1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 /* 30 * Portions of this source code were derived from Berkeley 31 * 4.3 BSD under license from the Regents of the University of 32 * California. 33 */ 34 35 #pragma ident "%Z%%M% %I% %E% SMI" 36 37 /* 38 * clnt_vc.c 39 * 40 * Implements a connectionful client side RPC. 41 * 42 * Connectionful RPC supports 'batched calls'. 43 * A sequence of calls may be batched-up in a send buffer. The rpc call 44 * return immediately to the client even though the call was not necessarily 45 * sent. The batching occurs if the results' xdr routine is NULL (0) AND 46 * the rpc timeout value is zero (see clnt.h, rpc). 47 * 48 * Clients should NOT casually batch calls that in fact return results; that 49 * is the server side should be aware that a call is batched and not produce 50 * any return message. Batched calls that produce many result messages can 51 * deadlock (netlock) the client and the server.... 52 */ 53 54 55 #include "mt.h" 56 #include "rpc_mt.h" 57 #include <assert.h> 58 #include <rpc/rpc.h> 59 #include <errno.h> 60 #include <sys/byteorder.h> 61 #include <sys/mkdev.h> 62 #include <sys/poll.h> 63 #include <syslog.h> 64 #include <stdlib.h> 65 #include <unistd.h> 66 #include <netinet/tcp.h> 67 68 #define MCALL_MSG_SIZE 24 69 #define SECS_TO_MS 1000 70 #define USECS_TO_MS 1/1000 71 #ifndef MIN 72 #define MIN(a, b) (((a) < (b)) ? (a) : (b)) 73 #endif 74 75 extern int __rpc_timeval_to_msec(struct timeval *); 76 extern int __rpc_compress_pollfd(int, pollfd_t *, pollfd_t *); 77 extern bool_t xdr_opaque_auth(XDR *, struct opaque_auth *); 78 extern bool_t __rpc_gss_wrap(AUTH *, char *, uint_t, XDR *, bool_t (*)(), 79 caddr_t); 80 extern bool_t __rpc_gss_unwrap(AUTH *, XDR *, bool_t (*)(), caddr_t); 81 extern CLIENT *_clnt_vc_create_timed(int, struct netbuf *, rpcprog_t, 82 rpcvers_t, uint_t, uint_t, const struct timeval *); 83 84 static struct clnt_ops *clnt_vc_ops(void); 85 static int read_vc(void *, caddr_t, int); 86 static int write_vc(void *, caddr_t, int); 87 static int t_rcvall(int, char *, int); 88 static bool_t time_not_ok(struct timeval *); 89 90 struct ct_data; 91 static bool_t set_up_connection(int, struct netbuf *, 92 struct ct_data *, const struct timeval *); 93 static bool_t set_io_mode(struct ct_data *, int); 94 95 /* 96 * Lock table handle used by various MT sync. routines 97 */ 98 static mutex_t vctbl_lock = DEFAULTMUTEX; 99 static void *vctbl = NULL; 100 101 static const char clnt_vc_errstr[] = "%s : %s"; 102 static const char clnt_vc_str[] = "clnt_vc_create"; 103 static const char clnt_read_vc_str[] = "read_vc"; 104 static const char __no_mem_str[] = "out of memory"; 105 static const char no_fcntl_getfl_str[] = "could not get status flags and modes"; 106 static const char no_nonblock_str[] = "could not set transport blocking mode"; 107 108 /* 109 * Private data structure 110 */ 111 struct ct_data { 112 int ct_fd; /* connection's fd */ 113 bool_t ct_closeit; /* close it on destroy */ 114 int ct_tsdu; /* size of tsdu */ 115 int ct_wait; /* wait interval in milliseconds */ 116 bool_t ct_waitset; /* wait set by clnt_control? */ 117 struct netbuf ct_addr; /* remote addr */ 118 struct rpc_err ct_error; 119 char ct_mcall[MCALL_MSG_SIZE]; /* marshalled callmsg */ 120 uint_t ct_mpos; /* pos after marshal */ 121 XDR ct_xdrs; /* XDR stream */ 122 123 /* NON STANDARD INFO - 00-08-31 */ 124 bool_t ct_is_oneway; /* True if the current call is oneway. */ 125 bool_t ct_is_blocking; 126 ushort_t ct_io_mode; 127 ushort_t ct_blocking_mode; 128 uint_t ct_bufferSize; /* Total size of the buffer. */ 129 uint_t ct_bufferPendingSize; /* Size of unsent data. */ 130 char *ct_buffer; /* Pointer to the buffer. */ 131 char *ct_bufferWritePtr; /* Ptr to the first free byte. */ 132 char *ct_bufferReadPtr; /* Ptr to the first byte of data. */ 133 }; 134 135 struct nb_reg_node { 136 struct nb_reg_node *next; 137 struct ct_data *ct; 138 }; 139 140 static struct nb_reg_node *nb_first = (struct nb_reg_node *)&nb_first; 141 static struct nb_reg_node *nb_free = (struct nb_reg_node *)&nb_free; 142 143 static bool_t exit_handler_set = FALSE; 144 145 static mutex_t nb_list_mutex = DEFAULTMUTEX; 146 147 148 /* Define some macros to manage the linked list. */ 149 #define LIST_ISEMPTY(l) (l == (struct nb_reg_node *)&l) 150 #define LIST_CLR(l) (l = (struct nb_reg_node *)&l) 151 #define LIST_ADD(l, node) (node->next = l->next, l = node) 152 #define LIST_EXTRACT(l, node) (node = l, l = l->next) 153 #define LIST_FOR_EACH(l, node) \ 154 for (node = l; node != (struct nb_reg_node *)&l; node = node->next) 155 156 157 /* Default size of the IO buffer used in non blocking mode */ 158 #define DEFAULT_PENDING_ZONE_MAX_SIZE (16*1024) 159 160 static int nb_send(struct ct_data *, void *, unsigned int); 161 static int do_flush(struct ct_data *, uint_t); 162 static bool_t set_flush_mode(struct ct_data *, int); 163 static bool_t set_blocking_connection(struct ct_data *, bool_t); 164 165 static int register_nb(struct ct_data *); 166 static int unregister_nb(struct ct_data *); 167 168 169 /* 170 * Change the mode of the underlying fd. 171 */ 172 static bool_t 173 set_blocking_connection(struct ct_data *ct, bool_t blocking) 174 { 175 int flag; 176 177 /* 178 * If the underlying fd is already in the required mode, 179 * avoid the syscall. 180 */ 181 if (ct->ct_is_blocking == blocking) 182 return (TRUE); 183 184 if ((flag = fcntl(ct->ct_fd, F_GETFL, 0)) < 0) { 185 (void) syslog(LOG_ERR, "set_blocking_connection : %s", 186 no_fcntl_getfl_str); 187 return (FALSE); 188 } 189 190 flag = blocking? flag&~O_NONBLOCK : flag|O_NONBLOCK; 191 if (fcntl(ct->ct_fd, F_SETFL, flag) != 0) { 192 (void) syslog(LOG_ERR, "set_blocking_connection : %s", 193 no_nonblock_str); 194 return (FALSE); 195 } 196 ct->ct_is_blocking = blocking; 197 return (TRUE); 198 } 199 200 /* 201 * Create a client handle for a connection. 202 * Default options are set, which the user can change using clnt_control()'s. 203 * The rpc/vc package does buffering similar to stdio, so the client 204 * must pick send and receive buffer sizes, 0 => use the default. 205 * NB: fd is copied into a private area. 206 * NB: The rpch->cl_auth is set null authentication. Caller may wish to 207 * set this something more useful. 208 * 209 * fd should be open and bound. 