xref: /titanic_50/usr/src/lib/libnsl/key/xcrypt.c (revision 60a3f738d56f92ae8b80e4b62a2331c6e1f2311f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 
23 /*
24  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
25  * Use is subject to license terms.
26  */
27 
28 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
29 /* All Rights Reserved */
30 
31 /*
32  * Portions of this source code were derived from Berkeley 4.3 BSD
33  * under license from the Regents of the University of California.
34  */
35 
36 #pragma ident	"%Z%%M%	%I%	%E% SMI"
37 
38 /*
39  * Hex encryption/decryption and utility routines
40  */
41 
42 #include "mt.h"
43 #include <stdio.h>
44 #include <stdlib.h>
45 #include <sys/types.h>
46 #include <rpc/rpc.h>
47 #include <rpc/key_prot.h>   /* for KEYCHECKSUMSIZE */
48 #include <rpc/des_crypt.h>
49 #include <string.h>
50 #include <rpcsvc/nis_dhext.h>
51 #include <md5.h>
52 
53 #define	MD5HEXSIZE	32
54 
55 extern int bin2hex(int len, unsigned char *binnum, char *hexnum);
56 extern int hex2bin(int len, char *hexnum, char *binnum);
57 static char hex[];	/* forward */
58 static char hexval();
59 
60 int passwd2des(char *, char *);
61 static int weak_DES_key(des_block);
62 
63 /* EXPORT DELETE START */
64 /*
65  * For export control reasons, we want to limit the maximum size of
66  * data that can be encrypted or decrypted.  We limit this to 1024
67  * bits of key data, which amounts to 128 bytes.
68  *
69  * For the extended DH project, we have increased it to
70  * 144 bytes (128key + 16checksum) to accomadate all the 128 bytes
71  * being used by the new 1024bit keys plus 16 bytes MD5 checksum.
72  * We discussed this with Sun's export control office and lawyers
73  * and we have reason to believe this is ok for export.
74  */
75 #define	MAX_KEY_CRYPT_LEN	144
76 /* EXPORT DELETE END */
77 
78 /*
79  * Encrypt a secret key given passwd
80  * The secret key is passed and returned in hex notation.
81  * Its length must be a multiple of 16 hex digits (64 bits).
82  */
83 int
84 xencrypt(secret, passwd)
85 	char *secret;
86 	char *passwd;
87 {
88 /* EXPORT DELETE START */
89 	char key[8];
90 	char ivec[8];
91 	char *buf;
92 	int err;
93 	int len;
94 
95 	len = (int)strlen(secret) / 2;
96 	if (len > MAX_KEY_CRYPT_LEN)
97 		return (0);
98 	buf = malloc((unsigned)len);
99 	(void) hex2bin(len, secret, buf);
100 	(void) passwd2des(passwd, key);
101 	(void) memset(ivec, 0, 8);
102 
103 	err = cbc_crypt(key, buf, len, DES_ENCRYPT | DES_HW, ivec);
104 	if (DES_FAILED(err)) {
105 		free(buf);
106 		return (0);
107 	}
108 	(void) bin2hex(len, (unsigned char *) buf, secret);
109 	free(buf);
110 	return (1);
111 #if 0
112 /* EXPORT DELETE END */
113 	return (0);
114 /* EXPORT DELETE START */
115 #endif
116 /* EXPORT DELETE END */
117 }
118 
119 /*
120  * Decrypt secret key using passwd
121  * The secret key is passed and returned in hex notation.
