */
2590 	return (byaddr_cmp_common(sym1, name1, sym2, name2) <= 0 ? sym1 : sym2);
2591 }
2592 
2593 /*
2594  * Look up a symbol by address in the specified symbol table.
2595  * Adjustment to 'addr' must already have been made for the
2596  * offset of the symbol if this is a dynamic library symbol table.
2597  */
2598 static GElf_Sym *
2599 sym_by_addr(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symp, uint_t *idp)
2600 {
2601 	Elf_Data *data = symtab->sym_data;
2602 	GElf_Sym sym, osym;
2603 	uint_t i, oid, *byaddr = symtab->sym_byaddr;
2604 	int min, max, mid, omid, found = 0;
2605 
2606 	if (data == NULL)
2607 		return (NULL);
2608 
2609 	min = 0;
2610 	max = symtab->sym_count - 1;
2611 	osym.st_value = 0;
2612 
2613 	/*
2614 	 * We can't return when we've found a match, we have to continue
2615 	 * searching for the closest matching symbol.
2616 	 */
2617 	while (min <= max) {
2618 		mid = (max + min) / 2;
2619 
2620 		i = byaddr[mid];
2621 		(void) gelf_getsym(data, i, &sym);
2622 
2623 		if (addr >= sym.st_value &&
2624 		    addr < sym.st_value + sym.st_size &&
2625 		    (!found || sym.st_value > osym.st_value)) {
2626 			osym = sym;
2627 			omid = mid;
2628 			oid = i;
2629 			found = 1;
2630 		}
2631 
2632 		if (addr < sym.st_value)
2633 			max = mid - 1;
2634 		else
2635 			min = mid + 1;
2636 	}
2637 
2638 	if (!found)
2639 		return (NULL);
2640 
2641 	/*
2642 	 * There may be many symbols with identical values so we walk
2643 	 * backward in the byaddr table to find the best match.
2644 	 */
2645 	do {
2646 		sym = osym;
2647 		i = oid;
2648 
2649 		if (omid == 0)
2650 			break;
2651 
2652 		oid = byaddr[--omid];
2653 		(void) gelf_getsym(data, oid, &osym);
2654 	} while (addr >= osym.st_value &&
2655 	    addr < sym.st_value + osym.st_size &&
2656 	    osym.st_value == sym.st_value);
2657 
2658 	*symp = sym;
2659 	if (idp != NULL)
2660 		*idp = i;
2661 	return (symp);
2662 }
2663 
2664 /*
2665  * Look up a symbol by name in the specified symbol table.
2666  */
2667 static GElf_Sym *
2668 sym_by_name(sym_tbl_t *symtab, const char *name, GElf_Sym *symp, uint_t *idp)
2669 {
2670 	Elf_Data *data = symtab->sym_data;
2671 	char *strs = symtab->sym_strs;
2672 	uint_t i, *byname = symtab->sym_byname;
2673 	int min, mid, max, cmp;
2674 
2675 	if (data == NULL || strs == NULL)
2676 		return (NULL);
2677 
2678 	min = 0;
2679 	max = symtab->sym_count - 1;
2680 
2681 	while (min <= max) {
2682 		mid = (max + min) / 2;
2683 
2684 		i = byname[mid];
2685 		(void) gelf_getsym(data, i, symp);
2686 
2687 		if ((cmp = strcmp(name, strs + symp->st_name)) == 0) {
2688 			if (idp != NULL)
2689 				*idp = i;
2690 			return (symp);
2691 		}
2692 
2693 		if (cmp < 0)
2694 			max = mid - 1;
2695 		else
2696 			min = mid + 1;
2697 	}
2698 
2699 	return (NULL);
2700 }
2701 
2702 /*
2703  * Search the process symbol tables looking for a symbol whose
2704  * value to value+size contain the address specified by addr.
2705  * Return values are:
2706  *	sym_name_buffer containing the symbol name
2707  *	GElf_Sym symbol table entry
2708  *	prsyminfo_t ancillary symbol information
2709  * Returns 0 on success, -1 on failure.
