xref: /titanic_50/usr/src/lib/libnsl/rpc/svc.c (revision 42cc51e07cdbcad3b9aca8d9d991fc09b251feb7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright 2017 Joyent Inc
26  */
27 /*
28  * Copyright 1993 OpenVision Technologies, Inc., All Rights Reserved.
29  */
30 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
31 /* All Rights Reserved */
32 /*
33  * Portions of this source code were derived from Berkeley
34  * 4.3 BSD under license from the Regents of the University of
35  * California.
36  */
37 
38 /*
39  * svc.c, Server-side remote procedure call interface.
40  *
41  * There are two sets of procedures here.  The xprt routines are
42  * for handling transport handles.  The svc routines handle the
43  * list of service routines.
44  *
45  */
46 
47 #include "mt.h"
48 #include "rpc_mt.h"
49 #include <assert.h>
50 #include <errno.h>
51 #include <sys/types.h>
52 #include <stropts.h>
53 #include <sys/conf.h>
54 #include <rpc/rpc.h>
55 #include <rpc/auth.h>
56 #ifdef PORTMAP
57 #include <rpc/pmap_clnt.h>
58 #endif
59 #include <sys/poll.h>
60 #include <netconfig.h>
61 #include <syslog.h>
62 #include <stdlib.h>
63 #include <unistd.h>
64 #include <string.h>
65 #include <limits.h>
66 
67 extern bool_t __svc_get_door_cred();
68 extern bool_t __rpc_get_local_cred();
69 
70 SVCXPRT **svc_xports;
71 static int nsvc_xports; 	/* total number of svc_xports allocated */
72 
73 XDR **svc_xdrs;		/* common XDR receive area */
74 int nsvc_xdrs;		/* total number of svc_xdrs allocated */
75 
76 int __rpc_use_pollfd_done;	/* to unlimit the number of connections */
77 
78 #define	NULL_SVC ((struct svc_callout *)0)
79 
80 /*
81  * The services list
82  * Each entry represents a set of procedures (an rpc program).
83  * The dispatch routine takes request structs and runs the
84  * appropriate procedure.
85  */
86 static struct svc_callout {
87 	struct svc_callout *sc_next;
88 	rpcprog_t	    sc_prog;
89 	rpcvers_t	    sc_vers;
90 	char		   *sc_netid;
91 	void		    (*sc_dispatch)();
92 } *svc_head;
93 extern rwlock_t	svc_lock;
94 
95 static struct svc_callout *svc_find();
96 int _svc_prog_dispatch();
97 void svc_getreq_common();
98 char *strdup();
99 
100 extern mutex_t	svc_door_mutex;
101 extern cond_t	svc_door_waitcv;
102 extern int	svc_ndoorfds;
103 extern SVCXPRT_LIST *_svc_xprtlist;
104 extern mutex_t xprtlist_lock;
105 extern void __svc_rm_from_xlist();
106 
107 extern fd_set _new_svc_fdset;
108 
109 /*
110  * If the allocated array of reactor is too small, this value is used as a
111  * margin. This reduces the number of allocations.
112  */
113 #define	USER_FD_INCREMENT 5
114 
115 static void add_pollfd(int fd, short events);
116 static void remove_pollfd(int fd);
117 static void __svc_remove_input_of_fd(int fd);
118 
119 /*
120  * Data used to handle reactor:
121  * 	- one file descriptor we listen to,
122  *	- one callback we call if the fd pops,
123  *	- and a cookie passed as a parameter to the callback.
124  *
125  * The structure is an array indexed on the file descriptor. Each entry is
126  * pointing to the first element of a double-linked list of callback.
127  * only one callback may be associated to a couple (fd, event).
128  */
129 
130 struct _svc_user_fd_head;
131 
132 typedef struct {
133 	struct _svc_user_fd_node *next;
134 	struct _svc_user_fd_node *previous;
135 } _svc_user_link;
136 
137 typedef struct _svc_user_fd_node {
138 	_svc_user_link lnk;
139 	svc_input_id_t id;
140 	int	    fd;
141 	unsigned int   events;
142 	svc_callback_t callback;
143 	void*	  cookie;
144 } _svc_user_fd_node;
145 
146 typedef struct _svc_user_fd_head {
147 	struct _svc_user_fd_node *list;
148 	unsigned int mask;    /* logical OR of all sub-masks */
149 } _svc_user_fd_head;
150 
151 
152 /* Array of defined reactor - indexed on file descriptor */
153 static _svc_user_fd_head *svc_userfds = NULL;
154 
155 /* current size of file descriptor */
156 static int svc_nuserfds = 0;
157 
158 /* Mutex to ensure MT safe operations for user fds callbacks. */
159 static mutex_t svc_userfds_lock = DEFAULTMUTEX;
160 
161 
162 /*
163  * This structure is used to have constant time alogrithms. There is an array
164  * of this structure as large as svc_nuserfds. When the user is registering a
165  * new callback, the address of the created structure is stored in a cell of
166  * this array. The address of this cell is the returned unique identifier.
167  *
168  * On removing, the id is given by the user, then we know if this cell is
169  * filled or not (with free). If it is free, we return an error. Otherwise,
170  * we can free the structure pointed by fd_node.
171  *
172  * On insertion, we use the linked list created by (first_free,
173  * next_free). In this way with a constant time computation, we can give a
174  * correct index to the user.
175  */
176 
177 typedef struct _svc_management_user_fd {
178 	bool_t free;
179 	union {
180 		svc_input_id_t next_free;
181 		_svc_user_fd_node *fd_node;
182 	} data;
183 } _svc_management_user_fd;
184 
185 /* index to the first free elem */
186 static svc_input_id_t first_free = (svc_input_id_t)-1;
187 /* the size of this array is the same as svc_nuserfds */
188 static _svc_management_user_fd* user_fd_mgt_array = NULL;
189 
190 /* current size of user_fd_mgt_array */
191 static int svc_nmgtuserfds = 0;
192 
193 
194 /* Define some macros to access data associated to registration ids. */
195 #define	node_from_id(id) (user_fd_mgt_array[(int)id].data.fd_node)
196 #define	is_free_id(id) (user_fd_mgt_array[(int)id].free)
197 
198 #ifndef POLLSTANDARD
199 #define	POLLSTANDARD \
200 	(POLLIN|POLLPRI|POLLOUT|POLLRDNORM|POLLRDBAND| \
201 	POLLWRBAND|POLLERR|POLLHUP|POLLNVAL)
202 #endif
203 
204 /*
205  * To free an Id, we set the cell as free and insert its address in the list
206  * of free cell.
207  */
208 
209 static void
210 _svc_free_id(const svc_input_id_t id)
211 {
212 	assert(((int)id >= 0) && ((int)id < svc_nmgtuserfds));
213 	user_fd_mgt_array[(int)id].free = TRUE;
214 	user_fd_mgt_array[(int)id].data.next_free = first_free;
215 	first_free = id;
216 }
217 
218 /*
219  * To get a free cell, we just have to take it from the free linked list and
220  * set the flag to "not free". This function also allocates new memory if
221  * necessary
222  */
223 static svc_input_id_t
224 _svc_attribute_new_id(_svc_user_fd_node *node)
225 {
226 	int selected_index = (int)first_free;
227 	assert(node != NULL);
228 
229 	if (selected_index == -1) {
230 		/* Allocate new entries */
231 		int L_inOldSize = svc_nmgtuserfds;
232 		int i;
233 		_svc_management_user_fd *tmp;
234 
235 		svc_nmgtuserfds += USER_FD_INCREMENT;
236 
237 		tmp = realloc(user_fd_mgt_array,
238 		    svc_nmgtuserfds * sizeof (_svc_management_user_fd));
239 
240 		if (tmp == NULL) {
241 			syslog(LOG_ERR, "_svc_attribute_new_id: out of memory");
242 			svc_nmgtuserfds = L_inOldSize;
243 			errno = ENOMEM;
244 			return ((svc_input_id_t)-1);
245 		}
246 
247 		user_fd_mgt_array = tmp;
248 
249 		for (i = svc_nmgtuserfds - 1; i >= L_inOldSize; i--)
250 			_svc_free_id((svc_input_id_t)i);
251 		selected_index = (int)first_free;
252 	}
253 
254 	node->id = (svc_input_id_t)selected_index;
255 	first_free = user_fd_mgt_array[selected_index].data.next_free;
256 
257 	user_fd_mgt_array[selected_index].data.fd_node = node;
258 	user_fd_mgt_array[selected_index].free = FALSE;
259 
260 	return ((svc_input_id_t)selected_index);
261 }
262 
263 /*
264  * Access to a pollfd treatment. Scan all the associated callbacks that have
265  * at least one bit in their mask that masks a received event.
266  *
267  * If event POLLNVAL is received, we check that one callback processes it, if
268  * not, then remove the file descriptor from the poll. If there is one, let
269  * the user do the work.
270  */
271 void
272 __svc_getreq_user(struct pollfd *pfd)
273 {
274 	int fd = pfd->fd;
275 	short revents = pfd->revents;
276 	bool_t invalHandled = FALSE;
277 	_svc_user_fd_node *node;
278 
279 	(void) mutex_lock(&svc_userfds_lock);
280 
281 	if ((fd < 0) || (fd >= svc_nuserfds)) {
282 		(void) mutex_unlock(&svc_userfds_lock);
283 		return;
284 	}
285 
286 	node = svc_userfds[fd].list;
287 
288 	/* check if at least one mask fits */
289 	if (0 == (revents & svc_userfds[fd].mask)) {
290 		(void) mutex_unlock(&svc_userfds_lock);
291 		return;
292 	}
293 
294 	while ((svc_userfds[fd].mask != 0) && (node != NULL)) {
295 		/*
296 		 * If one of the received events maps the ones the node listens
297 		 * to
298 		 */
299 		_svc_user_fd_node *next = node->lnk.next;
300 
301 		if (node->callback != NULL) {
302 			if (node->events & revents) {
303 				if (revents & POLLNVAL) {
304 					invalHandled = TRUE;
305 				}
306 
307 				/*
308 				 * The lock must be released before calling the
309 				 * user function, as this function can call
310 				 * svc_remove_input() for example.
311 				 */
312 				(void) mutex_unlock(&svc_userfds_lock);
313 				node->callback(node->id, node->fd,
314 				    node->events & revents, node->cookie);
315 				/*
316 				 * Do not use the node structure anymore, as it
317 				 * could have been deallocated by the previous
318 				 * callback.