122  * Once again, the length is a multiple of 16 hex digits
123  */
124 int
125 xdecrypt(secret, passwd)
126 	char *secret;
127 	char *passwd;
128 {
129 /* EXPORT DELETE START */
130 	char key[8];
131 	char ivec[8];
132 	char *buf;
133 	int err;
134 	int len;
135 
136 	len = (int)strlen(secret) / 2;
137 	if (len > MAX_KEY_CRYPT_LEN)
138 		return (0);
139 	buf = malloc((unsigned)len);
140 
141 	(void) hex2bin(len, secret, buf);
142 	(void) passwd2des(passwd, key);
143 	(void) memset(ivec, 0, 8);
144 
145 	err = cbc_crypt(key, buf, len, DES_DECRYPT | DES_HW, ivec);
146 	if (DES_FAILED(err)) {
147 		free(buf);
148 		return (0);
149 	}
150 	(void) bin2hex(len, (unsigned char *) buf, secret);
151 	free(buf);
152 	return (1);
153 #if 0
154 /* EXPORT DELETE END */
155 	return (0);
156 /* EXPORT DELETE START */
157 #endif
158 /* EXPORT DELETE END */
159 }
160 
161 /*
162  * Turn password into DES key
163  */
164 int
165 passwd2des(pw, key)
166 	char *pw;
167 	char *key;
168 {
169 	int i;
170 
171 	(void) memset(key, 0, 8);
172 	for (i = 0; *pw; i = (i+1) % 8) {
173 		key[i] ^= *pw++ << 1;
174 	}
175 	des_setparity(key);
176 	return (1);
177 }
178 
179 
180 /*
181  * Hex to binary conversion
182  */
183 int
184 hex2bin(len, hexnum, binnum)
185 	int len;
186 	char *hexnum;
187 	char *binnum;
188 {
189 	int i;
190 
191 	for (i = 0; i < len; i++) {
192 		*binnum++ = 16 * hexval(hexnum[2 * i]) +
193 					hexval(hexnum[2 * i + 1]);
194 	}
195 	return (1);
196 }
197 
198 /*
199  * Binary to hex conversion
200  */
201 int
202 bin2hex(len, binnum, hexnum)
203 	int len;
204 	unsigned char *binnum;
205 	char *hexnum;
206 {
207 	int i;
208 	unsigned val;
209 
210 	for (i = 0; i < len; i++) {
211 		val = binnum[i];
212 		hexnum[i*2] = hex[val >> 4];
213 		hexnum[i*2+1] = hex[val & 0xf];
214 	}
215 	hexnum[len*2] = 0;
216 	return (1);
217 }
218 
219 static char hex[16] = {
220 	'0', '1', '2', '3', '4', '5', '6', '7',
221 	'8', '9', 'a', 'b', 'c', 'd', 'e', 'f',
222 };
223 
224 static char
225 hexval(c)
226 	char c;
227 {
228 	if (c >= '0' && c <= '9') {
229 		return (c - '0');
230 	} else if (c >= 'a' && c <= 'z') {
231 		return (c - 'a' + 10);
232 	} else if (c >= 'A' && c <= 'Z') {
233 		return (c - 'A' + 10);
234 	} else {
235 		return (-1);
236 	}
237 }
238 
239 /*
240  * Generic key length/algorithm version of xencrypt().
241  *
242  * Encrypt a secret key given passwd.
243  * The secret key is passed in hex notation.
244  * Arg encrypted_secret will be set to point to the encrypted
245  * secret key (NUL term, hex notation).
246  *
247  * Its length must be a multiple of 16 hex digits (64 bits).
248  *
249  * For 192-0 (AUTH_DES), then encrypt using the same method as xencrypt().
250  *
251  * If arg do_chksum is TRUE, append the checksum before the encrypt.
252  * For 192-0, the checksum is done the same as in xencrypt().  For
253  * bigger keys, MD5 is used.
254  *
255  * Arg netname can be NULL for 192-0.