2710  */
2711 int
2712 Pxlookup_by_addr(
2713 	struct ps_prochandle *P,
2714 	uintptr_t addr,			/* process address being sought */
2715 	char *sym_name_buffer,		/* buffer for the symbol name */
2716 	size_t bufsize,			/* size of sym_name_buffer */
2717 	GElf_Sym *symbolp,		/* returned symbol table entry */
2718 	prsyminfo_t *sip)		/* returned symbol info */
2719 {
2720 	GElf_Sym	*symp;
2721 	char		*name;
2722 	GElf_Sym	sym1, *sym1p = NULL;
2723 	GElf_Sym	sym2, *sym2p = NULL;
2724 	char		*name1 = NULL;
2725 	char		*name2 = NULL;
2726 	uint_t		i1;
2727 	uint_t		i2;
2728 	map_info_t	*mptr;
2729 	file_info_t	*fptr;
2730 
2731 	(void) Prd_agent(P);
2732 
2733 	if ((mptr = Paddr2mptr(P, addr)) == NULL ||	/* no such address */
2734 	    (fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */
2735 	    fptr->file_elf == NULL)			/* not an ELF file */
2736 		return (-1);
2737 
2738 	/*
2739 	 * Adjust the address by the load object base address in
2740 	 * case the address turns out to be in a shared library.
2741 	 */
2742 	addr -= fptr->file_dyn_base;
2743 
2744 	/*
2745 	 * Search both symbol tables, symtab first, then dynsym.
2746 	 */
2747 	if ((sym1p = sym_by_addr(&fptr->file_symtab, addr, &sym1, &i1)) != NULL)
2748 		name1 = fptr->file_symtab.sym_strs + sym1.st_name;
2749 	if ((sym2p = sym_by_addr(&fptr->file_dynsym, addr, &sym2, &i2)) != NULL)
2750 		name2 = fptr->file_dynsym.sym_strs + sym2.st_name;
2751 
2752 	if ((symp = sym_prefer(sym1p, name1, sym2p, name2)) == NULL)
2753 		return (-1);
2754 
2755 	name = (symp == sym1p) ? name1 : name2;
2756 	if (bufsize > 0) {
2757 		(void) strncpy(sym_name_buffer, name, bufsize);
2758 		sym_name_buffer[bufsize - 1] = '\0';
2759 	}
2760 
2761 	*symbolp = *symp;
2762 	if (sip != NULL) {
2763 		sip->prs_name = bufsize == 0 ? NULL : sym_name_buffer;
2764 		sip->prs_object = fptr->file_lbase;
2765 		sip->prs_id = (symp == sym1p) ? i1 : i2;
2766 		sip->prs_table = (symp == sym1p) ? PR_SYMTAB : PR_DYNSYM;
2767 		sip->prs_lmid = (fptr->file_lo == NULL) ? LM_ID_BASE :
2768 		    fptr->file_lo->rl_lmident;
2769 	}
2770 
2771 	if (GELF_ST_TYPE(symbolp->st_info) != STT_TLS)
2772 		symbolp->st_value += fptr->file_dyn_base;
2773 
2774 	return (0);
2775 }
2776 
2777 int
2778 Plookup_by_addr(struct ps_prochandle *P, uintptr_t addr, char *buf, size_t size,
2779     GElf_Sym *symp)
2780 {
2781 	return (Pxlookup_by_addr(P, addr, buf, size, symp, NULL));
2782 }
2783 
2784 /*
2785  * Search the process symbol tables looking for a symbol whose name matches the
2786  * specified name and whose object and link map optionally match the specified
2787  * parameters.  On success, the function returns 0 and fills in the GElf_Sym
2788  * symbol table entry.  On failure, -1 is returned.
2789  */
2790 int
2791 Pxlookup_by_name(
2792 	struct ps_prochandle *P,
2793 	Lmid_t lmid,			/* link map to match, or -1 for any */
2794 	const char *oname,		/* load object name */
2795 	const char *sname,		/* symbol name */
2796 	GElf_Sym *symp,			/* returned symbol table entry */
2797 	prsyminfo_t *sip)		/* returned symbol info */
2798 {
2799 	map_info_t *mptr;
2800 	file_info_t *fptr;
2801 	int cnt;
2802 
2803 	GElf_Sym sym;
2804 	prsyminfo_t si;
2805 	int rv = -1;
2806 	uint_t id;
2807 
2808 	if (oname == PR_OBJ_EVERY) {
2809 		/* create all the file_info_t's for all the mappings */
2810 		(void) Prd_agent(P);
2811 		cnt = P->num_files;
2812 		fptr = list_next(&P->file_head);
2813 	} else {
2814 		cnt = 1;
2815 		if ((mptr = object_name_to_map(P, lmid, oname)) == NULL ||
2816 		    (fptr = build_map_symtab(P, mptr)) == NULL)
2817 			return (-1);
2818 	}
2819 
2820 	/*
2821 	 * Iterate through the loaded object files and look for the symbol
2822 	 * name in the .symtab and .dynsym of each.  If we encounter a match
2823 	 * with SHN_UNDEF, keep looking in hopes of finding a better match.