319 				 */
320 				(void) mutex_lock(&svc_userfds_lock);
321 			}
322 		}
323 		node = next;
324 	}
325 
326 	if ((revents & POLLNVAL) && !invalHandled)
327 		__svc_remove_input_of_fd(fd);
328 	(void) mutex_unlock(&svc_userfds_lock);
329 }
330 
331 
332 /*
333  * Check if a file descriptor is associated with a user reactor.
334  * To do this, just check that the array indexed on fd has a non-void linked
335  * list (ie. first element is not NULL)
336  */
337 bool_t
338 __is_a_userfd(int fd)
339 {
340 	/* Checks argument */
341 	if ((fd < 0) || (fd >= svc_nuserfds))
342 		return (FALSE);
343 	return ((svc_userfds[fd].mask == 0x0000)? FALSE:TRUE);
344 }
345 
346 /* free everything concerning user fd */
347 /* used in svc_run.c => no static */
348 
349 void
350 __destroy_userfd(void)
351 {
352 	int one_fd;
353 	/* Clean user fd */
354 	if (svc_userfds != NULL) {
355 		for (one_fd = 0; one_fd < svc_nuserfds; one_fd++) {
356 			_svc_user_fd_node *node;
357 
358 			node = svc_userfds[one_fd].list;
359 			while (node != NULL) {
360 				_svc_user_fd_node *tmp = node;
361 				_svc_free_id(node->id);
362 				node = node->lnk.next;
363 				free(tmp);
364 			}
365 		}
366 
367 		free(user_fd_mgt_array);
368 		user_fd_mgt_array = NULL;
369 		first_free = (svc_input_id_t)-1;
370 
371 		free(svc_userfds);
372 		svc_userfds = NULL;
373 		svc_nuserfds = 0;
374 	}
375 }
376 
377 /*
378  * Remove all the callback associated with a fd => useful when the fd is
379  * closed for instance
380  */
381 static void
382 __svc_remove_input_of_fd(int fd)
383 {
384 	_svc_user_fd_node **pnode;
385 	_svc_user_fd_node *tmp;
386 
387 	if ((fd < 0) || (fd >= svc_nuserfds))
388 		return;
389 
390 	pnode = &svc_userfds[fd].list;
391 	while ((tmp = *pnode) != NULL) {
392 		*pnode = tmp->lnk.next;
393 
394 		_svc_free_id(tmp->id);
395 		free(tmp);
396 	}
397 
398 	svc_userfds[fd].mask = 0;
399 }
400 
401 /*
402  * Allow user to add an fd in the poll list. If it does not succeed, return
403  * -1. Otherwise, return a svc_id
404  */
405 
406 svc_input_id_t
407 svc_add_input(int user_fd, unsigned int events,
408     svc_callback_t user_callback, void *cookie)
409 {
410 	_svc_user_fd_node *new_node;
411 
412 	if (user_fd < 0) {
413 		errno = EINVAL;
414 		return ((svc_input_id_t)-1);
415 	}
416 
417 	if ((events == 0x0000) ||
418 	    (events & ~(POLLIN|POLLPRI|POLLOUT|POLLRDNORM|POLLRDBAND|\
419 	    POLLWRBAND|POLLERR|POLLHUP|POLLNVAL))) {
420 		errno = EINVAL;
421 		return ((svc_input_id_t)-1);
422 	}
423 
424 	(void) mutex_lock(&svc_userfds_lock);
425 
426 	if ((user_fd < svc_nuserfds) &&
427 	    (svc_userfds[user_fd].mask & events) != 0) {
428 		/* Already registrated call-back */
429 		errno = EEXIST;
430 		(void) mutex_unlock(&svc_userfds_lock);
431 		return ((svc_input_id_t)-1);
432 	}
433 
434 	/* Handle memory allocation. */
435 	if (user_fd >= svc_nuserfds) {
436 		int oldSize = svc_nuserfds;
437 		int i;
438 		_svc_user_fd_head *tmp;
439 
440 		svc_nuserfds = (user_fd + 1) + USER_FD_INCREMENT;
441 
442 		tmp = realloc(svc_userfds,
443 		    svc_nuserfds * sizeof (_svc_user_fd_head));
444 
445 		if (tmp == NULL) {
446 			syslog(LOG_ERR, "svc_add_input: out of memory");
447 			svc_nuserfds = oldSize;
448 			errno = ENOMEM;
449 			(void) mutex_unlock(&svc_userfds_lock);
450 			return ((svc_input_id_t)-1);
451 		}
452 
453 		svc_userfds = tmp;
454 
455 		for (i = oldSize; i < svc_nuserfds; i++) {
456 			svc_userfds[i].list = NULL;
457 			svc_userfds[i].mask = 0;
458 		}
459 	}
460 
461 	new_node = malloc(sizeof (_svc_user_fd_node));
462 	if (new_node == NULL) {
463 		syslog(LOG_ERR, "svc_add_input: out of memory");
464 		errno = ENOMEM;
465 		(void) mutex_unlock(&svc_userfds_lock);
466 		return ((svc_input_id_t)-1);
467 	}
468 
469 	/* create a new node */
470 	new_node->fd		= user_fd;
471 	new_node->events	= events;
472 	new_node->callback	= user_callback;
473 	new_node->cookie	= cookie;
474 
475 	if (_svc_attribute_new_id(new_node) == -1) {
476 		(void) mutex_unlock(&svc_userfds_lock);
477 		free(new_node);
478 		return ((svc_input_id_t)-1);
479 	}
480 
481 	/* Add the new element at the beginning of the list. */
482 	if (svc_userfds[user_fd].list != NULL)
483 		svc_userfds[user_fd].list->lnk.previous = new_node;
484 	new_node->lnk.next = svc_userfds[user_fd].list;
485 	new_node->lnk.previous = NULL;
486 
487 	svc_userfds[user_fd].list = new_node;
488 
489 	/* refresh global mask for this file desciptor */
490 	svc_userfds[user_fd].mask |= events;
491 
492 	/* refresh mask for the poll */
493 	add_pollfd(user_fd, (svc_userfds[user_fd].mask));
494 
495 	(void) mutex_unlock(&svc_userfds_lock);
496 	return (new_node->id);
497 }
498 
499 int
500 svc_remove_input(svc_input_id_t id)
501 {
502 	_svc_user_fd_node* node;
503 	_svc_user_fd_node* next;
504 	_svc_user_fd_node* previous;
505 	int fd;		/* caching optim */
506 
507 	(void) mutex_lock(&svc_userfds_lock);
508 
509 	/* Immediately update data for id management */
510 	if (user_fd_mgt_array == NULL || id >= svc_nmgtuserfds ||
511 	    is_free_id(id)) {
512 		errno = EINVAL;
513 		(void) mutex_unlock(&svc_userfds_lock);
514 		return (-1);
515 	}
516 
517 	node = node_from_id(id);
518 	assert(node != NULL);
519 
520 	_svc_free_id(id);
521 	next		= node->lnk.next;
522 	previous	= node->lnk.previous;
523 	fd		= node->fd; /* caching optim */
524 
525 	/* Remove this node from the list. */
526 	if (previous != NULL) {
527 		previous->lnk.next = next;
528 	} else {
529 		assert(svc_userfds[fd].list == node);
530 		svc_userfds[fd].list = next;
531 	}
532 	if (next != NULL)
533 		next->lnk.previous = previous;
534 
535 	/* Remove the node flags from the global mask */
536 	svc_userfds[fd].mask ^= node->events;
537 
538 	free(node);
539 	if (svc_userfds[fd].mask == 0) {
540 		assert(svc_userfds[fd].list == NULL);
541 		remove_pollfd(fd);
542 	} else {
543 		assert(svc_userfds[fd].list != NULL);
544 	}
545 	/* <=> CLEAN NEEDED TO SHRINK MEMORY USAGE */
546 
547 	(void) mutex_unlock(&svc_userfds_lock);
548 	return (0);
549 }
550 
551 /*
552  * Provides default service-side functions for authentication flavors
553  * that do not use all the fields in struct svc_auth_ops.
554  */
555 
556 /*ARGSUSED*/
557 static int
558 authany_wrap(AUTH *auth, XDR *xdrs, xdrproc_t xfunc, caddr_t xwhere)
559 {
560 	return (*xfunc)(xdrs, xwhere);
561 }
562 
563 struct svc_auth_ops svc_auth_any_ops = {
564 	authany_wrap,
565 	authany_wrap,
566 };
567 
568 /*
569  * Return pointer to server authentication structure.
570  */
571 SVCAUTH *
572 __svc_get_svcauth(SVCXPRT *xprt)
573 {
574 /* LINTED pointer alignment */
575 	return (&SVC_XP_AUTH(xprt));
576 }
577 
578 /*
579  * A callback routine to cleanup after a procedure is executed.
580  */
581 void (*__proc_cleanup_cb)() = NULL;
582 
583 void *
584 __svc_set_proc_cleanup_cb(void *cb)
585 {
586 	void	*tmp = (void *)__proc_cleanup_cb;
587 
588 	__proc_cleanup_cb = (void (*)())cb;
589 	return (tmp);
590 }
591 
592 /* ***************  SVCXPRT related stuff **************** */
593 
594 
595 static int pollfd_shrinking = 1;
596 
597 
598 /*
599  * Add fd to svc_pollfd
600  */
601 static void
602 add_pollfd(int fd, short events)
603 {
604 	if (fd < FD_SETSIZE) {
605 		FD_SET(fd, &svc_fdset);
606 #if !defined(_LP64)
607 		FD_SET(fd, &_new_svc_fdset);
608 #endif
609 		svc_nfds++;
610 		svc_nfds_set++;
611 		if (fd >= svc_max_fd)
612 			svc_max_fd = fd + 1;
613 	}
614 	if (fd >= svc_max_pollfd)
615 		svc_max_pollfd = fd + 1;
616 	if (svc_max_pollfd > svc_pollfd_allocd) {
617 		int i = svc_pollfd_allocd;
618 		pollfd_t *tmp;
619 		do {
620 			svc_pollfd_allocd += POLLFD_EXTEND;
621 		} while (svc_max_pollfd > svc_pollfd_allocd);
622 		tmp = realloc(svc_pollfd,
623 		    sizeof (pollfd_t) * svc_pollfd_allocd);
624 		if (tmp != NULL) {
625 			svc_pollfd = tmp;
626 			for (; i < svc_pollfd_allocd; i++)
627 				POLLFD_CLR(i, tmp);
628 		} else {
629 			/*
630 			 * give an error message; undo fdset setting
631 			 * above;  reset the pollfd_shrinking flag.