210 */ 211 CLIENT * 212 clnt_vc_create(const int fd, struct netbuf *svcaddr, const rpcprog_t prog, 213 const rpcvers_t vers, const uint_t sendsz, const uint_t recvsz) 214 { 215 return (_clnt_vc_create_timed(fd, svcaddr, prog, vers, sendsz, 216 recvsz, NULL)); 217 } 218 219 /* 220 * This has the same definition as clnt_vc_create(), except it 221 * takes an additional parameter - a pointer to a timeval structure. 222 * 223 * Not a public interface. This is for clnt_create_timed, 224 * clnt_create_vers_timed, clnt_tp_create_timed to pass down the timeout 225 * value to control a tcp connection attempt. 226 * (for bug 4049792: clnt_create_timed does not time out) 227 * 228 * If tp is NULL, use default timeout to set up the connection. 229 */ 230 CLIENT * 231 _clnt_vc_create_timed(int fd, struct netbuf *svcaddr, rpcprog_t prog, 232 rpcvers_t vers, uint_t sendsz, uint_t recvsz, const struct timeval *tp) 233 { 234 CLIENT *cl; /* client handle */ 235 struct ct_data *ct; /* private data */ 236 struct timeval now; 237 struct rpc_msg call_msg; 238 struct t_info tinfo; 239 int flag; 240 241 cl = malloc(sizeof (*cl)); 242 ct = malloc(sizeof (*ct)); 243 if ((cl == NULL) || (ct == NULL)) { 244 (void) syslog(LOG_ERR, clnt_vc_errstr, 245 clnt_vc_str, __no_mem_str); 246 rpc_createerr.cf_stat = RPC_SYSTEMERROR; 247 rpc_createerr.cf_error.re_errno = errno; 248 rpc_createerr.cf_error.re_terrno = 0; 249 goto err; 250 } 251 ct->ct_addr.buf = NULL; 252 253 /* 254 * The only use of vctbl_lock is for serializing the creation of 255 * vctbl. Once created the lock needs to be released so we don't 256 * hold it across the set_up_connection() call and end up with a 257 * bunch of threads stuck waiting for the mutex. 258 */ 259 sig_mutex_lock(&vctbl_lock); 260 261 if ((vctbl == NULL) && ((vctbl = rpc_fd_init()) == NULL)) { 262 rpc_createerr.cf_stat = RPC_SYSTEMERROR; 263 rpc_createerr.cf_error.re_errno = errno; 264 rpc_createerr.cf_error.re_terrno = 0; 265 sig_mutex_unlock(&vctbl_lock); 266 goto err; 267 } 268 269 sig_mutex_unlock(&vctbl_lock); 270 271 ct->ct_io_mode = RPC_CL_BLOCKING; 272 ct->ct_blocking_mode = RPC_CL_BLOCKING_FLUSH; 273 274 ct->ct_buffer = NULL; /* We allocate the buffer when needed. */ 275 ct->ct_bufferSize = DEFAULT_PENDING_ZONE_MAX_SIZE; 276 ct->ct_bufferPendingSize = 0; 277 ct->ct_bufferWritePtr = NULL; 278 ct->ct_bufferReadPtr = NULL; 279 280 /* Check the current state of the fd. */ 281 if ((flag = fcntl(fd, F_GETFL, 0)) < 0) { 282 (void) syslog(LOG_ERR, "_clnt_vc_create_timed : %s", 283 no_fcntl_getfl_str); 284 rpc_createerr.cf_stat = RPC_SYSTEMERROR; 285 rpc_createerr.cf_error.re_terrno = errno; 286 rpc_createerr.cf_error.re_errno = 0; 287 goto err; 288 } 289 ct->ct_is_blocking = flag & O_NONBLOCK ? FALSE : TRUE; 290 291 if (set_up_connection(fd, svcaddr, ct, tp) == FALSE) { 292 goto err; 293 } 294 295 /* 296 * Set up other members of private data struct 297 */ 298 ct->ct_fd = fd; 299 /* 300 * The actual value will be set by clnt_call or clnt_control 301 */ 302 ct->ct_wait = 30000; 303 ct->ct_waitset = FALSE; 304 /* 305 * By default, closeit is always FALSE. It is users responsibility 306 * to do a t_close on it, else the user may use clnt_control 307 * to let clnt_destroy do it for him/her. 308 */ 309 ct->ct_closeit = FALSE; 310 311 /* 312 * Initialize call message 313 */ 314 (void) gettimeofday(&now, (struct timezone *)0); 315 call_msg.rm_xid = getpid() ^ now.tv_sec ^ now.tv_usec; 316 call_msg.rm_call.cb_prog = prog; 317 call_msg.rm_call.cb_vers = vers; 318 319 /* 320 * pre-serialize the static part of the call msg and stash it away 321 */ 322 xdrmem_create(&(ct->ct_xdrs), ct->ct_mcall, MCALL_MSG_SIZE, XDR_ENCODE); 323 if (!xdr_callhdr(&(ct->ct_xdrs), &call_msg)) { 324 goto err; 325 } 326 ct->ct_mpos = XDR_GETPOS(&(ct->ct_xdrs)); 327 XDR_DESTROY(&(ct->ct_xdrs)); 328 329 if (t_getinfo(fd, &tinfo) == -1) { 330 rpc_createerr.cf_stat = RPC_TLIERROR; 331 rpc_createerr.cf_error.re_terrno = t_errno; 332 rpc_createerr.cf_error.re_errno = 0; 333 goto err; 334 } 335 /* 336 * Find the receive and the send size 337 */ 338 sendsz = __rpc_get_t_size((int)sendsz, tinfo.tsdu); 339 recvsz = __rpc_get_t_size((int)recvsz, tinfo.tsdu); 340 if ((sendsz == 0) || (recvsz == 0)) { 341 rpc_createerr.cf_stat = RPC_TLIERROR; 342 rpc_createerr.cf_error.re_terrno = 0; 343 rpc_createerr.cf_error.re_errno = 0; 344 goto err; 345 } 346 ct->ct_tsdu = tinfo.tsdu; 347 /* 348 * Create a client handle which uses xdrrec for serialization 349 * and authnone for authentication. 350 */ 351 ct->ct_xdrs.x_ops = NULL; 352 xdrrec_create(&(ct->ct_xdrs), sendsz, recvsz, (caddr_t)ct, 353 read_vc, write_vc); 354 if (ct->ct_xdrs.x_ops == NULL) { 355 rpc_createerr.cf_stat = RPC_SYSTEMERROR; 356 rpc_createerr.cf_error.re_terrno = 0; 357 rpc_createerr.cf_error.re_errno = ENOMEM; 358 goto err; 359 } 360 cl->cl_ops = clnt_vc_ops(); 361 cl->cl_private = (caddr_t)ct; 362 cl->cl_auth = authnone_create(); 363 cl->cl_tp = NULL; 364 cl->cl_netid = NULL; 365 return (cl); 366 367 err: 368 if (cl) { 369 if (ct) { 370 if (ct->ct_addr.len) 371 free(ct->ct_addr.buf); 372 free(ct); 373 } 374 free(cl); 375 } 376 return (NULL); 377 } 378 379 #define TCPOPT_BUFSIZE 128 380 381 /* 382 * Set tcp connection timeout value. 383 * Retun 0 for success, -1 for failure. 384 */ 385 static int 386 _set_tcp_conntime(int fd, int optval) 387 { 388 struct t_optmgmt req, res; 389 struct opthdr *opt; 390 int *ip; 391 char buf[TCPOPT_BUFSIZE]; 392 393 /* LINTED pointer cast */ 394 opt = (struct opthdr *)buf; 395 opt->level = IPPROTO_TCP; 396 opt->name = TCP_CONN_ABORT_THRESHOLD; 397 opt->len = sizeof (int); 398 399 req.flags = T_NEGOTIATE; 400 req.opt.len = sizeof (struct opthdr) + opt->len; 401 req.opt.buf = (char *)opt; 402 /* LINTED pointer cast */ 403 ip = (int *)((char *)buf + sizeof (struct opthdr)); 404 *ip = optval; 405 406 res.flags = 0; 407 res.opt.buf = (char *)buf; 408 res.opt.maxlen = sizeof (buf); 409 if (t_optmgmt(fd, &req, &res) < 0 || res.flags != T_SUCCESS) { 410 return (-1); 411 } 412 return (0); 413 } 414 415 /* 416 * Get current tcp connection timeout value. 417 * Retun 0 for success, -1 for failure. 