xref: /titanic_50/usr/src/lib/libnsl/rpc/svc.c (revision 56b2bdd1f04d465cfe4a95b88ae5cba5884154e4)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 /*
26  * Copyright 1993 OpenVision Technologies, Inc., All Rights Reserved.
27  */
28 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
29 /* All Rights Reserved */
30 /*
31  * Portions of this source code were derived from Berkeley
32  * 4.3 BSD under license from the Regents of the University of
33  * California.
34  */
35 
36 /*
37  * svc.c, Server-side remote procedure call interface.
38  *
39  * There are two sets of procedures here.  The xprt routines are
40  * for handling transport handles.  The svc routines handle the
41  * list of service routines.
42  *
43  */
44 
45 
46 #include "mt.h"
47 #include "rpc_mt.h"
48 #include <assert.h>
49 #include <errno.h>
50 #include <sys/types.h>
51 #include <stropts.h>
52 #include <sys/conf.h>
53 #include <rpc/rpc.h>
54 #ifdef PORTMAP
55 #include <rpc/pmap_clnt.h>
56 #endif
57 #include <sys/poll.h>
58 #include <netconfig.h>
59 #include <syslog.h>
60 #include <stdlib.h>
61 #include <unistd.h>
62 #include <string.h>
63 #include <limits.h>
64 
65 extern bool_t __svc_get_door_cred();
66 extern bool_t __rpc_get_local_cred();
67 
68 SVCXPRT **svc_xports;
69 static int nsvc_xports; 	/* total number of svc_xports allocated */
70 
71 XDR **svc_xdrs;		/* common XDR receive area */
72 int nsvc_xdrs;		/* total number of svc_xdrs allocated */
73 
74 int __rpc_use_pollfd_done;	/* to unlimit the number of connections */
75 
76 #define	NULL_SVC ((struct svc_callout *)0)
77 #define	RQCRED_SIZE	400		/* this size is excessive */
78 
79 /*
80  * The services list
81  * Each entry represents a set of procedures (an rpc program).
82  * The dispatch routine takes request structs and runs the
83  * appropriate procedure.
84  */
85 static struct svc_callout {
86 	struct svc_callout *sc_next;
87 	rpcprog_t	    sc_prog;
88 	rpcvers_t	    sc_vers;
89 	char		   *sc_netid;
90 	void		    (*sc_dispatch)();
91 } *svc_head;
92 extern rwlock_t	svc_lock;
93 
94 static struct svc_callout *svc_find();
95 int _svc_prog_dispatch();
96 void svc_getreq_common();
97 char *strdup();
98 
99 extern mutex_t	svc_door_mutex;
100 extern cond_t	svc_door_waitcv;
101 extern int	svc_ndoorfds;
102 extern SVCXPRT_LIST *_svc_xprtlist;
103 extern mutex_t xprtlist_lock;
104 extern void __svc_rm_from_xlist();
105 
106 extern fd_set _new_svc_fdset;
107 
108 /*
109  * If the allocated array of reactor is too small, this value is used as a
110  * margin. This reduces the number of allocations.
111  */
112 #define	USER_FD_INCREMENT 5
113 
114 static void add_pollfd(int fd, short events);
115 static void remove_pollfd(int fd);
116 static void __svc_remove_input_of_fd(int fd);
117 
118 
119 /*
120  * Data used to handle reactor:
121  * 	- one file descriptor we listen to,
122  *	- one callback we call if the fd pops,
123  *	- and a cookie passed as a parameter to the callback.
124  *
125  * The structure is an array indexed on the file descriptor. Each entry is
126  * pointing to the first element of a double-linked list of callback.
127  * only one callback may be associated to a couple (fd, event).
128  */
129 
130 struct _svc_user_fd_head;
131 
132 typedef struct {
133 	struct _svc_user_fd_node *next;
134 	struct _svc_user_fd_node *previous;
135 } _svc_user_link;
136 
137 typedef struct _svc_user_fd_node {
138 	/* The lnk field must be the first field. */
139 	_svc_user_link lnk;
140 	svc_input_id_t id;
141 	int	    fd;
142 	unsigned int   events;
143 	svc_callback_t callback;
144 	void*	  cookie;
145 } _svc_user_fd_node;
146 
147 typedef struct _svc_user_fd_head {
148 	/* The lnk field must be the first field. */
149 	_svc_user_link lnk;
150 	unsigned int mask;    /* logical OR of all sub-masks */
151 } _svc_user_fd_head;
152 
153 
154 /* Define some macros to manage the linked list. */
155 #define	LIST_ISEMPTY(l) ((_svc_user_fd_node *) &(l.lnk) == l.lnk.next)
156 #define	LIST_CLR(l) \
157 	(l.lnk.previous = l.lnk.next = (_svc_user_fd_node *) &(l.lnk))
158 
159 /* Array of defined reactor - indexed on file descriptor */
160 static _svc_user_fd_head *svc_userfds  = NULL;
161 
162 /* current size of file descriptor */
163 static int svc_nuserfds = 0;
164 
165 /* Mutex to ensure MT safe operations for user fds callbacks. */
166 static mutex_t svc_userfds_lock = DEFAULTMUTEX;
167 
168 
169 /*
170  * This structure is used to have constant time alogrithms. There is an array
171  * of this structure as large as svc_nuserfds. When the user is registering a
172  * new callback, the address of the created structure is stored in a cell of
173  * this array. The address of this cell is the returned unique identifier.
174  *
175  * On removing, the id is given by the user, then we know if this cell is
176  * filled or not (with free). If it is free, we return an error. Otherwise,
177  * we can free the structure pointed by fd_node.
178  *
179  * On insertion, we use the linked list created by (first_free,
180  * next_free). In this way with a constant time computation, we can give a
181  * correct index to the user.
182  */
183 
184 typedef struct _svc_management_user_fd {
185 	bool_t free;
186 	union {
187 		svc_input_id_t next_free;
188 		_svc_user_fd_node *fd_node;
189 	} data;
190 } _svc_management_user_fd;
191 
192 /* index to the first free elem */
193 static svc_input_id_t first_free = (svc_input_id_t)-1;
194 /* the size of this array is the same as svc_nuserfds */
195 static _svc_management_user_fd* user_fd_mgt_array = NULL;
196 
197 /* current size of user_fd_mgt_array */
198 static int svc_nmgtuserfds = 0;
199 
200 
201 /* Define some macros to access data associated to registration ids. */
202 #define	node_from_id(id) (user_fd_mgt_array[(int)id].data.fd_node)
203 #define	is_free_id(id) (user_fd_mgt_array[(int)id].free)
204 
205 #ifndef POLLSTANDARD
206 #define	POLLSTANDARD \
207 	(POLLIN|POLLPRI|POLLOUT|POLLRDNORM|POLLRDBAND| \
208 	POLLWRBAND|POLLERR|POLLHUP|POLLNVAL)
209 #endif
210 
211 /*
212  * To free an Id, we set the cell as free and insert its address in the list
213  * of free cell.
214  */
215 
216 static void
217 _svc_free_id(const svc_input_id_t id)
218 {
219 	assert(((int)id >= 0) && ((int)id < svc_nmgtuserfds));
220 	user_fd_mgt_array[(int)id].free = TRUE;
221 	user_fd_mgt_array[(int)id].data.next_free = first_free;
222 	first_free = id;
223 }
224 
225 /*
226  * To get a free cell, we just have to take it from the free linked list and
227  * set the flag to "not free". This function also allocates new memory if
228  * necessary
229  */
230 static svc_input_id_t
231 _svc_attribute_new_id(_svc_user_fd_node *node)
232 {
233 	int selected_index = (int)first_free;
234 	assert(node != NULL);
235 
236 	if (selected_index == -1) {
237 		/* Allocate new entries */
238 		int L_inOldSize = svc_nmgtuserfds;
239 		int i;
240 
241 		svc_nmgtuserfds += USER_FD_INCREMENT;
242 
243 		user_fd_mgt_array = (_svc_management_user_fd *)
244 		    realloc(user_fd_mgt_array, svc_nmgtuserfds
245 			* sizeof (_svc_management_user_fd));
246 
247 		if (user_fd_mgt_array == NULL) {
248 			syslog(LOG_ERR, "_svc_attribute_new_id: out of memory");
249 			errno = ENOMEM;
250 			return ((svc_input_id_t)-1);
251 		}
252 
253 		for (i = svc_nmgtuserfds - 1; i >= L_inOldSize; i--)
254 			_svc_free_id((svc_input_id_t)i);
255 		selected_index = (int)first_free;
256 	}
257 
258 	node->id = (svc_input_id_t)selected_index;
259 	first_free = user_fd_mgt_array[selected_index].data.next_free;
260 
261 	user_fd_mgt_array[selected_index].data.fd_node = node;
262 	user_fd_mgt_array[selected_index].free = FALSE;
263 
264 	return ((svc_input_id_t)selected_index);
265 }
266 
267 /*
268  * Access to a pollfd treatment. Scan all the associated callbacks that have
269  * at least one bit in their mask that masks a received event.
270  *
271  * If event POLLNVAL is received, we check that one callback processes it, if
272  * not, then remove the file descriptor from the poll. If there is one, let
273  * the user do the work.
274  */
275 void
276 __svc_getreq_user(struct pollfd *pfd)
277 {
278 	int fd = pfd->fd;
279 	short revents = pfd->revents;
280 	bool_t invalHandled = FALSE;
281 	_svc_user_fd_node *node;
282 
283 	(void) mutex_lock(&svc_userfds_lock);
284 
285 	if ((fd < 0) || (fd >= svc_nuserfds)) {
286 		(void) mutex_unlock(&svc_userfds_lock);
287 		return;
288 	}
289 
290 	node = svc_userfds[fd].lnk.next;
291 
292 	/* check if at least one mask fits */
293 	if (0 == (revents & svc_userfds[fd].mask)) {
294 		(void) mutex_unlock(&svc_userfds_lock);
295 		return;
296 	}
297 
298 	while ((svc_userfds[fd].mask != 0) &&
299 	    ((_svc_user_link *)node != &(svc_userfds[fd].lnk))) {
300 		/*
301 		 * If one of the received events maps the ones the node listens
302 		 * to
303 		 */
304 		_svc_user_fd_node *next = node->lnk.next;
305 
306 		if (node->callback != NULL) {
307 			if (node->events & revents) {
308 				if (revents & POLLNVAL) {
309 					invalHandled = TRUE;
310 				}
311 
312 				/*
313 				 * The lock must be released before calling the
314 				 * user function, as this function can call
315 				 * svc_remove_input() for example.