632 			 * because of this poll will not be done
633 			 * on these fds.
634 			 */
635 			if (fd < FD_SETSIZE) {
636 				FD_CLR(fd, &svc_fdset);
637 #if !defined(_LP64)
638 				FD_CLR(fd, &_new_svc_fdset);
639 #endif
640 				svc_nfds--;
641 				svc_nfds_set--;
642 				if (fd == (svc_max_fd - 1))
643 					svc_max_fd--;
644 			}
645 			if (fd == (svc_max_pollfd - 1))
646 				svc_max_pollfd--;
647 			pollfd_shrinking = 0;
648 			syslog(LOG_ERR, "add_pollfd: out of memory");
649 			_exit(1);
650 		}
651 	}
652 	svc_pollfd[fd].fd	= fd;
653 	svc_pollfd[fd].events	= events;
654 	svc_npollfds++;
655 	svc_npollfds_set++;
656 }
657 
658 /*
659  * the fd is still active but only the bit in fdset is cleared.
660  * do not subtract svc_nfds or svc_npollfds
661  */
662 void
663 clear_pollfd(int fd)
664 {
665 	if (fd < FD_SETSIZE && FD_ISSET(fd, &svc_fdset)) {
666 		FD_CLR(fd, &svc_fdset);
667 #if !defined(_LP64)
668 		FD_CLR(fd, &_new_svc_fdset);
669 #endif
670 		svc_nfds_set--;
671 	}
672 	if (fd < svc_pollfd_allocd && POLLFD_ISSET(fd, svc_pollfd)) {
673 		POLLFD_CLR(fd, svc_pollfd);
674 		svc_npollfds_set--;
675 	}
676 }
677 
678 /*
679  * sets the bit in fdset for an active fd so that poll() is done for that
680  */
681 void
682 set_pollfd(int fd, short events)
683 {
684 	if (fd < FD_SETSIZE) {
685 		FD_SET(fd, &svc_fdset);
686 #if !defined(_LP64)
687 		FD_SET(fd, &_new_svc_fdset);
688 #endif
689 		svc_nfds_set++;
690 	}
691 	if (fd < svc_pollfd_allocd) {
692 		svc_pollfd[fd].fd	= fd;
693 		svc_pollfd[fd].events	= events;
694 		svc_npollfds_set++;
695 	}
696 }
697 
698 /*
699  * remove a svc_pollfd entry; it does not shrink the memory
700  */
701 static void
702 remove_pollfd(int fd)
703 {
704 	clear_pollfd(fd);
705 	if (fd == (svc_max_fd - 1))
706 		svc_max_fd--;
707 	svc_nfds--;
708 	if (fd == (svc_max_pollfd - 1))
709 		svc_max_pollfd--;
710 	svc_npollfds--;
711 }
712 
713 /*
714  * delete a svc_pollfd entry; it shrinks the memory
715  * use remove_pollfd if you do not want to shrink
716  */
717 static void
718 delete_pollfd(int fd)
719 {
720 	remove_pollfd(fd);
721 	if (pollfd_shrinking && svc_max_pollfd <
722 	    (svc_pollfd_allocd - POLLFD_SHRINK)) {
723 		do {
724 			svc_pollfd_allocd -= POLLFD_SHRINK;
725 		} while (svc_max_pollfd < (svc_pollfd_allocd - POLLFD_SHRINK));
726 		svc_pollfd = realloc(svc_pollfd,
727 		    sizeof (pollfd_t) * svc_pollfd_allocd);
728 		if (svc_pollfd == NULL) {
729 			syslog(LOG_ERR, "delete_pollfd: out of memory");
730 			_exit(1);
731 		}
732 	}
733 }
734 
735 
736 /*
737  * Activate a transport handle.
738  */
739 void
740 xprt_register(const SVCXPRT *xprt)
741 {
742 	int fd = xprt->xp_fd;
743 #ifdef CALLBACK
744 	extern void (*_svc_getreqset_proc)();
745 #endif
746 /* VARIABLES PROTECTED BY svc_fd_lock: svc_xports, svc_fdset */
747 
748 	(void) rw_wrlock(&svc_fd_lock);
749 	if (svc_xports == NULL) {
750 		/* allocate some small amount first */
751 		svc_xports = calloc(FD_INCREMENT,  sizeof (SVCXPRT *));
752 		if (svc_xports == NULL) {
753 			syslog(LOG_ERR, "xprt_register: out of memory");
754 			_exit(1);
755 		}
756 		nsvc_xports = FD_INCREMENT;
757 
758 #ifdef CALLBACK
759 		/*
760 		 * XXX: This code does not keep track of the server state.
761 		 *
762 		 * This provides for callback support.	When a client
763 		 * recv's a call from another client on the server fd's,
764 		 * it calls _svc_getreqset_proc() which would return
765 		 * after serving all the server requests.  Also look under
766 		 * clnt_dg.c and clnt_vc.c  (clnt_call part of it)
767 		 */
768 		_svc_getreqset_proc = svc_getreq_poll;
769 #endif
770 	}
771 
772 	while (fd >= nsvc_xports) {
773 		SVCXPRT **tmp_xprts = svc_xports;
774 
775 		/* time to expand svc_xprts */
776 		tmp_xprts = realloc(svc_xports,
777 		    sizeof (SVCXPRT *) * (nsvc_xports + FD_INCREMENT));
778 		if (tmp_xprts == NULL) {
779 			syslog(LOG_ERR, "xprt_register : out of memory.");
780 			_exit(1);
781 		}
782 
783 		svc_xports = tmp_xprts;
784 		(void) memset(&svc_xports[nsvc_xports], 0,
785 		    sizeof (SVCXPRT *) * FD_INCREMENT);
786 		nsvc_xports += FD_INCREMENT;
787 	}
788 
789 	svc_xports[fd] = (SVCXPRT *)xprt;
790 
791 	add_pollfd(fd, MASKVAL);
792 
793 	if (svc_polling) {
794 		char dummy;
795 
796 		/*
797 		 * This happens only in one of the MT modes.
798 		 * Wake up poller.
799 		 */
800 		(void) write(svc_pipe[1], &dummy, sizeof (dummy));
801 	}
802 	/*
803 	 * If already dispatching door based services, start
804 	 * dispatching TLI based services now.
805 	 */
806 	(void) mutex_lock(&svc_door_mutex);
807 	if (svc_ndoorfds > 0)
808 		(void) cond_signal(&svc_door_waitcv);
809 	(void) mutex_unlock(&svc_door_mutex);
810 
811 	if (svc_xdrs == NULL) {
812 		/* allocate initial chunk */
813 		svc_xdrs = calloc(FD_INCREMENT, sizeof (XDR *));
814 		if (svc_xdrs != NULL)
815 			nsvc_xdrs = FD_INCREMENT;
816 		else {
817 			syslog(LOG_ERR, "xprt_register : out of memory.");
818 			_exit(1);
819 		}
820 	}
821 	(void) rw_unlock(&svc_fd_lock);
822 }
823 
824 /*
825  * De-activate a transport handle.
826  */
827 void
828 __xprt_unregister_private(const SVCXPRT *xprt, bool_t lock_not_held)
829 {
830 	int fd = xprt->xp_fd;
831 
832 	if (lock_not_held)
833 		(void) rw_wrlock(&svc_fd_lock);
834 	if ((fd < nsvc_xports) && (svc_xports[fd] == xprt)) {
835 		svc_xports[fd] = NULL;
836 		delete_pollfd(fd);
837 	}
838 	if (lock_not_held)
839 		(void) rw_unlock(&svc_fd_lock);
840 	__svc_rm_from_xlist(&_svc_xprtlist, xprt, &xprtlist_lock);
841 }
842 
843 void
844 xprt_unregister(const SVCXPRT *xprt)
845 {
846 	__xprt_unregister_private(xprt, TRUE);
847 }
848 
849 /* ********************** CALLOUT list related stuff ************* */
850 
851 /*
852  * Add a service program to the callout list.
853  * The dispatch routine will be called when a rpc request for this
854  * program number comes in.
855  */
856 bool_t
857 svc_reg(const SVCXPRT *xprt, const rpcprog_t prog, const rpcvers_t vers,
858 			void (*dispatch)(), const struct netconfig *nconf)
859 {
860 	struct svc_callout *prev;
861 	struct svc_callout *s, **s2;
862 	struct netconfig *tnconf;
863 	char *netid = NULL;
864 	int flag = 0;
865 
866 /* VARIABLES PROTECTED BY svc_lock: s, prev, svc_head */
867 
868 	if (xprt->xp_netid) {
869 		netid = strdup(xprt->xp_netid);
870 		flag = 1;
871 	} else if (nconf && nconf->nc_netid) {
872 		netid = strdup(nconf->nc_netid);
873 		flag = 1;
874 	} else if ((tnconf = __rpcfd_to_nconf(xprt->xp_fd, xprt->xp_type))
875 	    != NULL) {
876 		netid = strdup(tnconf->nc_netid);
877 		flag = 1;
878 		freenetconfigent(tnconf);
879 	} /* must have been created with svc_raw_create */
880 	if ((netid == NULL) && (flag == 1))
881 		return (FALSE);
882 
883 	(void) rw_wrlock(&svc_lock);
884 	if ((s = svc_find(prog, vers, &prev, netid)) != NULL_SVC) {
885 		if (netid)
886 			free(netid);
887 		if (s->sc_dispatch == dispatch)
888 			goto rpcb_it; /* he is registering another xptr */
889 		(void) rw_unlock(&svc_lock);
890 		return (FALSE);
891 	}
892 	s = malloc(sizeof (struct svc_callout));
893 	if (s == NULL) {
894 		if (netid)
895 			free(netid);
896 		(void) rw_unlock(&svc_lock);
897 		return (FALSE);
898 	}
899 
900 	s->sc_prog = prog;
901 	s->sc_vers = vers;
902 	s->sc_dispatch = dispatch;
903 	s->sc_netid = netid;
904 	s->sc_next = NULL;
905 
906 	/*
907 	 * The ordering of transports is such that the most frequently used
908 	 * one appears first.  So add the new entry to the end of the list.