418 */ 419 static int 420 _get_tcp_conntime(int fd) 421 { 422 struct t_optmgmt req, res; 423 struct opthdr *opt; 424 int *ip, retval; 425 char buf[TCPOPT_BUFSIZE]; 426 427 /* LINTED pointer cast */ 428 opt = (struct opthdr *)buf; 429 opt->level = IPPROTO_TCP; 430 opt->name = TCP_CONN_ABORT_THRESHOLD; 431 opt->len = sizeof (int); 432 433 req.flags = T_CURRENT; 434 req.opt.len = sizeof (struct opthdr) + opt->len; 435 req.opt.buf = (char *)opt; 436 /* LINTED pointer cast */ 437 ip = (int *)((char *)buf + sizeof (struct opthdr)); 438 *ip = 0; 439 440 res.flags = 0; 441 res.opt.buf = (char *)buf; 442 res.opt.maxlen = sizeof (buf); 443 if (t_optmgmt(fd, &req, &res) < 0 || res.flags != T_SUCCESS) { 444 return (-1); 445 } 446 447 /* LINTED pointer cast */ 448 ip = (int *)((char *)buf + sizeof (struct opthdr)); 449 retval = *ip; 450 return (retval); 451 } 452 453 static bool_t 454 set_up_connection(int fd, struct netbuf *svcaddr, struct ct_data *ct, 455 const struct timeval *tp) 456 { 457 int state; 458 struct t_call sndcallstr, *rcvcall; 459 int nconnect; 460 bool_t connected, do_rcv_connect; 461 int curr_time = 0; 462 463 ct->ct_addr.len = 0; 464 state = t_getstate(fd); 465 if (state == -1) { 466 rpc_createerr.cf_stat = RPC_TLIERROR; 467 rpc_createerr.cf_error.re_errno = 0; 468 rpc_createerr.cf_error.re_terrno = t_errno; 469 return (FALSE); 470 } 471 472 #ifdef DEBUG 473 fprintf(stderr, "set_up_connection: state = %d\n", state); 474 #endif 475 switch (state) { 476 case T_IDLE: 477 if (svcaddr == NULL) { 478 rpc_createerr.cf_stat = RPC_UNKNOWNADDR; 479 return (FALSE); 480 } 481 /* 482 * Connect only if state is IDLE and svcaddr known 483 */ 484 /* LINTED pointer alignment */ 485 rcvcall = (struct t_call *)t_alloc(fd, T_CALL, T_OPT|T_ADDR); 486 if (rcvcall == NULL) { 487 rpc_createerr.cf_stat = RPC_TLIERROR; 488 rpc_createerr.cf_error.re_terrno = t_errno; 489 rpc_createerr.cf_error.re_errno = errno; 490 return (FALSE); 491 } 492 rcvcall->udata.maxlen = 0; 493 sndcallstr.addr = *svcaddr; 494 sndcallstr.opt.len = 0; 495 sndcallstr.udata.len = 0; 496 /* 497 * Even NULL could have sufficed for rcvcall, because 498 * the address returned is same for all cases except 499 * for the gateway case, and hence required. 500 */ 501 connected = FALSE; 502 do_rcv_connect = FALSE; 503 504 /* 505 * If there is a timeout value specified, we will try to 506 * reset the tcp connection timeout. If the transport does 507 * not support the TCP_CONN_ABORT_THRESHOLD option or fails 508 * for other reason, default timeout will be used. 509 */ 510 if (tp != NULL) { 511 int ms; 512 513 /* TCP_CONN_ABORT_THRESHOLD takes int value in millisecs */ 514 ms = tp->tv_sec * SECS_TO_MS + tp->tv_usec * USECS_TO_MS; 515 if (((curr_time = _get_tcp_conntime(fd)) != -1) && 516 (_set_tcp_conntime(fd, ms) == 0)) { 517 /* EMPTY */ 518 #ifdef DEBUG 519 fprintf(stderr, "set_up_connection: set tcp "); 520 fprintf(stderr, "connection timeout to %d ms\n", ms); 521 #endif 522 } 523 } 524 525 for (nconnect = 0; nconnect < 3; nconnect++) { 526 if (t_connect(fd, &sndcallstr, rcvcall) != -1) { 527 connected = TRUE; 528 break; 529 } 530 if (!(t_errno == TSYSERR && errno == EINTR)) { 531 break; 532 } 533 if ((state = t_getstate(fd)) == T_OUTCON) { 534 do_rcv_connect = TRUE; 535 break; 536 } 537 if (state != T_IDLE) { 538 break; 539 } 540 } 541 if (do_rcv_connect) { 542 do { 543 if (t_rcvconnect(fd, rcvcall) != -1) { 544 connected = TRUE; 545 break; 546 } 547 } while (t_errno == TSYSERR && errno == EINTR); 548 } 549 550 /* 551 * Set the connection timeout back to its old value. 552 */ 553 if (curr_time) { 554 (void) _set_tcp_conntime(fd, curr_time); 555 } 556 557 if (!connected) { 558 rpc_createerr.cf_stat = RPC_TLIERROR; 559 rpc_createerr.cf_error.re_terrno = t_errno; 560 rpc_createerr.cf_error.re_errno = errno; 561 (void) t_free((char *)rcvcall, T_CALL); 562 #ifdef DEBUG 563 fprintf(stderr, "clnt_vc: t_connect error %d\n", 564 rpc_createerr.cf_error.re_terrno); 565 #endif 566 return (FALSE); 567 } 568 569 /* Free old area if allocated */ 570 if (ct->ct_addr.buf) 571 free(ct->ct_addr.buf); 572 ct->ct_addr = rcvcall->addr; /* To get the new address */ 573 /* So that address buf does not get freed */ 574 rcvcall->addr.buf = NULL; 575 (void) t_free((char *)rcvcall, T_CALL); 576 break; 577 case T_DATAXFER: 578 case T_OUTCON: 579 if (svcaddr == NULL) { 580 /* 581 * svcaddr could also be NULL in cases where the 582 * client is already bound and connected. 583 */ 584 ct->ct_addr.len = 0; 585 } else { 586 ct->ct_addr.buf = malloc(svcaddr->len); 587 if (ct->ct_addr.buf == NULL) { 588 (void) syslog(LOG_ERR, clnt_vc_errstr, 589 clnt_vc_str, __no_mem_str); 590 rpc_createerr.cf_stat = RPC_SYSTEMERROR; 591 rpc_createerr.cf_error.re_errno = errno; 592 rpc_createerr.cf_error.re_terrno = 0; 593 return (FALSE); 594 } 595 (void) memcpy(ct->ct_addr.buf, svcaddr->buf, 596 (size_t)svcaddr->len); 597 ct->ct_addr.len = ct->ct_addr.maxlen = svcaddr->len; 598 } 599 break; 600 default: 601 rpc_createerr.cf_stat = RPC_UNKNOWNADDR; 602 return (FALSE); 603 } 604 return (TRUE); 605 } 606 607 static enum clnt_stat 608 clnt_vc_call(CLIENT *cl, rpcproc_t proc, xdrproc_t xdr_args, caddr_t args_ptr, 609 xdrproc_t xdr_results, caddr_t results_ptr, struct timeval timeout) 610 { 611 /* LINTED pointer alignment */ 612 struct ct_data *ct = (struct ct_data *)cl->cl_private; 613 XDR *xdrs = &(ct->ct_xdrs); 614 struct rpc_msg reply_msg; 615 uint32_t x_id; 616 /* LINTED pointer alignment */ 617 uint32_t *msg_x_id = (uint32_t *)(ct->ct_mcall); /* yuk */ 618 bool_t shipnow; 619 int refreshes = 2; 620 621 if (rpc_fd_lock(vctbl, ct->ct_fd)) { 622 rpc_callerr.re_status = RPC_FAILED; 623 rpc_callerr.re_errno = errno; 624 rpc_fd_unlock(vctbl, ct->ct_fd); 625 return (RPC_FAILED); 626 } 627 628 ct->ct_is_oneway = FALSE; 629 if (ct->ct_io_mode == RPC_CL_NONBLOCKING) { 630 if (do_flush(ct, RPC_CL_BLOCKING_FLUSH) != 0) { 631 rpc_fd_unlock(vctbl, ct->ct_fd); 632 return (RPC_FAILED); /* XXX */ 633 } 634 } 635 636 if (!ct->ct_waitset) { 637 /* If time is not within limits, we ignore it. */ 638 if (time_not_ok(&timeout) == FALSE) 639 ct->ct_wait = __rpc_timeval_to_msec(&timeout); 640 } else { 641 timeout.tv_sec = (ct->ct_wait / 1000); 642 timeout.tv_usec = (ct->ct_wait % 1000) * 1000; 643 } 644 645 shipnow = ((xdr_results == (xdrproc_t)0) && (timeout.tv_sec == 0) && 646 (timeout.tv_usec == 0)) ? FALSE : TRUE; 647 call_again: 648 xdrs->x_op = XDR_ENCODE; 649 rpc_callerr.re_status = RPC_SUCCESS; 650 /* 651 * Due to little endian byte order, it is necessary to convert to host 652 * format before decrementing xid. 653 */ 654 x_id = ntohl(*msg_x_id) - 1; 655 *msg_x_id = htonl(x_id); 656 657 if (cl->cl_auth->ah_cred.oa_flavor != RPCSEC_GSS) { 658 if ((!XDR_PUTBYTES(xdrs, ct->ct_mcall, ct->ct_mpos)) || 659 (!XDR_PUTINT32(xdrs, (int32_t *)&proc)) || 660 (!AUTH_MARSHALL(cl->cl_auth, xdrs)) || 661 (!xdr_args(xdrs, args_ptr))) { 662 if (rpc_callerr.re_status == RPC_SUCCESS) 663 rpc_callerr.re_status = RPC_CANTENCODEARGS; 664 (void) xdrrec_endofrecord(xdrs, TRUE); 665 rpc_fd_unlock(vctbl, ct->ct_fd); 666 return (rpc_callerr.re_status); 667 } 668 } else { 669 /* LINTED pointer alignment */ 670 uint32_t *u = (uint32_t *)&ct->ct_mcall[ct->ct_mpos]; 671 IXDR_PUT_U_INT32(u, proc); 672 if (!