316 				 */
317 				(void) mutex_unlock(&svc_userfds_lock);
318 				node->callback(node->id, node->fd,
319 				    node->events & revents, node->cookie);
320 				/*
321 				 * Do not use the node structure anymore, as it
322 				 * could have been deallocated by the previous
323 				 * callback.
324 				 */
325 				(void) mutex_lock(&svc_userfds_lock);
326 			}
327 		}
328 		node = next;
329 	}
330 
331 	if ((revents & POLLNVAL) && !invalHandled)
332 		__svc_remove_input_of_fd(fd);
333 	(void) mutex_unlock(&svc_userfds_lock);
334 }
335 
336 
337 /*
338  * Check if a file descriptor is associated with a user reactor.
339  * To do this, just check that the array indexed on fd has a non-void linked
340  * list (ie. first element is not NULL)
341  */
342 bool_t
343 __is_a_userfd(int fd)
344 {
345 	/* Checks argument */
346 	if ((fd < 0) || (fd >= svc_nuserfds))
347 		return (FALSE);
348 	return ((svc_userfds[fd].mask == 0x0000)? FALSE:TRUE);
349 }
350 
351 /* free everything concerning user fd */
352 /* used in svc_run.c => no static */
353 
354 void
355 __destroy_userfd(void)
356 {
357 	int one_fd;
358 	/* Clean user fd */
359 	if (svc_userfds != NULL) {
360 		for (one_fd = 0; one_fd < svc_nuserfds; one_fd++) {
361 			_svc_user_fd_node *node;
362 
363 			node = svc_userfds[one_fd].lnk.next;
364 			while ((_svc_user_link *) node
365 			    != (_svc_user_link *) &(svc_userfds[one_fd])) {
366 				_svc_free_id(node->id);
367 				node = node->lnk.next;
368 				free(node->lnk.previous);
369 			}
370 		}
371 
372 		free(user_fd_mgt_array);
373 		user_fd_mgt_array = NULL;
374 		first_free = (svc_input_id_t)-1;
375 
376 		free(svc_userfds);
377 		svc_userfds = NULL;
378 		svc_nuserfds = 0;
379 	}
380 }
381 
382 /*
383  * Remove all the callback associated with a fd => useful when the fd is
384  * closed for instance
385  */
386 static void
387 __svc_remove_input_of_fd(int fd)
388 {
389 	_svc_user_fd_node *one_node;
390 
391 	if ((fd < 0) || (fd >= svc_nuserfds))
392 		return;
393 
394 	one_node = svc_userfds[fd].lnk.next;
395 	while ((_svc_user_link *) one_node
396 	    != (_svc_user_link *) &(svc_userfds[fd].lnk)) {
397 		_svc_free_id(one_node->id);
398 		one_node = one_node->lnk.next;
399 		free(one_node->lnk.previous);
400 	}
401 
402 	LIST_CLR(svc_userfds[fd]);
403 	svc_userfds[fd].mask = 0;
404 }
405 
406 /*
407  * Allow user to add an fd in the poll list. If it does not succeed, return
408  * -1. Otherwise, return a svc_id
409  */
410 
411 svc_input_id_t
412 svc_add_input(int user_fd, unsigned int events,
413     svc_callback_t user_callback, void *cookie)
414 {
415 	_svc_user_fd_node *new_node;
416 
417 	if (user_fd < 0) {
418 		errno = EINVAL;
419 		return ((svc_input_id_t)-1);
420 	}
421 
422 	if ((events == 0x0000) ||
423 	    (events & ~(POLLIN|POLLPRI|POLLOUT|POLLRDNORM|POLLRDBAND|\
424 	    POLLWRBAND|POLLERR|POLLHUP|POLLNVAL))) {
425 		errno = EINVAL;
426 		return ((svc_input_id_t)-1);
427 	}
428 
429 	(void) mutex_lock(&svc_userfds_lock);
430 
431 	if ((user_fd < svc_nuserfds) &&
432 	    (svc_userfds[user_fd].mask & events) != 0) {
433 		/* Already registrated call-back */
434 		errno = EEXIST;
435 		(void) mutex_unlock(&svc_userfds_lock);
436 		return ((svc_input_id_t)-1);
437 	}
438 
439 	/* Handle memory allocation. */
440 	if (user_fd >= svc_nuserfds) {
441 		int oldSize = svc_nuserfds;
442 		int i;
443 
444 		svc_nuserfds = (user_fd + 1) + USER_FD_INCREMENT;
445 
446 		svc_userfds = (_svc_user_fd_head *)
447 		    realloc(svc_userfds,
448 			svc_nuserfds * sizeof (_svc_user_fd_head));
449 
450 		if (svc_userfds == NULL) {
451 			syslog(LOG_ERR, "svc_add_input: out of memory");
452 			errno = ENOMEM;
453 			(void) mutex_unlock(&svc_userfds_lock);
454 			return ((svc_input_id_t)-1);
455 		}
456 
457 		for (i = oldSize; i < svc_nuserfds; i++) {
458 			LIST_CLR(svc_userfds[i]);
459 			svc_userfds[i].mask = 0;
460 		}
461 	}
462 
463 	new_node = malloc(sizeof (_svc_user_fd_node));
464 	if (new_node == NULL) {
465 		syslog(LOG_ERR, "svc_add_input: out of memory");
466 		errno = ENOMEM;
467 		(void) mutex_unlock(&svc_userfds_lock);
468 		return ((svc_input_id_t)-1);
469 	}
470 
471 	/* create a new node */
472 	new_node->fd		= user_fd;
473 	new_node->events	= events;
474 	new_node->callback	= user_callback;
475 	new_node->cookie	= cookie;
476 
477 	(void) _svc_attribute_new_id(new_node);
478 
479 	/* Add the new element at the beginning of the list. */
480 	if (LIST_ISEMPTY(svc_userfds[user_fd])) {
481 		svc_userfds[user_fd].lnk.previous = new_node;
482 	}
483 	new_node->lnk.next = svc_userfds[user_fd].lnk.next;
484 	new_node->lnk.previous = (_svc_user_fd_node *)&(svc_userfds[user_fd]);
485 
486 	svc_userfds[user_fd].lnk.next = new_node;
487 
488 	/* refresh global mask for this file desciptor */
489 	svc_userfds[user_fd].mask |= events;
490 
491 	/* refresh mask for the poll */
492 	add_pollfd(user_fd, (svc_userfds[user_fd].mask));
493 
494 	(void) mutex_unlock(&svc_userfds_lock);
495 	return (new_node->id);
496 }
497 
498 
499 int
500 svc_remove_input(svc_input_id_t id)
501 {
502 	_svc_user_fd_node* node;
503 	_svc_user_fd_node* next;
504 	_svc_user_fd_node* previous;
505 	int fd;		/* caching optim */
506 
507 	(void) mutex_lock(&svc_userfds_lock);
508 
509 	/* Immediately update data for id management */
510 	if (user_fd_mgt_array == NULL || id >= svc_nmgtuserfds ||
511 	    is_free_id(id)) {
512 		errno = EINVAL;
513 		(void) mutex_unlock(&svc_userfds_lock);
514 		return (-1);
515 	}
516 
517 	node = node_from_id(id);
518 	assert(node != NULL);
519 
520 	_svc_free_id(id);
521 	next		= node->lnk.next;
522 	previous	= node->lnk.previous;
523 	fd		= node->fd; /* caching optim */
524 
525 	    /* Remove this node from the list. */
526 	previous->lnk.next = next;
527 	next->lnk.previous = previous;
528 
529 	    /* Remove the node flags from the global mask */
530 	svc_userfds[fd].mask ^= node->events;
531 
532 	free(node);
533 	if (svc_userfds[fd].mask == 0) {
534 		LIST_CLR(svc_userfds[fd]);
535 		assert(LIST_ISEMPTY(svc_userfds[fd]));
536 		remove_pollfd(fd);
537 	}
538 	/* <=> CLEAN NEEDED TO SHRINK MEMORY USAGE */
539 
540 	(void) mutex_unlock(&svc_userfds_lock);
541 	return (0);
542 }
543 
544 
545 /*
546  * Provides default service-side functions for authentication flavors
547  * that do not use all the fields in struct svc_auth_ops.
548  */
549 
550 /*ARGSUSED*/
551 static int
552 authany_wrap(AUTH *auth, XDR *xdrs, xdrproc_t xfunc, caddr_t xwhere)
553 {
554 	return (*xfunc)(xdrs, xwhere);
555 }
556 
557 struct svc_auth_ops svc_auth_any_ops = {
558 	authany_wrap,
559 	authany_wrap,
560 };
561 
562 /*
563  * Return pointer to server authentication structure.
564  */
565 SVCAUTH *
566 __svc_get_svcauth(SVCXPRT *xprt)
567 {
568 /* LINTED pointer alignment */
569 	return (&SVC_XP_AUTH(xprt));
570 }
571 
572 /*
573  * A callback routine to cleanup after a procedure is executed.
574  */
575 void (*__proc_cleanup_cb)() = NULL;
576 
577 void *
578 __svc_set_proc_cleanup_cb(void *cb)
579 {
580 	void	*tmp = (void *)__proc_cleanup_cb;
581 
582 	__proc_cleanup_cb = (void (*)())cb;
583 	return (tmp);
584 }
585 
586 /* ***************  SVCXPRT related stuff **************** */
587 
588 
589 static int pollfd_shrinking = 1;
590 
591 
592 /*
593  * Add fd to svc_pollfd
594  */
595 static void
596 add_pollfd(int fd, short events)
597 {
598 	if (fd < FD_SETSIZE) {
599 		FD_SET(fd, &svc_fdset);
600 #if !defined(_LP64)
601 		FD_SET(fd, &_new_svc_fdset);
602 #endif
603 		svc_nfds++;
604 		svc_nfds_set++;
605 		if (fd >= svc_max_fd)
606 			svc_max_fd = fd + 1;
607 	}
608 	if (fd >= svc_max_pollfd)
609 		svc_max_pollfd = fd + 1;
610 	if (svc_max_pollfd > svc_pollfd_allocd) {
611 		int i = svc_pollfd_allocd;
612 		pollfd_t *tmp;
613 		do {
614 			svc_pollfd_allocd += POLLFD_EXTEND;
615 		} while (svc_max_pollfd > svc_pollfd_allocd);
616 		tmp = realloc(svc_pollfd,
617 					sizeof (pollfd_t) * svc_pollfd_allocd);
618 		if (tmp != NULL) {
619 			svc_pollfd = tmp;
620 			for (; i < svc_pollfd_allocd; i++)
621 				POLLFD_CLR(i, tmp);
622 		} else {
623 			/*
624 			 * give an error message; undo fdset setting
625 			 * above;  reset the pollfd_shrinking flag.