909 	 */
910 	for (s2 = &svc_head; *s2 != NULL; s2 = &(*s2)->sc_next)
911 		;
912 	*s2 = s;
913 
914 	if ((xprt->xp_netid == NULL) && (flag == 1) && netid)
915 		if ((((SVCXPRT *)xprt)->xp_netid = strdup(netid)) == NULL) {
916 			syslog(LOG_ERR, "svc_reg : strdup failed.");
917 			free(netid);
918 			free(s);
919 			*s2 = NULL;
920 			(void) rw_unlock(&svc_lock);
921 			return (FALSE);
922 		}
923 
924 rpcb_it:
925 	(void) rw_unlock(&svc_lock);
926 
927 	/* now register the information with the local binder service */
928 	if (nconf)
929 		return (rpcb_set(prog, vers, nconf, &xprt->xp_ltaddr));
930 	return (TRUE);
931 	/*NOTREACHED*/
932 }
933 
934 /*
935  * Remove a service program from the callout list.
936  */
937 void
938 svc_unreg(const rpcprog_t prog, const rpcvers_t vers)
939 {
940 	struct svc_callout *prev;
941 	struct svc_callout *s;
942 
943 	/* unregister the information anyway */
944 	(void) rpcb_unset(prog, vers, NULL);
945 
946 	(void) rw_wrlock(&svc_lock);
947 	while ((s = svc_find(prog, vers, &prev, NULL)) != NULL_SVC) {
948 		if (prev == NULL_SVC) {
949 			svc_head = s->sc_next;
950 		} else {
951 			prev->sc_next = s->sc_next;
952 		}
953 		s->sc_next = NULL_SVC;
954 		if (s->sc_netid)
955 			free(s->sc_netid);
956 		free(s);
957 	}
958 	(void) rw_unlock(&svc_lock);
959 }
960 
961 #ifdef PORTMAP
962 /*
963  * Add a service program to the callout list.
964  * The dispatch routine will be called when a rpc request for this
965  * program number comes in.
966  * For version 2 portmappers.
967  */
968 bool_t
969 svc_register(SVCXPRT *xprt, rpcprog_t prog, rpcvers_t vers,
970 					void (*dispatch)(), int protocol)
971 {
972 	struct svc_callout *prev;
973 	struct svc_callout *s;
974 	struct netconfig *nconf;
975 	char *netid = NULL;
976 	int flag = 0;
977 
978 	if (xprt->xp_netid) {
979 		netid = strdup(xprt->xp_netid);
980 		flag = 1;
981 	} else if ((ioctl(xprt->xp_fd, I_FIND, "timod") > 0) && ((nconf =
982 	    __rpcfd_to_nconf(xprt->xp_fd, xprt->xp_type)) != NULL)) {
983 		/* fill in missing netid field in SVCXPRT */
984 		netid = strdup(nconf->nc_netid);
985 		flag = 1;
986 		freenetconfigent(nconf);
987 	} /* must be svc_raw_create */
988 
989 	if ((netid == NULL) && (flag == 1))
990 		return (FALSE);
991 
992 	(void) rw_wrlock(&svc_lock);
993 	if ((s = svc_find(prog, vers, &prev, netid)) != NULL_SVC) {
994 		if (netid)
995 			free(netid);
996 		if (s->sc_dispatch == dispatch)
997 			goto pmap_it;  /* he is registering another xptr */
998 		(void) rw_unlock(&svc_lock);
999 		return (FALSE);
1000 	}
1001 	s = malloc(sizeof (struct svc_callout));
1002 	if (s == (struct svc_callout *)0) {
1003 		if (netid)
1004 			free(netid);
1005 		(void) rw_unlock(&svc_lock);
1006 		return (FALSE);
1007 	}
1008 	s->sc_prog = prog;
1009 	s->sc_vers = vers;
1010 	s->sc_dispatch = dispatch;
1011 	s->sc_netid = netid;
1012 	s->sc_next = svc_head;
1013 	svc_head = s;
1014 
1015 	if ((xprt->xp_netid == NULL) && (flag == 1) && netid)
1016 		if ((xprt->xp_netid = strdup(netid)) == NULL) {
1017 			syslog(LOG_ERR, "svc_register : strdup failed.");
1018 			free(netid);
1019 			svc_head = s->sc_next;
1020 			free(s);
1021 			(void) rw_unlock(&svc_lock);
1022 			return (FALSE);
1023 		}
1024 
1025 pmap_it:
1026 	(void) rw_unlock(&svc_lock);
1027 	/* now register the information with the local binder service */
1028 	if (protocol)
1029 		return (pmap_set(prog, vers, protocol, xprt->xp_port));
1030 	return (TRUE);
1031 }
1032 
1033 /*
1034  * Remove a service program from the callout list.
1035  * For version 2 portmappers.
1036  */
1037 void
1038 svc_unregister(rpcprog_t prog, rpcvers_t vers)
1039 {
1040 	struct svc_callout *prev;
1041 	struct svc_callout *s;
1042 
1043 	(void) rw_wrlock(&svc_lock);
1044 	while ((s = svc_find(prog, vers, &prev, NULL)) != NULL_SVC) {
1045 		if (prev == NULL_SVC) {
1046 			svc_head = s->sc_next;
1047 		} else {
1048 			prev->sc_next = s->sc_next;
1049 		}
1050 		s->sc_next = NULL_SVC;
1051 		if (s->sc_netid)
1052 			free(s->sc_netid);
1053 		free(s);
1054 		/* unregister the information with the local binder service */
1055 		(void) pmap_unset(prog, vers);
1056 	}
1057 	(void) rw_unlock(&svc_lock);
1058 }
1059 #endif /* PORTMAP */
1060 
1061 /*
1062  * Search the callout list for a program number, return the callout
1063  * struct.
1064  * Also check for transport as well.  Many routines such as svc_unreg
1065  * dont give any corresponding transport, so dont check for transport if
1066  * netid == NULL
1067  */
1068 static struct svc_callout *
1069 svc_find(rpcprog_t prog, rpcvers_t vers, struct svc_callout **prev, char *netid)
1070 {
1071 	struct svc_callout *s, *p;
1072 
1073 /* WRITE LOCK HELD ON ENTRY: svc_lock */
1074 
1075 /*	assert(RW_WRITE_HELD(&svc_lock)); */
1076 	p = NULL_SVC;
1077 	for (s = svc_head; s != NULL_SVC; s = s->sc_next) {
1078 		if (((s->sc_prog == prog) && (s->sc_vers == vers)) &&
1079 		    ((netid == NULL) || (s->sc_netid == NULL) ||
1080 		    (strcmp(netid, s->sc_netid) == 0)))
1081 			break;
1082 		p = s;
1083 	}
1084 	*prev = p;
1085 	return (s);
1086 }
1087 
1088 
1089 /* ******************* REPLY GENERATION ROUTINES  ************ */
1090 
1091 /*
1092  * Send a reply to an rpc request
1093  */
1094 bool_t
1095 svc_sendreply(const SVCXPRT *xprt, const xdrproc_t xdr_results,
1096 						const caddr_t xdr_location)
1097 {
1098 	struct rpc_msg rply;
1099 
1100 	rply.rm_direction = REPLY;
1101 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1102 	rply.acpted_rply.ar_verf = xprt->xp_verf;
1103 	rply.acpted_rply.ar_stat = SUCCESS;
1104 	rply.acpted_rply.ar_results.where = xdr_location;
1105 	rply.acpted_rply.ar_results.proc = xdr_results;
1106 	return (SVC_REPLY((SVCXPRT *)xprt, &rply));
1107 }
1108 
1109 /*
1110  * No procedure error reply
1111  */
1112 void
1113 svcerr_noproc(const SVCXPRT *xprt)
1114 {
1115 	struct rpc_msg rply;
1116 
1117 	rply.rm_direction = REPLY;
1118 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1119 	rply.acpted_rply.ar_verf = xprt->xp_verf;
1120 	rply.acpted_rply.ar_stat = PROC_UNAVAIL;
1121 	SVC_REPLY((SVCXPRT *)xprt, &rply);
1122 }
1123 
1124 /*
1125  * Can't decode args error reply
1126  */
1127 void
1128 svcerr_decode(const SVCXPRT *xprt)
1129 {
1130 	struct rpc_msg rply;
1131 
1132 	rply.rm_direction = REPLY;
1133 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1134 	rply.acpted_rply.ar_verf = xprt->xp_verf;
1135 	rply.acpted_rply.ar_stat = GARBAGE_ARGS;
1136 	SVC_REPLY((SVCXPRT *)xprt, &rply);
1137 }
1138 
1139 /*
1140  * Some system error
1141  */
1142 void
1143 svcerr_systemerr(const SVCXPRT *xprt)
1144 {
1145 	struct rpc_msg rply;
1146 
1147 	rply.rm_direction = REPLY;
1148 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1149 	rply.acpted_rply.ar_verf = xprt->xp_verf;
1150 	rply.acpted_rply.ar_stat = SYSTEM_ERR;
1151 	SVC_REPLY((SVCXPRT *)xprt, &rply);
1152 }
1153 
1154 /*
1155  * Tell RPC package to not complain about version errors to the client.	 This
1156  * is useful when revving broadcast protocols that sit on a fixed address.
1157  * There is really one (or should be only one) example of this kind of
1158  * protocol: the portmapper (or rpc binder).