__rpc_gss_wrap(cl->cl_auth, ct->ct_mcall, 673 ((char *)u) - ct->ct_mcall, xdrs, xdr_args, args_ptr)) { 674 if (rpc_callerr.re_status == RPC_SUCCESS) 675 rpc_callerr.re_status = RPC_CANTENCODEARGS; 676 (void) xdrrec_endofrecord(xdrs, TRUE); 677 rpc_fd_unlock(vctbl, ct->ct_fd); 678 return (rpc_callerr.re_status); 679 } 680 } 681 if (!xdrrec_endofrecord(xdrs, shipnow)) { 682 rpc_fd_unlock(vctbl, ct->ct_fd); 683 return (rpc_callerr.re_status = RPC_CANTSEND); 684 } 685 if (!shipnow) { 686 rpc_fd_unlock(vctbl, ct->ct_fd); 687 return (RPC_SUCCESS); 688 } 689 /* 690 * Hack to provide rpc-based message passing 691 */ 692 if (timeout.tv_sec == 0 && timeout.tv_usec == 0) { 693 rpc_fd_unlock(vctbl, ct->ct_fd); 694 return (rpc_callerr.re_status = RPC_TIMEDOUT); 695 } 696 697 698 /* 699 * Keep receiving until we get a valid transaction id 700 */ 701 xdrs->x_op = XDR_DECODE; 702 for (;;) { 703 reply_msg.acpted_rply.ar_verf = _null_auth; 704 reply_msg.acpted_rply.ar_results.where = NULL; 705 reply_msg.acpted_rply.ar_results.proc = (xdrproc_t)xdr_void; 706 if (!xdrrec_skiprecord(xdrs)) { 707 rpc_fd_unlock(vctbl, ct->ct_fd); 708 return (rpc_callerr.re_status); 709 } 710 /* now decode and validate the response header */ 711 if (!xdr_replymsg(xdrs, &reply_msg)) { 712 if (rpc_callerr.re_status == RPC_SUCCESS) 713 continue; 714 rpc_fd_unlock(vctbl, ct->ct_fd); 715 return (rpc_callerr.re_status); 716 } 717 if (reply_msg.rm_xid == x_id) 718 break; 719 } 720 721 /* 722 * process header 723 */ 724 if ((reply_msg.rm_reply.rp_stat == MSG_ACCEPTED) && 725 (reply_msg.acpted_rply.ar_stat == SUCCESS)) 726 rpc_callerr.re_status = RPC_SUCCESS; 727 else 728 __seterr_reply(&reply_msg, &(rpc_callerr)); 729 730 if (rpc_callerr.re_status == RPC_SUCCESS) { 731 if (!AUTH_VALIDATE(cl->cl_auth, 732 &reply_msg.acpted_rply.ar_verf)) { 733 rpc_callerr.re_status = RPC_AUTHERROR; 734 rpc_callerr.re_why = AUTH_INVALIDRESP; 735 } else if (cl->cl_auth->ah_cred.oa_flavor != RPCSEC_GSS) { 736 if (!(*xdr_results)(xdrs, results_ptr)) { 737 if (rpc_callerr.re_status == RPC_SUCCESS) 738 rpc_callerr.re_status = RPC_CANTDECODERES; 739 } 740 } else if (!__rpc_gss_unwrap(cl->cl_auth, xdrs, xdr_results, 741 results_ptr)) { 742 if (rpc_callerr.re_status == RPC_SUCCESS) 743 rpc_callerr.re_status = RPC_CANTDECODERES; 744 } 745 } /* end successful completion */ 746 /* 747 * If unsuccesful AND error is an authentication error 748 * then refresh credentials and try again, else break 749 */ 750 else if (rpc_callerr.re_status == RPC_AUTHERROR) { 751 /* maybe our credentials need to be refreshed ... */ 752 if (refreshes-- && AUTH_REFRESH(cl->cl_auth, &reply_msg)) 753 goto call_again; 754 else 755 /* 756 * We are setting rpc_callerr here given that libnsl 757 * is not reentrant thereby reinitializing the TSD. 758 * If not set here then success could be returned even 759 * though refresh failed. 760 */ 761 rpc_callerr.re_status = RPC_AUTHERROR; 762 } /* end of unsuccessful completion */ 763 /* free verifier ... */ 764 if (reply_msg.rm_reply.rp_stat == MSG_ACCEPTED && 765 reply_msg.acpted_rply.ar_verf.oa_base != NULL) { 766 xdrs->x_op = XDR_FREE; 767 (void) xdr_opaque_auth(xdrs, &(reply_msg.acpted_rply.ar_verf)); 768 } 769 rpc_fd_unlock(vctbl, ct->ct_fd); 770 return (rpc_callerr.re_status); 771 } 772 773 static enum clnt_stat 774 clnt_vc_send(CLIENT *cl, rpcproc_t proc, xdrproc_t xdr_args, caddr_t args_ptr) 775 { 776 /* LINTED pointer alignment */ 777 struct ct_data *ct = (struct ct_data *)cl->cl_private; 778 XDR *xdrs = &(ct->ct_xdrs); 779 uint32_t x_id; 780 /* LINTED pointer alignment */ 781 uint32_t *msg_x_id = (uint32_t *)(ct->ct_mcall); /* yuk */ 782 783 if (rpc_fd_lock(vctbl, ct->ct_fd)) { 784 rpc_callerr.re_status = RPC_FAILED; 785 rpc_callerr.re_errno = errno; 786 rpc_fd_unlock(vctbl, ct->ct_fd); 787 return (RPC_FAILED); 788 } 789 790 ct->ct_is_oneway = TRUE; 791 792 xdrs->x_op = XDR_ENCODE; 793 rpc_callerr.re_status = RPC_SUCCESS; 794 /* 795 * Due to little endian byte order, it is necessary to convert to host 796 * format before decrementing xid. 797 */ 798 x_id = ntohl(*msg_x_id) - 1; 799 *msg_x_id = htonl(x_id); 800 801 if (cl->cl_auth->ah_cred.oa_flavor != RPCSEC_GSS) { 802 if ((!XDR_PUTBYTES(xdrs, ct->ct_mcall, ct->ct_mpos)) || 803 (!XDR_PUTINT32(xdrs, (int32_t *)&proc)) || 804 (!AUTH_MARSHALL(cl->cl_auth, xdrs)) || 805 (!xdr_args(xdrs, args_ptr))) { 806 if (rpc_callerr.re_status == RPC_SUCCESS) 807 rpc_callerr.re_status = RPC_CANTENCODEARGS; 808 (void) xdrrec_endofrecord(xdrs, TRUE); 809 rpc_fd_unlock(vctbl, ct->ct_fd); 810 return (rpc_callerr.re_status); 811 } 812 } else { 813 /* LINTED pointer alignment */ 814 uint32_t *u = (uint32_t *)&ct->ct_mcall[ct->ct_mpos]; 815 IXDR_PUT_U_INT32(u, proc); 816 if (!__rpc_gss_wrap(cl->cl_auth, ct->ct_mcall, 817 ((char *)u) - ct->ct_mcall, xdrs, xdr_args, args_ptr)) { 818 if (rpc_callerr.re_status == RPC_SUCCESS) 819 rpc_callerr.re_status = RPC_CANTENCODEARGS; 820 (void) xdrrec_endofrecord(xdrs, TRUE); 821 rpc_fd_unlock(vctbl, ct->ct_fd); 822 return (rpc_callerr.re_status); 823 } 824 } 825 826 /* 827 * Do not need to check errors, as the following code does 828 * not depend on the successful completion of the call. 829 * An error, if any occurs, is reported through 830 * rpc_callerr.re_status. 