2824 	 * This means that a name such as "puts" will match the puts function
2825 	 * in libc instead of matching the puts PLT entry in the a.out file.
2826 	 */
2827 	for (; cnt > 0; cnt--, fptr = list_next(fptr)) {
2828 		Pbuild_file_symtab(P, fptr);
2829 
2830 		if (fptr->file_elf == NULL)
2831 			continue;
2832 
2833 		if (lmid != PR_LMID_EVERY && fptr->file_lo != NULL &&
2834 		    lmid != fptr->file_lo->rl_lmident)
2835 			continue;
2836 
2837 		if (fptr->file_symtab.sym_data != NULL &&
2838 		    sym_by_name(&fptr->file_symtab, sname, symp, &id)) {
2839 			if (sip != NULL) {
2840 				sip->prs_id = id;
2841 				sip->prs_table = PR_SYMTAB;
2842 				sip->prs_object = oname;
2843 				sip->prs_name = sname;
2844 				sip->prs_lmid = fptr->file_lo == NULL ?
2845 				    LM_ID_BASE : fptr->file_lo->rl_lmident;
2846 			}
2847 		} else if (fptr->file_dynsym.sym_data != NULL &&
2848 		    sym_by_name(&fptr->file_dynsym, sname, symp, &id)) {
2849 			if (sip != NULL) {
2850 				sip->prs_id = id;
2851 				sip->prs_table = PR_DYNSYM;
2852 				sip->prs_object = oname;
2853 				sip->prs_name = sname;
2854 				sip->prs_lmid = fptr->file_lo == NULL ?
2855 				    LM_ID_BASE : fptr->file_lo->rl_lmident;
2856 			}
2857 		} else {
2858 			continue;
2859 		}
2860 
2861 		if (GELF_ST_TYPE(symp->st_info) != STT_TLS)
2862 			symp->st_value += fptr->file_dyn_base;
2863 
2864 		if (symp->st_shndx != SHN_UNDEF)
2865 			return (0);
2866 
2867 		if (rv != 0) {
2868 			if (sip != NULL)
2869 				si = *sip;
2870 			sym = *symp;
2871 			rv = 0;
2872 		}
2873 	}
2874 
2875 	if (rv == 0) {
2876 		if (sip != NULL)
2877 			*sip = si;
2878 		*symp = sym;
2879 	}
2880 
2881 	return (rv);
2882 }
2883 
2884 /*
2885  * Search the process symbol tables looking for a symbol whose name matches the
2886  * specified name, but without any restriction on the link map id.
2887  */
2888 int
2889 Plookup_by_name(struct ps_prochandle *P, const char *object,
2890 	const char *symbol, GElf_Sym *symp)
2891 {
2892 	return (Pxlookup_by_name(P, PR_LMID_EVERY, object, symbol, symp, NULL));
2893 }
2894 
2895 /*
2896  * Iterate over the process's address space mappings.
2897  */
2898 int
2899 Pmapping_iter(struct ps_prochandle *P, proc_map_f *func, void *cd)
2900 {
2901 	map_info_t *mptr;
2902 	file_info_t *fptr;
2903 	char *object_name;
2904 	int rc = 0;
2905 	int i;
2906 
2907 	/* create all the file_info_t's for all the mappings */
2908 	(void) Prd_agent(P);
2909 
2910 	for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) {
2911 		if ((fptr = mptr->map_file) == NULL)
2912 			object_name = NULL;
2913 		else
2914 			object_name = fptr->file_lname;
2915 		if ((rc = func(cd, &mptr->map_pmap, object_name)) != 0)
2916 			return (rc);
2917 	}
2918 	return (0);
2919 }
2920 
2921 /*
2922  * Iterate over the process's mapped objects.