1159  */
1160 void
1161 __svc_versquiet_on(const SVCXPRT *xprt)
1162 {
1163 /* LINTED pointer alignment */
1164 	svc_flags(xprt) |= SVC_VERSQUIET;
1165 }
1166 
1167 void
1168 __svc_versquiet_off(const SVCXPRT *xprt)
1169 {
1170 /* LINTED pointer alignment */
1171 	svc_flags(xprt) &= ~SVC_VERSQUIET;
1172 }
1173 
1174 void
1175 svc_versquiet(const SVCXPRT *xprt)
1176 {
1177 	__svc_versquiet_on(xprt);
1178 }
1179 
1180 int
1181 __svc_versquiet_get(const SVCXPRT *xprt)
1182 {
1183 /* LINTED pointer alignment */
1184 	return (svc_flags(xprt) & SVC_VERSQUIET);
1185 }
1186 
1187 /*
1188  * Authentication error reply
1189  */
1190 void
1191 svcerr_auth(const SVCXPRT *xprt, const enum auth_stat why)
1192 {
1193 	struct rpc_msg rply;
1194 
1195 	rply.rm_direction = REPLY;
1196 	rply.rm_reply.rp_stat = MSG_DENIED;
1197 	rply.rjcted_rply.rj_stat = AUTH_ERROR;
1198 	rply.rjcted_rply.rj_why = why;
1199 	SVC_REPLY((SVCXPRT *)xprt, &rply);
1200 }
1201 
1202 /*
1203  * Auth too weak error reply
1204  */
1205 void
1206 svcerr_weakauth(const SVCXPRT *xprt)
1207 {
1208 	svcerr_auth(xprt, AUTH_TOOWEAK);
1209 }
1210 
1211 /*
1212  * Program unavailable error reply
1213  */
1214 void
1215 svcerr_noprog(const SVCXPRT *xprt)
1216 {
1217 	struct rpc_msg rply;
1218 
1219 	rply.rm_direction = REPLY;
1220 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1221 	rply.acpted_rply.ar_verf = xprt->xp_verf;
1222 	rply.acpted_rply.ar_stat = PROG_UNAVAIL;
1223 	SVC_REPLY((SVCXPRT *)xprt, &rply);
1224 }
1225 
1226 /*
1227  * Program version mismatch error reply
1228  */
1229 void
1230 svcerr_progvers(const SVCXPRT *xprt, const rpcvers_t low_vers,
1231 						const rpcvers_t high_vers)
1232 {
1233 	struct rpc_msg rply;
1234 
1235 	rply.rm_direction = REPLY;
1236 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1237 	rply.acpted_rply.ar_verf = xprt->xp_verf;
1238 	rply.acpted_rply.ar_stat = PROG_MISMATCH;
1239 	rply.acpted_rply.ar_vers.low = low_vers;
1240 	rply.acpted_rply.ar_vers.high = high_vers;
1241 	SVC_REPLY((SVCXPRT *)xprt, &rply);
1242 }
1243 
1244 /* ******************* SERVER INPUT STUFF ******************* */
1245 
1246 /*
1247  * Get server side input from some transport.
1248  *
1249  * Statement of authentication parameters management:
1250  * This function owns and manages all authentication parameters, specifically
1251  * the "raw" parameters (msg.rm_call.cb_cred and msg.rm_call.cb_verf) and
1252  * the "cooked" credentials (rqst->rq_clntcred).
1253  * However, this function does not know the structure of the cooked
1254  * credentials, so it make the following assumptions:
1255  *   a) the structure is contiguous (no pointers), and
1256  *   b) the cred structure size does not exceed RQCRED_SIZE bytes.
1257  * In all events, all three parameters are freed upon exit from this routine.
1258  * The storage is trivially management on the call stack in user land, but
1259  * is mallocated in kernel land.
1260  */
1261 
1262 void
1263 svc_getreq(int rdfds)
1264 {
1265 	fd_set readfds;
1266 
1267 	FD_ZERO(&readfds);
1268 	readfds.fds_bits[0] = rdfds;
1269 	svc_getreqset(&readfds);
1270 }
1271 
1272 void
1273 svc_getreqset(fd_set *readfds)
1274 {
1275 	int i;
1276 
1277 	for (i = 0; i < svc_max_fd; i++) {
1278 		/* fd has input waiting */
1279 		if (FD_ISSET(i, readfds))
1280 			svc_getreq_common(i);
1281 	}
1282 }
1283 
1284 void
1285 svc_getreq_poll(struct pollfd *pfdp, const int pollretval)
1286 {
1287 	int i;
1288 	int fds_found;
1289 
1290 	for (i = fds_found = 0; fds_found < pollretval; i++) {
1291 		struct pollfd *p = &pfdp[i];
1292 
1293 		if (p->revents) {
1294 			/* fd has input waiting */
1295 			fds_found++;
1296 			/*
1297 			 *	We assume that this function is only called
1298 			 *	via someone select()ing from svc_fdset or
1299 			 *	poll()ing from svc_pollset[].  Thus it's safe
1300 			 *	to handle the POLLNVAL event by simply turning
1301 			 *	the corresponding bit off in svc_fdset.  The
1302 			 *	svc_pollset[] array is derived from svc_fdset
1303 			 *	and so will also be updated eventually.
1304 			 *
1305 			 *	XXX Should we do an xprt_unregister() instead?
1306 			 */
1307 			/* Handle user callback */
1308 			if (__is_a_userfd(p->fd) == TRUE) {
1309 				(void) rw_rdlock(&svc_fd_lock);
1310 				__svc_getreq_user(p);
1311 				(void) rw_unlock(&svc_fd_lock);
1312 			} else {
1313 				if (p->revents & POLLNVAL) {
1314 					(void) rw_wrlock(&svc_fd_lock);
1315 					remove_pollfd(p->fd);	/* XXX */
1316 					(void) rw_unlock(&svc_fd_lock);
1317 				} else {
1318 					svc_getreq_common(p->fd);
1319 				}
1320 			}
1321 		}
1322 	}
1323 }
1324 
1325 void
1326 svc_getreq_common(const int fd)
1327 {
1328 	SVCXPRT *xprt;
1329 	enum xprt_stat stat;
1330 	struct rpc_msg *msg;
1331 	struct svc_req *r;
1332 	char *cred_area;
1333 
1334 	(void) rw_rdlock(&svc_fd_lock);
1335 
1336 	/* HANDLE USER CALLBACK */
1337 	if (__is_a_userfd(fd) == TRUE) {
1338 		struct pollfd virtual_fd;
1339 
1340 		virtual_fd.events = virtual_fd.revents = (short)0xFFFF;
1341 		virtual_fd.fd = fd;
1342 		__svc_getreq_user(&virtual_fd);
1343 		(void) rw_unlock(&svc_fd_lock);
1344 		return;
1345 	}
1346 
1347 	/*
1348 	 * The transport associated with this fd could have been
1349 	 * removed from svc_timeout_nonblock_xprt_and_LRU, for instance.
1350 	 * This can happen if two or more fds get read events and are
1351 	 * passed to svc_getreq_poll/set, the first fd is seviced by
1352 	 * the dispatch routine and cleans up any dead transports.  If
1353 	 * one of the dead transports removed is the other fd that
1354 	 * had a read event then svc_getreq_common() will be called with no
1355 	 * xprt associated with the fd that had the original read event.
1356 	 */
1357 	if ((fd >= nsvc_xports) || (xprt = svc_xports[fd]) == NULL) {
1358 		(void) rw_unlock(&svc_fd_lock);
1359 		return;
1360 	}
1361 	(void) rw_unlock(&svc_fd_lock);
1362 /* LINTED pointer alignment */
1363 	msg = SVCEXT(xprt)->msg;
1364 /* LINTED pointer alignment */
1365 	r = SVCEXT(xprt)->req;
1366 /* LINTED pointer alignment */
1367 	cred_area = SVCEXT(xprt)->cred_area;
1368 	msg->rm_call.cb_cred.oa_base = cred_area;
1369 	msg->rm_call.cb_verf.oa_base = &(cred_area[MAX_AUTH_BYTES]);
1370 	r->rq_clntcred = &(cred_area[2 * MAX_AUTH_BYTES]);
1371 
1372 	/* receive msgs from xprtprt (support batch calls) */
1373 	do {
1374 		bool_t dispatch;
1375 
1376 		if (dispatch = SVC_RECV(xprt, msg))
1377 			(void) _svc_prog_dispatch(xprt, msg, r);
1378 		/*
1379 		 * Check if the xprt has been disconnected in a recursive call
1380 		 * in the service dispatch routine. If so, then break
1381 		 */
1382 		(void) rw_rdlock(&svc_fd_lock);
1383 		if (xprt != svc_xports[fd]) {
1384 			(void) rw_unlock(&svc_fd_lock);
1385 			break;
1386 		}
1387 		(void) rw_unlock(&svc_fd_lock);
1388 
1389 		/*
1390 		 * Call cleanup procedure if set.
1391 		 */
1392 		if (__proc_cleanup_cb != NULL && dispatch)
1393 			(*__proc_cleanup_cb)(xprt);
1394 
1395 		if ((stat = SVC_STAT(xprt)) == XPRT_DIED) {
1396 			SVC_DESTROY(xprt);
1397 			break;
1398 		}
1399 	} while (stat == XPRT_MOREREQS);
1400 }
1401 
1402 int
1403 _svc_prog_dispatch(SVCXPRT *xprt, struct rpc_msg *msg, struct svc_req *r)
1404 {
1405 	struct svc_callout *s;
1406 	enum auth_stat why;
1407 	int prog_found;
1408 	rpcvers_t low_vers;
1409 	rpcvers_t high_vers;
1410 	void (*disp_fn)();
1411 
1412 	r->rq_xprt = xprt;
1413 	r->rq_prog = msg->rm_call.cb_prog;
1414 	r->rq_vers = msg->rm_call.cb_vers;
1415 	r->rq_proc = msg->rm_call.cb_proc;
1416 	r->rq_cred = msg->rm_call.cb_cred;
1417 /* LINTED pointer alignment */
1418 	SVC_XP_AUTH(r->rq_xprt).svc_ah_ops = svc_auth_any_ops;
1419 /* LINTED pointer alignment */
1420 	SVC_XP_AUTH(r->rq_xprt).svc_ah_private = NULL;
1421 
1422 	/* first authenticate the message */
1423 	/* Check for null flavor and bypass these calls if possible */
1424 
1425 	if (msg->rm_call.cb_cred.oa_flavor == AUTH_NULL) {
1426 		r->rq_xprt->xp_verf.oa_flavor = _null_auth.oa_flavor;
1427 		r->rq_xprt->xp_verf.oa_length = 0;
1428 	} else {
1429 		bool_t no_dispatch;
1430 
1431 		if ((why = __gss_authenticate(r, msg,
1432 		    &no_dispatch)) != AUTH_OK) {
1433 			svcerr_auth(xprt, why);
1434 			return (0);
1435 		}
1436 		if (no_dispatch)
1437 			return (0);
1438 	}
1439 	/* match message with a registered service */
1440 	prog_found = FALSE;
1441 	low_vers = (rpcvers_t)(0 - 1);
1442 	high_vers = 0;
1443 	(void) rw_rdlock(&svc_lock);
1444 	for (s = svc_head; s != NULL_SVC; s = s->sc_next) {
1445 		if (s->sc_prog == r->rq_prog) {
1446 			prog_found = TRUE;
1447 			if (s->sc_vers == r->rq_vers) {
1448 				if ((xprt->xp_netid == NULL) ||
1449 				    (s->sc_netid == NULL) ||
1450 				    (strcmp(xprt->xp_netid,
1451 				    s->sc_netid) == 0)) {
1452 					disp_fn = (*s->sc_dispatch);
1453 					(void) rw_unlock(&svc_lock);
1454 					disp_fn(r, xprt);
1455 					return (1);
1456 				}
1457 				prog_found = FALSE;
1458 			}
1459 			if (s->sc_vers < low_vers)
1460 				low_vers = s->sc_vers;
1461 			if (s->sc_vers > high_vers)
1462 				high_vers = s->sc_vers;
1463 		}		/* found correct program */
1464 	}
1465 	(void) rw_unlock(&svc_lock);
1466 
1467 	/*
1468 	 * if we got here, the program or version
1469 	 * is not served ...
