xref: /titanic_50/usr/src/lib/libnsl/rpc/svc.c (revision 4e901881a1e657e1cbf12d7ef9b476ec373e7939)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
25  */
26 /*
27  * Copyright 1993 OpenVision Technologies, Inc., All Rights Reserved.
28  */
29 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
30 /* All Rights Reserved */
31 /*
32  * Portions of this source code were derived from Berkeley
33  * 4.3 BSD under license from the Regents of the University of
34  * California.
35  */
36 
37 /*
38  * svc.c, Server-side remote procedure call interface.
39  *
40  * There are two sets of procedures here.  The xprt routines are
41  * for handling transport handles.  The svc routines handle the
42  * list of service routines.
43  *
44  */
45 
46 #include "mt.h"
47 #include "rpc_mt.h"
48 #include <assert.h>
49 #include <errno.h>
50 #include <sys/types.h>
51 #include <stropts.h>
52 #include <sys/conf.h>
53 #include <rpc/rpc.h>
54 #ifdef PORTMAP
55 #include <rpc/pmap_clnt.h>
56 #endif
57 #include <sys/poll.h>
58 #include <netconfig.h>
59 #include <syslog.h>
60 #include <stdlib.h>
61 #include <unistd.h>
62 #include <string.h>
63 #include <limits.h>
64 
65 extern bool_t __svc_get_door_cred();
66 extern bool_t __rpc_get_local_cred();
67 
68 SVCXPRT **svc_xports;
69 static int nsvc_xports; 	/* total number of svc_xports allocated */
70 
71 XDR **svc_xdrs;		/* common XDR receive area */
72 int nsvc_xdrs;		/* total number of svc_xdrs allocated */
73 
74 int __rpc_use_pollfd_done;	/* to unlimit the number of connections */
75 
76 #define	NULL_SVC ((struct svc_callout *)0)
77 #define	RQCRED_SIZE	400		/* this size is excessive */
78 
79 /*
80  * The services list
81  * Each entry represents a set of procedures (an rpc program).
82  * The dispatch routine takes request structs and runs the
83  * appropriate procedure.
84  */
85 static struct svc_callout {
86 	struct svc_callout *sc_next;
87 	rpcprog_t	    sc_prog;
88 	rpcvers_t	    sc_vers;
89 	char		   *sc_netid;
90 	void		    (*sc_dispatch)();
91 } *svc_head;
92 extern rwlock_t	svc_lock;
93 
94 static struct svc_callout *svc_find();
95 int _svc_prog_dispatch();
96 void svc_getreq_common();
97 char *strdup();
98 
99 extern mutex_t	svc_door_mutex;
100 extern cond_t	svc_door_waitcv;
101 extern int	svc_ndoorfds;
102 extern SVCXPRT_LIST *_svc_xprtlist;
103 extern mutex_t xprtlist_lock;
104 extern void __svc_rm_from_xlist();
105 
106 extern fd_set _new_svc_fdset;
107 
108 /*
109  * If the allocated array of reactor is too small, this value is used as a
110  * margin. This reduces the number of allocations.
111  */
112 #define	USER_FD_INCREMENT 5
113 
114 static void add_pollfd(int fd, short events);
115 static void remove_pollfd(int fd);
116 static void __svc_remove_input_of_fd(int fd);
117 
118 /*
119  * Data used to handle reactor:
120  * 	- one file descriptor we listen to,
121  *	- one callback we call if the fd pops,
122  *	- and a cookie passed as a parameter to the callback.
123  *
124  * The structure is an array indexed on the file descriptor. Each entry is
125  * pointing to the first element of a double-linked list of callback.
126  * only one callback may be associated to a couple (fd, event).
127  */
128 
129 struct _svc_user_fd_head;
130 
131 typedef struct {
132 	struct _svc_user_fd_node *next;
133 	struct _svc_user_fd_node *previous;
134 } _svc_user_link;
135 
136 typedef struct _svc_user_fd_node {
137 	_svc_user_link lnk;
138 	svc_input_id_t id;
139 	int	    fd;
140 	unsigned int   events;
141 	svc_callback_t callback;
142 	void*	  cookie;
143 } _svc_user_fd_node;
144 
145 typedef struct _svc_user_fd_head {
146 	struct _svc_user_fd_node *list;
147 	unsigned int mask;    /* logical OR of all sub-masks */
148 } _svc_user_fd_head;
149 
150 
151 /* Array of defined reactor - indexed on file descriptor */
152 static _svc_user_fd_head *svc_userfds = NULL;
153 
154 /* current size of file descriptor */
155 static int svc_nuserfds = 0;
156 
157 /* Mutex to ensure MT safe operations for user fds callbacks. */
158 static mutex_t svc_userfds_lock = DEFAULTMUTEX;
159 
160 
161 /*
162  * This structure is used to have constant time alogrithms. There is an array
163  * of this structure as large as svc_nuserfds. When the user is registering a
164  * new callback, the address of the created structure is stored in a cell of
165  * this array. The address of this cell is the returned unique identifier.
166  *
167  * On removing, the id is given by the user, then we know if this cell is
168  * filled or not (with free). If it is free, we return an error. Otherwise,
169  * we can free the structure pointed by fd_node.
170  *
171  * On insertion, we use the linked list created by (first_free,
172  * next_free). In this way with a constant time computation, we can give a
173  * correct index to the user.
174  */
175 
176 typedef struct _svc_management_user_fd {
177 	bool_t free;
178 	union {
179 		svc_input_id_t next_free;
180 		_svc_user_fd_node *fd_node;
181 	} data;
182 } _svc_management_user_fd;
183 
184 /* index to the first free elem */
185 static svc_input_id_t first_free = (svc_input_id_t)-1;
186 /* the size of this array is the same as svc_nuserfds */
187 static _svc_management_user_fd* user_fd_mgt_array = NULL;
188 
189 /* current size of user_fd_mgt_array */
190 static int svc_nmgtuserfds = 0;
191 
192 
193 /* Define some macros to access data associated to registration ids. */
194 #define	node_from_id(id) (user_fd_mgt_array[(int)id].data.fd_node)
195 #define	is_free_id(id) (user_fd_mgt_array[(int)id].free)
196 
197 #ifndef POLLSTANDARD
198 #define	POLLSTANDARD \
199 	(POLLIN|POLLPRI|POLLOUT|POLLRDNORM|POLLRDBAND| \
200 	POLLWRBAND|POLLERR|POLLHUP|POLLNVAL)
201 #endif
202 
203 /*
204  * To free an Id, we set the cell as free and insert its address in the list
205  * of free cell.
206  */
207 
208 static void
209 _svc_free_id(const svc_input_id_t id)
210 {
211 	assert(((int)id >= 0) && ((int)id < svc_nmgtuserfds));
212 	user_fd_mgt_array[(int)id].free = TRUE;
213 	user_fd_mgt_array[(int)id].data.next_free = first_free;
214 	first_free = id;
215 }
216 
217 /*
218  * To get a free cell, we just have to take it from the free linked list and
219  * set the flag to "not free". This function also allocates new memory if
220  * necessary
221  */
222 static svc_input_id_t
223 _svc_attribute_new_id(_svc_user_fd_node *node)
224 {
225 	int selected_index = (int)first_free;
226 	assert(node != NULL);
227 
228 	if (selected_index == -1) {
229 		/* Allocate new entries */
230 		int L_inOldSize = svc_nmgtuserfds;
231 		int i;
232 		_svc_management_user_fd *tmp;
233 
234 		svc_nmgtuserfds += USER_FD_INCREMENT;
235 
236 		tmp = realloc(user_fd_mgt_array,
237 		    svc_nmgtuserfds * sizeof (_svc_management_user_fd));
238 
239 		if (tmp == NULL) {
240 			syslog(LOG_ERR, "_svc_attribute_new_id: out of memory");
241 			svc_nmgtuserfds = L_inOldSize;
242 			errno = ENOMEM;
243 			return ((svc_input_id_t)-1);
244 		}
245 
246 		user_fd_mgt_array = tmp;
247 
248 		for (i = svc_nmgtuserfds - 1; i >= L_inOldSize; i--)
249 			_svc_free_id((svc_input_id_t)i);
250 		selected_index = (int)first_free;
251 	}
252 
253 	node->id = (svc_input_id_t)selected_index;
254 	first_free = user_fd_mgt_array[selected_index].data.next_free;
255 
256 	user_fd_mgt_array[selected_index].data.fd_node = node;
257 	user_fd_mgt_array[selected_index].free = FALSE;
258 
259 	return ((svc_input_id_t)selected_index);
260 }
261 
262 /*
263  * Access to a pollfd treatment. Scan all the associated callbacks that have
264  * at least one bit in their mask that masks a received event.
265  *
266  * If event POLLNVAL is received, we check that one callback processes it, if
267  * not, then remove the file descriptor from the poll. If there is one, let
268  * the user do the work.
269  */
270 void
271 __svc_getreq_user(struct pollfd *pfd)
272 {
273 	int fd = pfd->fd;
274 	short revents = pfd->revents;
275 	bool_t invalHandled = FALSE;
276 	_svc_user_fd_node *node;
277 
278 	(void) mutex_lock(&svc_userfds_lock);
279 
280 	if ((fd < 0) || (fd >= svc_nuserfds)) {
281 		(void) mutex_unlock(&svc_userfds_lock);
282 		return;
283 	}
284 
285 	node = svc_userfds[fd].list;
286 
287 	/* check if at least one mask fits */
288 	if (0 == (revents & svc_userfds[fd].mask)) {
289 		(void) mutex_unlock(&svc_userfds_lock);
290 		return;
291 	}
292 
293 	while ((svc_userfds[fd].mask != 0) && (node != NULL)) {
294 		/*
295 		 * If one of the received events maps the ones the node listens
296 		 * to
297 		 */
298 		_svc_user_fd_node *next = node->lnk.next;
299 
300 		if (node->callback != NULL) {
301 			if (node->events & revents) {
302 				if (revents & POLLNVAL) {
303 					invalHandled = TRUE;
304 				}
305 
306 				/*
307 				 * The lock must be released before calling the
308 				 * user function, as this function can call
309 				 * svc_remove_input() for example.
310 				 */
311 				(void) mutex_unlock(&svc_userfds_lock);
312 				node->callback(node->id, node->fd,
313 				    node->events & revents, node->cookie);
314 				/*
315 				 * Do not use the node structure anymore, as it
316 				 * could have been deallocated by the previous
317 				 * callback.