256  */
257 int
258 xencrypt_g(
259 	char *secret,			/* in  */
260 	keylen_t keylen,		/* in  */
261 	algtype_t algtype,		/* in  */
262 	const char *passwd,		/* in  */
263 	const char netname[],  		/* in  */
264 	char **encrypted_secret,	/* out */
265 	bool_t do_chksum)		/* in  */
266 {
267 /* EXPORT DELETE START */
268 	des_block key;
269 	char ivec[8];
270 	char *binkeybuf;
271 	int err;
272 	const int classic_des = keylen == 192 && algtype == 0;
273 	const int hexkeybytes = BITS2NIBBLES(keylen);
274 	const int keychecksumsize = classic_des ? KEYCHECKSUMSIZE : MD5HEXSIZE;
275 	const int binkeybytes = do_chksum ? keylen/8 + keychecksumsize/2 :
276 		keylen/8;
277 	const int bufsize = do_chksum ? hexkeybytes + keychecksumsize + 1 :
278 		hexkeybytes + 1;
279 	char *hexkeybuf;
280 
281 	if (!secret || !keylen || !passwd || !encrypted_secret)
282 		return (0);
283 
284 	if ((hexkeybuf = malloc(bufsize)) == 0)
285 		return (0);
286 
287 	(void) memcpy(hexkeybuf, secret, hexkeybytes);
288 	if (do_chksum)
289 		if (classic_des) {
290 			(void) memcpy(hexkeybuf + hexkeybytes, secret,
291 					keychecksumsize);
292 		} else {
293 			MD5_CTX md5_ctx;
294 			char md5hexbuf[MD5HEXSIZE + 1] = {0};
295 			uint8_t digest[MD5HEXSIZE/2];
296 
297 			MD5Init(&md5_ctx);
298 			MD5Update(&md5_ctx, (unsigned char *)hexkeybuf,
299 					hexkeybytes);
300 			MD5Final(digest, &md5_ctx);
301 
302 			/* convert md5 binary digest to hex */
303 			(void) bin2hex(MD5HEXSIZE/2, digest, md5hexbuf);
304 
305 			/* append the hex md5 string to the end of the key */
306 			(void) memcpy(hexkeybuf + hexkeybytes,
307 					(void *)md5hexbuf, MD5HEXSIZE);
308 		}
309 	hexkeybuf[bufsize - 1] = 0;
310 
311 	if (binkeybytes > MAX_KEY_CRYPT_LEN) {
312 		free(hexkeybuf);
313 		return (0);
314 	}
315 	if ((binkeybuf = malloc((unsigned)binkeybytes)) == 0) {
316 		free(hexkeybuf);
317 		return (0);
318 	}
319 
320 	(void) hex2bin(binkeybytes, hexkeybuf, binkeybuf);
321 	if (classic_des)
322 		(void) passwd2des((char *)passwd, key.c);
323 	else
324 		if (netname)
325 			(void) passwd2des_g(passwd, netname,
326 					(int)strlen(netname), &key, FALSE);
327 		else {
328 			free(hexkeybuf);
329 			return (0);
330 		}
331 
332 	(void) memset(ivec, 0, 8);
333 
334 	err = cbc_crypt(key.c, binkeybuf, binkeybytes, DES_ENCRYPT | DES_HW,
335 			ivec);
336 	if (DES_FAILED(err)) {
337 		free(hexkeybuf);
338 		free(binkeybuf);
339 		return (0);
340 	}
341 	(void) bin2hex(binkeybytes, (unsigned char *) binkeybuf, hexkeybuf);
342 	free(binkeybuf);
343 	*encrypted_secret = hexkeybuf;
344 	return (1);
345 #if 0
346 /* EXPORT DELETE END */
347 	return (0);
348 /* EXPORT DELETE START */
349 #endif
350 /* EXPORT DELETE END */
351 }
352 
353 /*
354  * Generic key len and alg type for version of xdecrypt.
355  *
356  * Decrypt secret key using passwd.  The decrypted secret key
357  * *overwrites* the supplied encrypted secret key.
358  * The secret key is passed and returned in hex notation.
359  * Once again, the length is a multiple of 16 hex digits.
360  *
361  * If 'do_chksum' is TRUE, the 'secret' buffer is assumed to contain
362  * a checksum calculated by a call to xencrypt_g().
363  *
364  * If keylen is 192 and algtype is 0, then decrypt the same way
365  * as xdecrypt().
366  *
367  * Arg netname can be NULL for 192-0.
