xref: /titanic_50/usr/src/lib/libproc/amd64/Pisadep.c (revision f875b4ebb1dd9fdbeb043557cab38ab3bf7f6e01)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/stack.h>
29 #include <sys/regset.h>
30 #include <sys/frame.h>
31 #include <sys/sysmacros.h>
32 #include <sys/trap.h>
33 
34 #include <stdlib.h>
35 #include <unistd.h>
36 #include <sys/types.h>
37 #include <errno.h>
38 #include <string.h>
39 
40 #include "Pcontrol.h"
41 #include "Pstack.h"
42 
43 #define	M_PLT_NRSV		1	/* reserved PLT entries */
44 #define	M_PLT_ENTSIZE		16	/* size of each PLT entry */
45 
46 static uchar_t int_syscall_instr[] = { 0xCD, T_SYSCALLINT };
47 static uchar_t syscall_instr[] = { 0x0f, 0x05 };
48 
49 const char *
50 Ppltdest(struct ps_prochandle *P, uintptr_t pltaddr)
51 {
52 	map_info_t *mp = Paddr2mptr(P, pltaddr);
53 	file_info_t *fp;
54 	size_t i;
55 	uintptr_t r_addr;
56 
57 	if (mp == NULL || (fp = mp->map_file) == NULL ||
58 	    fp->file_plt_base == 0 ||
59 	    pltaddr - fp->file_plt_base >= fp->file_plt_size) {
60 		errno = EINVAL;
61 		return (NULL);
62 	}
63 
64 	i = (pltaddr - fp->file_plt_base) / M_PLT_ENTSIZE - M_PLT_NRSV;
65 
66 	if (P->status.pr_dmodel == PR_MODEL_LP64) {
67 		Elf64_Rela r;
68 
69 		r_addr = fp->file_jmp_rel + i * sizeof (r);
70 
71 		if (Pread(P, &r, sizeof (r), r_addr) == sizeof (r) &&
72 		    (i = ELF64_R_SYM(r.r_info)) < fp->file_dynsym.sym_symn) {
73 			Elf_Data *data = fp->file_dynsym.sym_data_pri;
74 			Elf64_Sym *symp = &(((Elf64_Sym *)data->d_buf)[i]);
75 
76 			return (fp->file_dynsym.sym_strs + symp->st_name);
77 		}
78 	} else {
79 		Elf32_Rel r;
80 
81 		r_addr = fp->file_jmp_rel + i * sizeof (r);
82 
83 		if (Pread(P, &r, sizeof (r), r_addr) == sizeof (r) &&
84 		    (i = ELF32_R_SYM(r.r_info)) < fp->file_dynsym.sym_symn) {
85 			Elf_Data *data = fp->file_dynsym.sym_data_pri;
86 			Elf32_Sym *symp = &(((Elf32_Sym *)data->d_buf)[i]);
87 
88 			return (fp->file_dynsym.sym_strs + symp->st_name);
89 		}
90 	}
91 
92 	return (NULL);
93 }
94 
95 int
96 Pissyscall(struct ps_prochandle *P, uintptr_t addr)
97 {
98 	uchar_t instr[16];
99 
100 	if (P->status.pr_dmodel == PR_MODEL_LP64) {
101 		if (Pread(P, instr, sizeof (syscall_instr), addr) !=
102 		    sizeof (syscall_instr) ||
103 		    memcmp(instr, syscall_instr, sizeof (syscall_instr)) != 0)
104 			return (0);
105 		else
106 			return (1);
107 	}
108 
109 	if (Pread(P, instr, sizeof (int_syscall_instr), addr) !=
110 	    sizeof (int_syscall_instr))
111 		return (0);
112 
113 	if (memcmp(instr, int_syscall_instr, sizeof (int_syscall_instr)) == 0)
114 		return (1);
115 
116 	return (0);
117 }
118 
119 int
120 Pissyscall_prev(struct ps_prochandle *P, uintptr_t addr, uintptr_t *dst)
121 {
122 	int ret;
123 
124 	if (P->status.pr_dmodel == PR_MODEL_LP64) {
125 		if (Pissyscall(P, addr - sizeof (syscall_instr))) {
126 			if (dst)
127 				*dst = addr - sizeof (syscall_instr);
128 			return (1);
129 		}
130 		return (0);
131 	}
132 
133 	if ((ret = Pissyscall(P, addr - sizeof (int_syscall_instr))) != 0) {
134 		if (dst)
135 			*dst = addr - sizeof (int_syscall_instr);