831 */ 832 (void) xdrrec_endofrecord(xdrs, TRUE); 833 834 rpc_fd_unlock(vctbl, ct->ct_fd); 835 return (rpc_callerr.re_status); 836 } 837 838 /* ARGSUSED */ 839 static void 840 clnt_vc_geterr(CLIENT *cl, struct rpc_err *errp) 841 { 842 *errp = rpc_callerr; 843 } 844 845 static bool_t 846 clnt_vc_freeres(CLIENT *cl, xdrproc_t xdr_res, caddr_t res_ptr) 847 { 848 /* LINTED pointer alignment */ 849 struct ct_data *ct = (struct ct_data *)cl->cl_private; 850 XDR *xdrs = &(ct->ct_xdrs); 851 bool_t stat; 852 853 (void) rpc_fd_lock(vctbl, ct->ct_fd); 854 xdrs->x_op = XDR_FREE; 855 stat = (*xdr_res)(xdrs, res_ptr); 856 rpc_fd_unlock(vctbl, ct->ct_fd); 857 return (stat); 858 } 859 860 static void 861 clnt_vc_abort(void) 862 { 863 } 864 865 /*ARGSUSED*/ 866 static bool_t 867 clnt_vc_control(CLIENT *cl, int request, char *info) 868 { 869 bool_t ret; 870 /* LINTED pointer alignment */ 871 struct ct_data *ct = (struct ct_data *)cl->cl_private; 872 873 if (rpc_fd_lock(vctbl, ct->ct_fd)) { 874 rpc_fd_unlock(vctbl, ct->ct_fd); 875 return (RPC_FAILED); 876 } 877 878 switch (request) { 879 case CLSET_FD_CLOSE: 880 ct->ct_closeit = TRUE; 881 rpc_fd_unlock(vctbl, ct->ct_fd); 882 return (TRUE); 883 case CLSET_FD_NCLOSE: 884 ct->ct_closeit = FALSE; 885 rpc_fd_unlock(vctbl, ct->ct_fd); 886 return (TRUE); 887 case CLFLUSH: 888 if (ct->ct_io_mode == RPC_CL_NONBLOCKING) { 889 int res; 890 res = do_flush(ct, (info == NULL || 891 /* LINTED pointer cast */ 892 *(int *)info == RPC_CL_DEFAULT_FLUSH)? 893 /* LINTED pointer cast */ 894 ct->ct_blocking_mode: *(int *)info); 895 ret = (0 == res); 896 } 897 rpc_fd_unlock(vctbl, ct->ct_fd); 898 return (ret); 899 } 900 901 /* for other requests which use info */ 902 if (info == NULL) { 903 rpc_fd_unlock(vctbl, ct->ct_fd); 904 return (FALSE); 905 } 906 switch (request) { 907 case CLSET_TIMEOUT: 908 /* LINTED pointer alignment */ 909 if (time_not_ok((struct timeval *)info)) { 910 rpc_fd_unlock(vctbl, ct->ct_fd); 911 return (FALSE); 912 } 913 /* LINTED pointer alignment */ 914 ct->ct_wait = __rpc_timeval_to_msec((struct timeval *)info); 915 ct->ct_waitset = TRUE; 916 break; 917 case CLGET_TIMEOUT: 918 /* LINTED pointer alignment */ 919 ((struct timeval *)info)->tv_sec = ct->ct_wait / 1000; 920 /* LINTED pointer alignment */ 921 ((struct timeval *)info)->tv_usec = 922 (ct->ct_wait % 1000) * 1000; 923 break; 924 case CLGET_SERVER_ADDR: /* For compatibility only */ 925 (void) memcpy(info, ct->ct_addr.buf, (size_t)ct->ct_addr.len); 926 break; 927 case CLGET_FD: 928 /* LINTED pointer alignment */ 929 *(int *)info = ct->ct_fd; 930 break; 931 case CLGET_SVC_ADDR: 932 /* The caller should not free this memory area */ 933 /* LINTED pointer alignment */ 934 *(struct netbuf *)info = ct->ct_addr; 935 break; 936 case CLSET_SVC_ADDR: /* set to new address */ 937 #ifdef undef 938 /* 939 * XXX: once the t_snddis(), followed by t_connect() starts to 940 * work, this ifdef should be removed. CLIENT handle reuse 941 * would then be possible for COTS as well. 942 */ 943 if (t_snddis(ct->ct_fd, NULL) == -1) { 944 rpc_createerr.cf_stat = RPC_TLIERROR; 945 rpc_createerr.cf_error.re_terrno = t_errno; 946 rpc_createerr.cf_error.re_errno = errno; 947 rpc_fd_unlock(vctbl, ct->ct_fd); 948 return (FALSE); 949 } 950 ret = set_up_connection(ct->ct_fd, (struct netbuf *)info, 951 ct, NULL)); 952 rpc_fd_unlock(vctbl, ct->ct_fd); 953 return (ret); 954 #else 955 rpc_fd_unlock(vctbl, ct->ct_fd); 956 return (FALSE); 957 #endif 958 case CLGET_XID: 959 /* 960 * use the knowledge that xid is the 961 * first element in the call structure 962 * This will get the xid of the PREVIOUS call 963 */ 964 /* LINTED pointer alignment */ 965 *(uint32_t *)info = ntohl(*(uint32_t *)ct->ct_mcall); 966 break; 967 case CLSET_XID: 968 /* This will set the xid of the NEXT call */ 969 /* LINTED pointer alignment */ 970 *(uint32_t *)ct->ct_mcall = htonl(*(uint32_t *)info + 1); 971 /* increment by 1 as clnt_vc_call() decrements once */ 972 break; 973 case CLGET_VERS: 974 /* 975 * This RELIES on the information that, in the call body, 976 * the version number field is the fifth field from the 977 * begining of the RPC header. MUST be changed if the 978 * call_struct is changed 979 */ 980 /* LINTED pointer alignment */ 981 *(uint32_t *)info = ntohl(*(uint32_t *)(ct->ct_mcall + 982 4 * BYTES_PER_XDR_UNIT)); 983 break; 984 985 case CLSET_VERS: 986 /* LINTED pointer alignment */ 987 *(uint32_t *)(ct->ct_mcall + 4 * BYTES_PER_XDR_UNIT) = 988 /* LINTED pointer alignment */ 989 htonl(*(uint32_t *)info); 990 break; 991 992 case CLGET_PROG: 993 /* 994 * This RELIES on the information that, in the call body, 995 * the program number field is the fourth field from the 996 * begining of the RPC header. MUST be changed if the 997 * call_struct is changed 998 */ 999 /* LINTED pointer alignment */ 1000 *(uint32_t *)info = ntohl(*(uint32_t *)(ct->ct_mcall + 1001 3 * BYTES_PER_XDR_UNIT)); 1002 break; 1003 1004 case CLSET_PROG: 1005 /* LINTED pointer alignment */ 1006 *(uint32_t *)(ct->ct_mcall + 3 * BYTES_PER_XDR_UNIT) = 1007 /* LINTED pointer alignment */ 1008 htonl(*(uint32_t *)info); 1009 break; 1010 1011 case CLSET_IO_MODE: 1012 /* LINTED pointer cast */ 1013 if (!set_io_mode(ct, *(int *)info)) { 1014 rpc_fd_unlock(vctbl, ct->ct_fd); 1015 return (FALSE); 1016 } 1017 break; 1018 case CLSET_FLUSH_MODE: 1019 /* Set a specific FLUSH_MODE */ 1020 /* LINTED pointer cast */ 1021 if (!set_flush_mode(ct, *(int *)info)) { 1022 rpc_fd_unlock(vctbl, ct->ct_fd); 1023 return (FALSE); 1024 } 1025 break; 1026 case CLGET_FLUSH_MODE: 1027 /* LINTED pointer cast */ 1028 *(rpcflushmode_t *)info = ct->ct_blocking_mode; 1029 break; 1030 1031 case CLGET_IO_MODE: 1032 /* LINTED pointer cast */ 1033 *(rpciomode_t *)info = ct->ct_io_mode; 1034 break; 1035 1036 case CLGET_CURRENT_REC_SIZE: 1037 /* 1038 * Returns the current amount of memory allocated 1039 * to pending requests 1040 */ 1041 /* LINTED pointer cast */ 1042 *(int *)info = ct->ct_bufferPendingSize; 1043 break; 1044 1045 case CLSET_CONNMAXREC_SIZE: 1046 /* Cannot resize the buffer if it is used. */ 1047 if (ct->ct_bufferPendingSize != 0) { 1048 rpc_fd_unlock(vctbl, ct->ct_fd); 1049 return (FALSE); 1050 } 1051 /* 1052 * If the new size is equal to the current size, 1053 * there is nothing to do. 1054 */ 1055 /* LINTED pointer cast */ 1056 if (ct->ct_bufferSize == *(uint_t *)info) 1057 break; 1058 1059 /* LINTED pointer cast */ 1060 ct->ct_bufferSize = *(uint_t *)info; 1061 if (ct->ct_buffer) { 1062 free(ct->ct_buffer); 1063 ct->ct_buffer = NULL; 1064 ct->ct_bufferReadPtr = ct->ct_bufferWritePtr = NULL; 1065 } 1066 break; 1067 1068 case CLGET_CONNMAXREC_SIZE: 1069 /* 1070 * Returns the size of buffer allocated 1071 * to pending requests 1072 */ 1073 /* LINTED pointer cast */ 1074 *(uint_t *)info = ct->ct_bufferSize; 1075 break; 1076 1077 default: 1078 rpc_fd_unlock(vctbl, ct->ct_fd); 1079 return (FALSE); 1080 } 1081 rpc_fd_unlock(vctbl, ct->ct_fd); 1082 return (TRUE); 1083 } 1084 1085 static void 1086 clnt_vc_destroy(CLIENT *cl) 1087 { 1088 /* LINTED pointer alignment */ 1089 struct ct_data *ct = (struct ct_data *)cl->cl_private; 1090 int ct_fd = ct->ct_fd; 1091 1092 (void) rpc_fd_lock(vctbl, ct_fd); 1093 1094 if (ct->ct_io_mode == RPC_CL_NONBLOCKING) { 1095 (void) do_flush(ct, RPC_CL_BLOCKING_FLUSH); 1096 (void) unregister_nb(ct); 1097 } 1098 1099 if (ct->ct_closeit) 1100 (void) t_close(ct_fd); 1101 XDR_DESTROY(&(ct->ct_xdrs)); 1102 if (ct->ct_addr.buf) 1103 free(ct->ct_addr.buf); 1104 free(ct); 1105 if (cl->cl_netid && cl->cl_netid[0]) 1106 free(cl->cl_netid); 1107 if (cl->cl_tp && cl->cl_tp[0]) 1108 free(cl->cl_tp); 1109 free(cl); 1110 rpc_fd_unlock(vctbl, ct_fd); 1111 } 1112 1113 /* 1114 * Interface between xdr serializer and vc connection. 