368  */
369 int
370 xdecrypt_g(
371 	char *secret,		/* out  */
372 	int keylen,		/* in  */
373 	int algtype,		/* in  */
374 	const char *passwd,	/* in  */
375 	const char netname[],	/* in  */
376 	bool_t do_chksum)	/* in  */
377 {
378 /* EXPORT DELETE START */
379 	des_block key;
380 	char ivec[8];
381 	char *buf;
382 	int err;
383 	int len;
384 	const int classic_des = keylen == 192 && algtype == 0;
385 	const int hexkeybytes = BITS2NIBBLES(keylen);
386 	const int keychecksumsize = classic_des ? KEYCHECKSUMSIZE : MD5HEXSIZE;
387 
388 	len = (int)strlen(secret) / 2;
389 	if (len > MAX_KEY_CRYPT_LEN)
390 		return (0);
391 	if ((buf = malloc((unsigned)len)) == 0)
392 		return (0);
393 
394 	(void) hex2bin(len, secret, buf);
395 	if (classic_des)
396 		(void) passwd2des((char *)passwd, key.c);
397 	else
398 		if (netname)
399 			(void) passwd2des_g(passwd, netname,
400 					(int)strlen(netname), &key, FALSE);
401 		else {
402 			free(buf);
403 			return (0);
404 		}
405 	(void) memset(ivec, 0, 8);
406 
407 	err = cbc_crypt(key.c, buf, len, DES_DECRYPT | DES_HW, ivec);
408 	if (DES_FAILED(err)) {
409 		free(buf);
410 		return (0);
411 	}
412 	(void) bin2hex(len, (unsigned char *) buf, secret);
413 	free(buf);
414 
415 	if (do_chksum)
416 		if (classic_des) {
417 			if (memcmp(secret, &(secret[hexkeybytes]),
418 					keychecksumsize) != 0) {
419 				secret[0] = 0;
420 				return (0);
421 			}
422 		} else {
423 			MD5_CTX md5_ctx;
424 			char md5hexbuf[MD5HEXSIZE + 1] = {0};
425 			uint8_t digest[MD5HEXSIZE/2];
426 
427 			MD5Init(&md5_ctx);
428 			MD5Update(&md5_ctx, (unsigned char *)secret,
429 					hexkeybytes);
430 			MD5Final(digest, &md5_ctx);
431 
432 			/* convert md5 binary digest to hex */
433 			(void) bin2hex(MD5HEXSIZE/2, digest, md5hexbuf);
434 
435 			/* does the digest match the appended one? */
436 			if (memcmp(&(secret[hexkeybytes]),
437 					md5hexbuf, MD5HEXSIZE) != 0) {
438 				secret[0] = 0;
439 				return (0);
440 			}
441 		}
442 
443 	secret[hexkeybytes] = '\0';
444 
445 	return (1);
446 #if 0
447 /* EXPORT DELETE END */
448 	return (0);
449 /* EXPORT DELETE START */
450 #endif
451 /* EXPORT DELETE END */
452 }
453 
454 
455 /*
456  * Modified version of passwd2des(). passwd2des_g() uses the Kerberos
457  * RFC 1510 algorithm to generate a DES key from a user password
458  * and mix-in string. The mix-in is expected to be the netname.
459  * This function to be used only for extended Diffie-Hellman keys.
460  *
461  * If altarg is TRUE, reverse the concat of passwd and mix-in.
462  */
463 int
464 passwd2des_g(
465 	const char *pw,
466 	const char *mixin,
467 	int len,
468 	des_block *key, /* out */
469 	bool_t altalg)
470 {
471 
472 	int  i, j, incr = 1;
473 	des_block ivec, tkey;
474 	char *text;
475 	int  plen, tlen;
476 
477 	(void) memset(tkey.c, 0, 8);
478 	(void) memset(ivec.c, 0, 8);
479 
480 
481 /*
482  * Concatentate the password and the mix-in string, fan-fold and XOR them
483  * to the required eight byte initial DES key. Since passwords can be
484  * expected to use mostly seven bit ASCII, left shift the password one
485  * bit in order to preserve as much key space as possible.
486  */
487 
488 #define	KEYLEN sizeof (tkey.c)
489 	plen = strlen(pw);
490 	tlen = ((plen + len + (KEYLEN-1))/KEYLEN)*KEYLEN;
491 	if ((text = malloc(tlen)) == NULL) {
492 		return (0);
493 	}
494 
495 	(void) memset(text, 0, tlen);
496 
497 	if (!altalg) {
498 
499 /*
500  * Concatenate the password and the mix-in string, fan-fold and XOR them
501  * to the required eight byte initial DES key. Since passwords can be
502  * expected to use mostly seven bit ASCII, left shift the password one
503  * bit in order to preserve as much key space as possible.