136 		return (ret);
137 	}
138 
139 	return (0);
140 }
141 
142 int
143 Pissyscall_text(struct ps_prochandle *P, const void *buf, size_t buflen)
144 {
145 	if (P->status.pr_dmodel == PR_MODEL_LP64) {
146 		if (buflen >= sizeof (syscall_instr) &&
147 		    memcmp(buf, syscall_instr, sizeof (syscall_instr)) == 0)
148 			return (1);
149 		else
150 			return (0);
151 	}
152 
153 	if (buflen < sizeof (int_syscall_instr))
154 		return (0);
155 
156 	if (memcmp(buf, int_syscall_instr, sizeof (int_syscall_instr)) == 0)
157 		return (1);
158 
159 	return (0);
160 }
161 
162 #define	TR_ARG_MAX 6	/* Max args to print, same as SPARC */
163 
164 /*
165  * Given a return address, determine the likely number of arguments
166  * that were pushed on the stack prior to its execution.  We do this by
167  * expecting that a typical call sequence consists of pushing arguments on
168  * the stack, executing a call instruction, and then performing an add
169  * on %esp to restore it to the value prior to pushing the arguments for
170  * the call.  We attempt to detect such an add, and divide the addend
171  * by the size of a word to determine the number of pushed arguments.
172  *
173  * If we do not find such an add, this does not necessarily imply that the
174  * function took no arguments. It is not possible to reliably detect such a
175  * void function because hand-coded assembler does not always perform an add
176  * to %esp immediately after the "call" instruction (eg. _sys_call()).
177  * Because of this, we default to returning MIN(sz, TR_ARG_MAX) instead of 0
178  * in the absence of an add to %esp.
179  */
180 static ulong_t
181 argcount(struct ps_prochandle *P, uint32_t pc, ssize_t sz)
182 {
183 	uchar_t instr[6];
184 	ulong_t count, max;
185 
186 	max = MIN(sz / sizeof (uint32_t), TR_ARG_MAX);
187 
188 	/*
189 	 * Read the instruction at the return location.
190 	 */
191 	if (Pread(P, instr, sizeof (instr), (uintptr_t)pc) != sizeof (instr))
192 		return (max);
193 
194 	if (instr[1] != 0xc4)
195 		return (max);
196 
197 	switch (instr[0]) {
198 	case 0x81:	/* count is a longword */
199 		count = instr[2]+(instr[3]<<8)+(instr[4]<<16)+(instr[5]<<24);
200 		break;
201 	case 0x83:	/* count is a byte */
202 		count = instr[2];
203 		break;
204 	default:
205 		return (max);
206 	}
207 
208 	count /= sizeof (uint32_t);
209 	return (MIN(count, max));
210 }
211 
212 static void
213 ucontext_32_to_prgregs(const ucontext32_t *uc, prgregset_t dst)
214 {
215 	const greg32_t *src = &uc->uc_mcontext.gregs[0];
216 
217 	dst[REG_DS] = (uint16_t)src[DS];
218 	dst[REG_ES] = (uint16_t)src[ES];
219 
220 	dst[REG_GS] = (uint16_t)src[GS];
221 	dst[REG_FS] = (uint16_t)src[FS];
222 	dst[REG_SS] = (uint16_t)src[SS];
223 	dst[REG_RSP] = (uint32_t)src[UESP];
224 	dst[REG_RFL] = src[EFL];
225 	dst[REG_CS] = (uint16_t)src[CS];
226 	dst[REG_RIP] = (uint32_t)src[EIP];
227 	dst[REG_ERR] = (uint32_t)src[ERR];
228 	dst[REG_TRAPNO] = (uint32_t)src[TRAPNO];
229 	dst[REG_RAX] = (uint32_t)src[EAX];
230 	dst[REG_RCX] = (uint32_t)src[ECX];
231 	dst[REG_RDX] = (uint32_t)src[EDX];