2923  */
2924 int
2925 Pobject_iter(struct ps_prochandle *P, proc_map_f *func, void *cd)
2926 {
2927 	map_info_t *mptr;
2928 	file_info_t *fptr;
2929 	uint_t cnt;
2930 	int rc = 0;
2931 
2932 	(void) Prd_agent(P); /* create file_info_t's for all the mappings */
2933 	Pupdate_maps(P);
2934 
2935 	for (cnt = P->num_files, fptr = list_next(&P->file_head);
2936 	    cnt; cnt--, fptr = list_next(fptr)) {
2937 
2938 		const char *lname = fptr->file_lname ? fptr->file_lname : "";
2939 
2940 		if ((mptr = fptr->file_map) == NULL)
2941 			continue;
2942 
2943 		if ((rc = func(cd, &mptr->map_pmap, lname)) != 0)
2944 			return (rc);
2945 	}
2946 	return (0);
2947 }
2948 
2949 /*
2950  * Given a virtual address, return the name of the underlying
2951  * mapped object (file), as provided by the dynamic linker.
2952  * Return NULL on failure (no underlying shared library).
2953  */
2954 char *
2955 Pobjname(struct ps_prochandle *P, uintptr_t addr,
2956 	char *buffer, size_t bufsize)
2957 {
2958 	map_info_t *mptr;
2959 	file_info_t *fptr;
2960 
2961 	/* create all the file_info_t's for all the mappings */
2962 	(void) Prd_agent(P);
2963 
2964 	if ((mptr = Paddr2mptr(P, addr)) != NULL &&
2965 	    (fptr = mptr->map_file) != NULL &&
2966 	    fptr->file_lname != NULL) {
2967 		(void) strncpy(buffer, fptr->file_lname, bufsize);
2968 		if (strlen(fptr->file_lname) >= bufsize)
2969 			buffer[bufsize-1] = '\0';
2970 		return (buffer);
2971 	}
2972 	return (NULL);
2973 }
2974 
2975 /*
2976  * Given a virtual address, return the link map id of the underlying mapped
2977  * object (file), as provided by the dynamic linker.  Return -1 on failure.
2978  */
2979 int
2980 Plmid(struct ps_prochandle *P, uintptr_t addr, Lmid_t *lmidp)
2981 {
2982 	map_info_t *mptr;
2983 	file_info_t *fptr;
2984 
2985 	/* create all the file_info_t's for all the mappings */
2986 	(void) Prd_agent(P);
2987 
2988 	if ((mptr = Paddr2mptr(P, addr)) != NULL &&
2989 	    (fptr = mptr->map_file) != NULL && fptr->file_lo != NULL) {
2990 		*lmidp = fptr->file_lo->rl_lmident;
2991 		return (0);
2992 	}
2993 
2994 	return (-1);
2995 }
2996 
2997 /*
2998  * Given an object name and optional lmid, iterate over the object's symbols.
2999  * If which == PR_SYMTAB, search the normal symbol table.
3000  * If which == PR_DYNSYM, search the dynamic symbol table.
3001  */
3002 static int
3003 Psymbol_iter_com(struct ps_prochandle *P, Lmid_t lmid, const char *object_name,
3004     int which, int mask, pr_order_t order, proc_xsym_f *func, void *cd)
3005 {
3006 	GElf_Sym sym;
3007 	map_info_t *mptr;
3008 	file_info_t *fptr;
3009 	sym_tbl_t *symtab;
3010 	Elf_Data *data;
3011 	size_t symn;
3012 	const char *strs;
3013 	size_t strsz;
3014 	prsyminfo_t si;
3015 	int rv;
3016 	uint_t *map, i, count, ndx;
3017 
3018 	if ((mptr = object_name_to_map(P, lmid, object_name)) == NULL)
3019 		return (-1);
3020 
3021 	if ((fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */
3022 	    fptr->file_elf == NULL)			/* not an ELF file */
3023 		return (-1);
3024 
3025 	/*
3026 	 * Search the specified symbol table.
3027 	 */
3028 	switch (which) {
3029 	case PR_SYMTAB:
3030 		symtab = &fptr->file_symtab;
3031 		si.prs_table = PR_SYMTAB;
3032 		break;
3033 	case PR_DYNSYM:
3034 		symtab = &fptr->file_dynsym;
3035 		si.prs_table = PR_DYNSYM;
3036 		break;
3037 	default:
3038 		return (-1);
3039 	}
3040 
3041 	si.prs_object = object_name;
3042 	si.prs_lmid = fptr->file_lo == NULL ?