626 			 * because of this poll will not be done
627 			 * on these fds.
628 			 */
629 			if (fd < FD_SETSIZE) {
630 				FD_CLR(fd, &svc_fdset);
631 #if !defined(_LP64)
632 				FD_CLR(fd, &_new_svc_fdset);
633 #endif
634 				svc_nfds--;
635 				svc_nfds_set--;
636 				if (fd == (svc_max_fd - 1))
637 					svc_max_fd--;
638 			}
639 			if (fd == (svc_max_pollfd - 1))
640 				svc_max_pollfd--;
641 			pollfd_shrinking = 0;
642 			syslog(LOG_ERR, "add_pollfd: out of memory");
643 			_exit(1);
644 		}
645 	}
646 	svc_pollfd[fd].fd	= fd;
647 	svc_pollfd[fd].events	= events;
648 	svc_npollfds++;
649 	svc_npollfds_set++;
650 }
651 
652 /*
653  * the fd is still active but only the bit in fdset is cleared.
654  * do not subtract svc_nfds or svc_npollfds
655  */
656 void
657 clear_pollfd(int fd)
658 {
659 	if (fd < FD_SETSIZE && FD_ISSET(fd, &svc_fdset)) {
660 		FD_CLR(fd, &svc_fdset);
661 #if !defined(_LP64)
662 		FD_CLR(fd, &_new_svc_fdset);
663 #endif
664 		svc_nfds_set--;
665 	}
666 	if (fd < svc_pollfd_allocd && POLLFD_ISSET(fd, svc_pollfd)) {
667 		POLLFD_CLR(fd, svc_pollfd);
668 		svc_npollfds_set--;
669 	}
670 }
671 
672 /*
673  * sets the bit in fdset for an active fd so that poll() is done for that
674  */
675 void
676 set_pollfd(int fd, short events)
677 {
678 	if (fd < FD_SETSIZE) {
679 		FD_SET(fd, &svc_fdset);
680 #if !defined(_LP64)
681 		FD_SET(fd, &_new_svc_fdset);
682 #endif
683 		svc_nfds_set++;
684 	}
685 	if (fd < svc_pollfd_allocd) {
686 		svc_pollfd[fd].fd	= fd;
687 		svc_pollfd[fd].events	= events;
688 		svc_npollfds_set++;
689 	}
690 }
691 
692 /*
693  * remove a svc_pollfd entry; it does not shrink the memory
694  */
695 static void
696 remove_pollfd(int fd)
697 {
698 	clear_pollfd(fd);
699 	if (fd == (svc_max_fd - 1))
700 		svc_max_fd--;
701 	svc_nfds--;
702 	if (fd == (svc_max_pollfd - 1))
703 		svc_max_pollfd--;
704 	svc_npollfds--;
705 }
706 
707 /*
708  * delete a svc_pollfd entry; it shrinks the memory
709  * use remove_pollfd if you do not want to shrink
710  */
711 static void
712 delete_pollfd(int fd)
713 {
714 	remove_pollfd(fd);
715 	if (pollfd_shrinking && svc_max_pollfd <
716 			(svc_pollfd_allocd - POLLFD_SHRINK)) {
717 		do {
718 			svc_pollfd_allocd -= POLLFD_SHRINK;
719 		} while (svc_max_pollfd < (svc_pollfd_allocd - POLLFD_SHRINK));
720 		svc_pollfd = realloc(svc_pollfd,
721 				sizeof (pollfd_t) * svc_pollfd_allocd);
722 		if (svc_pollfd == NULL) {
723 			syslog(LOG_ERR, "delete_pollfd: out of memory");
724 			_exit(1);
725 		}
726 	}
727 }
728 
729 
730 /*
731  * Activate a transport handle.
732  */
733 void
734 xprt_register(const SVCXPRT *xprt)
735 {
736 	int fd = xprt->xp_fd;
737 #ifdef CALLBACK
738 	extern void (*_svc_getreqset_proc)();
739 #endif
740 /* VARIABLES PROTECTED BY svc_fd_lock: svc_xports, svc_fdset */
741 
742 	(void) rw_wrlock(&svc_fd_lock);
743 	if (svc_xports == NULL) {
744 		/* allocate some small amount first */
745 		svc_xports = calloc(FD_INCREMENT,  sizeof (SVCXPRT *));
746 		if (svc_xports == NULL) {
747 			syslog(LOG_ERR, "xprt_register: out of memory");
748 			_exit(1);
749 		}
750 		nsvc_xports = FD_INCREMENT;
751 
752 #ifdef CALLBACK
753 		/*
754 		 * XXX: This code does not keep track of the server state.
755 		 *
756 		 * This provides for callback support.	When a client
757 		 * recv's a call from another client on the server fd's,
758 		 * it calls _svc_getreqset_proc() which would return
759 		 * after serving all the server requests.  Also look under
760 		 * clnt_dg.c and clnt_vc.c  (clnt_call part of it)
761 		 */
762 		_svc_getreqset_proc = svc_getreq_poll;
763 #endif
764 	}
765 
766 	while (fd >= nsvc_xports) {
767 		SVCXPRT **tmp_xprts = svc_xports;
768 
769 		/* time to expand svc_xprts */
770 		tmp_xprts = realloc(svc_xports,
771 			sizeof (SVCXPRT *) * (nsvc_xports + FD_INCREMENT));
772 		if (tmp_xprts == NULL) {
773 			syslog(LOG_ERR, "xprt_register : out of memory.");
774 			_exit(1);
775 		}
776 
777 		svc_xports = tmp_xprts;
778 		(void) memset(&svc_xports[nsvc_xports], 0,
779 					sizeof (SVCXPRT *) * FD_INCREMENT);
780 		nsvc_xports += FD_INCREMENT;
781 	}
782 
783 	svc_xports[fd] = (SVCXPRT *)xprt;
784 
785 	add_pollfd(fd, MASKVAL);
786 
787 	if (svc_polling) {
788 		char dummy;
789 
790 		/*
791 		 * This happens only in one of the MT modes.
792 		 * Wake up poller.
793 		 */
794 		(void) write(svc_pipe[1], &dummy, sizeof (dummy));
795 	}
796 	/*
797 	 * If already dispatching door based services, start
798 	 * dispatching TLI based services now.
799 	 */
800 	(void) mutex_lock(&svc_door_mutex);
801 	if (svc_ndoorfds > 0)
802 		(void) cond_signal(&svc_door_waitcv);
803 	(void) mutex_unlock(&svc_door_mutex);
804 
805 	if (svc_xdrs == NULL) {
806 		/* allocate initial chunk */
807 		svc_xdrs = calloc(FD_INCREMENT, sizeof (XDR *));
808 		if (svc_xdrs != NULL)
809 			nsvc_xdrs = FD_INCREMENT;
810 		else {
811 			syslog(LOG_ERR, "xprt_register : out of memory.");
812 			_exit(1);
813 		}
814 	}
815 	(void) rw_unlock(&svc_fd_lock);
816 }
817 
818 /*
819  * De-activate a transport handle.
820  */
821 void
822 __xprt_unregister_private(const SVCXPRT *xprt, bool_t lock_not_held)
823 {
824 	int fd = xprt->xp_fd;
825 
826 	if (lock_not_held)
827 		(void) rw_wrlock(&svc_fd_lock);
828 	if ((fd < nsvc_xports) && (svc_xports[fd] == xprt)) {
829 		svc_xports[fd] = NULL;
830 		delete_pollfd(fd);
831 	}
832 	if (lock_not_held)
833 		(void) rw_unlock(&svc_fd_lock);
834 	__svc_rm_from_xlist(&_svc_xprtlist, xprt, &xprtlist_lock);
835 }
836 
837 void
838 xprt_unregister(const SVCXPRT *xprt)
839 {
840 	__xprt_unregister_private(xprt, TRUE);
841 }
842 
843 /* ********************** CALLOUT list related stuff ************* */
844 
845 /*
846  * Add a service program to the callout list.
847  * The dispatch routine will be called when a rpc request for this
848  * program number comes in.
849  */
850 bool_t
851 svc_reg(const SVCXPRT *xprt, const rpcprog_t prog, const rpcvers_t vers,
852 			void (*dispatch)(), const struct netconfig *nconf)
853 {
854 	struct svc_callout *prev;
855 	struct svc_callout *s, **s2;
856 	struct netconfig *tnconf;
857 	char *netid = NULL;
858 	int flag = 0;
859 
860 /* VARIABLES PROTECTED BY svc_lock: s, prev, svc_head */
861 
862 	if (xprt->xp_netid) {
863 		netid = strdup(xprt->xp_netid);
864 		flag = 1;
865 	} else if (nconf && nconf->nc_netid) {
866 		netid = strdup(nconf->nc_netid);
867 		flag = 1;
868 	} else if ((tnconf = __rpcfd_to_nconf(xprt->xp_fd, xprt->xp_type))
869 			!= NULL) {
870 		netid = strdup(tnconf->nc_netid);
871 		flag = 1;
872 		freenetconfigent(tnconf);
873 	} /* must have been created with svc_raw_create */
874 	if ((netid == NULL) && (flag == 1))
875 		return (FALSE);
876 
877 	(void) rw_wrlock(&svc_lock);
878 	if ((s = svc_find(prog, vers, &prev, netid)) != NULL_SVC) {
879 		if (netid)
880 			free(netid);
881 		if (s->sc_dispatch == dispatch)
882 			goto rpcb_it; /* he is registering another xptr */
883 		(void) rw_unlock(&svc_lock);
884 		return (FALSE);
885 	}
886 	s = malloc(sizeof (struct svc_callout));
887 	if (s == NULL) {
888 		if (netid)
889 			free(netid);
890 		(void) rw_unlock(&svc_lock);
891 		return (FALSE);
892 	}
893 
894 	s->sc_prog = prog;
895 	s->sc_vers = vers;
896 	s->sc_dispatch = dispatch;
897 	s->sc_netid = netid;
898 	s->sc_next = NULL;
899 
900 	/*
901 	 * The ordering of transports is such that the most frequently used
902 	 * one appears first.  So add the new entry to the end of the list.