232 	dst[REG_RBX] = (uint32_t)src[EBX];
233 	dst[REG_RBP] = (uint32_t)src[EBP];
234 	dst[REG_RSI] = (uint32_t)src[ESI];
235 	dst[REG_RDI] = (uint32_t)src[EDI];
236 }
237 
238 static int
239 Pstack_iter32(struct ps_prochandle *P, const prgregset_t regs,
240     proc_stack_f *func, void *arg)
241 {
242 	prgreg_t *prevfp = NULL;
243 	uint_t pfpsize = 0;
244 	int nfp = 0;
245 	struct {
246 		prgreg32_t fp;
247 		prgreg32_t pc;
248 		prgreg32_t args[32];
249 	} frame;
250 	uint_t argc;
251 	ssize_t sz;
252 	prgregset_t gregs;
253 	uint32_t fp, pfp, pc;
254 	long args[32];
255 	int rv;
256 	int i;
257 
258 	/*
259 	 * Type definition for a structure corresponding to an IA32
260 	 * signal frame.  Refer to the comments in Pstack.c for more info
261 	 */
262 	typedef struct {
263 		prgreg32_t fp;
264 		prgreg32_t pc;
265 		int signo;
266 		caddr32_t ucp;
267 		caddr32_t sip;
268 	} sf_t;
269 
270 	uclist_t ucl;
271 	ucontext32_t uc;
272 	uintptr_t uc_addr;
273 
274 	init_uclist(&ucl, P);
275 	(void) memcpy(gregs, regs, sizeof (gregs));
276 
277 	fp = regs[R_FP];
278 	pc = regs[R_PC];
279 
280 	while (fp != 0 || pc != 0) {
281 		if (stack_loop(fp, &prevfp, &nfp, &pfpsize))
282 			break;
283 
284 		if (fp != 0 &&
285 		    (sz = Pread(P, &frame, sizeof (frame), (uintptr_t)fp)
286 		    >= (ssize_t)(2* sizeof (uint32_t)))) {
287 			/*
288 			 * One more trick for signal frames: the kernel sets
289 			 * the return pc of the signal frame to 0xffffffff on
290 			 * Intel IA32, so argcount won't work.
291 			 */
292 			if (frame.pc != -1L) {
293 				sz -= 2* sizeof (uint32_t);
294 				argc = argcount(P, (uint32_t)frame.pc, sz);
295 			} else
296 				argc = 3; /* sighandler(signo, sip, ucp) */
297 		} else {
298 			(void) memset(&frame, 0, sizeof (frame));
299 			argc = 0;
300 		}
301 
302 		gregs[R_FP] = fp;
303 		gregs[R_PC] = pc;
304 
305 		for (i = 0; i < argc; i++)
306 			args[i] = (uint32_t)frame.args[i];
307 
308 		if ((rv = func(arg, gregs, argc, args)) != 0)
309 			break;
310 
311 		/*
312 		 * In order to allow iteration over java frames (which can have
313 		 * their own frame pointers), we allow the iterator to change
314 		 * the contents of gregs.  If we detect a change, then we assume
315 		 * that the new values point to the next frame.
316 		 */
317 		if (gregs[R_FP] != fp || gregs[R_PC] != pc) {
318 			fp = gregs[R_FP];
319 			pc = gregs[R_PC];
320 			continue;
321 		}
322 
323 		pfp = fp;
324 		fp = frame.fp;
325 		pc = frame.pc;
326 
327 		if (find_uclink(&ucl, pfp + sizeof (sf_t)))
328 			uc_addr = pfp + sizeof (sf_t);
329 		else
330 			uc_addr = NULL;
331 
332 		if (uc_addr != NULL &&
333 		    Pread(P, &uc, sizeof (uc), uc_addr) == sizeof (uc)) {
334 			ucontext_32_to_prgregs(&uc, gregs);
335 			fp = gregs[R_FP];
336 			pc = gregs[R_PC];
337 		}
338 	}
339 
340 	if (prevfp)
341 		free(prevfp);
342 
343 	free_uclist(&ucl);
344 	return (rv);
345 }
346 
347 static void
348 ucontext_n_to_prgregs(const ucontext_t *src, prgregset_t dst)
349 {
350 	(void) memcpy(dst, src->uc_mcontext.gregs, sizeof (gregset_t));