1470 	 */
1471 	if (prog_found) {
1472 /* LINTED pointer alignment */
1473 		if (!version_keepquiet(xprt))
1474 			svcerr_progvers(xprt, low_vers, high_vers);
1475 	} else {
1476 		svcerr_noprog(xprt);
1477 	}
1478 	return (0);
1479 }
1480 
1481 /* ******************* SVCXPRT allocation and deallocation ***************** */
1482 
1483 /*
1484  * svc_xprt_alloc() - allocate a service transport handle
1485  */
1486 SVCXPRT *
1487 svc_xprt_alloc(void)
1488 {
1489 	SVCXPRT		*xprt = NULL;
1490 	SVCXPRT_EXT	*xt = NULL;
1491 	SVCXPRT_LIST	*xlist = NULL;
1492 	struct rpc_msg	*msg = NULL;
1493 	struct svc_req	*req = NULL;
1494 	char		*cred_area = NULL;
1495 
1496 	if ((xprt = calloc(1, sizeof (SVCXPRT))) == NULL)
1497 		goto err_exit;
1498 
1499 	if ((xt = calloc(1, sizeof (SVCXPRT_EXT))) == NULL)
1500 		goto err_exit;
1501 	xprt->xp_p3 = (caddr_t)xt; /* SVCEXT(xprt) = xt */
1502 
1503 	if ((xlist = calloc(1, sizeof (SVCXPRT_LIST))) == NULL)
1504 		goto err_exit;
1505 	xt->my_xlist = xlist;
1506 	xlist->xprt = xprt;
1507 
1508 	if ((msg = malloc(sizeof (struct rpc_msg))) == NULL)
1509 		goto err_exit;
1510 	xt->msg = msg;
1511 
1512 	if ((req = malloc(sizeof (struct svc_req))) == NULL)
1513 		goto err_exit;
1514 	xt->req = req;
1515 
1516 	if ((cred_area = malloc(2*MAX_AUTH_BYTES + RQCRED_SIZE)) == NULL)
1517 		goto err_exit;
1518 	xt->cred_area = cred_area;
1519 
1520 /* LINTED pointer alignment */
1521 	(void) mutex_init(&svc_send_mutex(xprt), USYNC_THREAD, (void *)0);
1522 	return (xprt);
1523 
1524 err_exit:
1525 	svc_xprt_free(xprt);
1526 	return (NULL);
1527 }
1528 
1529 
1530 /*
1531  * svc_xprt_free() - free a service handle
1532  */
1533 void
1534 svc_xprt_free(SVCXPRT *xprt)
1535 {
1536 /* LINTED pointer alignment */
1537 	SVCXPRT_EXT	*xt = xprt ? SVCEXT(xprt) : NULL;
1538 	SVCXPRT_LIST	*my_xlist = xt ? xt->my_xlist: NULL;
1539 	struct rpc_msg	*msg = xt ? xt->msg : NULL;
1540 	struct svc_req	*req = xt ? xt->req : NULL;
1541 	char		*cred_area = xt ? xt->cred_area : NULL;
1542 
1543 	if (xprt)
1544 		free(xprt);
1545 	if (xt)
1546 		free(xt);
1547 	if (my_xlist)
1548 		free(my_xlist);
1549 	if (msg)
1550 		free(msg);
1551 	if (req)
1552 		free(req);
1553 	if (cred_area)
1554 		free(cred_area);
1555 }
1556 
1557 
1558 /*
1559  * svc_xprt_destroy() - free parent and child xprt list
1560  */
1561 void
1562 svc_xprt_destroy(SVCXPRT *xprt)
1563 {
1564 	SVCXPRT_LIST	*xlist, *xnext = NULL;
1565 	int		type;
1566 
1567 /* LINTED pointer alignment */
1568 	if (SVCEXT(xprt)->parent)
1569 /* LINTED pointer alignment */
1570 		xprt = SVCEXT(xprt)->parent;
1571 /* LINTED pointer alignment */
1572 	type = svc_type(xprt);
1573 /* LINTED pointer alignment */
1574 	for (xlist = SVCEXT(xprt)->my_xlist; xlist != NULL; xlist = xnext) {
1575 		xnext = xlist->next;
1576 		xprt = xlist->xprt;
1577 		switch (type) {
1578 		case SVC_DGRAM:
1579 			svc_dg_xprtfree(xprt);
1580 			break;
1581 		case SVC_RENDEZVOUS:
1582 			svc_vc_xprtfree(xprt);
1583 			break;
1584 		case SVC_CONNECTION:
1585 			svc_fd_xprtfree(xprt);
1586 			break;
1587 		case SVC_DOOR:
1588 			svc_door_xprtfree(xprt);
1589 			break;
1590 		}
1591 	}
1592 }
1593 
1594 
1595 /*
1596  * svc_copy() - make a copy of parent
1597  */
1598 SVCXPRT *
1599 svc_copy(SVCXPRT *xprt)
1600 {
1601 /* LINTED pointer alignment */
1602 	switch (svc_type(xprt)) {
1603 	case SVC_DGRAM:
1604 		return (svc_dg_xprtcopy(xprt));
1605 	case SVC_RENDEZVOUS:
1606 		return (svc_vc_xprtcopy(xprt));
1607 	case SVC_CONNECTION:
1608 		return (svc_fd_xprtcopy(xprt));
1609 	}
1610 	return (NULL);
1611 }
1612 
1613 
1614 /*
1615  * _svc_destroy_private() - private SVC_DESTROY interface
1616  */
1617 void
1618 _svc_destroy_private(SVCXPRT *xprt)
1619 {
1620 /* LINTED pointer alignment */
1621 	switch (svc_type(xprt)) {
1622 	case SVC_DGRAM:
1623 		_svc_dg_destroy_private(xprt);
1624 		break;
1625 	case SVC_RENDEZVOUS:
1626 	case SVC_CONNECTION:
1627 		_svc_vc_destroy_private(xprt, TRUE);
1628 		break;
1629 	}
1630 }
1631 
1632 /*
1633  * svc_get_local_cred() - fetch local user credentials.  This always
1634  * works over doors based transports.  For local transports, this
1635  * does not yield correct results unless the __rpc_negotiate_uid()
1636  * call has been invoked to enable this feature.
1637  */
1638 bool_t
1639 svc_get_local_cred(SVCXPRT *xprt, svc_local_cred_t *lcred)
1640 {
1641 	/* LINTED pointer alignment */
1642 	if (svc_type(xprt) == SVC_DOOR)
1643 		return (__svc_get_door_cred(xprt, lcred));
1644 	return (__rpc_get_local_cred(xprt, lcred));
1645 }
1646 
1647 
1648 /* ******************* DUPLICATE ENTRY HANDLING ROUTINES ************** */
1649 
1650 /*
1651  * the dup cacheing routines below provide a cache of received
1652  * transactions. rpc service routines can use this to detect
1653  * retransmissions and re-send a non-failure response. Uses a
1654  * lru scheme to find entries to get rid of entries in the cache,
1655  * though only DUP_DONE entries are placed on the lru list.
1656  * the routines were written towards development of a generic
1657  * SVC_DUP() interface, which can be expanded to encompass the
1658  * svc_dg_enablecache() routines as well. the cache is currently
1659  * private to the automounter.
1660  */
1661 
1662 
1663 /* dupcache header contains xprt specific information */
1664 struct dupcache {
1665 	rwlock_t	dc_lock;
1666 	time_t		dc_time;
1667 	int		dc_buckets;
1668 	int		dc_maxsz;
1669 	int		dc_basis;
1670 	struct dupreq 	*dc_mru;
1671 	struct dupreq	**dc_hashtbl;
1672 };
1673 
1674 /*
1675  * private duplicate cache request routines
1676  */
1677 static int __svc_dupcache_check(struct svc_req *, caddr_t *, uint_t *,
1678 		struct dupcache *, uint32_t, uint32_t);
1679 static struct dupreq *__svc_dupcache_victim(struct dupcache *, time_t);
1680 static int __svc_dupcache_enter(struct svc_req *, struct dupreq *,
1681 		struct dupcache *, uint32_t, uint32_t, time_t);
1682 static int __svc_dupcache_update(struct svc_req *, caddr_t, uint_t, int,
1683 		struct dupcache *, uint32_t, uint32_t);
1684 #ifdef DUP_DEBUG
1685 static void __svc_dupcache_debug(struct dupcache *);
1686 #endif /* DUP_DEBUG */
1687 
1688 /* default parameters for the dupcache */
1689 #define	DUPCACHE_BUCKETS	257
1690 #define	DUPCACHE_TIME		900
1691 #define	DUPCACHE_MAXSZ		INT_MAX
1692 
1693 /*
1694  * __svc_dupcache_init(void *condition, int basis, char *xprt_cache)
1695  * initialize the duprequest cache and assign it to the xprt_cache
1696  * Use default values depending on the cache condition and basis.