3043 	    LM_ID_BASE : fptr->file_lo->rl_lmident;
3044 
3045 	data = symtab->sym_data;
3046 	symn = symtab->sym_symn;
3047 	strs = symtab->sym_strs;
3048 	strsz = symtab->sym_strsz;
3049 
3050 	if (data == NULL || strs == NULL)
3051 		return (-1);
3052 
3053 	switch (order) {
3054 	case PRO_NATURAL:
3055 		map = NULL;
3056 		count = symn;
3057 		break;
3058 	case PRO_BYNAME:
3059 		map = symtab->sym_byname;
3060 		count = symtab->sym_count;
3061 		break;
3062 	case PRO_BYADDR:
3063 		map = symtab->sym_byaddr;
3064 		count = symtab->sym_count;
3065 		break;
3066 	default:
3067 		return (-1);
3068 	}
3069 
3070 	rv = 0;
3071 
3072 	for (i = 0; i < count; i++) {
3073 		ndx = map == NULL ? i : map[i];
3074 		if (gelf_getsym(data, ndx, &sym) != NULL) {
3075 			uint_t s_bind, s_type, type;
3076 
3077 			if (sym.st_name >= strsz)	/* invalid st_name */
3078 				continue;
3079 
3080 			s_bind = GELF_ST_BIND(sym.st_info);
3081 			s_type = GELF_ST_TYPE(sym.st_info);
3082 
3083 			/*
3084 			 * In case you haven't already guessed, this relies on
3085 			 * the bitmask used in <libproc.h> for encoding symbol
3086 			 * type and binding matching the order of STB and STT
3087 			 * constants in <sys/elf.h>.  ELF can't change without
3088 			 * breaking binary compatibility, so I think this is
3089 			 * reasonably fair game.
3090 			 */
3091 			if (s_bind < STB_NUM && s_type < STT_NUM) {
3092 				type = (1 << (s_type + 8)) | (1 << s_bind);
3093 				if ((type & ~mask) != 0)
3094 					continue;
3095 			} else
3096 				continue; /* Invalid type or binding */
3097 
3098 			if (GELF_ST_TYPE(sym.st_info) != STT_TLS)
3099 				sym.st_value += fptr->file_dyn_base;
3100 
3101 			si.prs_name = strs + sym.st_name;
3102 			si.prs_id = ndx;
3103 			if ((rv = func(cd, &sym, strs + sym.st_name, &si)) != 0)
3104 				break;
3105 		}
3106 	}
3107 
3108 	return (rv);
3109 }
3110 
3111 int
3112 Pxsymbol_iter(struct ps_prochandle *P, Lmid_t lmid, const char *object_name,
3113     int which, int mask, proc_xsym_f *func, void *cd)
3114 {
3115 	return (Psymbol_iter_com(P, lmid, object_name, which, mask,
3116 	    PRO_NATURAL, func, cd));
3117 }
3118 
3119 int
3120 Psymbol_iter_by_lmid(struct ps_prochandle *P, Lmid_t lmid,
3121     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
3122 {
3123 	return (Psymbol_iter_com(P, lmid, object_name, which, mask,
3124 	    PRO_NATURAL, (proc_xsym_f *)func, cd));
3125 }
3126 
3127 int
3128 Psymbol_iter(struct ps_prochandle *P,
3129     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
3130 {
3131 	return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
3132 	    PRO_NATURAL, (proc_xsym_f *)func, cd));
3133 }
3134 
3135 int
3136 Psymbol_iter_by_addr(struct ps_prochandle *P,
3137     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
3138 {
3139 	return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
3140 	    PRO_BYADDR, (proc_xsym_f *)func, cd));
3141 }
3142 
3143 int
3144 Psymbol_iter_by_name(struct ps_prochandle *P,
3145     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
3146 {
3147 	return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
3148 	    PRO_BYNAME, (proc_xsym_f *)func, cd));
3149 }
3150 
3151 /*
3152  * Get the platform string from the core file if we have it;
3153  * just perform the system call for the caller if this is a live process.
3154  */
3155 char *
3156 Pplatform(struct ps_prochandle *P, char *s, size_t n)
3157 {
3158 	if (P->state == PS_IDLE) {
3159 		errno = ENODATA;
3160 		return (NULL);
3161 	}
3162 
3163 	if (P->state == PS_DEAD) {
3164 		if (P->core->core_platform == NULL) {
3165 			errno = ENODATA;
3166 			return (NULL);
3167 		}
3168 		(void) strncpy(s, P->core->core_platform, n - 1);
3169 		s[n - 1] = '\0';
3170 
3171 	} else if (sysinfo(SI_PLATFORM, s, n) == -1)
3172 		return (NULL);
3173 
3174 	return (s);
3175 }
3176 
3177 /*
3178  * Get the uname(2) information from the core file if we have it;
3179  * just perform the system call for the caller if this is a live process.