351 }
352 
353 
354 int
355 Pstack_iter(struct ps_prochandle *P, const prgregset_t regs,
356 	proc_stack_f *func, void *arg)
357 {
358 	struct {
359 		uintptr_t fp;
360 		uintptr_t pc;
361 	} frame;
362 
363 	uint_t pfpsize = 0;
364 	prgreg_t *prevfp = NULL;
365 	prgreg_t fp, pfp;
366 	prgreg_t pc;
367 
368 	prgregset_t gregs;
369 	int nfp = 0;
370 
371 	uclist_t ucl;
372 	int rv = 0;
373 	int argc;
374 
375 	uintptr_t uc_addr;
376 	ucontext_t uc;
377 
378 	/*
379 	 * Type definition for a structure corresponding to an IA32
380 	 * signal frame.  Refer to the comments in Pstack.c for more info
381 	 */
382 	typedef struct {
383 		prgreg_t fp;
384 		prgreg_t pc;
385 		prgreg_t signo;
386 		siginfo_t *sip;
387 	} sigframe_t;
388 	prgreg_t args[32];
389 
390 	if (P->status.pr_dmodel != PR_MODEL_LP64)
391 		return (Pstack_iter32(P, regs, func, arg));
392 
393 	init_uclist(&ucl, P);
394 	(void) memcpy(gregs, regs, sizeof (gregs));
395 
396 	fp = gregs[R_FP];
397 	pc = gregs[R_PC];
398 
399 	while (fp != 0 || pc != 0) {
400 
401 		if (stack_loop(fp, &prevfp, &nfp, &pfpsize))
402 			break;
403 
404 		if (fp != 0 &&
405 		    Pread(P, &frame, sizeof (frame), (uintptr_t)fp) ==
406 		    sizeof (frame)) {
407 
408 			if (frame.pc != -1) {
409 				/*
410 				 * Function arguments are not available on
411 				 * amd64 without extensive DWARF processing.
412 				 */
413 				argc = 0;
414 			} else {
415 				argc = 3;
416 				args[2] = fp + sizeof (sigframe_t);
417 				if (Pread(P, &args, 2 * sizeof (prgreg_t),
418 				    fp + 2 * sizeof (prgreg_t)) !=
419 				    2 * sizeof (prgreg_t))
420 					argc = 0;
421 			}
422 		} else {
423 			(void) memset(&frame, 0, sizeof (frame));
424 			argc = 0;
425 		}
426 
427 		gregs[R_FP] = fp;
428 		gregs[R_PC] = pc;
429 
430 		if ((rv = func(arg, gregs, argc, args)) != 0)
431 			break;
432 
433 		pfp = fp;
434 		fp = frame.fp;
435 		pc = frame.pc;
436 
437 		if (pc == -1 && find_uclink(&ucl, pfp + sizeof (sigframe_t))) {
438 			uc_addr = pfp + sizeof (sigframe_t);
439 
440 			if (Pread(P, &uc, sizeof (uc), uc_addr)
441 			    == sizeof (uc)) {
442 				ucontext_n_to_prgregs(&uc, gregs);
443 				fp = gregs[R_FP];
444 				pc = gregs[R_PC];
445 			}
446 		}
447 	}
448 
449 	if (prevfp)
450 		free(prevfp);
451 
452 	free_uclist(&ucl);
453 
454 	return (rv);
455 }
456 
457 uintptr_t
458 Psyscall_setup(struct ps_prochandle *P, int nargs, int sysindex, uintptr_t sp)
459 {
460 	if (P->status.pr_dmodel == PR_MODEL_ILP32) {
461 		sp -= sizeof (int) * (nargs+2);
462 
463 		P->status.pr_lwp.pr_reg[REG_RAX] = sysindex;
464 		P->status.pr_lwp.pr_reg[REG_RSP] = sp;
465 		P->status.pr_lwp.pr_reg[REG_RIP] = P->sysaddr;
466 	} else {
467 		int pusharg = (nargs > 6) ? nargs - 6: 0;
468 
469 		sp -= sizeof (int64_t) * (pusharg+2);
470 
471 		P->status.pr_lwp.pr_reg[REG_RAX] = sysindex;
472 		P->status.pr_lwp.pr_reg[REG_RSP] = sp;
473 		P->status.pr_lwp.pr_reg[REG_RIP] = P->sysaddr;
474 	}
475 
476 	return (sp);
477 }
478 
479 int
480 Psyscall_copyinargs(struct ps_prochandle *P, int nargs, argdes_t *argp,
481     uintptr_t ap)