1697  * return TRUE on success and FALSE on failure
1698  */
1699 bool_t
1700 __svc_dupcache_init(void *condition, int basis, char **xprt_cache)
1701 {
1702 	static mutex_t initdc_lock = DEFAULTMUTEX;
1703 	int i;
1704 	struct dupcache *dc;
1705 
1706 	(void) mutex_lock(&initdc_lock);
1707 	if (*xprt_cache != NULL) { /* do only once per xprt */
1708 		(void) mutex_unlock(&initdc_lock);
1709 		syslog(LOG_ERR,
1710 		    "__svc_dupcache_init: multiply defined dup cache");
1711 		return (FALSE);
1712 	}
1713 
1714 	switch (basis) {
1715 	case DUPCACHE_FIXEDTIME:
1716 		dc = malloc(sizeof (struct dupcache));
1717 		if (dc == NULL) {
1718 			(void) mutex_unlock(&initdc_lock);
1719 			syslog(LOG_ERR,
1720 			    "__svc_dupcache_init: memory alloc failed");
1721 			return (FALSE);
1722 		}
1723 		(void) rwlock_init(&(dc->dc_lock), USYNC_THREAD, NULL);
1724 		if (condition != NULL)
1725 			dc->dc_time = *((time_t *)condition);
1726 		else
1727 			dc->dc_time = DUPCACHE_TIME;
1728 		dc->dc_buckets = DUPCACHE_BUCKETS;
1729 		dc->dc_maxsz = DUPCACHE_MAXSZ;
1730 		dc->dc_basis = basis;
1731 		dc->dc_mru = NULL;
1732 		dc->dc_hashtbl = malloc(dc->dc_buckets *
1733 		    sizeof (struct dupreq *));
1734 		if (dc->dc_hashtbl == NULL) {
1735 			free(dc);
1736 			(void) mutex_unlock(&initdc_lock);
1737 			syslog(LOG_ERR,
1738 			    "__svc_dupcache_init: memory alloc failed");
1739 			return (FALSE);
1740 		}
1741 		for (i = 0; i < DUPCACHE_BUCKETS; i++)
1742 			dc->dc_hashtbl[i] = NULL;
1743 		*xprt_cache = (char *)dc;
1744 		break;
1745 	default:
1746 		(void) mutex_unlock(&initdc_lock);
1747 		syslog(LOG_ERR,
1748 		    "__svc_dupcache_init: undefined dup cache basis");
1749 		return (FALSE);
1750 	}
1751 
1752 	(void) mutex_unlock(&initdc_lock);
1753 
1754 	return (TRUE);
1755 }
1756 
1757 /*
1758  * __svc_dup(struct svc_req *req, caddr_t *resp_buf, uint_t *resp_bufsz,
1759  *	char *xprt_cache)
1760  * searches the request cache. Creates an entry and returns DUP_NEW if
1761  * the request is not found in the cache.  If it is found, then it
1762  * returns the state of the request (in progress, drop, or done) and
1763  * also allocates, and passes back results to the user (if any) in
1764  * resp_buf, and its length in resp_bufsz. DUP_ERROR is returned on error.
1765  */
1766 int
1767 __svc_dup(struct svc_req *req, caddr_t *resp_buf, uint_t *resp_bufsz,
1768 	char *xprt_cache)
1769 {
1770 	uint32_t drxid, drhash;
1771 	int rc;
1772 	struct dupreq *dr = NULL;
1773 	time_t timenow = time(NULL);
1774 
1775 	/* LINTED pointer alignment */
1776 	struct dupcache *dc = (struct dupcache *)xprt_cache;
1777 
1778 	if (dc == NULL) {
1779 		syslog(LOG_ERR, "__svc_dup: undefined cache");
1780 		return (DUP_ERROR);
1781 	}
1782 
1783 	/* get the xid of the request */
1784 	if (SVC_CONTROL(req->rq_xprt, SVCGET_XID, (void*)&drxid) == FALSE) {
1785 		syslog(LOG_ERR, "__svc_dup: xid error");
1786 		return (DUP_ERROR);
1787 	}
1788 	drhash = drxid % dc->dc_buckets;
1789 
1790 	if ((rc = __svc_dupcache_check(req, resp_buf, resp_bufsz, dc, drxid,
1791 	    drhash)) != DUP_NEW)
1792 		return (rc);
1793 
1794 	if ((dr = __svc_dupcache_victim(dc, timenow)) == NULL)
1795 		return (DUP_ERROR);
1796 
1797 	if ((rc = __svc_dupcache_enter(req, dr, dc, drxid, drhash, timenow))
1798 	    == DUP_ERROR)
1799 		return (rc);
1800 
1801 	return (DUP_NEW);
1802 }
1803 
1804 
1805 
1806 /*
1807  * __svc_dupcache_check(struct svc_req *req, caddr_t *resp_buf,
1808  *		uint_t *resp_bufsz,truct dupcache *dc, uint32_t drxid,
1809  * 		uint32_t drhash)
1810  * Checks to see whether an entry already exists in the cache. If it does
1811  * copy back into the resp_buf, if appropriate. Return the status of
1812  * the request, or DUP_NEW if the entry is not in the cache
1813  */
1814 static int
1815 __svc_dupcache_check(struct svc_req *req, caddr_t *resp_buf, uint_t *resp_bufsz,
1816 		struct dupcache *dc, uint32_t drxid, uint32_t drhash)
1817 {
1818 	struct dupreq *dr = NULL;
1819 
1820 	(void) rw_rdlock(&(dc->dc_lock));
1821 	dr = dc->dc_hashtbl[drhash];
1822 	while (dr != NULL) {
1823 		if (dr->dr_xid == drxid &&
1824 		    dr->dr_proc == req->rq_proc &&
1825 		    dr->dr_prog == req->rq_prog &&
1826 		    dr->dr_vers == req->rq_vers &&
1827 		    dr->dr_addr.len == req->rq_xprt->xp_rtaddr.len &&
1828 		    memcmp(dr->dr_addr.buf, req->rq_xprt->xp_rtaddr.buf,
1829 		    dr->dr_addr.len) == 0) { /* entry found */
1830 			if (dr->dr_hash != drhash) {
1831 				/* sanity check */
1832 				(void) rw_unlock((&dc->dc_lock));
1833 				syslog(LOG_ERR,
1834 				    "\n__svc_dupdone: hashing error");
1835 				return (DUP_ERROR);
1836 			}
1837 
1838 			/*
1839 			 * return results for requests on lru list, if
1840 			 * appropriate requests must be DUP_DROP or DUP_DONE
1841 			 * to have a result. A NULL buffer in the cache
1842 			 * implies no results were sent during dupdone.
1843 			 * A NULL buffer in the call implies not interested
1844 			 * in results.
1845 			 */
1846 			if (((dr->dr_status == DUP_DONE) ||
1847 			    (dr->dr_status == DUP_DROP)) &&
1848 			    resp_buf != NULL &&
1849 			    dr->dr_resp.buf != NULL) {
1850 				*resp_buf = malloc(dr->dr_resp.len);
1851 				if (*resp_buf == NULL) {
1852 					syslog(LOG_ERR,
1853 					"__svc_dupcache_check: malloc failed");
1854 					(void) rw_unlock(&(dc->dc_lock));
1855 					return (DUP_ERROR);
1856 				}
1857 				(void) memset(*resp_buf, 0, dr->dr_resp.len);
1858 				(void) memcpy(*resp_buf, dr->dr_resp.buf,
1859 				    dr->dr_resp.len);
1860 				*resp_bufsz = dr->dr_resp.len;
1861 			} else {
1862 				/* no result */
1863 				if (resp_buf)
1864 					*resp_buf = NULL;
1865 				if (resp_bufsz)
1866 					*resp_bufsz = 0;
1867 			}
1868 			(void) rw_unlock(&(dc->dc_lock));
1869 			return (dr->dr_status);
1870 		}
1871 		dr = dr->dr_chain;
1872 	}
1873 	(void) rw_unlock(&(dc->dc_lock));
1874 	return (DUP_NEW);
1875 }
1876 
1877 /*
1878  * __svc_dupcache_victim(struct dupcache *dc, time_t timenow)
1879  * Return a victim dupreq entry to the caller, depending on cache policy.
1880  */
1881 static struct dupreq *
1882 __svc_dupcache_victim(struct dupcache *dc, time_t timenow)
1883 {
1884 	struct dupreq *dr = NULL;
1885 
1886 	switch (dc->dc_basis) {
1887 	case DUPCACHE_FIXEDTIME:
1888 		/*
1889 		 * The hash policy is to free up a bit of the hash
1890 		 * table before allocating a new entry as the victim.
1891 		 * Freeing up the hash table each time should split
1892 		 * the cost of keeping the hash table clean among threads.
1893 		 * Note that only DONE or DROPPED entries are on the lru
1894 		 * list but we do a sanity check anyway.
1895 		 */
1896 		(void) rw_wrlock(&(dc->dc_lock));
1897 		while ((dc->dc_mru) && (dr = dc->dc_mru->dr_next) &&
1898 		    ((timenow - dr->dr_time) > dc->dc_time)) {
1899 			/* clean and then free the entry */
1900 			if (dr->dr_status != DUP_DONE &&
1901 			    dr->dr_status != DUP_DROP) {
1902 				/*
1903 				 * The LRU list can't contain an
1904 				 * entry where the status is other than
1905 				 * DUP_DONE or DUP_DROP.