318 				 */
319 				(void) mutex_lock(&svc_userfds_lock);
320 			}
321 		}
322 		node = next;
323 	}
324 
325 	if ((revents & POLLNVAL) && !invalHandled)
326 		__svc_remove_input_of_fd(fd);
327 	(void) mutex_unlock(&svc_userfds_lock);
328 }
329 
330 
331 /*
332  * Check if a file descriptor is associated with a user reactor.
333  * To do this, just check that the array indexed on fd has a non-void linked
334  * list (ie. first element is not NULL)
335  */
336 bool_t
337 __is_a_userfd(int fd)
338 {
339 	/* Checks argument */
340 	if ((fd < 0) || (fd >= svc_nuserfds))
341 		return (FALSE);
342 	return ((svc_userfds[fd].mask == 0x0000)? FALSE:TRUE);
343 }
344 
345 /* free everything concerning user fd */
346 /* used in svc_run.c => no static */
347 
348 void
349 __destroy_userfd(void)
350 {
351 	int one_fd;
352 	/* Clean user fd */
353 	if (svc_userfds != NULL) {
354 		for (one_fd = 0; one_fd < svc_nuserfds; one_fd++) {
355 			_svc_user_fd_node *node;
356 
357 			node = svc_userfds[one_fd].list;
358 			while (node != NULL) {
359 				_svc_user_fd_node *tmp = node;
360 				_svc_free_id(node->id);
361 				node = node->lnk.next;
362 				free(tmp);
363 			}
364 		}
365 
366 		free(user_fd_mgt_array);
367 		user_fd_mgt_array = NULL;
368 		first_free = (svc_input_id_t)-1;
369 
370 		free(svc_userfds);
371 		svc_userfds = NULL;
372 		svc_nuserfds = 0;
373 	}
374 }
375 
376 /*
377  * Remove all the callback associated with a fd => useful when the fd is
378  * closed for instance
379  */
380 static void
381 __svc_remove_input_of_fd(int fd)
382 {
383 	_svc_user_fd_node **pnode;
384 	_svc_user_fd_node *tmp;
385 
386 	if ((fd < 0) || (fd >= svc_nuserfds))
387 		return;
388 
389 	pnode = &svc_userfds[fd].list;
390 	while ((tmp = *pnode) != NULL) {
391 		*pnode = tmp->lnk.next;
392 
393 		_svc_free_id(tmp->id);
394 		free(tmp);
395 	}
396 
397 	svc_userfds[fd].mask = 0;
398 }
399 
400 /*
401  * Allow user to add an fd in the poll list. If it does not succeed, return
402  * -1. Otherwise, return a svc_id
403  */
404 
405 svc_input_id_t
406 svc_add_input(int user_fd, unsigned int events,
407     svc_callback_t user_callback, void *cookie)
408 {
409 	_svc_user_fd_node *new_node;
410 
411 	if (user_fd < 0) {
412 		errno = EINVAL;
413 		return ((svc_input_id_t)-1);
414 	}
415 
416 	if ((events == 0x0000) ||
417 	    (events & ~(POLLIN|POLLPRI|POLLOUT|POLLRDNORM|POLLRDBAND|\
418 	    POLLWRBAND|POLLERR|POLLHUP|POLLNVAL))) {
419 		errno = EINVAL;
420 		return ((svc_input_id_t)-1);
421 	}
422 
423 	(void) mutex_lock(&svc_userfds_lock);
424 
425 	if ((user_fd < svc_nuserfds) &&
426 	    (svc_userfds[user_fd].mask & events) != 0) {
427 		/* Already registrated call-back */
428 		errno = EEXIST;
429 		(void) mutex_unlock(&svc_userfds_lock);
430 		return ((svc_input_id_t)-1);
431 	}
432 
433 	/* Handle memory allocation. */
434 	if (user_fd >= svc_nuserfds) {
435 		int oldSize = svc_nuserfds;
436 		int i;
437 		_svc_user_fd_head *tmp;
438 
439 		svc_nuserfds = (user_fd + 1) + USER_FD_INCREMENT;
440 
441 		tmp = realloc(svc_userfds,
442 		    svc_nuserfds * sizeof (_svc_user_fd_head));
443 
444 		if (tmp == NULL) {
445 			syslog(LOG_ERR, "svc_add_input: out of memory");
446 			svc_nuserfds = oldSize;
447 			errno = ENOMEM;
448 			(void) mutex_unlock(&svc_userfds_lock);
449 			return ((svc_input_id_t)-1);
450 		}
451 
452 		svc_userfds = tmp;
453 
454 		for (i = oldSize; i < svc_nuserfds; i++) {
455 			svc_userfds[i].list = NULL;
456 			svc_userfds[i].mask = 0;
457 		}
458 	}
459 
460 	new_node = malloc(sizeof (_svc_user_fd_node));
461 	if (new_node == NULL) {
462 		syslog(LOG_ERR, "svc_add_input: out of memory");
463 		errno = ENOMEM;
464 		(void) mutex_unlock(&svc_userfds_lock);
465 		return ((svc_input_id_t)-1);
466 	}
467 
468 	/* create a new node */
469 	new_node->fd		= user_fd;
470 	new_node->events	= events;
471 	new_node->callback	= user_callback;
472 	new_node->cookie	= cookie;
473 
474 	if (_svc_attribute_new_id(new_node) == -1) {
475 		(void) mutex_unlock(&svc_userfds_lock);
476 		free(new_node);
477 		return ((svc_input_id_t)-1);
478 	}
479 
480 	/* Add the new element at the beginning of the list. */
481 	if (svc_userfds[user_fd].list != NULL)
482 		svc_userfds[user_fd].list->lnk.previous = new_node;
483 	new_node->lnk.next = svc_userfds[user_fd].list;
484 	new_node->lnk.previous = NULL;
485 
486 	svc_userfds[user_fd].list = new_node;
487 
488 	/* refresh global mask for this file desciptor */
489 	svc_userfds[user_fd].mask |= events;
490 
491 	/* refresh mask for the poll */
492 	add_pollfd(user_fd, (svc_userfds[user_fd].mask));
493 
494 	(void) mutex_unlock(&svc_userfds_lock);
495 	return (new_node->id);
496 }
497 
498 int
499 svc_remove_input(svc_input_id_t id)
500 {
501 	_svc_user_fd_node* node;
502 	_svc_user_fd_node* next;
503 	_svc_user_fd_node* previous;
504 	int fd;		/* caching optim */
505 
506 	(void) mutex_lock(&svc_userfds_lock);
507 
508 	/* Immediately update data for id management */
509 	if (user_fd_mgt_array == NULL || id >= svc_nmgtuserfds ||
510 	    is_free_id(id)) {
511 		errno = EINVAL;
512 		(void) mutex_unlock(&svc_userfds_lock);
513 		return (-1);
514 	}
515 
516 	node = node_from_id(id);
517 	assert(node != NULL);
518 
519 	_svc_free_id(id);
520 	next		= node->lnk.next;
521 	previous	= node->lnk.previous;
522 	fd		= node->fd; /* caching optim */
523 
524 	/* Remove this node from the list. */
525 	if (previous != NULL) {
526 		previous->lnk.next = next;
527 	} else {
528 		assert(svc_userfds[fd].list == node);
529 		svc_userfds[fd].list = next;
530 	}
531 	if (next != NULL)
532 		next->lnk.previous = previous;
533 
534 	/* Remove the node flags from the global mask */
535 	svc_userfds[fd].mask ^= node->events;
536 
537 	free(node);
538 	if (svc_userfds[fd].mask == 0) {
539 		assert(svc_userfds[fd].list == NULL);
540 		remove_pollfd(fd);
541 	} else {
542 		assert(svc_userfds[fd].list != NULL);
543 	}
544 	/* <=> CLEAN NEEDED TO SHRINK MEMORY USAGE */
545 
546 	(void) mutex_unlock(&svc_userfds_lock);
547 	return (0);
548 }
549 
550 /*
551  * Provides default service-side functions for authentication flavors
552  * that do not use all the fields in struct svc_auth_ops.
553  */
554 
555 /*ARGSUSED*/
556 static int
557 authany_wrap(AUTH *auth, XDR *xdrs, xdrproc_t xfunc, caddr_t xwhere)
558 {
559 	return (*xfunc)(xdrs, xwhere);
560 }
561 
562 struct svc_auth_ops svc_auth_any_ops = {
563 	authany_wrap,
564 	authany_wrap,
565 };
566 
567 /*
568  * Return pointer to server authentication structure.
569  */
570 SVCAUTH *
571 __svc_get_svcauth(SVCXPRT *xprt)
572 {
573 /* LINTED pointer alignment */
574 	return (&SVC_XP_AUTH(xprt));
575 }
576 
577 /*
578  * A callback routine to cleanup after a procedure is executed.
579  */
580 void (*__proc_cleanup_cb)() = NULL;
581 
582 void *
583 __svc_set_proc_cleanup_cb(void *cb)
584 {
585 	void	*tmp = (void *)__proc_cleanup_cb;
586 
587 	__proc_cleanup_cb = (void (*)())cb;
588 	return (tmp);
589 }
590 
591 /* ***************  SVCXPRT related stuff **************** */
592 
593 
594 static int pollfd_shrinking = 1;
595 
596 
597 /*
598  * Add fd to svc_pollfd
599  */
600 static void
601 add_pollfd(int fd, short events)
602 {
603 	if (fd < FD_SETSIZE) {
604 		FD_SET(fd, &svc_fdset);
605 #if !defined(_LP64)
606 		FD_SET(fd, &_new_svc_fdset);
607 #endif
608 		svc_nfds++;
609 		svc_nfds_set++;
610 		if (fd >= svc_max_fd)
611 			svc_max_fd = fd + 1;
612 	}
613 	if (fd >= svc_max_pollfd)
614 		svc_max_pollfd = fd + 1;
615 	if (svc_max_pollfd > svc_pollfd_allocd) {
616 		int i = svc_pollfd_allocd;
617 		pollfd_t *tmp;
618 		do {
619 			svc_pollfd_allocd += POLLFD_EXTEND;
620 		} while (svc_max_pollfd > svc_pollfd_allocd);
621 		tmp = realloc(svc_pollfd,
622 		    sizeof (pollfd_t) * svc_pollfd_allocd);
623 		if (tmp != NULL) {
624 			svc_pollfd = tmp;
625 			for (; i < svc_pollfd_allocd; i++)
626 				POLLFD_CLR(i, tmp);
627 		} else {
628 			/*
629 			 * give an error message; undo fdset setting
630 			 * above;  reset the pollfd_shrinking flag.