903 	 */
904 	for (s2 = &svc_head; *s2 != NULL; s2 = &(*s2)->sc_next)
905 		;
906 	*s2 = s;
907 
908 	if ((xprt->xp_netid == NULL) && (flag == 1) && netid)
909 		if ((((SVCXPRT *)xprt)->xp_netid = strdup(netid)) == NULL) {
910 			syslog(LOG_ERR, "svc_reg : strdup failed.");
911 			free(netid);
912 			free(s);
913 			*s2 = NULL;
914 			(void) rw_unlock(&svc_lock);
915 			return (FALSE);
916 		}
917 
918 rpcb_it:
919 	(void) rw_unlock(&svc_lock);
920 
921 	/* now register the information with the local binder service */
922 	if (nconf)
923 		return (rpcb_set(prog, vers, nconf, &xprt->xp_ltaddr));
924 	return (TRUE);
925 	/*NOTREACHED*/
926 }
927 
928 /*
929  * Remove a service program from the callout list.
930  */
931 void
932 svc_unreg(const rpcprog_t prog, const rpcvers_t vers)
933 {
934 	struct svc_callout *prev;
935 	struct svc_callout *s;
936 
937 	/* unregister the information anyway */
938 	(void) rpcb_unset(prog, vers, NULL);
939 
940 	(void) rw_wrlock(&svc_lock);
941 	while ((s = svc_find(prog, vers, &prev, NULL)) != NULL_SVC) {
942 		if (prev == NULL_SVC) {
943 			svc_head = s->sc_next;
944 		} else {
945 			prev->sc_next = s->sc_next;
946 		}
947 		s->sc_next = NULL_SVC;
948 		if (s->sc_netid)
949 			free(s->sc_netid);
950 		free(s);
951 	}
952 	(void) rw_unlock(&svc_lock);
953 }
954 
955 #ifdef PORTMAP
956 /*
957  * Add a service program to the callout list.
958  * The dispatch routine will be called when a rpc request for this
959  * program number comes in.
960  * For version 2 portmappers.
961  */
962 bool_t
963 svc_register(SVCXPRT *xprt, rpcprog_t prog, rpcvers_t vers,
964 					void (*dispatch)(), int protocol)
965 {
966 	struct svc_callout *prev;
967 	struct svc_callout *s;
968 	struct netconfig *nconf;
969 	char *netid = NULL;
970 	int flag = 0;
971 
972 	if (xprt->xp_netid) {
973 		netid = strdup(xprt->xp_netid);
974 		flag = 1;
975 	} else if ((ioctl(xprt->xp_fd, I_FIND, "timod") > 0) && ((nconf =
976 	__rpcfd_to_nconf(xprt->xp_fd, xprt->xp_type)) != NULL)) {
977 		/* fill in missing netid field in SVCXPRT */
978 		netid = strdup(nconf->nc_netid);
979 		flag = 1;
980 		freenetconfigent(nconf);
981 	} /* must be svc_raw_create */
982 
983 	if ((netid == NULL) && (flag == 1))
984 		return (FALSE);
985 
986 	(void) rw_wrlock(&svc_lock);
987 	if ((s = svc_find(prog, vers, &prev, netid)) != NULL_SVC) {
988 		if (netid)
989 			free(netid);
990 		if (s->sc_dispatch == dispatch)
991 			goto pmap_it;  /* he is registering another xptr */
992 		(void) rw_unlock(&svc_lock);
993 		return (FALSE);
994 	}
995 	s = malloc(sizeof (struct svc_callout));
996 	if (s == (struct svc_callout *)0) {
997 		if (netid)
998 			free(netid);
999 		(void) rw_unlock(&svc_lock);
1000 		return (FALSE);
1001 	}
1002 	s->sc_prog = prog;
1003 	s->sc_vers = vers;
1004 	s->sc_dispatch = dispatch;
1005 	s->sc_netid = netid;
1006 	s->sc_next = svc_head;
1007 	svc_head = s;
1008 
1009 	if ((xprt->xp_netid == NULL) && (flag == 1) && netid)
1010 		if ((xprt->xp_netid = strdup(netid)) == NULL) {
1011 			syslog(LOG_ERR, "svc_register : strdup failed.");
1012 			free(netid);
1013 			svc_head = s->sc_next;
1014 			free(s);
1015 			(void) rw_unlock(&svc_lock);
1016 			return (FALSE);
1017 		}
1018 
1019 pmap_it:
1020 	(void) rw_unlock(&svc_lock);
1021 	/* now register the information with the local binder service */
1022 	if (protocol)
1023 		return (pmap_set(prog, vers, protocol, xprt->xp_port));
1024 	return (TRUE);
1025 }
1026 
1027 /*
1028  * Remove a service program from the callout list.
1029  * For version 2 portmappers.
1030  */
1031 void
1032 svc_unregister(rpcprog_t prog, rpcvers_t vers)
1033 {
1034 	struct svc_callout *prev;
1035 	struct svc_callout *s;
1036 
1037 	(void) rw_wrlock(&svc_lock);
1038 	while ((s = svc_find(prog, vers, &prev, NULL)) != NULL_SVC) {
1039 		if (prev == NULL_SVC) {
1040 			svc_head = s->sc_next;
1041 		} else {
1042 			prev->sc_next = s->sc_next;
1043 		}
1044 		s->sc_next = NULL_SVC;
1045 		if (s->sc_netid)
1046 			free(s->sc_netid);
1047 		free(s);
1048 		/* unregister the information with the local binder service */
1049 		(void) pmap_unset(prog, vers);
1050 	}
1051 	(void) rw_unlock(&svc_lock);
1052 }
1053 #endif /* PORTMAP */
1054 
1055 /*
1056  * Search the callout list for a program number, return the callout
1057  * struct.
1058  * Also check for transport as well.  Many routines such as svc_unreg
1059  * dont give any corresponding transport, so dont check for transport if
1060  * netid == NULL
1061  */
1062 static struct svc_callout *
1063 svc_find(rpcprog_t prog, rpcvers_t vers, struct svc_callout **prev, char *netid)
1064 {
1065 	struct svc_callout *s, *p;
1066 
1067 /* WRITE LOCK HELD ON ENTRY: svc_lock */
1068 
1069 /*	assert(RW_WRITE_HELD(&svc_lock)); */
1070 	p = NULL_SVC;
1071 	for (s = svc_head; s != NULL_SVC; s = s->sc_next) {
1072 		if (((s->sc_prog == prog) && (s->sc_vers == vers)) &&
1073 			((netid == NULL) || (s->sc_netid == NULL) ||
1074 			(strcmp(netid, s->sc_netid) == 0)))
1075 				break;
1076 		p = s;
1077 	}
1078 	*prev = p;
1079 	return (s);
1080 }
1081 
1082 
1083 /* ******************* REPLY GENERATION ROUTINES  ************ */
1084 
1085 /*
1086  * Send a reply to an rpc request
1087  */
1088 bool_t
1089 svc_sendreply(const SVCXPRT *xprt, const xdrproc_t xdr_results,
1090 						const caddr_t xdr_location)
1091 {
1092 	struct rpc_msg rply;
1093 
1094 	rply.rm_direction = REPLY;
1095 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1096 	rply.acpted_rply.ar_verf = xprt->xp_verf;
1097 	rply.acpted_rply.ar_stat = SUCCESS;
1098 	rply.acpted_rply.ar_results.where = xdr_location;
1099 	rply.acpted_rply.ar_results.proc = xdr_results;
1100 	return (SVC_REPLY((SVCXPRT *)xprt, &rply));
1101 }
1102 
1103 /*
1104  * No procedure error reply
1105  */
1106 void
1107 svcerr_noproc(const SVCXPRT *xprt)
1108 {
1109 	struct rpc_msg rply;
1110 
1111 	rply.rm_direction = REPLY;
1112 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1113 	rply.acpted_rply.ar_verf = xprt->xp_verf;
1114 	rply.acpted_rply.ar_stat = PROC_UNAVAIL;
1115 	SVC_REPLY((SVCXPRT *)xprt, &rply);
1116 }
1117 
1118 /*
1119  * Can't decode args error reply
1120  */
1121 void
1122 svcerr_decode(const SVCXPRT *xprt)
1123 {
1124 	struct rpc_msg rply;
1125 
1126 	rply.rm_direction = REPLY;
1127 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1128 	rply.acpted_rply.ar_verf = xprt->xp_verf;
1129 	rply.acpted_rply.ar_stat = GARBAGE_ARGS;
1130 	SVC_REPLY((SVCXPRT *)xprt, &rply);
1131 }
1132 
1133 /*
1134  * Some system error
1135  */
1136 void
1137 svcerr_systemerr(const SVCXPRT *xprt)
1138 {
1139 	struct rpc_msg rply;
1140 
1141 	rply.rm_direction = REPLY;
1142 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1143 	rply.acpted_rply.ar_verf = xprt->xp_verf;
1144 	rply.acpted_rply.ar_stat = SYSTEM_ERR;
1145 	SVC_REPLY((SVCXPRT *)xprt, &rply);
1146 }
1147 
1148 /*
1149  * Tell RPC package to not complain about version errors to the client.	 This
1150  * is useful when revving broadcast protocols that sit on a fixed address.
1151  * There is really one (or should be only one) example of this kind of
1152  * protocol: the portmapper (or rpc binder).