3180  */
3181 int
3182 Puname(struct ps_prochandle *P, struct utsname *u)
3183 {
3184 	if (P->state == PS_IDLE) {
3185 		errno = ENODATA;
3186 		return (-1);
3187 	}
3188 
3189 	if (P->state == PS_DEAD) {
3190 		if (P->core->core_uts == NULL) {
3191 			errno = ENODATA;
3192 			return (-1);
3193 		}
3194 		(void) memcpy(u, P->core->core_uts, sizeof (struct utsname));
3195 		return (0);
3196 	}
3197 	return (uname(u));
3198 }
3199 
3200 /*
3201  * Get the zone name from the core file if we have it; look up the
3202  * name based on the zone id if this is a live process.
3203  */
3204 char *
3205 Pzonename(struct ps_prochandle *P, char *s, size_t n)
3206 {
3207 	if (P->state == PS_IDLE) {
3208 		errno = ENODATA;
3209 		return (NULL);
3210 	}
3211 
3212 	if (P->state == PS_DEAD) {
3213 		if (P->core->core_zonename == NULL) {
3214 			errno = ENODATA;
3215 			return (NULL);
3216 		}
3217 		(void) strlcpy(s, P->core->core_zonename, n);
3218 	} else {
3219 		if (getzonenamebyid(P->status.pr_zoneid, s, n) < 0)
3220 			return (NULL);
3221 		s[n - 1] = '\0';
3222 	}
3223 	return (s);
3224 }
3225 
3226 /*
3227  * Called from Pcreate(), Pgrab(), and Pfgrab_core() to initialize
3228  * the symbol table heads in the new ps_prochandle.
3229  */
3230 void
3231 Pinitsym(struct ps_prochandle *P)
3232 {
3233 	P->num_files = 0;
3234 	list_link(&P->file_head, NULL);
3235 }
3236 
3237 /*
3238  * Called from Prelease() to destroy the symbol tables.
3239  * Must be called by the client after an exec() in the victim process.
3240  */
3241 void
3242 Preset_maps(struct ps_prochandle *P)
3243 {
3244 	int i;
3245 
3246 	if (P->rap != NULL) {
3247 		rd_delete(P->rap);
3248 		P->rap = NULL;
3249 	}
3250 
3251 	if (P->execname != NULL) {
3252 		free(P->execname);
3253 		P->execname = NULL;
3254 	}
3255 
3256 	if (P->auxv != NULL) {
3257 		free(P->auxv);
3258 		P->auxv = NULL;
3259 		P->nauxv = 0;
3260 	}
3261 
3262 	for (i = 0; i < P->map_count; i++)
3263 		map_info_free(P, &P->mappings[i]);
3264 
3265 	if (P->mappings != NULL) {
3266 		free(P->mappings);
3267 		P->mappings = NULL;
3268 	}
3269 	P->map_count = P->map_alloc = 0;
3270 
3271 	P->info_valid = 0;
3272 }
3273 
3274 typedef struct getenv_data {
3275 	char *buf;
3276 	size_t bufsize;
3277 	const char *search;
3278 	size_t searchlen;
3279 } getenv_data_t;
3280 
3281 /*ARGSUSED*/
3282 static int
3283 getenv_func(void *data, struct ps_prochandle *P, uintptr_t addr,
3284     const char *nameval)
3285 {
3286 	getenv_data_t *d = data;
3287 	size_t len;
3288 
3289 	if (nameval == NULL)
3290 		return (0);
3291 
3292 	if (d->searchlen < strlen(nameval) &&
3293 	    strncmp(nameval, d->search, d->searchlen) == 0 &&
3294 	    nameval[d->searchlen] == '=') {
3295 		len = MIN(strlen(nameval), d->bufsize - 1);
3296 		(void) strncpy(d->buf, nameval, len);
3297 		d->buf[len] = '\0';
3298 		return (1);
3299 	}
3300 
3301 	return (0);
3302 }
3303 
3304 char *
3305 Pgetenv(struct ps_prochandle *P, const char *name, char *buf, size_t buflen)
3306 {
3307 	getenv_data_t d;
3308 
3309 	d.buf = buf;
3310 	d.bufsize = buflen;
3311 	d.search = name;
3312 	d.searchlen = strlen(name);
3313 
3314 	if (Penv_iter(P, getenv_func, &d) == 1) {
3315 		char *equals = strchr(d.buf, '=');
3316 
3317 		if (equals != NULL) {
3318 			(void) memmove(d.buf, equals + 1,
3319 			    d.buf + buflen - equals - 1);
3320 			d.buf[d.buf + buflen - equals] = '\0';
3321 
3322 			return (buf);
3323 		}
3324 	}
3325 
3326 	return (NULL);
3327 }
3328 
3329 /* number of argument or environment pointers to read all at once */
3330 #define	NARG	100
3331 
3332 int
3333 Penv_iter(struct ps_prochandle *P, proc_env_f *func, void *data)
3334 {
3335 	const psinfo_t *psp;
3336 	uintptr_t envpoff;
3337 	GElf_Sym sym;
3338 	int ret;
3339 	char *buf, *nameval;
3340 	size_t buflen;
3341 
3342 	int nenv = NARG;
3343 	long envp[NARG];
3344 
3345 	/*
3346 	 * Attempt to find the "_environ" variable in the process.