1115 * Behaves like the system calls, read & write, but keeps some error state 1116 * around for the rpc level. 1117 */ 1118 static int 1119 read_vc(void *ct_tmp, caddr_t buf, int len) 1120 { 1121 static pthread_key_t pfdp_key = PTHREAD_ONCE_KEY_NP; 1122 struct pollfd *pfdp; 1123 int npfd; /* total number of pfdp allocated */ 1124 struct ct_data *ct = ct_tmp; 1125 struct timeval starttime; 1126 struct timeval curtime; 1127 int poll_time; 1128 int delta; 1129 1130 if (len == 0) 1131 return (0); 1132 1133 /* 1134 * Allocate just one the first time. thr_get_storage() may 1135 * return a larger buffer, left over from the last time we were 1136 * here, but that's OK. realloc() will deal with it properly. 1137 */ 1138 npfd = 1; 1139 pfdp = thr_get_storage(&pfdp_key, sizeof (struct pollfd), free); 1140 if (pfdp == NULL) { 1141 (void) syslog(LOG_ERR, clnt_vc_errstr, 1142 clnt_read_vc_str, __no_mem_str); 1143 rpc_callerr.re_status = RPC_SYSTEMERROR; 1144 rpc_callerr.re_errno = errno; 1145 rpc_callerr.re_terrno = 0; 1146 return (-1); 1147 } 1148 1149 /* 1150 * N.B.: slot 0 in the pollfd array is reserved for the file 1151 * descriptor we're really interested in (as opposed to the 1152 * callback descriptors). 1153 */ 1154 pfdp[0].fd = ct->ct_fd; 1155 pfdp[0].events = MASKVAL; 1156 pfdp[0].revents = 0; 1157 poll_time = ct->ct_wait; 1158 if (gettimeofday(&starttime, NULL) == -1) { 1159 syslog(LOG_ERR, "Unable to get time of day: %m"); 1160 return (-1); 1161 } 1162 1163 for (;;) { 1164 extern void (*_svc_getreqset_proc)(); 1165 extern pollfd_t *svc_pollfd; 1166 extern int svc_max_pollfd; 1167 int fds; 1168 1169 /* VARIABLES PROTECTED BY svc_fd_lock: svc_pollfd */ 1170 1171 if (_svc_getreqset_proc) { 1172 sig_rw_rdlock(&svc_fd_lock); 1173 1174 /* reallocate pfdp to svc_max_pollfd +1 */ 1175 if (npfd != (svc_max_pollfd + 1)) { 1176 struct pollfd *tmp_pfdp = realloc(pfdp, 1177 sizeof (struct pollfd) * 1178 (svc_max_pollfd + 1)); 1179 if (tmp_pfdp == NULL) { 1180 sig_rw_unlock(&svc_fd_lock); 1181 (void) syslog(LOG_ERR, clnt_vc_errstr, 1182 clnt_read_vc_str, __no_mem_str); 1183 rpc_callerr.re_status = RPC_SYSTEMERROR; 1184 rpc_callerr.re_errno = errno; 1185 rpc_callerr.re_terrno = 0; 1186 return (-1); 1187 } 1188 1189 pfdp = tmp_pfdp; 1190 npfd = svc_max_pollfd + 1; 1191 (void) pthread_setspecific(pfdp_key, pfdp); 1192 } 1193 if (npfd > 1) 1194 (void) memcpy(&pfdp[1], svc_pollfd, 1195 sizeof (struct pollfd) * (npfd - 1)); 1196 1197 sig_rw_unlock(&svc_fd_lock); 1198 } else { 1199 npfd = 1; /* don't forget about pfdp[0] */ 1200 } 1201 1202 switch (fds = poll(pfdp, npfd, poll_time)) { 1203 case 0: 1204 rpc_callerr.re_status = RPC_TIMEDOUT; 1205 return (-1); 1206 1207 case -1: 1208 if (errno != EINTR) 1209 continue; 1210 else { 1211 /* 1212 * interrupted by another signal, 1213 * update time_waited 1214 */ 1215 1216 if (gettimeofday(&curtime, NULL) == -1) { 1217 syslog(LOG_ERR, 1218 "Unable to get time of day: %m"); 1219 errno = 0; 1220 continue; 1221 }; 1222 delta = (curtime.tv_sec - 1223 starttime.tv_sec) * 1000 + 1224 (curtime.tv_usec - 1225 starttime.tv_usec) / 1000; 1226 poll_time -= delta; 1227 if (poll_time < 0) { 1228 rpc_callerr.re_status = 1229 RPC_TIMEDOUT; 1230 errno = 0; 1231 return (-1); 1232 } else { 1233 errno = 0; /* reset it */ 1234 continue; 1235 } 1236 } 1237 } 1238 1239 if (pfdp[0].revents == 0) { 1240 /* must be for server side of the house */ 1241 (*_svc_getreqset_proc)(&pfdp[1], fds); 1242 continue; /* do poll again */ 1243 } 1244 1245 if (pfdp[0].revents & POLLNVAL) { 1246 rpc_callerr.re_status = RPC_CANTRECV; 1247 /* 1248 * Note: we're faking errno here because we 1249 * previously would have expected select() to 1250 * return -1 with errno EBADF. Poll(BA_OS) 1251 * returns 0 and sets the POLLNVAL revents flag 1252 * instead. 1253 */ 1254 rpc_callerr.re_errno = errno = EBADF; 1255 return (-1); 1256 } 1257 1258 if (pfdp[0].revents & (POLLERR | POLLHUP)) { 1259 rpc_callerr.re_status = RPC_CANTRECV; 1260 rpc_callerr.re_errno = errno = EPIPE; 1261 return (-1); 1262 } 1263 break; 1264 } 1265 1266 switch (len = t_rcvall(ct->ct_fd, buf, len)) { 1267 case 0: 1268 /* premature eof */ 1269 rpc_callerr.re_errno = ENOLINK; 1270 rpc_callerr.re_terrno = 0; 1271 rpc_callerr.re_status = RPC_CANTRECV; 1272 len = -1; /* it's really an error */ 1273 break; 1274 1275 case -1: 1276 rpc_callerr.re_terrno = t_errno; 1277 rpc_callerr.re_errno = 0; 1278 rpc_callerr.re_status = RPC_CANTRECV; 1279 break; 1280 } 1281 return (len); 1282 } 1283 1284 static int 1285 write_vc(void *ct_tmp, caddr_t buf, int len) 1286 { 1287 int i, cnt; 1288 struct ct_data *ct = ct_tmp; 1289 int flag; 1290 int maxsz; 1291 1292 maxsz = ct->ct_tsdu; 1293 1294 /* Handle the non-blocking mode */ 1295 if (ct->ct_is_oneway && ct->ct_io_mode == RPC_CL_NONBLOCKING) { 1296 /* 1297 * Test a special case here. If the length of the current 1298 * write is greater than the transport data unit, and the 1299 * mode is non blocking, we return RPC_CANTSEND. 1300 * XXX this is not very clean. 1301 */ 1302 if (maxsz > 0 && len > maxsz) { 1303 rpc_callerr.re_terrno = errno; 1304 rpc_callerr.re_errno = 0; 1305 rpc_callerr.re_status = RPC_CANTSEND; 1306 return (-1); 1307 } 1308 1309 len = nb_send(ct, buf, (unsigned)len); 1310 if (len == -1) { 1311 rpc_callerr.re_terrno = errno; 1312 rpc_callerr.re_errno = 0; 1313 rpc_callerr.re_status = RPC_CANTSEND; 1314 } else if (len == -2) { 1315 rpc_callerr.re_terrno = 0; 1316 rpc_callerr.re_errno = 0; 1317 rpc_callerr.re_status = RPC_CANTSTORE; 1318 } 1319 return (len); 1320 } 1321 1322 if ((maxsz == 0) || (maxsz == -1)) { 1323 /* 1324 * T_snd may return -1 for error on connection (connection 1325 * needs to be repaired/closed, and -2 for flow-control 1326 * handling error (no operation to do, just wait and call 1327 * T_Flush()). 