482 {
483 	if (P->status.pr_dmodel == PR_MODEL_ILP32) {
484 		int32_t arglist[MAXARGS+2];
485 		int i;
486 		argdes_t *adp;
487 
488 		for (i = 0, adp = argp; i < nargs; i++, adp++)
489 			arglist[1 + i] = (int32_t)adp->arg_value;
490 
491 		arglist[0] = P->status.pr_lwp.pr_reg[REG_RIP];
492 		if (Pwrite(P, &arglist[0], sizeof (int) * (nargs+1),
493 		    (uintptr_t)ap) != sizeof (int) * (nargs+1))
494 			return (-1);
495 	} else {
496 		int64_t arglist[MAXARGS+2];
497 		int i;
498 		argdes_t *adp;
499 		int pusharg = (nargs > 6) ? nargs - 6: 0;
500 
501 		for (i = 0, adp = argp; i < nargs; i++, adp++) {
502 			switch (i) {
503 			case 0:
504 				(void) Pputareg(P, REG_RDI, adp->arg_value);
505 				break;
506 			case 1:
507 				(void) Pputareg(P, REG_RSI, adp->arg_value);
508 				break;
509 			case 2:
510 				(void) Pputareg(P, REG_RDX, adp->arg_value);
511 				break;
512 			case 3:
513 				(void) Pputareg(P, REG_RCX, adp->arg_value);
514 				break;
515 			case 4:
516 				(void) Pputareg(P, REG_R8, adp->arg_value);
517 				break;
518 			case 5:
519 				(void) Pputareg(P, REG_R9, adp->arg_value);
520 				break;
521 			default:
522 				arglist[i - 5] = (uint64_t)adp->arg_value;
523 				break;
524 			}
525 		}
526 
527 		arglist[0] = P->status.pr_lwp.pr_reg[REG_RIP];
528 
529 		if (Pwrite(P, &arglist[0],
530 		    sizeof (int64_t) * (pusharg + 1), ap) !=
531 		    sizeof (int64_t) * (pusharg + 1))
532 			return (-1);
533 	}
534 
535 	return (0);
536 }
537 
538 int
539 Psyscall_copyoutargs(struct ps_prochandle *P, int nargs, argdes_t *argp,
540     uintptr_t ap)
541 {
542 	if (P->status.pr_dmodel == PR_MODEL_ILP32) {
543 		uint32_t arglist[MAXARGS + 2];
544 		int i;
545 		argdes_t *adp;
546 
547 		if (Pread(P, &arglist[0], sizeof (int) * (nargs+1),
548 		    (uintptr_t)ap) != sizeof (int) * (nargs+1))
549 			return (-1);
550 
551 		for (i = 0, adp = argp; i < nargs; i++, adp++)
552 			adp->arg_value = arglist[i];
553 	} else {
554 		int pusharg = (nargs > 6) ? nargs - 6: 0;
555 		int64_t arglist[MAXARGS+2];
556 		int i;
557 		argdes_t *adp;
558 
559 		if (pusharg  > 0 &&
560 		    Pread(P, &arglist[0], sizeof (int64_t) * (pusharg + 1),
561 		    ap) != sizeof (int64_t) * (pusharg + 1))
562 			return (-1);
563 
564 		for (i = 0, adp = argp; i < nargs; i++, adp++) {
565 			switch (i) {
566 			case 0:
567 				adp->arg_value =
568 				    P->status.pr_lwp.pr_reg[REG_RDI];
569 				break;
570 			case 1:
571 				adp->arg_value =
572 				    P->status.pr_lwp.pr_reg[REG_RSI];
573 				break;
574 			case 2:
575 				adp->arg_value =
576 				    P->status.pr_lwp.pr_reg[REG_RDX];
577 				break;
578 			case 3:
579 				adp->arg_value =
580 				    P->status.pr_lwp.pr_reg[REG_RCX];
581 				break;
582 			case 4:
583 				adp->arg_value =
584 				    P->status.pr_lwp.pr_reg[REG_R8];
585 				break;
586 			case 5:
587 				adp->arg_value =
588 				    P->status.pr_lwp.pr_reg[REG_R9];
589 				break;
590 			default:
591 				adp->arg_value = arglist[i - 6];
592 				break;
593 			}
594 		}
595 
596 		return (0);
597 	}
598 
599 	return (0);
600 }
601