3347 	 * Failing that, use the original value provided by Ppsinfo().
3348 	 */
3349 	if ((psp = Ppsinfo(P)) == NULL)
3350 		return (-1);
3351 
3352 	envpoff = psp->pr_envp; /* Default if no _environ found */
3353 
3354 	if (Plookup_by_name(P, PR_OBJ_EXEC, "_environ", &sym) == 0) {
3355 		if (P->status.pr_dmodel == PR_MODEL_NATIVE) {
3356 			if (Pread(P, &envpoff, sizeof (envpoff),
3357 			    sym.st_value) != sizeof (envpoff))
3358 				envpoff = psp->pr_envp;
3359 		} else if (P->status.pr_dmodel == PR_MODEL_ILP32) {
3360 			uint32_t envpoff32;
3361 
3362 			if (Pread(P, &envpoff32, sizeof (envpoff32),
3363 			    sym.st_value) != sizeof (envpoff32))
3364 				envpoff = psp->pr_envp;
3365 			else
3366 				envpoff = envpoff32;
3367 		}
3368 	}
3369 
3370 	buflen = 128;
3371 	buf = malloc(buflen);
3372 
3373 	ret = 0;
3374 	for (;;) {
3375 		uintptr_t envoff;
3376 
3377 		if (nenv == NARG) {
3378 			(void) memset(envp, 0, sizeof (envp));
3379 			if (P->status.pr_dmodel == PR_MODEL_NATIVE) {
3380 				if (Pread(P, envp,
3381 				    sizeof (envp), envpoff) <= 0) {
3382 					ret = -1;
3383 					break;
3384 				}
3385 			} else if (P->status.pr_dmodel == PR_MODEL_ILP32) {
3386 				uint32_t e32[NARG];
3387 				int i;
3388 
3389 				(void) memset(e32, 0, sizeof (e32));
3390 				if (Pread(P, e32, sizeof (e32), envpoff) <= 0) {
3391 					ret = -1;
3392 					break;
3393 				}
3394 				for (i = 0; i < NARG; i++)
3395 					envp[i] = e32[i];
3396 			}
3397 			nenv = 0;
3398 		}
3399 
3400 		if ((envoff = envp[nenv++]) == NULL)
3401 			break;
3402 
3403 		/*
3404 		 * Attempt to read the string from the process.
3405 		 */
3406 again:
3407 		ret = Pread_string(P, buf, buflen, envoff);
3408 
3409 		if (ret <= 0) {
3410 			nameval = NULL;
3411 		} else if (ret == buflen - 1) {
3412 			free(buf);
3413 			/*
3414 			 * Bail if we have a corrupted environment
3415 			 */
3416 			if (buflen >= ARG_MAX)
3417 				return (-1);
3418 			buflen *= 2;
3419 			buf = malloc(buflen);
3420 			goto again;
3421 		} else {
3422 			nameval = buf;
3423 		}
3424 
3425 		if ((ret = func(data, P, envoff, nameval)) != 0)
3426 			break;
3427 
3428 		envpoff += (P->status.pr_dmodel == PR_MODEL_LP64)? 8 : 4;
3429 	}
3430 
3431 	free(buf);
3432 
3433 	return (ret);
3434 }
3435