1328 */ 1329 if ((len = t_snd(ct->ct_fd, buf, (unsigned)len, 0)) == -1) { 1330 rpc_callerr.re_terrno = t_errno; 1331 rpc_callerr.re_errno = 0; 1332 rpc_callerr.re_status = RPC_CANTSEND; 1333 } 1334 return (len); 1335 } 1336 1337 /* 1338 * This for those transports which have a max size for data. 1339 */ 1340 for (cnt = len, i = 0; cnt > 0; cnt -= i, buf += i) { 1341 flag = cnt > maxsz ? T_MORE : 0; 1342 if ((i = t_snd(ct->ct_fd, buf, (unsigned)MIN(cnt, maxsz), 1343 flag)) == -1) { 1344 rpc_callerr.re_terrno = t_errno; 1345 rpc_callerr.re_errno = 0; 1346 rpc_callerr.re_status = RPC_CANTSEND; 1347 return (-1); 1348 } 1349 } 1350 return (len); 1351 } 1352 1353 /* 1354 * Receive the required bytes of data, even if it is fragmented. 1355 */ 1356 static int 1357 t_rcvall(int fd, char *buf, int len) 1358 { 1359 int moreflag; 1360 int final = 0; 1361 int res; 1362 1363 do { 1364 moreflag = 0; 1365 res = t_rcv(fd, buf, (unsigned)len, &moreflag); 1366 if (res == -1) { 1367 if (t_errno == TLOOK) 1368 switch (t_look(fd)) { 1369 case T_DISCONNECT: 1370 (void) t_rcvdis(fd, NULL); 1371 (void) t_snddis(fd, NULL); 1372 return (-1); 1373 case T_ORDREL: 1374 /* Received orderly release indication */ 1375 (void) t_rcvrel(fd); 1376 /* Send orderly release indicator */ 1377 (void) t_sndrel(fd); 1378 return (-1); 1379 default: 1380 return (-1); 1381 } 1382 } else if (res == 0) { 1383 return (0); 1384 } 1385 final += res; 1386 buf += res; 1387 len -= res; 1388 } while ((len > 0) && (moreflag & T_MORE)); 1389 return (final); 1390 } 1391 1392 static struct clnt_ops * 1393 clnt_vc_ops(void) 1394 { 1395 static struct clnt_ops ops; 1396 extern mutex_t ops_lock; 1397 1398 /* VARIABLES PROTECTED BY ops_lock: ops */ 1399 1400 sig_mutex_lock(&ops_lock); 1401 if (ops.cl_call == NULL) { 1402 ops.cl_call = clnt_vc_call; 1403 ops.cl_send = clnt_vc_send; 1404 ops.cl_abort = clnt_vc_abort; 1405 ops.cl_geterr = clnt_vc_geterr; 1406 ops.cl_freeres = clnt_vc_freeres; 1407 ops.cl_destroy = clnt_vc_destroy; 1408 ops.cl_control = clnt_vc_control; 1409 } 1410 sig_mutex_unlock(&ops_lock); 1411 return (&ops); 1412 } 1413 1414 /* 1415 * Make sure that the time is not garbage. -1 value is disallowed. 1416 * Note this is different from time_not_ok in clnt_dg.c 1417 */ 1418 static bool_t 1419 time_not_ok(struct timeval *t) 1420 { 1421 return (t->tv_sec <= -1 || t->tv_sec > 100000000 || 1422 t->tv_usec <= -1 || t->tv_usec > 1000000); 1423 } 1424 1425 1426 /* Compute the # of bytes that remains until the end of the buffer */ 1427 #define REMAIN_BYTES(p) (ct->ct_bufferSize-(ct->ct_##p - ct->ct_buffer)) 1428 1429 static int 1430 addInBuffer(struct ct_data *ct, char *dataToAdd, unsigned int nBytes) 1431 { 1432 if (NULL == ct->ct_buffer) { 1433 /* Buffer not allocated yet. */ 1434 char *buffer; 1435 1436 buffer = malloc(ct->ct_bufferSize); 1437 if (NULL == buffer) { 1438 errno = ENOMEM; 1439 return (-1); 1440 } 1441 (void) memcpy(buffer, dataToAdd, nBytes); 1442 1443 ct->ct_buffer = buffer; 1444 ct->ct_bufferReadPtr = buffer; 1445 ct->ct_bufferWritePtr = buffer + nBytes; 1446 ct->ct_bufferPendingSize = nBytes; 1447 } else { 1448 /* 1449 * For an already allocated buffer, two mem copies 1450 * might be needed, depending on the current 1451 * writing position. 1452 */ 1453 1454 /* Compute the length of the first copy. */ 1455 int len = MIN(nBytes, REMAIN_BYTES(bufferWritePtr)); 1456 1457 ct->ct_bufferPendingSize += nBytes; 1458 1459 (void) memcpy(ct->ct_bufferWritePtr, dataToAdd, len); 1460 ct->ct_bufferWritePtr += len; 1461 nBytes -= len; 1462 if (0 == nBytes) { 1463 /* One memcopy needed. */ 1464 1465 /* 1466 * If the write pointer is at the end of the buffer, 1467 * wrap it now. 1468 */ 1469 if (ct->ct_bufferWritePtr == 1470 (ct->ct_buffer + ct->ct_bufferSize)) { 1471 ct->ct_bufferWritePtr = ct->ct_buffer; 1472 } 1473 } else { 1474 /* Two memcopy needed. */ 1475 dataToAdd += len; 1476 1477 /* 1478 * Copy the remaining data to the beginning of the 1479 * buffer 1480 */ 1481 (void) memcpy(ct->ct_buffer, dataToAdd, nBytes); 1482 ct->ct_bufferWritePtr = ct->ct_buffer + nBytes; 1483 } 1484 } 1485 return (0); 1486 } 1487 1488 static void 1489 consumeFromBuffer(struct ct_data *ct, unsigned int nBytes) 1490 { 1491 ct->ct_bufferPendingSize -= nBytes; 1492 if (ct->ct_bufferPendingSize == 0) { 1493 /* 1494 * If the buffer contains no data, we set the two pointers at 1495 * the beginning of the buffer (to miminize buffer wraps). 1496 */ 1497 ct->ct_bufferReadPtr = ct->ct_bufferWritePtr = ct->ct_buffer; 1498 } else { 1499 ct->ct_bufferReadPtr += nBytes; 1500 if (ct->ct_bufferReadPtr > 1501 ct->ct_buffer + ct->ct_bufferSize) { 1502 ct->ct_bufferReadPtr -= ct->ct_bufferSize; 1503 } 1504 } 1505 } 1506 1507 static int 1508 iovFromBuffer(struct ct_data *ct, struct iovec *iov) 1509 { 1510 int l; 1511 1512 if (ct->ct_bufferPendingSize == 0) 1513 return (0); 1514 1515 l = REMAIN_BYTES(bufferReadPtr); 1516 if (l < ct->ct_bufferPendingSize) { 1517 /* Buffer in two fragments. */ 1518 iov[0].iov_base = ct->ct_bufferReadPtr; 1519 iov[0].iov_len = l; 1520 1521 iov[1].iov_base = ct->ct_buffer; 1522 iov[1].iov_len = ct->ct_bufferPendingSize - l; 1523 return (2); 1524 } else { 1525 /* Buffer in one fragment. */ 1526 iov[0].iov_base = ct->ct_bufferReadPtr; 1527 iov[0].iov_len = ct->ct_bufferPendingSize; 1528 return (1); 1529 } 1530 } 1531 1532 static bool_t 1533 set_flush_mode(struct ct_data *ct, int mode) 1534 { 1535 switch (mode) { 1536 case RPC_CL_BLOCKING_FLUSH: 1537 /* flush as most as possible without blocking */ 1538 case RPC_CL_BESTEFFORT_FLUSH: 1539 /* flush the buffer completely (possibly blocking) */ 1540 case RPC_CL_DEFAULT_FLUSH: 1541 /* flush according to the currently defined policy */ 1542 ct->ct_blocking_mode = mode; 1543 return (TRUE); 1544 default: 1545 return (FALSE); 1546 } 1547 } 1548 1549 static bool_t 1550 set_io_mode(struct ct_data *ct, int ioMode) 1551 { 1552 switch (ioMode) { 1553 case RPC_CL_BLOCKING: 1554 if (ct->ct_io_mode == RPC_CL_NONBLOCKING) { 1555 if (NULL != ct->ct_buffer) { 1556 /* 1557 * If a buffer was allocated for this 1558 * connection, flush it now, and free