631 			 * because of this poll will not be done
632 			 * on these fds.
633 			 */
634 			if (fd < FD_SETSIZE) {
635 				FD_CLR(fd, &svc_fdset);
636 #if !defined(_LP64)
637 				FD_CLR(fd, &_new_svc_fdset);
638 #endif
639 				svc_nfds--;
640 				svc_nfds_set--;
641 				if (fd == (svc_max_fd - 1))
642 					svc_max_fd--;
643 			}
644 			if (fd == (svc_max_pollfd - 1))
645 				svc_max_pollfd--;
646 			pollfd_shrinking = 0;
647 			syslog(LOG_ERR, "add_pollfd: out of memory");
648 			_exit(1);
649 		}
650 	}
651 	svc_pollfd[fd].fd	= fd;
652 	svc_pollfd[fd].events	= events;
653 	svc_npollfds++;
654 	svc_npollfds_set++;
655 }
656 
657 /*
658  * the fd is still active but only the bit in fdset is cleared.
659  * do not subtract svc_nfds or svc_npollfds
660  */
661 void
662 clear_pollfd(int fd)
663 {
664 	if (fd < FD_SETSIZE && FD_ISSET(fd, &svc_fdset)) {
665 		FD_CLR(fd, &svc_fdset);
666 #if !defined(_LP64)
667 		FD_CLR(fd, &_new_svc_fdset);
668 #endif
669 		svc_nfds_set--;
670 	}
671 	if (fd < svc_pollfd_allocd && POLLFD_ISSET(fd, svc_pollfd)) {
672 		POLLFD_CLR(fd, svc_pollfd);
673 		svc_npollfds_set--;
674 	}
675 }
676 
677 /*
678  * sets the bit in fdset for an active fd so that poll() is done for that
679  */
680 void
681 set_pollfd(int fd, short events)
682 {
683 	if (fd < FD_SETSIZE) {
684 		FD_SET(fd, &svc_fdset);
685 #if !defined(_LP64)
686 		FD_SET(fd, &_new_svc_fdset);
687 #endif
688 		svc_nfds_set++;
689 	}
690 	if (fd < svc_pollfd_allocd) {
691 		svc_pollfd[fd].fd	= fd;
692 		svc_pollfd[fd].events	= events;
693 		svc_npollfds_set++;
694 	}
695 }
696 
697 /*
698  * remove a svc_pollfd entry; it does not shrink the memory
699  */
700 static void
701 remove_pollfd(int fd)
702 {
703 	clear_pollfd(fd);
704 	if (fd == (svc_max_fd - 1))
705 		svc_max_fd--;
706 	svc_nfds--;
707 	if (fd == (svc_max_pollfd - 1))
708 		svc_max_pollfd--;
709 	svc_npollfds--;
710 }
711 
712 /*
713  * delete a svc_pollfd entry; it shrinks the memory
714  * use remove_pollfd if you do not want to shrink
715  */
716 static void
717 delete_pollfd(int fd)
718 {
719 	remove_pollfd(fd);
720 	if (pollfd_shrinking && svc_max_pollfd <
721 	    (svc_pollfd_allocd - POLLFD_SHRINK)) {
722 		do {
723 			svc_pollfd_allocd -= POLLFD_SHRINK;
724 		} while (svc_max_pollfd < (svc_pollfd_allocd - POLLFD_SHRINK));
725 		svc_pollfd = realloc(svc_pollfd,
726 		    sizeof (pollfd_t) * svc_pollfd_allocd);
727 		if (svc_pollfd == NULL) {
728 			syslog(LOG_ERR, "delete_pollfd: out of memory");
729 			_exit(1);
730 		}
731 	}
732 }
733 
734 
735 /*
736  * Activate a transport handle.
737  */
738 void
739 xprt_register(const SVCXPRT *xprt)
740 {
741 	int fd = xprt->xp_fd;
742 #ifdef CALLBACK
743 	extern void (*_svc_getreqset_proc)();
744 #endif
745 /* VARIABLES PROTECTED BY svc_fd_lock: svc_xports, svc_fdset */
746 
747 	(void) rw_wrlock(&svc_fd_lock);
748 	if (svc_xports == NULL) {
749 		/* allocate some small amount first */
750 		svc_xports = calloc(FD_INCREMENT,  sizeof (SVCXPRT *));
751 		if (svc_xports == NULL) {
752 			syslog(LOG_ERR, "xprt_register: out of memory");
753 			_exit(1);
754 		}
755 		nsvc_xports = FD_INCREMENT;
756 
757 #ifdef CALLBACK
758 		/*
759 		 * XXX: This code does not keep track of the server state.
760 		 *
761 		 * This provides for callback support.	When a client
762 		 * recv's a call from another client on the server fd's,
763 		 * it calls _svc_getreqset_proc() which would return
764 		 * after serving all the server requests.  Also look under
765 		 * clnt_dg.c and clnt_vc.c  (clnt_call part of it)
766 		 */
767 		_svc_getreqset_proc = svc_getreq_poll;
768 #endif
769 	}
770 
771 	while (fd >= nsvc_xports) {
772 		SVCXPRT **tmp_xprts = svc_xports;
773 
774 		/* time to expand svc_xprts */
775 		tmp_xprts = realloc(svc_xports,
776 		    sizeof (SVCXPRT *) * (nsvc_xports + FD_INCREMENT));
777 		if (tmp_xprts == NULL) {
778 			syslog(LOG_ERR, "xprt_register : out of memory.");
779 			_exit(1);
780 		}
781 
782 		svc_xports = tmp_xprts;
783 		(void) memset(&svc_xports[nsvc_xports], 0,
784 		    sizeof (SVCXPRT *) * FD_INCREMENT);
785 		nsvc_xports += FD_INCREMENT;
786 	}
787 
788 	svc_xports[fd] = (SVCXPRT *)xprt;
789 
790 	add_pollfd(fd, MASKVAL);
791 
792 	if (svc_polling) {
793 		char dummy;
794 
795 		/*
796 		 * This happens only in one of the MT modes.
797 		 * Wake up poller.
798 		 */
799 		(void) write(svc_pipe[1], &dummy, sizeof (dummy));
800 	}
801 	/*
802 	 * If already dispatching door based services, start
803 	 * dispatching TLI based services now.
804 	 */
805 	(void) mutex_lock(&svc_door_mutex);
806 	if (svc_ndoorfds > 0)
807 		(void) cond_signal(&svc_door_waitcv);
808 	(void) mutex_unlock(&svc_door_mutex);
809 
810 	if (svc_xdrs == NULL) {
811 		/* allocate initial chunk */
812 		svc_xdrs = calloc(FD_INCREMENT, sizeof (XDR *));
813 		if (svc_xdrs != NULL)
814 			nsvc_xdrs = FD_INCREMENT;
815 		else {
816 			syslog(LOG_ERR, "xprt_register : out of memory.");
817 			_exit(1);
818 		}
819 	}
820 	(void) rw_unlock(&svc_fd_lock);
821 }
822 
823 /*
824  * De-activate a transport handle.
825  */
826 void
827 __xprt_unregister_private(const SVCXPRT *xprt, bool_t lock_not_held)
828 {
829 	int fd = xprt->xp_fd;
830 
831 	if (lock_not_held)
832 		(void) rw_wrlock(&svc_fd_lock);
833 	if ((fd < nsvc_xports) && (svc_xports[fd] == xprt)) {
834 		svc_xports[fd] = NULL;
835 		delete_pollfd(fd);
836 	}
837 	if (lock_not_held)
838 		(void) rw_unlock(&svc_fd_lock);
839 	__svc_rm_from_xlist(&_svc_xprtlist, xprt, &xprtlist_lock);
840 }
841 
842 void
843 xprt_unregister(const SVCXPRT *xprt)
844 {
845 	__xprt_unregister_private(xprt, TRUE);
846 }
847 
848 /* ********************** CALLOUT list related stuff ************* */
849 
850 /*
851  * Add a service program to the callout list.
852  * The dispatch routine will be called when a rpc request for this
853  * program number comes in.
854  */
855 bool_t
856 svc_reg(const SVCXPRT *xprt, const rpcprog_t prog, const rpcvers_t vers,
857 			void (*dispatch)(), const struct netconfig *nconf)
858 {
859 	struct svc_callout *prev;
860 	struct svc_callout *s, **s2;
861 	struct netconfig *tnconf;
862 	char *netid = NULL;
863 	int flag = 0;
864 
865 /* VARIABLES PROTECTED BY svc_lock: s, prev, svc_head */
866 
867 	if (xprt->xp_netid) {
868 		netid = strdup(xprt->xp_netid);
869 		flag = 1;
870 	} else if (nconf && nconf->nc_netid) {
871 		netid = strdup(nconf->nc_netid);
872 		flag = 1;
873 	} else if ((tnconf = __rpcfd_to_nconf(xprt->xp_fd, xprt->xp_type))
874 	    != NULL) {
875 		netid = strdup(tnconf->nc_netid);
876 		flag = 1;
877 		freenetconfigent(tnconf);
878 	} /* must have been created with svc_raw_create */
879 	if ((netid == NULL) && (flag == 1))
880 		return (FALSE);
881 
882 	(void) rw_wrlock(&svc_lock);
883 	if ((s = svc_find(prog, vers, &prev, netid)) != NULL_SVC) {
884 		if (netid)
885 			free(netid);
886 		if (s->sc_dispatch == dispatch)
887 			goto rpcb_it; /* he is registering another xptr */
888 		(void) rw_unlock(&svc_lock);
889 		return (FALSE);
890 	}
891 	s = malloc(sizeof (struct svc_callout));
892 	if (s == NULL) {
893 		if (netid)
894 			free(netid);
895 		(void) rw_unlock(&svc_lock);
896 		return (FALSE);
897 	}
898 
899 	s->sc_prog = prog;
900 	s->sc_vers = vers;
901 	s->sc_dispatch = dispatch;
902 	s->sc_netid = netid;
903 	s->sc_next = NULL;
904 
905 	/*
906 	 * The ordering of transports is such that the most frequently used
907 	 * one appears first.  So add the new entry to the end of the list.