1153  */
1154 void
1155 __svc_versquiet_on(const SVCXPRT *xprt)
1156 {
1157 /* LINTED pointer alignment */
1158 	svc_flags(xprt) |= SVC_VERSQUIET;
1159 }
1160 
1161 void
1162 __svc_versquiet_off(const SVCXPRT *xprt)
1163 {
1164 /* LINTED pointer alignment */
1165 	svc_flags(xprt) &= ~SVC_VERSQUIET;
1166 }
1167 
1168 void
1169 svc_versquiet(const SVCXPRT *xprt)
1170 {
1171 	__svc_versquiet_on(xprt);
1172 }
1173 
1174 int
1175 __svc_versquiet_get(const SVCXPRT *xprt)
1176 {
1177 /* LINTED pointer alignment */
1178 	return (svc_flags(xprt) & SVC_VERSQUIET);
1179 }
1180 
1181 /*
1182  * Authentication error reply
1183  */
1184 void
1185 svcerr_auth(const SVCXPRT *xprt, const enum auth_stat why)
1186 {
1187 	struct rpc_msg rply;
1188 
1189 	rply.rm_direction = REPLY;
1190 	rply.rm_reply.rp_stat = MSG_DENIED;
1191 	rply.rjcted_rply.rj_stat = AUTH_ERROR;
1192 	rply.rjcted_rply.rj_why = why;
1193 	SVC_REPLY((SVCXPRT *)xprt, &rply);
1194 }
1195 
1196 /*
1197  * Auth too weak error reply
1198  */
1199 void
1200 svcerr_weakauth(const SVCXPRT *xprt)
1201 {
1202 	svcerr_auth(xprt, AUTH_TOOWEAK);
1203 }
1204 
1205 /*
1206  * Program unavailable error reply
1207  */
1208 void
1209 svcerr_noprog(const SVCXPRT *xprt)
1210 {
1211 	struct rpc_msg rply;
1212 
1213 	rply.rm_direction = REPLY;
1214 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1215 	rply.acpted_rply.ar_verf = xprt->xp_verf;
1216 	rply.acpted_rply.ar_stat = PROG_UNAVAIL;
1217 	SVC_REPLY((SVCXPRT *)xprt, &rply);
1218 }
1219 
1220 /*
1221  * Program version mismatch error reply
1222  */
1223 void
1224 svcerr_progvers(const SVCXPRT *xprt, const rpcvers_t low_vers,
1225 						const rpcvers_t high_vers)
1226 {
1227 	struct rpc_msg rply;
1228 
1229 	rply.rm_direction = REPLY;
1230 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1231 	rply.acpted_rply.ar_verf = xprt->xp_verf;
1232 	rply.acpted_rply.ar_stat = PROG_MISMATCH;
1233 	rply.acpted_rply.ar_vers.low = low_vers;
1234 	rply.acpted_rply.ar_vers.high = high_vers;
1235 	SVC_REPLY((SVCXPRT *)xprt, &rply);
1236 }
1237 
1238 /* ******************* SERVER INPUT STUFF ******************* */
1239 
1240 /*
1241  * Get server side input from some transport.
1242  *
1243  * Statement of authentication parameters management:
1244  * This function owns and manages all authentication parameters, specifically
1245  * the "raw" parameters (msg.rm_call.cb_cred and msg.rm_call.cb_verf) and
1246  * the "cooked" credentials (rqst->rq_clntcred).
1247  * However, this function does not know the structure of the cooked
1248  * credentials, so it make the following assumptions:
1249  *   a) the structure is contiguous (no pointers), and
1250  *   b) the cred structure size does not exceed RQCRED_SIZE bytes.
1251  * In all events, all three parameters are freed upon exit from this routine.
1252  * The storage is trivially management on the call stack in user land, but
1253  * is mallocated in kernel land.
1254  */
1255 
1256 void
1257 svc_getreq(int rdfds)
1258 {
1259 	fd_set readfds;
1260 
1261 	FD_ZERO(&readfds);
1262 	readfds.fds_bits[0] = rdfds;
1263 	svc_getreqset(&readfds);
1264 }
1265 
1266 void
1267 svc_getreqset(fd_set *readfds)
1268 {
1269 	int i;
1270 
1271 	for (i = 0; i < svc_max_fd; i++) {
1272 		/* fd has input waiting */
1273 		if (FD_ISSET(i, readfds))
1274 			svc_getreq_common(i);
1275 	}
1276 }
1277 
1278 void
1279 svc_getreq_poll(struct pollfd *pfdp, const int pollretval)
1280 {
1281 	int i;
1282 	int fds_found;
1283 
1284 	for (i = fds_found = 0; fds_found < pollretval; i++) {
1285 		struct pollfd *p = &pfdp[i];
1286 
1287 		if (p->revents) {
1288 			/* fd has input waiting */
1289 			fds_found++;
1290 			/*
1291 			 *	We assume that this function is only called
1292 			 *	via someone select()ing from svc_fdset or
1293 			 *	poll()ing from svc_pollset[].  Thus it's safe
1294 			 *	to handle the POLLNVAL event by simply turning
1295 			 *	the corresponding bit off in svc_fdset.  The
1296 			 *	svc_pollset[] array is derived from svc_fdset
1297 			 *	and so will also be updated eventually.
1298 			 *
1299 			 *	XXX Should we do an xprt_unregister() instead?
1300 			 */
1301 			/* Handle user callback */
1302 			if (__is_a_userfd(p->fd) == TRUE) {
1303 				(void) rw_rdlock(&svc_fd_lock);
1304 				__svc_getreq_user(p);
1305 				(void) rw_unlock(&svc_fd_lock);
1306 			} else {
1307 				if (p->revents & POLLNVAL) {
1308 					(void) rw_wrlock(&svc_fd_lock);
1309 					remove_pollfd(p->fd);	/* XXX */
1310 					(void) rw_unlock(&svc_fd_lock);
1311 				} else {
1312 					svc_getreq_common(p->fd);
1313 				}
1314 			}
1315 		}
1316 	}
1317 }
1318 
1319 void
1320 svc_getreq_common(const int fd)
1321 {
1322 	SVCXPRT *xprt;
1323 	enum xprt_stat stat;
1324 	struct rpc_msg *msg;
1325 	struct svc_req *r;
1326 	char *cred_area;
1327 
1328 	(void) rw_rdlock(&svc_fd_lock);
1329 
1330 	/* HANDLE USER CALLBACK */
1331 	if (__is_a_userfd(fd) == TRUE) {
1332 		struct pollfd virtual_fd;
1333 
1334 		virtual_fd.events = virtual_fd.revents = (short)0xFFFF;
1335 		virtual_fd.fd = fd;
1336 		__svc_getreq_user(&virtual_fd);
1337 		(void) rw_unlock(&svc_fd_lock);
1338 		return;
1339 	}
1340 
1341 	/*
1342 	 * The transport associated with this fd could have been
1343 	 * removed from svc_timeout_nonblock_xprt_and_LRU, for instance.
1344 	 * This can happen if two or more fds get read events and are
1345 	 * passed to svc_getreq_poll/set, the first fd is seviced by
1346 	 * the dispatch routine and cleans up any dead transports.  If
1347 	 * one of the dead transports removed is the other fd that
1348 	 * had a read event then svc_getreq_common() will be called with no
1349 	 * xprt associated with the fd that had the original read event.
1350 	 */
1351 	if ((fd >= nsvc_xports) || (xprt = svc_xports[fd]) == NULL) {
1352 		(void) rw_unlock(&svc_fd_lock);
1353 		return;
1354 	}
1355 	(void) rw_unlock(&svc_fd_lock);
1356 /* LINTED pointer alignment */
1357 	msg = SVCEXT(xprt)->msg;
1358 /* LINTED pointer alignment */
1359 	r = SVCEXT(xprt)->req;
1360 /* LINTED pointer alignment */
1361 	cred_area = SVCEXT(xprt)->cred_area;
1362 	msg->rm_call.cb_cred.oa_base = cred_area;
1363 	msg->rm_call.cb_verf.oa_base = &(cred_area[MAX_AUTH_BYTES]);
1364 	r->rq_clntcred = &(cred_area[2 * MAX_AUTH_BYTES]);
1365 
1366 	/* receive msgs from xprtprt (support batch calls) */
1367 	do {
1368 		bool_t dispatch;
1369 
1370 		if (dispatch = SVC_RECV(xprt, msg))
1371 			(void) _svc_prog_dispatch(xprt, msg, r);
1372 		/*
1373 		 * Check if the xprt has been disconnected in a recursive call
1374 		 * in the service dispatch routine. If so, then break
1375 		 */
1376 		(void) rw_rdlock(&svc_fd_lock);
1377 		if (xprt != svc_xports[fd]) {
1378 			(void) rw_unlock(&svc_fd_lock);
1379 			break;
1380 		}
1381 		(void) rw_unlock(&svc_fd_lock);
1382 
1383 		/*
1384 		 * Call cleanup procedure if set.
1385 		 */
1386 		if (__proc_cleanup_cb != NULL && dispatch)
1387 			(*__proc_cleanup_cb)(xprt);
1388 
1389 		if ((stat = SVC_STAT(xprt)) == XPRT_DIED) {
1390 			SVC_DESTROY(xprt);
1391 			break;
1392 		}
1393 	} while (stat == XPRT_MOREREQS);
1394 }
1395 
1396 int
1397 _svc_prog_dispatch(SVCXPRT *xprt, struct rpc_msg *msg, struct svc_req *r)
1398 {
1399 	struct svc_callout *s;
1400 	enum auth_stat why;
1401 	int prog_found;
1402 	rpcvers_t low_vers;
1403 	rpcvers_t high_vers;
1404 	void (*disp_fn)();
1405 
1406 	r->rq_xprt = xprt;
1407 	r->rq_prog = msg->rm_call.cb_prog;
1408 	r->rq_vers = msg->rm_call.cb_vers;
1409 	r->rq_proc = msg->rm_call.cb_proc;
1410 	r->rq_cred = msg->rm_call.cb_cred;
1411 /* LINTED pointer alignment */
1412 	SVC_XP_AUTH(r->rq_xprt).svc_ah_ops = svc_auth_any_ops;
1413 /* LINTED pointer alignment */
1414 	SVC_XP_AUTH(r->rq_xprt).svc_ah_private = NULL;
1415 
1416 	/* first authenticate the message */
1417 	/* Check for null flavor and bypass these calls if possible */
1418 
1419 	if (msg->rm_call.cb_cred.oa_flavor == AUTH_NULL) {
1420 		r->rq_xprt->xp_verf.oa_flavor = _null_auth.oa_flavor;
1421 		r->rq_xprt->xp_verf.oa_length = 0;
1422 	} else {
1423 		bool_t no_dispatch;
1424 
1425 		if ((why = __gss_authenticate(r, msg,
1426 			&no_dispatch)) != AUTH_OK) {
1427 			svcerr_auth(xprt, why);
1428 			return (0);
1429 		}
1430 		if (no_dispatch)
1431 			return (0);
1432 	}
1433 	/* match message with a registered service */
1434 	prog_found = FALSE;
1435 	low_vers = (rpcvers_t)(0 - 1);
1436 	high_vers = 0;
1437 	(void) rw_rdlock(&svc_lock);
1438 	for (s = svc_head; s != NULL_SVC; s = s->sc_next) {
1439 		if (s->sc_prog == r->rq_prog) {
1440 			prog_found = TRUE;
1441 			if (s->sc_vers == r->rq_vers) {
1442 				if ((xprt->xp_netid == NULL) ||
1443 				    (s->sc_netid == NULL) ||
1444 				    (strcmp(xprt->xp_netid,
1445 					    s->sc_netid) == 0)) {
1446 					disp_fn = (*s->sc_dispatch);
1447 					(void) rw_unlock(&svc_lock);
1448 					disp_fn(r, xprt);
1449 					return (1);
1450 				}
1451 				prog_found = FALSE;
1452 			}
1453 			if (s->sc_vers < low_vers)
1454 				low_vers = s->sc_vers;
1455 			if (s->sc_vers > high_vers)
1456 				high_vers = s->sc_vers;
1457 		}		/* found correct program */
1458 	}
1459 	(void) rw_unlock(&svc_lock);
1460 
1461 	/*
1462 	 * if we got here, the program or version
1463 	 * is not served ...