504  */
505 		(void) memcpy(text, pw, plen);
506 		(void) memcpy(&text[plen], mixin, len);
507 
508 		for (i = 0, j = 0; pw[j]; j++) {
509 			tkey.c[i] ^= pw[j] << 1;
510 			i += incr;
511 			if (i == 8) {
512 				i = 7;
513 				incr = -incr;
514 			} else if (i == -1) {
515 				i = 0;
516 				incr = -incr;
517 			}
518 		}
519 
520 		for (j = 0; j < len; j++) {
521 			tkey.c[i] ^= mixin[j];
522 			i += incr;
523 			if (i == 8) {
524 				i = 7;
525 				incr = -incr;
526 			} else if (i == -1) {
527 				i = 0;
528 				incr = -incr;
529 			}
530 		}
531 	} else {  /* use alternative algorithm */
532 		(void) memcpy(text, mixin, len);
533 		(void) memcpy(&text[len], pw, plen);
534 
535 		for (i = 0, j = 0; j < len; j++) {
536 			tkey.c[i] ^= mixin[j];
537 			i += incr;
538 			if (i == 8) {
539 				i = 7;
540 				incr = -incr;
541 			} else if (i == -1) {
542 				i = 0;
543 				incr = -incr;
544 			}
545 		}
546 
547 		for (j = 0; pw[j]; j++) {
548 			tkey.c[i] ^= pw[j] << 1;
549 			i += incr;
550 			if (i == 8) {
551 				i = 7;
552 				incr = -incr;
553 			} else if (i == -1) {
554 				i = 0;
555 				incr = -incr;
556 			}
557 		}
558 	}
559 	des_setparity_g(&tkey);
560 
561 	/*
562 	 * Use the temporary key to produce a DES CBC checksum for the text
563 	 * string; cbc_crypt returns the checksum in the ivec.
564 	 */
565 	(void) cbc_crypt(tkey.c, text, tlen, DES_ENCRYPT|DES_HW, ivec.c);
566 	des_setparity_g(&ivec);
567 	free(text);
568 
569 	if (weak_DES_key(ivec)) {
570 		ivec.c[7] ^= 0xf0;
571 		/*
572 		 *  XORing with 0xf0 preserves parity, so no need to check
573 		 *  that again.
574 		 */
575 	}
576 
577 	(void) memcpy((*key).c, ivec.c, sizeof (ivec.c));
578 
579 	return (1);
580 
581 }
582 
583 struct DESkey {
584 	uint32_t h1;
585 	uint32_t h2;
586 };
587 
588 /*
589  * Weak and semiweak keys from "Applied Cryptography", second edition,
590  * by Bruce Schneier, Wiley 1996.
591  */
592 static struct DESkey weakDESkeys[] = {
593 	/* Weak keys */
594 	{0x01010101, 0x01010101},
595 	{0x1f1f1f1f, 0x1f1f1f1f},
596 	{0xe0e0e0e0, 0xe0e0e0e0},
597 	{0xfefefefe, 0xfefefefe},
598 	/* Semiweak keys */
599 	{0x01fe01fe, 0x01fe01fe},
600 	{0x1fe01fe0, 0x0ef10ef1},
601 	{0x01e001e0, 0x01f101f1},
602 	{0x1ffe1ffe, 0x0efe0efe},
603 	{0x011f011f, 0x010e010e},
604 	{0xe0fee0fe, 0xf1fef1fe},
605 	{0xfe01fe01, 0xfe01fe01},
606 	{0xe01fe01f, 0xf10ef10e},
607 	{0xe001e001, 0xf101f101},
608 	{0xfe1ffe1f, 0xfe0efe0e},
609 	{0x1f011f01, 0x0e010e01},
610 	{0xfee0fee0, 0xfef1fef1}
611 };
612 
613 static int
614 weak_DES_key(des_block db)
615 {
616 	int i;
617 
618 	for (i = 0; i < sizeof (weakDESkeys)/sizeof (struct DESkey); i++) {
619 		if (weakDESkeys[i].h1 == db.key.high &&
620 			weakDESkeys[i].h2 == db.key.low)
621 			return (1);
622 	}
623 
624 	return (0);
625 }
626