908 	 */
909 	for (s2 = &svc_head; *s2 != NULL; s2 = &(*s2)->sc_next)
910 		;
911 	*s2 = s;
912 
913 	if ((xprt->xp_netid == NULL) && (flag == 1) && netid)
914 		if ((((SVCXPRT *)xprt)->xp_netid = strdup(netid)) == NULL) {
915 			syslog(LOG_ERR, "svc_reg : strdup failed.");
916 			free(netid);
917 			free(s);
918 			*s2 = NULL;
919 			(void) rw_unlock(&svc_lock);
920 			return (FALSE);
921 		}
922 
923 rpcb_it:
924 	(void) rw_unlock(&svc_lock);
925 
926 	/* now register the information with the local binder service */
927 	if (nconf)
928 		return (rpcb_set(prog, vers, nconf, &xprt->xp_ltaddr));
929 	return (TRUE);
930 	/*NOTREACHED*/
931 }
932 
933 /*
934  * Remove a service program from the callout list.
935  */
936 void
937 svc_unreg(const rpcprog_t prog, const rpcvers_t vers)
938 {
939 	struct svc_callout *prev;
940 	struct svc_callout *s;
941 
942 	/* unregister the information anyway */
943 	(void) rpcb_unset(prog, vers, NULL);
944 
945 	(void) rw_wrlock(&svc_lock);
946 	while ((s = svc_find(prog, vers, &prev, NULL)) != NULL_SVC) {
947 		if (prev == NULL_SVC) {
948 			svc_head = s->sc_next;
949 		} else {
950 			prev->sc_next = s->sc_next;
951 		}
952 		s->sc_next = NULL_SVC;
953 		if (s->sc_netid)
954 			free(s->sc_netid);
955 		free(s);
956 	}
957 	(void) rw_unlock(&svc_lock);
958 }
959 
960 #ifdef PORTMAP
961 /*
962  * Add a service program to the callout list.
963  * The dispatch routine will be called when a rpc request for this
964  * program number comes in.
965  * For version 2 portmappers.
966  */
967 bool_t
968 svc_register(SVCXPRT *xprt, rpcprog_t prog, rpcvers_t vers,
969 					void (*dispatch)(), int protocol)
970 {
971 	struct svc_callout *prev;
972 	struct svc_callout *s;
973 	struct netconfig *nconf;
974 	char *netid = NULL;
975 	int flag = 0;
976 
977 	if (xprt->xp_netid) {
978 		netid = strdup(xprt->xp_netid);
979 		flag = 1;
980 	} else if ((ioctl(xprt->xp_fd, I_FIND, "timod") > 0) && ((nconf =
981 	    __rpcfd_to_nconf(xprt->xp_fd, xprt->xp_type)) != NULL)) {
982 		/* fill in missing netid field in SVCXPRT */
983 		netid = strdup(nconf->nc_netid);
984 		flag = 1;
985 		freenetconfigent(nconf);
986 	} /* must be svc_raw_create */
987 
988 	if ((netid == NULL) && (flag == 1))
989 		return (FALSE);
990 
991 	(void) rw_wrlock(&svc_lock);
992 	if ((s = svc_find(prog, vers, &prev, netid)) != NULL_SVC) {
993 		if (netid)
994 			free(netid);
995 		if (s->sc_dispatch == dispatch)
996 			goto pmap_it;  /* he is registering another xptr */
997 		(void) rw_unlock(&svc_lock);
998 		return (FALSE);
999 	}
1000 	s = malloc(sizeof (struct svc_callout));
1001 	if (s == (struct svc_callout *)0) {
1002 		if (netid)
1003 			free(netid);
1004 		(void) rw_unlock(&svc_lock);
1005 		return (FALSE);
1006 	}
1007 	s->sc_prog = prog;
1008 	s->sc_vers = vers;
1009 	s->sc_dispatch = dispatch;
1010 	s->sc_netid = netid;
1011 	s->sc_next = svc_head;
1012 	svc_head = s;
1013 
1014 	if ((xprt->xp_netid == NULL) && (flag == 1) && netid)
1015 		if ((xprt->xp_netid = strdup(netid)) == NULL) {
1016 			syslog(LOG_ERR, "svc_register : strdup failed.");
1017 			free(netid);
1018 			svc_head = s->sc_next;
1019 			free(s);
1020 			(void) rw_unlock(&svc_lock);
1021 			return (FALSE);
1022 		}
1023 
1024 pmap_it:
1025 	(void) rw_unlock(&svc_lock);
1026 	/* now register the information with the local binder service */
1027 	if (protocol)
1028 		return (pmap_set(prog, vers, protocol, xprt->xp_port));
1029 	return (TRUE);
1030 }
1031 
1032 /*
1033  * Remove a service program from the callout list.
1034  * For version 2 portmappers.
1035  */
1036 void
1037 svc_unregister(rpcprog_t prog, rpcvers_t vers)
1038 {
1039 	struct svc_callout *prev;
1040 	struct svc_callout *s;
1041 
1042 	(void) rw_wrlock(&svc_lock);
1043 	while ((s = svc_find(prog, vers, &prev, NULL)) != NULL_SVC) {
1044 		if (prev == NULL_SVC) {
1045 			svc_head = s->sc_next;
1046 		} else {
1047 			prev->sc_next = s->sc_next;
1048 		}
1049 		s->sc_next = NULL_SVC;
1050 		if (s->sc_netid)
1051 			free(s->sc_netid);
1052 		free(s);
1053 		/* unregister the information with the local binder service */
1054 		(void) pmap_unset(prog, vers);
1055 	}
1056 	(void) rw_unlock(&svc_lock);
1057 }
1058 #endif /* PORTMAP */
1059 
1060 /*
1061  * Search the callout list for a program number, return the callout
1062  * struct.
1063  * Also check for transport as well.  Many routines such as svc_unreg
1064  * dont give any corresponding transport, so dont check for transport if
1065  * netid == NULL
1066  */
1067 static struct svc_callout *
1068 svc_find(rpcprog_t prog, rpcvers_t vers, struct svc_callout **prev, char *netid)
1069 {
1070 	struct svc_callout *s, *p;
1071 
1072 /* WRITE LOCK HELD ON ENTRY: svc_lock */
1073 
1074 /*	assert(RW_WRITE_HELD(&svc_lock)); */
1075 	p = NULL_SVC;
1076 	for (s = svc_head; s != NULL_SVC; s = s->sc_next) {
1077 		if (((s->sc_prog == prog) && (s->sc_vers == vers)) &&
1078 		    ((netid == NULL) || (s->sc_netid == NULL) ||
1079 		    (strcmp(netid, s->sc_netid) == 0)))
1080 			break;
1081 		p = s;
1082 	}
1083 	*prev = p;
1084 	return (s);
1085 }
1086 
1087 
1088 /* ******************* REPLY GENERATION ROUTINES  ************ */
1089 
1090 /*
1091  * Send a reply to an rpc request
1092  */
1093 bool_t
1094 svc_sendreply(const SVCXPRT *xprt, const xdrproc_t xdr_results,
1095 						const caddr_t xdr_location)
1096 {
1097 	struct rpc_msg rply;
1098 
1099 	rply.rm_direction = REPLY;
1100 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1101 	rply.acpted_rply.ar_verf = xprt->xp_verf;
1102 	rply.acpted_rply.ar_stat = SUCCESS;
1103 	rply.acpted_rply.ar_results.where = xdr_location;
1104 	rply.acpted_rply.ar_results.proc = xdr_results;
1105 	return (SVC_REPLY((SVCXPRT *)xprt, &rply));
1106 }
1107 
1108 /*
1109  * No procedure error reply
1110  */
1111 void
1112 svcerr_noproc(const SVCXPRT *xprt)
1113 {
1114 	struct rpc_msg rply;
1115 
1116 	rply.rm_direction = REPLY;
1117 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1118 	rply.acpted_rply.ar_verf = xprt->xp_verf;
1119 	rply.acpted_rply.ar_stat = PROC_UNAVAIL;
1120 	SVC_REPLY((SVCXPRT *)xprt, &rply);
1121 }
1122 
1123 /*
1124  * Can't decode args error reply
1125  */
1126 void
1127 svcerr_decode(const SVCXPRT *xprt)
1128 {
1129 	struct rpc_msg rply;
1130 
1131 	rply.rm_direction = REPLY;
1132 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1133 	rply.acpted_rply.ar_verf = xprt->xp_verf;
1134 	rply.acpted_rply.ar_stat = GARBAGE_ARGS;
1135 	SVC_REPLY((SVCXPRT *)xprt, &rply);
1136 }
1137 
1138 /*
1139  * Some system error
1140  */
1141 void
1142 svcerr_systemerr(const SVCXPRT *xprt)
1143 {
1144 	struct rpc_msg rply;
1145 
1146 	rply.rm_direction = REPLY;
1147 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1148 	rply.acpted_rply.ar_verf = xprt->xp_verf;
1149 	rply.acpted_rply.ar_stat = SYSTEM_ERR;
1150 	SVC_REPLY((SVCXPRT *)xprt, &rply);
1151 }
1152 
1153 /*
1154  * Tell RPC package to not complain about version errors to the client.	 This
1155  * is useful when revving broadcast protocols that sit on a fixed address.
1156  * There is really one (or should be only one) example of this kind of
1157  * protocol: the portmapper (or rpc binder).