1464 	 */
1465 	if (prog_found) {
1466 /* LINTED pointer alignment */
1467 		if (!version_keepquiet(xprt))
1468 			svcerr_progvers(xprt, low_vers, high_vers);
1469 	} else {
1470 		svcerr_noprog(xprt);
1471 	}
1472 	return (0);
1473 }
1474 
1475 /* ******************* SVCXPRT allocation and deallocation ***************** */
1476 
1477 /*
1478  * svc_xprt_alloc() - allocate a service transport handle
1479  */
1480 SVCXPRT *
1481 svc_xprt_alloc(void)
1482 {
1483 	SVCXPRT		*xprt = NULL;
1484 	SVCXPRT_EXT	*xt = NULL;
1485 	SVCXPRT_LIST	*xlist = NULL;
1486 	struct rpc_msg	*msg = NULL;
1487 	struct svc_req	*req = NULL;
1488 	char		*cred_area = NULL;
1489 
1490 	if ((xprt = calloc(1, sizeof (SVCXPRT))) == NULL)
1491 		goto err_exit;
1492 
1493 	if ((xt = calloc(1, sizeof (SVCXPRT_EXT))) == NULL)
1494 		goto err_exit;
1495 	xprt->xp_p3 = (caddr_t)xt; /* SVCEXT(xprt) = xt */
1496 
1497 	if ((xlist = calloc(1, sizeof (SVCXPRT_LIST))) == NULL)
1498 		goto err_exit;
1499 	xt->my_xlist = xlist;
1500 	xlist->xprt = xprt;
1501 
1502 	if ((msg = malloc(sizeof (struct rpc_msg))) == NULL)
1503 		goto err_exit;
1504 	xt->msg = msg;
1505 
1506 	if ((req = malloc(sizeof (struct svc_req))) == NULL)
1507 		goto err_exit;
1508 	xt->req = req;
1509 
1510 	if ((cred_area = malloc(2*MAX_AUTH_BYTES + RQCRED_SIZE)) == NULL)
1511 		goto err_exit;
1512 	xt->cred_area = cred_area;
1513 
1514 /* LINTED pointer alignment */
1515 	(void) mutex_init(&svc_send_mutex(xprt), USYNC_THREAD, (void *)0);
1516 	return (xprt);
1517 
1518 err_exit:
1519 	svc_xprt_free(xprt);
1520 	return (NULL);
1521 }
1522 
1523 
1524 /*
1525  * svc_xprt_free() - free a service handle
1526  */
1527 void
1528 svc_xprt_free(SVCXPRT *xprt)
1529 {
1530 /* LINTED pointer alignment */
1531 	SVCXPRT_EXT	*xt = xprt ? SVCEXT(xprt) : NULL;
1532 	SVCXPRT_LIST	*my_xlist = xt ? xt->my_xlist: NULL;
1533 	struct rpc_msg	*msg = xt ? xt->msg : NULL;
1534 	struct svc_req	*req = xt ? xt->req : NULL;
1535 	char		*cred_area = xt ? xt->cred_area : NULL;
1536 
1537 	if (xprt)
1538 		free(xprt);
1539 	if (xt)
1540 		free(xt);
1541 	if (my_xlist)
1542 		free(my_xlist);
1543 	if (msg)
1544 		free(msg);
1545 	if (req)
1546 		free(req);
1547 	if (cred_area)
1548 		free(cred_area);
1549 }
1550 
1551 
1552 /*
1553  * svc_xprt_destroy() - free parent and child xprt list
1554  */
1555 void
1556 svc_xprt_destroy(SVCXPRT *xprt)
1557 {
1558 	SVCXPRT_LIST	*xlist, *xnext = NULL;
1559 	int		type;
1560 
1561 /* LINTED pointer alignment */
1562 	if (SVCEXT(xprt)->parent)
1563 /* LINTED pointer alignment */
1564 		xprt = SVCEXT(xprt)->parent;
1565 /* LINTED pointer alignment */
1566 	type = svc_type(xprt);
1567 /* LINTED pointer alignment */
1568 	for (xlist = SVCEXT(xprt)->my_xlist; xlist != NULL; xlist = xnext) {
1569 		xnext = xlist->next;
1570 		xprt = xlist->xprt;
1571 		switch (type) {
1572 		case SVC_DGRAM:
1573 			svc_dg_xprtfree(xprt);
1574 			break;
1575 		case SVC_RENDEZVOUS:
1576 			svc_vc_xprtfree(xprt);
1577 			break;
1578 		case SVC_CONNECTION:
1579 			svc_fd_xprtfree(xprt);
1580 			break;
1581 		case SVC_DOOR:
1582 			svc_door_xprtfree(xprt);
1583 			break;
1584 		}
1585 	}
1586 }
1587 
1588 
1589 /*
1590  * svc_copy() - make a copy of parent
1591  */
1592 SVCXPRT *
1593 svc_copy(SVCXPRT *xprt)
1594 {
1595 /* LINTED pointer alignment */
1596 	switch (svc_type(xprt)) {
1597 	case SVC_DGRAM:
1598 		return (svc_dg_xprtcopy(xprt));
1599 	case SVC_RENDEZVOUS:
1600 		return (svc_vc_xprtcopy(xprt));
1601 	case SVC_CONNECTION:
1602 		return (svc_fd_xprtcopy(xprt));
1603 	}
1604 	return (NULL);
1605 }
1606 
1607 
1608 /*
1609  * _svc_destroy_private() - private SVC_DESTROY interface
1610  */
1611 void
1612 _svc_destroy_private(SVCXPRT *xprt)
1613 {
1614 /* LINTED pointer alignment */
1615 	switch (svc_type(xprt)) {
1616 	case SVC_DGRAM:
1617 		_svc_dg_destroy_private(xprt);
1618 		break;
1619 	case SVC_RENDEZVOUS:
1620 	case SVC_CONNECTION:
1621 		_svc_vc_destroy_private(xprt, TRUE);
1622 		break;
1623 	}
1624 }
1625 
1626 /*
1627  * svc_get_local_cred() - fetch local user credentials.  This always
1628  * works over doors based transports.  For local transports, this
1629  * does not yield correct results unless the __rpc_negotiate_uid()
1630  * call has been invoked to enable this feature.
1631  */
1632 bool_t
1633 svc_get_local_cred(SVCXPRT *xprt, svc_local_cred_t *lcred)
1634 {
1635 	/* LINTED pointer alignment */
1636 	if (svc_type(xprt) == SVC_DOOR)
1637 		return (__svc_get_door_cred(xprt, lcred));
1638 	return (__rpc_get_local_cred(xprt, lcred));
1639 }
1640 
1641 
1642 /* ******************* DUPLICATE ENTRY HANDLING ROUTINES ************** */
1643 
1644 /*
1645  * the dup cacheing routines below provide a cache of received
1646  * transactions. rpc service routines can use this to detect
1647  * retransmissions and re-send a non-failure response. Uses a
1648  * lru scheme to find entries to get rid of entries in the cache,
1649  * though only DUP_DONE entries are placed on the lru list.
1650  * the routines were written towards development of a generic
1651  * SVC_DUP() interface, which can be expanded to encompass the
1652  * svc_dg_enablecache() routines as well. the cache is currently
1653  * private to the automounter.
1654  */
1655 
1656 
1657 /* dupcache header contains xprt specific information */
1658 struct dupcache {
1659 	rwlock_t	dc_lock;
1660 	time_t		dc_time;
1661 	int		dc_buckets;
1662 	int		dc_maxsz;
1663 	int		dc_basis;
1664 	struct dupreq 	*dc_mru;
1665 	struct dupreq	**dc_hashtbl;
1666 };
1667 
1668 /*
1669  * private duplicate cache request routines
1670  */
1671 static int __svc_dupcache_check(struct svc_req *, caddr_t *, uint_t *,
1672 		struct dupcache *, uint32_t, uint32_t);
1673 static struct dupreq *__svc_dupcache_victim(struct dupcache *, time_t);
1674 static int __svc_dupcache_enter(struct svc_req *, struct dupreq *,
1675 		struct dupcache *, uint32_t, uint32_t, time_t);
1676 static int __svc_dupcache_update(struct svc_req *, caddr_t, uint_t, int,
1677 		struct dupcache *, uint32_t, uint32_t);
1678 #ifdef DUP_DEBUG
1679 static void __svc_dupcache_debug(struct dupcache *);
1680 #endif /* DUP_DEBUG */
1681 
1682 /* default parameters for the dupcache */
1683 #define	DUPCACHE_BUCKETS	257
1684 #define	DUPCACHE_TIME		900
1685 #define	DUPCACHE_MAXSZ		INT_MAX
1686 
1687 /*
1688  * __svc_dupcache_init(void *condition, int basis, char *xprt_cache)
1689  * initialize the duprequest cache and assign it to the xprt_cache
1690  * Use default values depending on the cache condition and basis.