1906 				 */
1907 				syslog(LOG_ERR,
1908 				    "__svc_dupcache_victim: bad victim");
1909 #ifdef DUP_DEBUG
1910 				/*
1911 				 * Need to hold the reader/writers lock to
1912 				 * print the cache info, since we already
1913 				 * hold the writers lock, we shall continue
1914 				 * calling __svc_dupcache_debug()
1915 				 */
1916 				__svc_dupcache_debug(dc);
1917 #endif /* DUP_DEBUG */
1918 				(void) rw_unlock(&(dc->dc_lock));
1919 				return (NULL);
1920 			}
1921 			/* free buffers */
1922 			if (dr->dr_resp.buf) {
1923 				free(dr->dr_resp.buf);
1924 				dr->dr_resp.buf = NULL;
1925 			}
1926 			if (dr->dr_addr.buf) {
1927 				free(dr->dr_addr.buf);
1928 				dr->dr_addr.buf = NULL;
1929 			}
1930 
1931 			/* unhash the entry */
1932 			if (dr->dr_chain)
1933 				dr->dr_chain->dr_prevchain = dr->dr_prevchain;
1934 			if (dr->dr_prevchain)
1935 				dr->dr_prevchain->dr_chain = dr->dr_chain;
1936 			if (dc->dc_hashtbl[dr->dr_hash] == dr)
1937 				dc->dc_hashtbl[dr->dr_hash] = dr->dr_chain;
1938 
1939 			/* modify the lru pointers */
1940 			if (dc->dc_mru == dr) {
1941 				dc->dc_mru = NULL;
1942 			} else {
1943 				dc->dc_mru->dr_next = dr->dr_next;
1944 				dr->dr_next->dr_prev = dc->dc_mru;
1945 			}
1946 			free(dr);
1947 			dr = NULL;
1948 		}
1949 		(void) rw_unlock(&(dc->dc_lock));
1950 
1951 		/*
1952 		 * Allocate and return new clean entry as victim
1953 		 */
1954 		if ((dr = malloc(sizeof (*dr))) == NULL) {
1955 			syslog(LOG_ERR,
1956 			    "__svc_dupcache_victim: malloc failed");
1957 			return (NULL);
1958 		}
1959 		(void) memset(dr, 0, sizeof (*dr));
1960 		return (dr);
1961 	default:
1962 		syslog(LOG_ERR,
1963 		    "__svc_dupcache_victim: undefined dup cache_basis");
1964 		return (NULL);
1965 	}
1966 }
1967 
1968 /*
1969  * __svc_dupcache_enter(struct svc_req *req, struct dupreq *dr,
1970  *	struct dupcache *dc, uint32_t drxid, uint32_t drhash, time_t timenow)
1971  * build new duprequest entry and then insert into the cache
1972  */
1973 static int
1974 __svc_dupcache_enter(struct svc_req *req, struct dupreq *dr,
1975 	struct dupcache *dc, uint32_t drxid, uint32_t drhash, time_t timenow)
1976 {
1977 	dr->dr_xid = drxid;
1978 	dr->dr_prog = req->rq_prog;
1979 	dr->dr_vers = req->rq_vers;
1980 	dr->dr_proc = req->rq_proc;
1981 	dr->dr_addr.maxlen = req->rq_xprt->xp_rtaddr.len;
1982 	dr->dr_addr.len = dr->dr_addr.maxlen;
1983 	if ((dr->dr_addr.buf = malloc(dr->dr_addr.maxlen)) == NULL) {
1984 		syslog(LOG_ERR, "__svc_dupcache_enter: malloc failed");
1985 		free(dr);
1986 		return (DUP_ERROR);
1987 	}
1988 	(void) memset(dr->dr_addr.buf, 0, dr->dr_addr.len);
1989 	(void) memcpy(dr->dr_addr.buf, req->rq_xprt->xp_rtaddr.buf,
1990 	    dr->dr_addr.len);
1991 	dr->dr_resp.buf = NULL;
1992 	dr->dr_resp.maxlen = 0;
1993 	dr->dr_resp.len = 0;
1994 	dr->dr_status = DUP_INPROGRESS;
1995 	dr->dr_time = timenow;
1996 	dr->dr_hash = drhash;	/* needed for efficient victim cleanup */
1997 
1998 	/* place entry at head of hash table */
1999 	(void) rw_wrlock(&(dc->dc_lock));
2000 	dr->dr_chain = dc->dc_hashtbl[drhash];
2001 	dr->dr_prevchain = NULL;
2002 	if (dc->dc_hashtbl[drhash] != NULL)
2003 		dc->dc_hashtbl[drhash]->dr_prevchain = dr;
2004 	dc->dc_hashtbl[drhash] = dr;
2005 	(void) rw_unlock(&(dc->dc_lock));
2006 	return (DUP_NEW);
2007 }
2008 
2009 /*
2010  * __svc_dupdone(struct svc_req *req, caddr_t resp_buf, uint_t resp_bufsz,
2011  *		int status, char *xprt_cache)
2012  * Marks the request done (DUP_DONE or DUP_DROP) and stores the response.
2013  * Only DONE and DROP requests can be marked as done. Sets the lru pointers
2014  * to make the entry the most recently used. Returns DUP_ERROR or status.
2015  */
2016 int
2017 __svc_dupdone(struct svc_req *req, caddr_t resp_buf, uint_t resp_bufsz,
2018 		int status, char *xprt_cache)
2019 {
2020 	uint32_t drxid, drhash;
2021 	int rc;
2022 
2023 	/* LINTED pointer alignment */
2024 	struct dupcache *dc = (struct dupcache *)xprt_cache;
2025 
2026 	if (dc == NULL) {
2027 		syslog(LOG_ERR, "__svc_dupdone: undefined cache");
2028 		return (DUP_ERROR);
2029 	}
2030 
2031 	if (status != DUP_DONE && status != DUP_DROP) {
2032 		syslog(LOG_ERR, "__svc_dupdone: invalid dupdone status");
2033 		syslog(LOG_ERR, "	 must be DUP_DONE or DUP_DROP");
2034 		return (DUP_ERROR);
2035 	}
2036 
2037 	/* find the xid of the entry in the cache */
2038 	if (SVC_CONTROL(req->rq_xprt, SVCGET_XID, (void*)&drxid) == FALSE) {
2039 		syslog(LOG_ERR, "__svc_dup: xid error");
2040 		return (DUP_ERROR);
2041 	}
2042 	drhash = drxid % dc->dc_buckets;
2043 
2044 	/* update the status of the entry and result buffers, if required */
2045 	if ((rc = __svc_dupcache_update(req, resp_buf, resp_bufsz, status,
2046 	    dc, drxid, drhash)) == DUP_ERROR) {
2047 		syslog(LOG_ERR, "__svc_dupdone: cache entry error");
2048 		return (DUP_ERROR);
2049 	}
2050 
2051 	return (rc);
2052 }
2053 
2054 /*
2055  * __svc_dupcache_update(struct svc_req *req, caddr_t resp_buf,
2056  * 	uint_t resp_bufsz, int status, struct dupcache *dc, uint32_t drxid,
2057  * 	uint32_t drhash)
2058  * Check if entry exists in the dupcacache. If it does, update its status
2059  * and time and also its buffer, if appropriate. Its possible, but unlikely
2060  * for DONE requests to not exist in the cache. Return DUP_ERROR or status.
2061  */
2062 static int
2063 __svc_dupcache_update(struct svc_req *req, caddr_t resp_buf, uint_t resp_bufsz,
2064 	int status, struct dupcache *dc, uint32_t drxid, uint32_t drhash)
2065 {
2066 	struct dupreq *dr = NULL;
2067 	time_t timenow = time(NULL);
2068 
2069 	(void) rw_wrlock(&(dc->dc_lock));
2070 	dr = dc->dc_hashtbl[drhash];
2071 	while (dr != NULL) {
2072 		if (dr->dr_xid == drxid &&
2073 		    dr->dr_proc == req->rq_proc &&
2074 		    dr->dr_prog == req->rq_prog &&
2075 		    dr->dr_vers == req->rq_vers &&
2076 		    dr->dr_addr.len == req->rq_xprt->xp_rtaddr.len &&
2077 		    memcmp(dr->dr_addr.buf, req->rq_xprt->xp_rtaddr.buf,
2078 		    dr->dr_addr.len) == 0) { /* entry found */
2079 			if (dr->dr_hash != drhash) {
2080 				/* sanity check */
2081 				(void) rw_unlock(&(dc->dc_lock));
2082 				syslog(LOG_ERR,
2083 				"\n__svc_dupdone: hashing error");
2084 				return (DUP_ERROR);
2085 			}
2086 
2087 			/* store the results if bufer is not NULL */
2088 			if (resp_buf != NULL) {
2089 				if ((dr->dr_resp.buf =
2090 				    malloc(resp_bufsz)) == NULL) {
2091 					(void) rw_unlock(&(dc->dc_lock));
2092 					syslog(LOG_ERR,
2093 					    "__svc_dupdone: malloc failed");
2094 					return (DUP_ERROR);
2095 				}
2096 				(void) memset(dr->dr_resp.buf, 0, resp_bufsz);
2097 				(void) memcpy(dr->dr_resp.buf, resp_buf,
2098 				    (uint_t)resp_bufsz);
2099 				dr->dr_resp.len = resp_bufsz;
2100 			}
2101 
2102 			/* update status and done time */
2103 			dr->dr_status = status;
2104 			dr->dr_time = timenow;
2105 
2106 			/* move the entry to the mru position */
2107 			if (dc->dc_mru == NULL) {
2108 				dr->dr_next = dr;
2109 				dr->dr_prev = dr;
2110 			} else {
2111 				dr->dr_next = dc->dc_mru->dr_next;
2112 				dc->dc_mru->dr_next->dr_prev = dr;
2113 				dr->dr_prev = dc->dc_mru;
2114 				dc->dc_mru->dr_next = dr;
2115 			}
2116 			dc->dc_mru = dr;
2117 
2118 			(void) rw_unlock(&(dc->dc_lock));
2119 			return (status);
2120 		}
2121 		dr = dr->dr_chain;
2122 	}
2123 	(void) rw_unlock(&(dc->dc_lock));
2124 	syslog(LOG_ERR, "__svc_dupdone: entry not in dup cache");
2125 	return (DUP_ERROR);
2126 }
2127 
2128 #ifdef DUP_DEBUG
2129 /*
2130  * __svc_dupcache_debug(struct dupcache *dc)
2131  * print out the hash table stuff
2132  *
2133  * This function requires the caller to hold the reader
2134  * or writer version of the duplicate request cache lock (dc_lock).
2135  */
2136 static void
2137 __svc_dupcache_debug(struct dupcache *dc)
2138 {
2139 	struct dupreq *dr = NULL;
2140 	int i;
2141 	bool_t bval;
2142 
2143 	fprintf(stderr, "   HASHTABLE\n");
2144 	for (i = 0; i < dc->dc_buckets; i++) {
2145 		bval = FALSE;
2146 		dr = dc->dc_hashtbl[i];
2147 		while (dr != NULL) {
2148 			if (!bval) {	/* ensures bucket printed only once */
2149 				fprintf(stderr, "    bucket : %d\n", i);
2150 				bval = TRUE;
2151 			}
2152 			fprintf(stderr, "\txid: %u status: %d time: %ld",
2153 			    dr->dr_xid, dr->dr_status, dr->dr_time);
2154 			fprintf(stderr, " dr: %x chain: %x prevchain: %x\n",
2155 			    dr, dr->dr_chain, dr->dr_prevchain);
2156 			dr = dr->dr_chain;
2157 		}
2158 	}
2159 
2160 	fprintf(stderr, "   LRU\n");
2161 	if (dc->dc_mru) {
2162 		dr = dc->dc_mru->dr_next;	/* lru */
2163 		while (dr != dc->dc_mru) {
2164 			fprintf(stderr, "\txid: %u status : %d time : %ld",
2165 			    dr->dr_xid, dr->dr_status, dr->dr_time);
2166 			fprintf(stderr, " dr: %x next: %x prev: %x\n",
2167 			    dr, dr->dr_next, dr->dr_prev);
2168 			dr = dr->dr_next;
2169 		}
2170 		fprintf(stderr, "\txid: %u status: %d time: %ld",
2171 		    dr->dr_xid, dr->dr_status, dr->dr_time);
2172 		fprintf(stderr, " dr: %x next: %x prev: %x\n",
2173 		    dr, dr->dr_next, dr->dr_prev);
2174 	}
2175 }
2176 #endif /* DUP_DEBUG */
2177