1158  */
1159 void
1160 __svc_versquiet_on(const SVCXPRT *xprt)
1161 {
1162 /* LINTED pointer alignment */
1163 	svc_flags(xprt) |= SVC_VERSQUIET;
1164 }
1165 
1166 void
1167 __svc_versquiet_off(const SVCXPRT *xprt)
1168 {
1169 /* LINTED pointer alignment */
1170 	svc_flags(xprt) &= ~SVC_VERSQUIET;
1171 }
1172 
1173 void
1174 svc_versquiet(const SVCXPRT *xprt)
1175 {
1176 	__svc_versquiet_on(xprt);
1177 }
1178 
1179 int
1180 __svc_versquiet_get(const SVCXPRT *xprt)
1181 {
1182 /* LINTED pointer alignment */
1183 	return (svc_flags(xprt) & SVC_VERSQUIET);
1184 }
1185 
1186 /*
1187  * Authentication error reply
1188  */
1189 void
1190 svcerr_auth(const SVCXPRT *xprt, const enum auth_stat why)
1191 {
1192 	struct rpc_msg rply;
1193 
1194 	rply.rm_direction = REPLY;
1195 	rply.rm_reply.rp_stat = MSG_DENIED;
1196 	rply.rjcted_rply.rj_stat = AUTH_ERROR;
1197 	rply.rjcted_rply.rj_why = why;
1198 	SVC_REPLY((SVCXPRT *)xprt, &rply);
1199 }
1200 
1201 /*
1202  * Auth too weak error reply
1203  */
1204 void
1205 svcerr_weakauth(const SVCXPRT *xprt)
1206 {
1207 	svcerr_auth(xprt, AUTH_TOOWEAK);
1208 }
1209 
1210 /*
1211  * Program unavailable error reply
1212  */
1213 void
1214 svcerr_noprog(const SVCXPRT *xprt)
1215 {
1216 	struct rpc_msg rply;
1217 
1218 	rply.rm_direction = REPLY;
1219 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1220 	rply.acpted_rply.ar_verf = xprt->xp_verf;
1221 	rply.acpted_rply.ar_stat = PROG_UNAVAIL;
1222 	SVC_REPLY((SVCXPRT *)xprt, &rply);
1223 }
1224 
1225 /*
1226  * Program version mismatch error reply
1227  */
1228 void
1229 svcerr_progvers(const SVCXPRT *xprt, const rpcvers_t low_vers,
1230 						const rpcvers_t high_vers)
1231 {
1232 	struct rpc_msg rply;
1233 
1234 	rply.rm_direction = REPLY;
1235 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1236 	rply.acpted_rply.ar_verf = xprt->xp_verf;
1237 	rply.acpted_rply.ar_stat = PROG_MISMATCH;
1238 	rply.acpted_rply.ar_vers.low = low_vers;
1239 	rply.acpted_rply.ar_vers.high = high_vers;
1240 	SVC_REPLY((SVCXPRT *)xprt, &rply);
1241 }
1242 
1243 /* ******************* SERVER INPUT STUFF ******************* */
1244 
1245 /*
1246  * Get server side input from some transport.
1247  *
1248  * Statement of authentication parameters management:
1249  * This function owns and manages all authentication parameters, specifically
1250  * the "raw" parameters (msg.rm_call.cb_cred and msg.rm_call.cb_verf) and
1251  * the "cooked" credentials (rqst->rq_clntcred).
1252  * However, this function does not know the structure of the cooked
1253  * credentials, so it make the following assumptions:
1254  *   a) the structure is contiguous (no pointers), and
1255  *   b) the cred structure size does not exceed RQCRED_SIZE bytes.
1256  * In all events, all three parameters are freed upon exit from this routine.
1257  * The storage is trivially management on the call stack in user land, but
1258  * is mallocated in kernel land.
1259  */
1260 
1261 void
1262 svc_getreq(int rdfds)
1263 {
1264 	fd_set readfds;
1265 
1266 	FD_ZERO(&readfds);
1267 	readfds.fds_bits[0] = rdfds;
1268 	svc_getreqset(&readfds);
1269 }
1270 
1271 void
1272 svc_getreqset(fd_set *readfds)
1273 {
1274 	int i;
1275 
1276 	for (i = 0; i < svc_max_fd; i++) {
1277 		/* fd has input waiting */
1278 		if (FD_ISSET(i, readfds))
1279 			svc_getreq_common(i);
1280 	}
1281 }
1282 
1283 void
1284 svc_getreq_poll(struct pollfd *pfdp, const int pollretval)
1285 {
1286 	int i;
1287 	int fds_found;
1288 
1289 	for (i = fds_found = 0; fds_found < pollretval; i++) {
1290 		struct pollfd *p = &pfdp[i];
1291 
1292 		if (p->revents) {
1293 			/* fd has input waiting */
1294 			fds_found++;
1295 			/*
1296 			 *	We assume that this function is only called
1297 			 *	via someone select()ing from svc_fdset or
1298 			 *	poll()ing from svc_pollset[].  Thus it's safe
1299 			 *	to handle the POLLNVAL event by simply turning
1300 			 *	the corresponding bit off in svc_fdset.  The
1301 			 *	svc_pollset[] array is derived from svc_fdset
1302 			 *	and so will also be updated eventually.
1303 			 *
1304 			 *	XXX Should we do an xprt_unregister() instead?
1305 			 */
1306 			/* Handle user callback */
1307 			if (__is_a_userfd(p->fd) == TRUE) {
1308 				(void) rw_rdlock(&svc_fd_lock);
1309 				__svc_getreq_user(p);
1310 				(void) rw_unlock(&svc_fd_lock);
1311 			} else {
1312 				if (p->revents & POLLNVAL) {
1313 					(void) rw_wrlock(&svc_fd_lock);
1314 					remove_pollfd(p->fd);	/* XXX */
1315 					(void) rw_unlock(&svc_fd_lock);
1316 				} else {
1317 					svc_getreq_common(p->fd);
1318 				}
1319 			}
1320 		}
1321 	}
1322 }
1323 
1324 void
1325 svc_getreq_common(const int fd)
1326 {
1327 	SVCXPRT *xprt;
1328 	enum xprt_stat stat;
1329 	struct rpc_msg *msg;
1330 	struct svc_req *r;
1331 	char *cred_area;
1332 
1333 	(void) rw_rdlock(&svc_fd_lock);
1334 
1335 	/* HANDLE USER CALLBACK */
1336 	if (__is_a_userfd(fd) == TRUE) {
1337 		struct pollfd virtual_fd;
1338 
1339 		virtual_fd.events = virtual_fd.revents = (short)0xFFFF;
1340 		virtual_fd.fd = fd;
1341 		__svc_getreq_user(&virtual_fd);
1342 		(void) rw_unlock(&svc_fd_lock);
1343 		return;
1344 	}
1345 
1346 	/*
1347 	 * The transport associated with this fd could have been
1348 	 * removed from svc_timeout_nonblock_xprt_and_LRU, for instance.
1349 	 * This can happen if two or more fds get read events and are
1350 	 * passed to svc_getreq_poll/set, the first fd is seviced by
1351 	 * the dispatch routine and cleans up any dead transports.  If
1352 	 * one of the dead transports removed is the other fd that
1353 	 * had a read event then svc_getreq_common() will be called with no
1354 	 * xprt associated with the fd that had the original read event.
1355 	 */
1356 	if ((fd >= nsvc_xports) || (xprt = svc_xports[fd]) == NULL) {
1357 		(void) rw_unlock(&svc_fd_lock);
1358 		return;
1359 	}
1360 	(void) rw_unlock(&svc_fd_lock);
1361 /* LINTED pointer alignment */
1362 	msg = SVCEXT(xprt)->msg;
1363 /* LINTED pointer alignment */
1364 	r = SVCEXT(xprt)->req;
1365 /* LINTED pointer alignment */
1366 	cred_area = SVCEXT(xprt)->cred_area;
1367 	msg->rm_call.cb_cred.oa_base = cred_area;
1368 	msg->rm_call.cb_verf.oa_base = &(cred_area[MAX_AUTH_BYTES]);
1369 	r->rq_clntcred = &(cred_area[2 * MAX_AUTH_BYTES]);
1370 
1371 	/* receive msgs from xprtprt (support batch calls) */
1372 	do {
1373 		bool_t dispatch;
1374 
1375 		if (dispatch = SVC_RECV(xprt, msg))
1376 			(void) _svc_prog_dispatch(xprt, msg, r);
1377 		/*
1378 		 * Check if the xprt has been disconnected in a recursive call
1379 		 * in the service dispatch routine. If so, then break
1380 		 */
1381 		(void) rw_rdlock(&svc_fd_lock);
1382 		if (xprt != svc_xports[fd]) {
1383 			(void) rw_unlock(&svc_fd_lock);
1384 			break;
1385 		}
1386 		(void) rw_unlock(&svc_fd_lock);
1387 
1388 		/*
1389 		 * Call cleanup procedure if set.
1390 		 */
1391 		if (__proc_cleanup_cb != NULL && dispatch)
1392 			(*__proc_cleanup_cb)(xprt);
1393 
1394 		if ((stat = SVC_STAT(xprt)) == XPRT_DIED) {
1395 			SVC_DESTROY(xprt);
1396 			break;
1397 		}
1398 	} while (stat == XPRT_MOREREQS);
1399 }
1400 
1401 int
1402 _svc_prog_dispatch(SVCXPRT *xprt, struct rpc_msg *msg, struct svc_req *r)
1403 {
1404 	struct svc_callout *s;
1405 	enum auth_stat why;
1406 	int prog_found;
1407 	rpcvers_t low_vers;
1408 	rpcvers_t high_vers;
1409 	void (*disp_fn)();
1410 
1411 	r->rq_xprt = xprt;
1412 	r->rq_prog = msg->rm_call.cb_prog;
1413 	r->rq_vers = msg->rm_call.cb_vers;
1414 	r->rq_proc = msg->rm_call.cb_proc;
1415 	r->rq_cred = msg->rm_call.cb_cred;
1416 /* LINTED pointer alignment */
1417 	SVC_XP_AUTH(r->rq_xprt).svc_ah_ops = svc_auth_any_ops;
1418 /* LINTED pointer alignment */
1419 	SVC_XP_AUTH(r->rq_xprt).svc_ah_private = NULL;
1420 
1421 	/* first authenticate the message */
1422 	/* Check for null flavor and bypass these calls if possible */
1423 
1424 	if (msg->rm_call.cb_cred.oa_flavor == AUTH_NULL) {
1425 		r->rq_xprt->xp_verf.oa_flavor = _null_auth.oa_flavor;
1426 		r->rq_xprt->xp_verf.oa_length = 0;
1427 	} else {
1428 		bool_t no_dispatch;
1429 
1430 		if ((why = __gss_authenticate(r, msg,
1431 		    &no_dispatch)) != AUTH_OK) {
1432 			svcerr_auth(xprt, why);
1433 			return (0);
1434 		}
1435 		if (no_dispatch)
1436 			return (0);
1437 	}
1438 	/* match message with a registered service */
1439 	prog_found = FALSE;
1440 	low_vers = (rpcvers_t)(0 - 1);
1441 	high_vers = 0;
1442 	(void) rw_rdlock(&svc_lock);
1443 	for (s = svc_head; s != NULL_SVC; s = s->sc_next) {
1444 		if (s->sc_prog == r->rq_prog) {
1445 			prog_found = TRUE;
1446 			if (s->sc_vers == r->rq_vers) {
1447 				if ((xprt->xp_netid == NULL) ||
1448 				    (s->sc_netid == NULL) ||
1449 				    (strcmp(xprt->xp_netid,
1450 				    s->sc_netid) == 0)) {
1451 					disp_fn = (*s->sc_dispatch);
1452 					(void) rw_unlock(&svc_lock);
1453 					disp_fn(r, xprt);
1454 					return (1);
1455 				}
1456 				prog_found = FALSE;
1457 			}
1458 			if (s->sc_vers < low_vers)
1459 				low_vers = s->sc_vers;
1460 			if (s->sc_vers > high_vers)
1461 				high_vers = s->sc_vers;
1462 		}		/* found correct program */
1463 	}
1464 	(void) rw_unlock(&svc_lock);
1465 
1466 	/*
1467 	 * if we got here, the program or version
1468 	 * is not served ...