1691  * return TRUE on success and FALSE on failure
1692  */
1693 bool_t
1694 __svc_dupcache_init(void *condition, int basis, char **xprt_cache)
1695 {
1696 	static mutex_t initdc_lock = DEFAULTMUTEX;
1697 	int i;
1698 	struct dupcache *dc;
1699 
1700 	(void) mutex_lock(&initdc_lock);
1701 	if (*xprt_cache != NULL) { /* do only once per xprt */
1702 		(void) mutex_unlock(&initdc_lock);
1703 		syslog(LOG_ERR,
1704 			"__svc_dupcache_init: multiply defined dup cache");
1705 		return (FALSE);
1706 	}
1707 
1708 	switch (basis) {
1709 	case DUPCACHE_FIXEDTIME:
1710 		dc = malloc(sizeof (struct dupcache));
1711 		if (dc == NULL) {
1712 			(void) mutex_unlock(&initdc_lock);
1713 			syslog(LOG_ERR,
1714 				"__svc_dupcache_init: memory alloc failed");
1715 			return (FALSE);
1716 		}
1717 		(void) rwlock_init(&(dc->dc_lock), USYNC_THREAD, NULL);
1718 		if (condition != NULL)
1719 			dc->dc_time = *((time_t *)condition);
1720 		else
1721 			dc->dc_time = DUPCACHE_TIME;
1722 		dc->dc_buckets = DUPCACHE_BUCKETS;
1723 		dc->dc_maxsz = DUPCACHE_MAXSZ;
1724 		dc->dc_basis = basis;
1725 		dc->dc_mru = NULL;
1726 		dc->dc_hashtbl = malloc(dc->dc_buckets *
1727 						sizeof (struct dupreq *));
1728 		if (dc->dc_hashtbl == NULL) {
1729 			free(dc);
1730 			(void) mutex_unlock(&initdc_lock);
1731 			syslog(LOG_ERR,
1732 				"__svc_dupcache_init: memory alloc failed");
1733 			return (FALSE);
1734 		}
1735 		for (i = 0; i < DUPCACHE_BUCKETS; i++)
1736 			dc->dc_hashtbl[i] = NULL;
1737 		*xprt_cache = (char *)dc;
1738 		break;
1739 	default:
1740 		(void) mutex_unlock(&initdc_lock);
1741 		syslog(LOG_ERR,
1742 			"__svc_dupcache_init: undefined dup cache basis");
1743 		return (FALSE);
1744 	}
1745 
1746 	(void) mutex_unlock(&initdc_lock);
1747 
1748 	return (TRUE);
1749 }
1750 
1751 /*
1752  * __svc_dup(struct svc_req *req, caddr_t *resp_buf, uint_t *resp_bufsz,
1753  *	char *xprt_cache)
1754  * searches the request cache. Creates an entry and returns DUP_NEW if
1755  * the request is not found in the cache.  If it is found, then it
1756  * returns the state of the request (in progress, drop, or done) and
1757  * also allocates, and passes back results to the user (if any) in
1758  * resp_buf, and its length in resp_bufsz. DUP_ERROR is returned on error.
1759  */
1760 int
1761 __svc_dup(struct svc_req *req, caddr_t *resp_buf, uint_t *resp_bufsz,
1762 	char *xprt_cache)
1763 {
1764 	uint32_t drxid, drhash;
1765 	int rc;
1766 	struct dupreq *dr = NULL;
1767 	time_t timenow = time(NULL);
1768 
1769 	/* LINTED pointer alignment */
1770 	struct dupcache *dc = (struct dupcache *)xprt_cache;
1771 
1772 	if (dc == NULL) {
1773 		syslog(LOG_ERR, "__svc_dup: undefined cache");
1774 		return (DUP_ERROR);
1775 	}
1776 
1777 	/* get the xid of the request */
1778 	if (SVC_CONTROL(req->rq_xprt, SVCGET_XID, (void*)&drxid) == FALSE) {
1779 		syslog(LOG_ERR, "__svc_dup: xid error");
1780 		return (DUP_ERROR);
1781 	}
1782 	drhash = drxid % dc->dc_buckets;
1783 
1784 	if ((rc = __svc_dupcache_check(req, resp_buf, resp_bufsz, dc, drxid,
1785 			drhash)) != DUP_NEW)
1786 		return (rc);
1787 
1788 	if ((dr = __svc_dupcache_victim(dc, timenow)) == NULL)
1789 		return (DUP_ERROR);
1790 
1791 	if ((rc = __svc_dupcache_enter(req, dr, dc, drxid, drhash, timenow))
1792 			== DUP_ERROR)
1793 		return (rc);
1794 
1795 	return (DUP_NEW);
1796 }
1797 
1798 
1799 
1800 /*
1801  * __svc_dupcache_check(struct svc_req *req, caddr_t *resp_buf,
1802  *		uint_t *resp_bufsz,truct dupcache *dc, uint32_t drxid,
1803  * 		uint32_t drhash)
1804  * Checks to see whether an entry already exists in the cache. If it does
1805  * copy back into the resp_buf, if appropriate. Return the status of
1806  * the request, or DUP_NEW if the entry is not in the cache
1807  */
1808 static int
1809 __svc_dupcache_check(struct svc_req *req, caddr_t *resp_buf, uint_t *resp_bufsz,
1810 		struct dupcache *dc, uint32_t drxid, uint32_t drhash)
1811 {
1812 	struct dupreq *dr = NULL;
1813 
1814 	(void) rw_rdlock(&(dc->dc_lock));
1815 	dr = dc->dc_hashtbl[drhash];
1816 	while (dr != NULL) {
1817 		if (dr->dr_xid == drxid &&
1818 		    dr->dr_proc == req->rq_proc &&
1819 		    dr->dr_prog == req->rq_prog &&
1820 		    dr->dr_vers == req->rq_vers &&
1821 		    dr->dr_addr.len == req->rq_xprt->xp_rtaddr.len &&
1822 		    memcmp(dr->dr_addr.buf,
1823 				req->rq_xprt->xp_rtaddr.buf,
1824 				dr->dr_addr.len) == 0) { /* entry found */
1825 			if (dr->dr_hash != drhash) {
1826 				/* sanity check */
1827 				(void) rw_unlock((&dc->dc_lock));
1828 				syslog(LOG_ERR,
1829 					"\n__svc_dupdone: hashing error");
1830 				return (DUP_ERROR);
1831 			}
1832 
1833 			/*
1834 			 * return results for requests on lru list, if
1835 			 * appropriate requests must be DUP_DROP or DUP_DONE
1836 			 * to have a result. A NULL buffer in the cache
1837 			 * implies no results were sent during dupdone.
1838 			 * A NULL buffer in the call implies not interested
1839 			 * in results.
1840 			 */
1841 			if (((dr->dr_status == DUP_DONE) ||
1842 				(dr->dr_status == DUP_DROP)) &&
1843 				resp_buf != NULL &&
1844 				dr->dr_resp.buf != NULL) {
1845 				*resp_buf = malloc(dr->dr_resp.len);
1846 				if (*resp_buf == NULL) {
1847 					syslog(LOG_ERR,
1848 					"__svc_dupcache_check: malloc failed");
1849 					(void) rw_unlock(&(dc->dc_lock));
1850 					return (DUP_ERROR);
1851 				}
1852 				(void) memset(*resp_buf, 0, dr->dr_resp.len);
1853 				(void) memcpy(*resp_buf, dr->dr_resp.buf,
1854 					dr->dr_resp.len);
1855 				*resp_bufsz = dr->dr_resp.len;
1856 			} else {
1857 				/* no result */
1858 				if (resp_buf)
1859 					*resp_buf = NULL;
1860 				if (resp_bufsz)
1861 					*resp_bufsz = 0;
1862 			}
1863 			(void) rw_unlock(&(dc->dc_lock));
1864 			return (dr->dr_status);
1865 		}
1866 		dr = dr->dr_chain;
1867 	}
1868 	(void) rw_unlock(&(dc->dc_lock));
1869 	return (DUP_NEW);
1870 }
1871 
1872 /*
1873  * __svc_dupcache_victim(struct dupcache *dc, time_t timenow)
1874  * Return a victim dupreq entry to the caller, depending on cache policy.
1875  */
1876 static struct dupreq *
1877 __svc_dupcache_victim(struct dupcache *dc, time_t timenow)
1878 {
1879 	struct dupreq *dr = NULL;
1880 
1881 	switch (dc->dc_basis) {
1882 	case DUPCACHE_FIXEDTIME:
1883 		/*
1884 		 * The hash policy is to free up a bit of the hash
1885 		 * table before allocating a new entry as the victim.
1886 		 * Freeing up the hash table each time should split
1887 		 * the cost of keeping the hash table clean among threads.
1888 		 * Note that only DONE or DROPPED entries are on the lru
1889 		 * list but we do a sanity check anyway.
1890 		 */
1891 		(void) rw_wrlock(&(dc->dc_lock));
1892 		while ((dc->dc_mru) && (dr = dc->dc_mru->dr_next) &&
1893 				((timenow - dr->dr_time) > dc->dc_time)) {
1894 			/* clean and then free the entry */
1895 			if (dr->dr_status != DUP_DONE &&
1896 				dr->dr_status != DUP_DROP) {
1897 				/*
1898 				 * The LRU list can't contain an
1899 				 * entry where the status is other than
1900 				 * DUP_DONE or DUP_DROP.