it. 1559 */ 1560 (void) do_flush(ct, RPC_CL_BLOCKING_FLUSH); 1561 free(ct->ct_buffer); 1562 ct->ct_buffer = NULL; 1563 } 1564 (void) unregister_nb(ct); 1565 ct->ct_io_mode = ioMode; 1566 } 1567 break; 1568 case RPC_CL_NONBLOCKING: 1569 if (ct->ct_io_mode == RPC_CL_BLOCKING) { 1570 if (-1 == register_nb(ct)) { 1571 return (FALSE); 1572 } 1573 ct->ct_io_mode = ioMode; 1574 } 1575 break; 1576 default: 1577 return (FALSE); 1578 } 1579 return (TRUE); 1580 } 1581 1582 static int 1583 do_flush(struct ct_data *ct, uint_t flush_mode) 1584 { 1585 int result; 1586 if (ct->ct_bufferPendingSize == 0) { 1587 return (0); 1588 } 1589 1590 switch (flush_mode) { 1591 case RPC_CL_BLOCKING_FLUSH: 1592 if (!set_blocking_connection(ct, TRUE)) { 1593 return (-1); 1594 } 1595 while (ct->ct_bufferPendingSize > 0) { 1596 if (REMAIN_BYTES(bufferReadPtr) < 1597 ct->ct_bufferPendingSize) { 1598 struct iovec iov[2]; 1599 (void) iovFromBuffer(ct, iov); 1600 result = writev(ct->ct_fd, iov, 2); 1601 } else { 1602 result = t_snd(ct->ct_fd, ct->ct_bufferReadPtr, 1603 ct->ct_bufferPendingSize, 0); 1604 } 1605 if (result < 0) { 1606 return (-1); 1607 } 1608 consumeFromBuffer(ct, result); 1609 } 1610 1611 break; 1612 1613 case RPC_CL_BESTEFFORT_FLUSH: 1614 (void) set_blocking_connection(ct, FALSE); 1615 if (REMAIN_BYTES(bufferReadPtr) < ct->ct_bufferPendingSize) { 1616 struct iovec iov[2]; 1617 (void) iovFromBuffer(ct, iov); 1618 result = writev(ct->ct_fd, iov, 2); 1619 } else { 1620 result = t_snd(ct->ct_fd, ct->ct_bufferReadPtr, 1621 ct->ct_bufferPendingSize, 0); 1622 } 1623 if (result < 0) { 1624 if (errno != EWOULDBLOCK) { 1625 perror("flush"); 1626 return (-1); 1627 } 1628 return (0); 1629 } 1630 if (result > 0) 1631 consumeFromBuffer(ct, result); 1632 break; 1633 } 1634 return (0); 1635 } 1636 1637 /* 1638 * Non blocking send. 1639 */ 1640 1641 static int 1642 nb_send(struct ct_data *ct, void *buff, unsigned int nBytes) 1643 { 1644 int result; 1645 1646 if (!(ntohl(*(uint32_t *)buff) & 2^31)) { 1647 return (-1); 1648 } 1649 1650 /* 1651 * Check to see if the current message can be stored fully in the 1652 * buffer. We have to check this now because it may be impossible 1653 * to send any data, so the message must be stored in the buffer. 1654 */ 1655 if (nBytes > (ct->ct_bufferSize - ct->ct_bufferPendingSize)) { 1656 /* Try to flush (to free some space). */ 1657 (void) do_flush(ct, RPC_CL_BESTEFFORT_FLUSH); 1658 1659 /* Can we store the message now ? */ 1660 if (nBytes > (ct->ct_bufferSize - ct->ct_bufferPendingSize)) 1661 return (-2); 1662 } 1663 1664 (void) set_blocking_connection(ct, FALSE); 1665 1666 /* 1667 * If there is no data pending, we can simply try 1668 * to send our data. 1669 */ 1670 if (ct->ct_bufferPendingSize == 0) { 1671 result = t_snd(ct->ct_fd, buff, nBytes, 0); 1672 if (result == -1) { 1673 if (errno == EWOULDBLOCK) { 1674 result = 0; 1675 } else { 1676 perror("send"); 1677 return (-1); 1678 } 1679 } 1680 /* 1681 * If we have not sent all data, we must store them 1682 * in the buffer. 1683 */ 1684 if (result != nBytes) { 1685 if (addInBuffer(ct, (char *)buff + result, 1686 nBytes - result) == -1) { 1687 return (-1); 1688 } 1689 } 1690 } else { 1691 /* 1692 * Some data pending in the buffer. We try to send 1693 * both buffer data and current message in one shot. 1694 */ 1695 struct iovec iov[3]; 1696 int i = iovFromBuffer(ct, &iov[0]); 1697 1698 iov[i].iov_base = buff; 1699 iov[i].iov_len = nBytes; 1700 1701 result = writev(ct->ct_fd, iov, i+1); 1702 if (result == -1) { 1703 if (errno == EWOULDBLOCK) { 1704 /* No bytes sent */ 1705 result = 0; 1706 } else { 1707 return (-1); 1708 } 1709 } 1710 1711 /* 1712 * Add the bytes from the message 1713 * that we have not sent. 1714 */ 1715 if (result <= ct->ct_bufferPendingSize) { 1716 /* No bytes from the message sent */ 1717 consumeFromBuffer(ct, result); 1718 if (addInBuffer(ct, buff, nBytes) == -1) { 1719 return (-1); 1720 } 1721 } else { 1722 /* 1723 * Some bytes of the message are sent. 1724 * Compute the length of the message that has 1725 * been sent. 1726 */ 1727 int len = result - ct->ct_bufferPendingSize; 1728 1729 /* So, empty the buffer. */ 1730 ct->ct_bufferReadPtr = ct->ct_buffer; 1731 ct->ct_bufferWritePtr = ct->ct_buffer; 1732 ct->ct_bufferPendingSize = 0; 1733 1734 /* And add the remaining part of the message. */ 1735 if (len != nBytes) { 1736 if (addInBuffer(ct, (char *)buff + len, 1737 nBytes-len) == -1) { 1738 return (-1); 1739 } 1740 } 1741 } 1742 } 1743 return (nBytes); 1744 } 1745 1746 static void 1747 flush_registered_clients(void) 1748 { 1749 struct nb_reg_node *node; 1750 1751 if (LIST_ISEMPTY(nb_first)) { 1752 return; 1753 } 1754 1755 LIST_FOR_EACH(nb_first, node) { 1756 (void) do_flush(node->ct, RPC_CL_BLOCKING_FLUSH); 1757 } 1758 } 1759 1760 static int 1761 allocate_chunk(void) 1762 { 1763 #define CHUNK_SIZE 16 1764 struct nb_reg_node *chk = 1765 malloc(sizeof (struct nb_reg_node) * CHUNK_SIZE); 1766 struct nb_reg_node *n; 1767 int i; 1768 1769 if (NULL == chk) { 1770 return (-1); 1771 } 1772 1773 n = chk; 1774 for (i = 0; i < CHUNK_SIZE-1; ++i) { 1775 n[i].next = &(n[i+1]); 1776 } 1777 n[CHUNK_SIZE-1].next = (struct nb_reg_node *)&nb_free; 1778 nb_free = chk; 1779 return (0); 1780 } 1781 1782 static int 1783 register_nb(struct ct_data *ct) 1784 { 1785 struct nb_reg_node *node; 1786 1787 (void) mutex_lock(&nb_list_mutex); 1788 1789 if (LIST_ISEMPTY(nb_free) && (allocate_chunk() == -1)) { 1790 (void) mutex_unlock(&nb_list_mutex); 1791 errno = ENOMEM; 1792 return (-1); 1793 } 1794 1795 if (!exit_handler_set) { 1796 (void) atexit(flush_registered_clients); 1797 exit_handler_set = TRUE; 1798 } 1799 /* Get the first free node */ 1800 LIST_EXTRACT(nb_free, node); 1801 1802 node->ct = ct; 1803 1804 LIST_ADD(nb_first, node); 1805 (void) mutex_unlock(&nb_list_mutex); 1806 1807 return (0); 1808 } 1809 1810 static int 1811 unregister_nb(struct ct_data *ct) 1812 { 1813 struct nb_reg_node *node; 1814 1815 (void) mutex_lock(&nb_list_mutex); 1816 assert(!LIST_ISEMPTY(nb_first)); 1817 1818 node = nb_first; 1819 LIST_FOR_EACH(nb_first, node) { 1820 if (node->next->ct == ct) { 1821 /* Get the node to unregister. */ 1822 struct nb_reg_node *n = node->next; 1823 node->next = n->next; 1824 1825 n->ct = NULL; 1826 LIST_ADD(nb_free, n); 1827 break; 1828 } 1829 } 1830 (void) mutex_unlock(&nb_list_mutex); 1831 return (0); 1832 } 1833