1469 	 */
1470 	if (prog_found) {
1471 /* LINTED pointer alignment */
1472 		if (!version_keepquiet(xprt))
1473 			svcerr_progvers(xprt, low_vers, high_vers);
1474 	} else {
1475 		svcerr_noprog(xprt);
1476 	}
1477 	return (0);
1478 }
1479 
1480 /* ******************* SVCXPRT allocation and deallocation ***************** */
1481 
1482 /*
1483  * svc_xprt_alloc() - allocate a service transport handle
1484  */
1485 SVCXPRT *
1486 svc_xprt_alloc(void)
1487 {
1488 	SVCXPRT		*xprt = NULL;
1489 	SVCXPRT_EXT	*xt = NULL;
1490 	SVCXPRT_LIST	*xlist = NULL;
1491 	struct rpc_msg	*msg = NULL;
1492 	struct svc_req	*req = NULL;
1493 	char		*cred_area = NULL;
1494 
1495 	if ((xprt = calloc(1, sizeof (SVCXPRT))) == NULL)
1496 		goto err_exit;
1497 
1498 	if ((xt = calloc(1, sizeof (SVCXPRT_EXT))) == NULL)
1499 		goto err_exit;
1500 	xprt->xp_p3 = (caddr_t)xt; /* SVCEXT(xprt) = xt */
1501 
1502 	if ((xlist = calloc(1, sizeof (SVCXPRT_LIST))) == NULL)
1503 		goto err_exit;
1504 	xt->my_xlist = xlist;
1505 	xlist->xprt = xprt;
1506 
1507 	if ((msg = malloc(sizeof (struct rpc_msg))) == NULL)
1508 		goto err_exit;
1509 	xt->msg = msg;
1510 
1511 	if ((req = malloc(sizeof (struct svc_req))) == NULL)
1512 		goto err_exit;
1513 	xt->req = req;
1514 
1515 	if ((cred_area = malloc(2*MAX_AUTH_BYTES + RQCRED_SIZE)) == NULL)
1516 		goto err_exit;
1517 	xt->cred_area = cred_area;
1518 
1519 /* LINTED pointer alignment */
1520 	(void) mutex_init(&svc_send_mutex(xprt), USYNC_THREAD, (void *)0);
1521 	return (xprt);
1522 
1523 err_exit:
1524 	svc_xprt_free(xprt);
1525 	return (NULL);
1526 }
1527 
1528 
1529 /*
1530  * svc_xprt_free() - free a service handle
1531  */
1532 void
1533 svc_xprt_free(SVCXPRT *xprt)
1534 {
1535 /* LINTED pointer alignment */
1536 	SVCXPRT_EXT	*xt = xprt ? SVCEXT(xprt) : NULL;
1537 	SVCXPRT_LIST	*my_xlist = xt ? xt->my_xlist: NULL;
1538 	struct rpc_msg	*msg = xt ? xt->msg : NULL;
1539 	struct svc_req	*req = xt ? xt->req : NULL;
1540 	char		*cred_area = xt ? xt->cred_area : NULL;
1541 
1542 	if (xprt)
1543 		free(xprt);
1544 	if (xt)
1545 		free(xt);
1546 	if (my_xlist)
1547 		free(my_xlist);
1548 	if (msg)
1549 		free(msg);
1550 	if (req)
1551 		free(req);
1552 	if (cred_area)
1553 		free(cred_area);
1554 }
1555 
1556 
1557 /*
1558  * svc_xprt_destroy() - free parent and child xprt list
1559  */
1560 void
1561 svc_xprt_destroy(SVCXPRT *xprt)
1562 {
1563 	SVCXPRT_LIST	*xlist, *xnext = NULL;
1564 	int		type;
1565 
1566 /* LINTED pointer alignment */
1567 	if (SVCEXT(xprt)->parent)
1568 /* LINTED pointer alignment */
1569 		xprt = SVCEXT(xprt)->parent;
1570 /* LINTED pointer alignment */
1571 	type = svc_type(xprt);
1572 /* LINTED pointer alignment */
1573 	for (xlist = SVCEXT(xprt)->my_xlist; xlist != NULL; xlist = xnext) {
1574 		xnext = xlist->next;
1575 		xprt = xlist->xprt;
1576 		switch (type) {
1577 		case SVC_DGRAM:
1578 			svc_dg_xprtfree(xprt);
1579 			break;
1580 		case SVC_RENDEZVOUS:
1581 			svc_vc_xprtfree(xprt);
1582 			break;
1583 		case SVC_CONNECTION:
1584 			svc_fd_xprtfree(xprt);
1585 			break;
1586 		case SVC_DOOR:
1587 			svc_door_xprtfree(xprt);
1588 			break;
1589 		}
1590 	}
1591 }
1592 
1593 
1594 /*
1595  * svc_copy() - make a copy of parent
1596  */
1597 SVCXPRT *
1598 svc_copy(SVCXPRT *xprt)
1599 {
1600 /* LINTED pointer alignment */
1601 	switch (svc_type(xprt)) {
1602 	case SVC_DGRAM:
1603 		return (svc_dg_xprtcopy(xprt));
1604 	case SVC_RENDEZVOUS:
1605 		return (svc_vc_xprtcopy(xprt));
1606 	case SVC_CONNECTION:
1607 		return (svc_fd_xprtcopy(xprt));
1608 	}
1609 	return (NULL);
1610 }
1611 
1612 
1613 /*
1614  * _svc_destroy_private() - private SVC_DESTROY interface
1615  */
1616 void
1617 _svc_destroy_private(SVCXPRT *xprt)
1618 {
1619 /* LINTED pointer alignment */
1620 	switch (svc_type(xprt)) {
1621 	case SVC_DGRAM:
1622 		_svc_dg_destroy_private(xprt);
1623 		break;
1624 	case SVC_RENDEZVOUS:
1625 	case SVC_CONNECTION:
1626 		_svc_vc_destroy_private(xprt, TRUE);
1627 		break;
1628 	}
1629 }
1630 
1631 /*
1632  * svc_get_local_cred() - fetch local user credentials.  This always
1633  * works over doors based transports.  For local transports, this
1634  * does not yield correct results unless the __rpc_negotiate_uid()
1635  * call has been invoked to enable this feature.
1636  */
1637 bool_t
1638 svc_get_local_cred(SVCXPRT *xprt, svc_local_cred_t *lcred)
1639 {
1640 	/* LINTED pointer alignment */
1641 	if (svc_type(xprt) == SVC_DOOR)
1642 		return (__svc_get_door_cred(xprt, lcred));
1643 	return (__rpc_get_local_cred(xprt, lcred));
1644 }
1645 
1646 
1647 /* ******************* DUPLICATE ENTRY HANDLING ROUTINES ************** */
1648 
1649 /*
1650  * the dup cacheing routines below provide a cache of received
1651  * transactions. rpc service routines can use this to detect
1652  * retransmissions and re-send a non-failure response. Uses a
1653  * lru scheme to find entries to get rid of entries in the cache,
1654  * though only DUP_DONE entries are placed on the lru list.
1655  * the routines were written towards development of a generic
1656  * SVC_DUP() interface, which can be expanded to encompass the
1657  * svc_dg_enablecache() routines as well. the cache is currently
1658  * private to the automounter.
1659  */
1660 
1661 
1662 /* dupcache header contains xprt specific information */
1663 struct dupcache {
1664 	rwlock_t	dc_lock;
1665 	time_t		dc_time;
1666 	int		dc_buckets;
1667 	int		dc_maxsz;
1668 	int		dc_basis;
1669 	struct dupreq 	*dc_mru;
1670 	struct dupreq	**dc_hashtbl;
1671 };
1672 
1673 /*
1674  * private duplicate cache request routines
1675  */
1676 static int __svc_dupcache_check(struct svc_req *, caddr_t *, uint_t *,
1677 		struct dupcache *, uint32_t, uint32_t);
1678 static struct dupreq *__svc_dupcache_victim(struct dupcache *, time_t);
1679 static int __svc_dupcache_enter(struct svc_req *, struct dupreq *,
1680 		struct dupcache *, uint32_t, uint32_t, time_t);
1681 static int __svc_dupcache_update(struct svc_req *, caddr_t, uint_t, int,
1682 		struct dupcache *, uint32_t, uint32_t);
1683 #ifdef DUP_DEBUG
1684 static void __svc_dupcache_debug(struct dupcache *);
1685 #endif /* DUP_DEBUG */
1686 
1687 /* default parameters for the dupcache */
1688 #define	DUPCACHE_BUCKETS	257
1689 #define	DUPCACHE_TIME		900
1690 #define	DUPCACHE_MAXSZ		INT_MAX
1691 
1692 /*
1693  * __svc_dupcache_init(void *condition, int basis, char *xprt_cache)
1694  * initialize the duprequest cache and assign it to the xprt_cache
1695  * Use default values depending on the cache condition and basis.