1901 				 */
1902 				syslog(LOG_ERR,
1903 					"__svc_dupcache_victim: bad victim");
1904 #ifdef DUP_DEBUG
1905 				/*
1906 				 * Need to hold the reader/writers lock to
1907 				 * print the cache info, since we already
1908 				 * hold the writers lock, we shall continue
1909 				 * calling __svc_dupcache_debug()
1910 				 */
1911 				__svc_dupcache_debug(dc);
1912 #endif /* DUP_DEBUG */
1913 				(void) rw_unlock(&(dc->dc_lock));
1914 				return (NULL);
1915 			}
1916 			/* free buffers */
1917 			if (dr->dr_resp.buf) {
1918 				free(dr->dr_resp.buf);
1919 				dr->dr_resp.buf = NULL;
1920 			}
1921 			if (dr->dr_addr.buf) {
1922 				free(dr->dr_addr.buf);
1923 				dr->dr_addr.buf = NULL;
1924 			}
1925 
1926 			/* unhash the entry */
1927 			if (dr->dr_chain)
1928 				dr->dr_chain->dr_prevchain = dr->dr_prevchain;
1929 			if (dr->dr_prevchain)
1930 				dr->dr_prevchain->dr_chain = dr->dr_chain;
1931 			if (dc->dc_hashtbl[dr->dr_hash] == dr)
1932 				dc->dc_hashtbl[dr->dr_hash] = dr->dr_chain;
1933 
1934 			/* modify the lru pointers */
1935 			if (dc->dc_mru == dr) {
1936 				dc->dc_mru = NULL;
1937 			} else {
1938 				dc->dc_mru->dr_next = dr->dr_next;
1939 				dr->dr_next->dr_prev = dc->dc_mru;
1940 			}
1941 			free(dr);
1942 			dr = NULL;
1943 		}
1944 		(void) rw_unlock(&(dc->dc_lock));
1945 
1946 		/*
1947 		 * Allocate and return new clean entry as victim
1948 		 */
1949 		if ((dr = malloc(sizeof (*dr))) == NULL) {
1950 			syslog(LOG_ERR,
1951 				"__svc_dupcache_victim: malloc failed");
1952 			return (NULL);
1953 		}
1954 		(void) memset(dr, 0, sizeof (*dr));
1955 		return (dr);
1956 	default:
1957 		syslog(LOG_ERR,
1958 			"__svc_dupcache_victim: undefined dup cache_basis");
1959 		return (NULL);
1960 	}
1961 }
1962 
1963 /*
1964  * __svc_dupcache_enter(struct svc_req *req, struct dupreq *dr,
1965  *	struct dupcache *dc, uint32_t drxid, uint32_t drhash, time_t timenow)
1966  * build new duprequest entry and then insert into the cache
1967  */
1968 static int
1969 __svc_dupcache_enter(struct svc_req *req, struct dupreq *dr,
1970 	struct dupcache *dc, uint32_t drxid, uint32_t drhash, time_t timenow)
1971 {
1972 	dr->dr_xid = drxid;
1973 	dr->dr_prog = req->rq_prog;
1974 	dr->dr_vers = req->rq_vers;
1975 	dr->dr_proc = req->rq_proc;
1976 	dr->dr_addr.maxlen = req->rq_xprt->xp_rtaddr.len;
1977 	dr->dr_addr.len = dr->dr_addr.maxlen;
1978 	if ((dr->dr_addr.buf = malloc(dr->dr_addr.maxlen)) == NULL) {
1979 		syslog(LOG_ERR, "__svc_dupcache_enter: malloc failed");
1980 		free(dr);
1981 		return (DUP_ERROR);
1982 	}
1983 	(void) memset(dr->dr_addr.buf, 0, dr->dr_addr.len);
1984 	(void) memcpy(dr->dr_addr.buf, req->rq_xprt->xp_rtaddr.buf,
1985 							dr->dr_addr.len);
1986 	dr->dr_resp.buf = NULL;
1987 	dr->dr_resp.maxlen = 0;
1988 	dr->dr_resp.len = 0;
1989 	dr->dr_status = DUP_INPROGRESS;
1990 	dr->dr_time = timenow;
1991 	dr->dr_hash = drhash;	/* needed for efficient victim cleanup */
1992 
1993 	/* place entry at head of hash table */
1994 	(void) rw_wrlock(&(dc->dc_lock));
1995 	dr->dr_chain = dc->dc_hashtbl[drhash];
1996 	dr->dr_prevchain = NULL;
1997 	if (dc->dc_hashtbl[drhash] != NULL)
1998 		dc->dc_hashtbl[drhash]->dr_prevchain = dr;
1999 	dc->dc_hashtbl[drhash] = dr;
2000 	(void) rw_unlock(&(dc->dc_lock));
2001 	return (DUP_NEW);
2002 }
2003 
2004 /*
2005  * __svc_dupdone(struct svc_req *req, caddr_t resp_buf, uint_t resp_bufsz,
2006  *		int status, char *xprt_cache)
2007  * Marks the request done (DUP_DONE or DUP_DROP) and stores the response.
2008  * Only DONE and DROP requests can be marked as done. Sets the lru pointers
2009  * to make the entry the most recently used. Returns DUP_ERROR or status.
2010  */
2011 int
2012 __svc_dupdone(struct svc_req *req, caddr_t resp_buf, uint_t resp_bufsz,
2013 		int status, char *xprt_cache)
2014 {
2015 	uint32_t drxid, drhash;
2016 	int rc;
2017 
2018 	/* LINTED pointer alignment */
2019 	struct dupcache *dc = (struct dupcache *)xprt_cache;
2020 
2021 	if (dc == NULL) {
2022 		syslog(LOG_ERR, "__svc_dupdone: undefined cache");
2023 		return (DUP_ERROR);
2024 	}
2025 
2026 	if (status != DUP_DONE && status != DUP_DROP) {
2027 		syslog(LOG_ERR, "__svc_dupdone: invalid dupdone status");
2028 		syslog(LOG_ERR, "	 must be DUP_DONE or DUP_DROP");
2029 		return (DUP_ERROR);
2030 	}
2031 
2032 	/* find the xid of the entry in the cache */
2033 	if (SVC_CONTROL(req->rq_xprt, SVCGET_XID, (void*)&drxid) == FALSE) {
2034 		syslog(LOG_ERR, "__svc_dup: xid error");
2035 		return (DUP_ERROR);
2036 	}
2037 	drhash = drxid % dc->dc_buckets;
2038 
2039 	/* update the status of the entry and result buffers, if required */
2040 	if ((rc = __svc_dupcache_update(req, resp_buf, resp_bufsz, status,
2041 			dc, drxid, drhash)) == DUP_ERROR) {
2042 		syslog(LOG_ERR, "__svc_dupdone: cache entry error");
2043 		return (DUP_ERROR);
2044 	}
2045 
2046 	return (rc);
2047 }
2048 
2049 /*
2050  * __svc_dupcache_update(struct svc_req *req, caddr_t resp_buf,
2051  * 	uint_t resp_bufsz, int status, struct dupcache *dc, uint32_t drxid,
2052  * 	uint32_t drhash)
2053  * Check if entry exists in the dupcacache. If it does, update its status
2054  * and time and also its buffer, if appropriate. Its possible, but unlikely
2055  * for DONE requests to not exist in the cache. Return DUP_ERROR or status.
2056  */
2057 static int
2058 __svc_dupcache_update(struct svc_req *req, caddr_t resp_buf, uint_t resp_bufsz,
2059 	int status, struct dupcache *dc, uint32_t drxid, uint32_t drhash)
2060 {
2061 	struct dupreq *dr = NULL;
2062 	time_t timenow = time(NULL);
2063 
2064 	(void) rw_wrlock(&(dc->dc_lock));
2065 	dr = dc->dc_hashtbl[drhash];
2066 	while (dr != NULL) {
2067 		if (dr->dr_xid == drxid &&
2068 		    dr->dr_proc == req->rq_proc &&
2069 		    dr->dr_prog == req->rq_prog &&
2070 		    dr->dr_vers == req->rq_vers &&
2071 		    dr->dr_addr.len == req->rq_xprt->xp_rtaddr.len &&
2072 		    memcmp(dr->dr_addr.buf,
2073 				req->rq_xprt->xp_rtaddr.buf,
2074 				dr->dr_addr.len) == 0) { /* entry found */
2075 			if (dr->dr_hash != drhash) {
2076 				/* sanity check */
2077 				(void) rw_unlock(&(dc->dc_lock));
2078 				syslog(LOG_ERR,
2079 				"\n__svc_dupdone: hashing error");
2080 				return (DUP_ERROR);
2081 			}
2082 
2083 			/* store the results if bufer is not NULL */
2084 			if (resp_buf != NULL) {
2085 				if ((dr->dr_resp.buf =
2086 						malloc(resp_bufsz)) == NULL) {
2087 					(void) rw_unlock(&(dc->dc_lock));
2088 					syslog(LOG_ERR,
2089 						"__svc_dupdone: malloc failed");
2090 					return (DUP_ERROR);
2091 				}
2092 				(void) memset(dr->dr_resp.buf, 0, resp_bufsz);
2093 				(void) memcpy(dr->dr_resp.buf, resp_buf,
2094 					(uint_t)resp_bufsz);
2095 				dr->dr_resp.len = resp_bufsz;
2096 			}
2097 
2098 			/* update status and done time */
2099 			dr->dr_status = status;
2100 			dr->dr_time = timenow;
2101 
2102 			/* move the entry to the mru position */
2103 			if (dc->dc_mru == NULL) {
2104 				dr->dr_next = dr;
2105 				dr->dr_prev = dr;
2106 			} else {
2107 				dr->dr_next = dc->dc_mru->dr_next;
2108 				dc->dc_mru->dr_next->dr_prev = dr;
2109 				dr->dr_prev = dc->dc_mru;
2110 				dc->dc_mru->dr_next = dr;
2111 			}
2112 			dc->dc_mru = dr;
2113 
2114 			(void) rw_unlock(&(dc->dc_lock));
2115 			return (status);
2116 		}
2117 		dr = dr->dr_chain;
2118 	}
2119 	(void) rw_unlock(&(dc->dc_lock));
2120 	syslog(LOG_ERR, "__svc_dupdone: entry not in dup cache");
2121 	return (DUP_ERROR);
2122 }
2123 
2124 #ifdef DUP_DEBUG
2125 /*
2126  * __svc_dupcache_debug(struct dupcache *dc)
2127  * print out the hash table stuff
2128  *
2129  * This function requires the caller to hold the reader
2130  * or writer version of the duplicate request cache lock (dc_lock).
2131  */
2132 static void
2133 __svc_dupcache_debug(struct dupcache *dc)
2134 {
2135 	struct dupreq *dr = NULL;
2136 	int i;
2137 	bool_t bval;
2138 
2139 	fprintf(stderr, "   HASHTABLE\n");
2140 	for (i = 0; i < dc->dc_buckets; i++) {
2141 		bval = FALSE;
2142 		dr = dc->dc_hashtbl[i];
2143 		while (dr != NULL) {
2144 			if (!bval) {	/* ensures bucket printed only once */
2145 				fprintf(stderr, "    bucket : %d\n", i);
2146 				bval = TRUE;
2147 			}
2148 			fprintf(stderr, "\txid: %u status: %d time: %ld",
2149 				dr->dr_xid, dr->dr_status, dr->dr_time);
2150 			fprintf(stderr, " dr: %x chain: %x prevchain: %x\n",
2151 				dr, dr->dr_chain, dr->dr_prevchain);
2152 			dr = dr->dr_chain;
2153 		}
2154 	}
2155 
2156 	fprintf(stderr, "   LRU\n");
2157 	if (dc->dc_mru) {
2158 		dr = dc->dc_mru->dr_next;	/* lru */
2159 		while (dr != dc->dc_mru) {
2160 			fprintf(stderr, "\txid: %u status : %d time : %ld",
2161 				dr->dr_xid, dr->dr_status, dr->dr_time);
2162 			fprintf(stderr, " dr: %x next: %x prev: %x\n",
2163 				dr, dr->dr_next, dr->dr_prev);
2164 			dr = dr->dr_next;
2165 		}
2166 		fprintf(stderr, "\txid: %u status: %d time: %ld",
2167 			dr->dr_xid, dr->dr_status, dr->dr_time);
2168 		fprintf(stderr, " dr: %x next: %x prev: %x\n", dr,
2169 			dr->dr_next, dr->dr_prev);
2170 	}
2171 }
2172 #endif /* DUP_DEBUG */
2173