1696  * return TRUE on success and FALSE on failure
1697  */
1698 bool_t
1699 __svc_dupcache_init(void *condition, int basis, char **xprt_cache)
1700 {
1701 	static mutex_t initdc_lock = DEFAULTMUTEX;
1702 	int i;
1703 	struct dupcache *dc;
1704 
1705 	(void) mutex_lock(&initdc_lock);
1706 	if (*xprt_cache != NULL) { /* do only once per xprt */
1707 		(void) mutex_unlock(&initdc_lock);
1708 		syslog(LOG_ERR,
1709 		    "__svc_dupcache_init: multiply defined dup cache");
1710 		return (FALSE);
1711 	}
1712 
1713 	switch (basis) {
1714 	case DUPCACHE_FIXEDTIME:
1715 		dc = malloc(sizeof (struct dupcache));
1716 		if (dc == NULL) {
1717 			(void) mutex_unlock(&initdc_lock);
1718 			syslog(LOG_ERR,
1719 			    "__svc_dupcache_init: memory alloc failed");
1720 			return (FALSE);
1721 		}
1722 		(void) rwlock_init(&(dc->dc_lock), USYNC_THREAD, NULL);
1723 		if (condition != NULL)
1724 			dc->dc_time = *((time_t *)condition);
1725 		else
1726 			dc->dc_time = DUPCACHE_TIME;
1727 		dc->dc_buckets = DUPCACHE_BUCKETS;
1728 		dc->dc_maxsz = DUPCACHE_MAXSZ;
1729 		dc->dc_basis = basis;
1730 		dc->dc_mru = NULL;
1731 		dc->dc_hashtbl = malloc(dc->dc_buckets *
1732 		    sizeof (struct dupreq *));
1733 		if (dc->dc_hashtbl == NULL) {
1734 			free(dc);
1735 			(void) mutex_unlock(&initdc_lock);
1736 			syslog(LOG_ERR,
1737 			    "__svc_dupcache_init: memory alloc failed");
1738 			return (FALSE);
1739 		}
1740 		for (i = 0; i < DUPCACHE_BUCKETS; i++)
1741 			dc->dc_hashtbl[i] = NULL;
1742 		*xprt_cache = (char *)dc;
1743 		break;
1744 	default:
1745 		(void) mutex_unlock(&initdc_lock);
1746 		syslog(LOG_ERR,
1747 		    "__svc_dupcache_init: undefined dup cache basis");
1748 		return (FALSE);
1749 	}
1750 
1751 	(void) mutex_unlock(&initdc_lock);
1752 
1753 	return (TRUE);
1754 }
1755 
1756 /*
1757  * __svc_dup(struct svc_req *req, caddr_t *resp_buf, uint_t *resp_bufsz,
1758  *	char *xprt_cache)
1759  * searches the request cache. Creates an entry and returns DUP_NEW if
1760  * the request is not found in the cache.  If it is found, then it
1761  * returns the state of the request (in progress, drop, or done) and
1762  * also allocates, and passes back results to the user (if any) in
1763  * resp_buf, and its length in resp_bufsz. DUP_ERROR is returned on error.
1764  */
1765 int
1766 __svc_dup(struct svc_req *req, caddr_t *resp_buf, uint_t *resp_bufsz,
1767 	char *xprt_cache)
1768 {
1769 	uint32_t drxid, drhash;
1770 	int rc;
1771 	struct dupreq *dr = NULL;
1772 	time_t timenow = time(NULL);
1773 
1774 	/* LINTED pointer alignment */
1775 	struct dupcache *dc = (struct dupcache *)xprt_cache;
1776 
1777 	if (dc == NULL) {
1778 		syslog(LOG_ERR, "__svc_dup: undefined cache");
1779 		return (DUP_ERROR);
1780 	}
1781 
1782 	/* get the xid of the request */
1783 	if (SVC_CONTROL(req->rq_xprt, SVCGET_XID, (void*)&drxid) == FALSE) {
1784 		syslog(LOG_ERR, "__svc_dup: xid error");
1785 		return (DUP_ERROR);
1786 	}
1787 	drhash = drxid % dc->dc_buckets;
1788 
1789 	if ((rc = __svc_dupcache_check(req, resp_buf, resp_bufsz, dc, drxid,
1790 	    drhash)) != DUP_NEW)
1791 		return (rc);
1792 
1793 	if ((dr = __svc_dupcache_victim(dc, timenow)) == NULL)
1794 		return (DUP_ERROR);
1795 
1796 	if ((rc = __svc_dupcache_enter(req, dr, dc, drxid, drhash, timenow))
1797 	    == DUP_ERROR)
1798 		return (rc);
1799 
1800 	return (DUP_NEW);
1801 }
1802 
1803 
1804 
1805 /*
1806  * __svc_dupcache_check(struct svc_req *req, caddr_t *resp_buf,
1807  *		uint_t *resp_bufsz,truct dupcache *dc, uint32_t drxid,
1808  * 		uint32_t drhash)
1809  * Checks to see whether an entry already exists in the cache. If it does
1810  * copy back into the resp_buf, if appropriate. Return the status of
1811  * the request, or DUP_NEW if the entry is not in the cache
1812  */
1813 static int
1814 __svc_dupcache_check(struct svc_req *req, caddr_t *resp_buf, uint_t *resp_bufsz,
1815 		struct dupcache *dc, uint32_t drxid, uint32_t drhash)
1816 {
1817 	struct dupreq *dr = NULL;
1818 
1819 	(void) rw_rdlock(&(dc->dc_lock));
1820 	dr = dc->dc_hashtbl[drhash];
1821 	while (dr != NULL) {
1822 		if (dr->dr_xid == drxid &&
1823 		    dr->dr_proc == req->rq_proc &&
1824 		    dr->dr_prog == req->rq_prog &&
1825 		    dr->dr_vers == req->rq_vers &&
1826 		    dr->dr_addr.len == req->rq_xprt->xp_rtaddr.len &&
1827 		    memcmp(dr->dr_addr.buf, req->rq_xprt->xp_rtaddr.buf,
1828 		    dr->dr_addr.len) == 0) { /* entry found */
1829 			if (dr->dr_hash != drhash) {
1830 				/* sanity check */
1831 				(void) rw_unlock((&dc->dc_lock));
1832 				syslog(LOG_ERR,
1833 				    "\n__svc_dupdone: hashing error");
1834 				return (DUP_ERROR);
1835 			}
1836 
1837 			/*
1838 			 * return results for requests on lru list, if
1839 			 * appropriate requests must be DUP_DROP or DUP_DONE
1840 			 * to have a result. A NULL buffer in the cache
1841 			 * implies no results were sent during dupdone.
1842 			 * A NULL buffer in the call implies not interested
1843 			 * in results.
1844 			 */
1845 			if (((dr->dr_status == DUP_DONE) ||
1846 			    (dr->dr_status == DUP_DROP)) &&
1847 			    resp_buf != NULL &&
1848 			    dr->dr_resp.buf != NULL) {
1849 				*resp_buf = malloc(dr->dr_resp.len);
1850 				if (*resp_buf == NULL) {
1851 					syslog(LOG_ERR,
1852 					"__svc_dupcache_check: malloc failed");
1853 					(void) rw_unlock(&(dc->dc_lock));
1854 					return (DUP_ERROR);
1855 				}
1856 				(void) memset(*resp_buf, 0, dr->dr_resp.len);
1857 				(void) memcpy(*resp_buf, dr->dr_resp.buf,
1858 				    dr->dr_resp.len);
1859 				*resp_bufsz = dr->dr_resp.len;
1860 			} else {
1861 				/* no result */
1862 				if (resp_buf)
1863 					*resp_buf = NULL;
1864 				if (resp_bufsz)
1865 					*resp_bufsz = 0;
1866 			}
1867 			(void) rw_unlock(&(dc->dc_lock));
1868 			return (dr->dr_status);
1869 		}
1870 		dr = dr->dr_chain;
1871 	}
1872 	(void) rw_unlock(&(dc->dc_lock));
1873 	return (DUP_NEW);
1874 }
1875 
1876 /*
1877  * __svc_dupcache_victim(struct dupcache *dc, time_t timenow)
1878  * Return a victim dupreq entry to the caller, depending on cache policy.
1879  */
1880 static struct dupreq *
1881 __svc_dupcache_victim(struct dupcache *dc, time_t timenow)
1882 {
1883 	struct dupreq *dr = NULL;
1884 
1885 	switch (dc->dc_basis) {
1886 	case DUPCACHE_FIXEDTIME:
1887 		/*
1888 		 * The hash policy is to free up a bit of the hash
1889 		 * table before allocating a new entry as the victim.
1890 		 * Freeing up the hash table each time should split
1891 		 * the cost of keeping the hash table clean among threads.
1892 		 * Note that only DONE or DROPPED entries are on the lru
1893 		 * list but we do a sanity check anyway.
1894 		 */
1895 		(void) rw_wrlock(&(dc->dc_lock));
1896 		while ((dc->dc_mru) && (dr = dc->dc_mru->dr_next) &&
1897 		    ((timenow - dr->dr_time) > dc->dc_time)) {
1898 			/* clean and then free the entry */
1899 			if (dr->dr_status != DUP_DONE &&
1900 			    dr->dr_status != DUP_DROP) {
1901 				/*
1902 				 * The LRU list can't contain an
1903 				 * entry where the status is other than
1904 				 * DUP_DONE or DUP_DROP.
1905 				 */
1906 				syslog(LOG_ERR,
1907 				    "__svc_dupcache_victim: bad victim");
1908 #ifdef DUP_DEBUG
1909 				/*
1910 				 * Need to hold the reader/writers lock to
1911 				 * print the cache info, since we already
1912 				 * hold the writers lock, we shall continue
1913 				 * calling __svc_dupcache_debug()
1914 				 */
1915 				__svc_dupcache_debug(dc);
1916 #endif /* DUP_DEBUG */
1917 				(void) rw_unlock(&(dc->dc_lock));
1918 				return (NULL);
1919 			}
1920 			/* free buffers */
1921 			if (dr->dr_resp.buf) {
1922 				free(dr->dr_resp.buf);
1923 				dr->dr_resp.buf = NULL;
1924 			}
1925 			if (dr->dr_addr.buf) {
1926 				free(dr->dr_addr.buf);
1927 				dr->dr_addr.buf = NULL;
1928 			}
1929 
1930 			/* unhash the entry */
1931 			if (dr->dr_chain)
1932 				dr->dr_chain->dr_prevchain = dr->dr_prevchain;
1933 			if (dr->dr_prevchain)
1934 				dr->dr_prevchain->dr_chain = dr->dr_chain;
1935 			if (dc->dc_hashtbl[dr->dr_hash] == dr)
1936 				dc->dc_hashtbl[dr->dr_hash] = dr->dr_chain;
1937 
1938 			/* modify the lru pointers */
1939 			if (dc->dc_mru == dr) {
1940 				dc->dc_mru = NULL;
1941 			} else {
1942 				dc->dc_mru->dr_next = dr->dr_next;
1943 				dr->dr_next->dr_prev = dc->dc_mru;
1944 			}
1945 			free(dr);
1946 			dr = NULL;
1947 		}
1948 		(void) rw_unlock(&(dc->dc_lock));
1949 
1950 		/*
1951 		 * Allocate and return new clean entry as victim
1952 		 */
1953 		if ((dr = malloc(sizeof (*dr))) == NULL) {
1954 			syslog(LOG_ERR,
1955 			    "__svc_dupcache_victim: malloc failed");
1956 			return (NULL);
1957 		}
1958 		(void) memset(dr, 0, sizeof (*dr));
1959 		return (dr);
1960 	default:
1961 		syslog(LOG_ERR,
1962 		    "__svc_dupcache_victim: undefined dup cache_basis");
1963 		return (NULL);
1964 	}
1965 }
1966 
1967 /*
1968  * __svc_dupcache_enter(struct svc_req *req, struct dupreq *dr,
1969  *	struct dupcache *dc, uint32_t drxid, uint32_t drhash, time_t timenow)
1970  * build new duprequest entry and then insert into the cache
1971  */
1972 static int
1973 __svc_dupcache_enter(struct svc_req *req, struct dupreq *dr,
1974 	struct dupcache *dc, uint32_t drxid, uint32_t drhash, time_t timenow)
1975 {
1976 	dr->dr_xid = drxid;
1977 	dr->dr_prog = req->rq_prog;
1978 	dr->dr_vers = req->rq_vers;
1979 	dr->dr_proc = req->rq_proc;
1980 	dr->dr_addr.maxlen = req->rq_xprt->xp_rtaddr.len;
1981 	dr->dr_addr.len = dr->dr_addr.maxlen;
1982 	if ((dr->dr_addr.buf = malloc(dr->dr_addr.maxlen)) == NULL) {
1983 		syslog(LOG_ERR, "__svc_dupcache_enter: malloc failed");
1984 		free(dr);
1985 		return (DUP_ERROR);
1986 	}
1987 	(void) memset(dr->dr_addr.buf, 0, dr->dr_addr.len);
1988 	(void) memcpy(dr->dr_addr.buf, req->rq_xprt->xp_rtaddr.buf,
1989 	    dr->dr_addr.len);
1990 	dr->dr_resp.buf = NULL;
1991 	dr->dr_resp.maxlen = 0;
1992 	dr->dr_resp.len = 0;
1993 	dr->dr_status = DUP_INPROGRESS;
1994 	dr->dr_time = timenow;
1995 	dr->dr_hash = drhash;	/* needed for efficient victim cleanup */
1996 
1997 	/* place entry at head of hash table */
1998 	(void) rw_wrlock(&(dc->dc_lock));
1999 	dr->dr_chain = dc->dc_hashtbl[drhash];
2000 	dr->dr_prevchain = NULL;
2001 	if (dc->dc_hashtbl[drhash] != NULL)
2002 		dc->dc_hashtbl[drhash]->dr_prevchain = dr;
2003 	dc->dc_hashtbl[drhash] = dr;
2004 	(void) rw_unlock(&(dc->dc_lock));
2005 	return (DUP_NEW);
2006 }
2007 
2008 /*
2009  * __svc_dupdone(struct svc_req *req, caddr_t resp_buf, uint_t resp_bufsz,
2010  *		int status, char *xprt_cache)
2011  * Marks the request done (DUP_DONE or DUP_DROP) and stores the response.
2012  * Only DONE and DROP requests can be marked as done. Sets the lru pointers
2013  * to make the entry the most recently used. Returns DUP_ERROR or status.
2014  */
2015 int
2016 __svc_dupdone(struct svc_req *req, caddr_t resp_buf, uint_t resp_bufsz,
2017 		int status, char *xprt_cache)
2018 {
2019 	uint32_t drxid, drhash;
2020 	int rc;
2021 
2022 	/* LINTED pointer alignment */
2023 	struct dupcache *dc = (struct dupcache *)xprt_cache;
2024 
2025 	if (dc == NULL) {
2026 		syslog(LOG_ERR, "__svc_dupdone: undefined cache");
2027 		return (DUP_ERROR);
2028 	}
2029 
2030 	if (status != DUP_DONE && status != DUP_DROP) {
2031 		syslog(LOG_ERR, "__svc_dupdone: invalid dupdone status");
2032 		syslog(LOG_ERR, "	 must be DUP_DONE or DUP_DROP");
2033 		return (DUP_ERROR);
2034 	}
2035 
2036 	/* find the xid of the entry in the cache */
2037 	if (SVC_CONTROL(req->rq_xprt, SVCGET_XID, (void*)&drxid) == FALSE) {
2038 		syslog(LOG_ERR, "__svc_dup: xid error");
2039 		return (DUP_ERROR);
2040 	}
2041 	drhash = drxid % dc->dc_buckets;
2042 
2043 	/* update the status of the entry and result buffers, if required */
2044 	if ((rc = __svc_dupcache_update(req, resp_buf, resp_bufsz, status,
2045 	    dc, drxid, drhash)) == DUP_ERROR) {
2046 		syslog(LOG_ERR, "__svc_dupdone: cache entry error");
2047 		return (DUP_ERROR);
2048 	}
2049 
2050 	return (rc);
2051 }
2052 
2053 /*
2054  * __svc_dupcache_update(struct svc_req *req, caddr_t resp_buf,
2055  * 	uint_t resp_bufsz, int status, struct dupcache *dc, uint32_t drxid,
2056  * 	uint32_t drhash)
2057  * Check if entry exists in the dupcacache. If it does, update its status
2058  * and time and also its buffer, if appropriate. Its possible, but unlikely
2059  * for DONE requests to not exist in the cache. Return DUP_ERROR or status.
2060  */
2061 static int
2062 __svc_dupcache_update(struct svc_req *req, caddr_t resp_buf, uint_t resp_bufsz,
2063 	int status, struct dupcache *dc, uint32_t drxid, uint32_t drhash)
2064 {
2065 	struct dupreq *dr = NULL;
2066 	time_t timenow = time(NULL);
2067 
2068 	(void) rw_wrlock(&(dc->dc_lock));
2069 	dr = dc->dc_hashtbl[drhash];
2070 	while (dr != NULL) {
2071 		if (dr->dr_xid == drxid &&
2072 		    dr->dr_proc == req->rq_proc &&
2073 		    dr->dr_prog == req->rq_prog &&
2074 		    dr->dr_vers == req->rq_vers &&
2075 		    dr->dr_addr.len == req->rq_xprt->xp_rtaddr.len &&
2076 		    memcmp(dr->dr_addr.buf, req->rq_xprt->xp_rtaddr.buf,
2077 		    dr->dr_addr.len) == 0) { /* entry found */
2078 			if (dr->dr_hash != drhash) {
2079 				/* sanity check */
2080 				(void) rw_unlock(&(dc->dc_lock));
2081 				syslog(LOG_ERR,
2082 				"\n__svc_dupdone: hashing error");
2083 				return (DUP_ERROR);
2084 			}
2085 
2086 			/* store the results if bufer is not NULL */
2087 			if (resp_buf != NULL) {
2088 				if ((dr->dr_resp.buf =
2089 				    malloc(resp_bufsz)) == NULL) {
2090 					(void) rw_unlock(&(dc->dc_lock));
2091 					syslog(LOG_ERR,
2092 					    "__svc_dupdone: malloc failed");
2093 					return (DUP_ERROR);
2094 				}
2095 				(void) memset(dr->dr_resp.buf, 0, resp_bufsz);
2096 				(void) memcpy(dr->dr_resp.buf, resp_buf,
2097 				    (uint_t)resp_bufsz);
2098 				dr->dr_resp.len = resp_bufsz;
2099 			}
2100 
2101 			/* update status and done time */
2102 			dr->dr_status = status;
2103 			dr->dr_time = timenow;
2104 
2105 			/* move the entry to the mru position */
2106 			if (dc->dc_mru == NULL) {
2107 				dr->dr_next = dr;
2108 				dr->dr_prev = dr;
2109 			} else {
2110 				dr->dr_next = dc->dc_mru->dr_next;
2111 				dc->dc_mru->dr_next->dr_prev = dr;
2112 				dr->dr_prev = dc->dc_mru;
2113 				dc->dc_mru->dr_next = dr;
2114 			}
2115 			dc->dc_mru = dr;
2116 
2117 			(void) rw_unlock(&(dc->dc_lock));
2118 			return (status);
2119 		}
2120 		dr = dr->dr_chain;
2121 	}
2122 	(void) rw_unlock(&(dc->dc_lock));
2123 	syslog(LOG_ERR, "__svc_dupdone: entry not in dup cache");
2124 	return (DUP_ERROR);
2125 }
2126 
2127 #ifdef DUP_DEBUG
2128 /*
2129  * __svc_dupcache_debug(struct dupcache *dc)
2130  * print out the hash table stuff
2131  *
2132  * This function requires the caller to hold the reader
2133  * or writer version of the duplicate request cache lock (dc_lock).
2134  */
2135 static void
2136 __svc_dupcache_debug(struct dupcache *dc)
2137 {
2138 	struct dupreq *dr = NULL;
2139 	int i;
2140 	bool_t bval;
2141 
2142 	fprintf(stderr, "   HASHTABLE\n");
2143 	for (i = 0; i < dc->dc_buckets; i++) {
2144 		bval = FALSE;
2145 		dr = dc->dc_hashtbl[i];
2146 		while (dr != NULL) {
2147 			if (!bval) {	/* ensures bucket printed only once */
2148 				fprintf(stderr, "    bucket : %d\n", i);
2149 				bval = TRUE;
2150 			}
2151 			fprintf(stderr, "\txid: %u status: %d time: %ld",
2152 			    dr->dr_xid, dr->dr_status, dr->dr_time);
2153 			fprintf(stderr, " dr: %x chain: %x prevchain: %x\n",
2154 			    dr, dr->dr_chain, dr->dr_prevchain);
2155 			dr = dr->dr_chain;
2156 		}
2157 	}
2158 
2159 	fprintf(stderr, "   LRU\n");
2160 	if (dc->dc_mru) {
2161 		dr = dc->dc_mru->dr_next;	/* lru */
2162 		while (dr != dc->dc_mru) {
2163 			fprintf(stderr, "\txid: %u status : %d time : %ld",
2164 			    dr->dr_xid, dr->dr_status, dr->dr_time);
2165 			fprintf(stderr, " dr: %x next: %x prev: %x\n",
2166 			    dr, dr->dr_next, dr->dr_prev);
2167 			dr = dr->dr_next;
2168 		}
2169 		fprintf(stderr, "\txid: %u status: %d time: %ld",
2170 		    dr->dr_xid, dr->dr_status, dr->dr_time);
2171 		fprintf(stderr, " dr: %x next: %x prev: %x\n",
2172 		    dr, dr->dr_next, dr->dr_prev);
2173 	}
2174 }
2175 #endif /* DUP_DEBUG */
2176