xref: /titanic_50/usr/src/lib/libmtmalloc/common/mtmalloc.c (revision 8461248208fabd3a8230615f8615e5bf1b4dcdcb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2004 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <mtmalloc.h>
30 #include "mtmalloc_impl.h"
31 #include <unistd.h>
32 #include <synch.h>
33 #include <thread.h>
34 #include <stdio.h>
35 #include <limits.h>
36 #include <errno.h>
37 #include <string.h>
38 #include <strings.h>
39 #include <sys/param.h>
40 #include <sys/sysmacros.h>
41 
42 /*
43  * To turn on the asserts just compile -DDEBUG
44  */
45 
46 #ifndef	DEBUG
47 #define	NDEBUG
48 #endif
49 
50 #include <assert.h>
51 
52 /*
53  * The MT hot malloc implementation contained herein is designed to be
54  * plug-compatible with the libc version of malloc. It is not intended
55  * to replace that implementation until we decide that it is ok to break
56  * customer apps (Solaris 3.0).
57  *
58  * For requests up to 2^^16, the allocator initializes itself into NCPUS
59  * worth of chains of caches. When a memory request is made, the calling thread
60  * is vectored into one of NCPUS worth of caches.  The LWP id gives us a cheap,
61  * contention-reducing index to use, eventually, this should be replaced with
62  * the actual CPU sequence number, when an interface to get it is available.
63  *
64  * Once the thread is vectored into one of the list of caches the real
65  * allocation of the memory begins. The size is determined to figure out which
66  * bucket the allocation should be satisfied from. The management of free
67  * buckets is done via a bitmask. A free bucket is represented by a 1. The
68  * first free bit represents the first free bucket. The position of the bit,
69  * represents the position of the bucket in the arena.
70  *
71  * When the memory from the arena is handed out, the address of the cache
72  * control structure is written in the word preceeding the returned memory.
73  * This cache control address is used during free() to mark the buffer free
74  * in the cache control structure.
75  *
76  * When all available memory in a cache has been depleted, a new chunk of memory
77  * is allocated via sbrk(). The new cache is allocated from this chunk of memory
78  * and initialized in the function create_cache(). New caches are installed at
79  * the front of a singly linked list of the same size memory pools. This helps
80  * to ensure that there will tend to be available memory in the beginning of the
81  * list.
82  *
83  * Long linked lists hurt performance. To decrease this effect, there is a
84  * tunable, requestsize, that bumps up the sbrk allocation size and thus
85  * increases the number of available blocks within an arena.  We also keep
86  * a "hint" for each cache list, which is the last cache in the list allocated
87  * from.  This lowers the cost of searching if there are a lot of fully
88  * allocated blocks at the front of the list.
89  *
90  * For requests greater than 2^^16 (oversize allocations), there are two pieces
91  * of overhead. There is the OVERHEAD used to hold the cache addr
92  * (&oversize_list), plus an oversize_t structure to further describe the block.
93  *
94  * The oversize list is kept as defragmented as possible by coalescing
95  * freed oversized allocations with adjacent neighbors.
96  *
97  * Addresses handed out are stored in a hash table, and are aligned on
98  * MTMALLOC_MIN_ALIGN-byte boundaries at both ends. Request sizes are rounded-up
99  * where necessary in order to achieve this. This eases the implementation of
100  * MTDEBUGPATTERN and MTINITPATTERN, particularly where coalescing occurs.
101  *
102  * A memalign allocation takes memalign header overhead.  There's two
103  * types of memalign headers distinguished by MTMALLOC_MEMALIGN_MAGIC
104  * and MTMALLOC_MEMALIGN_MIN_MAGIC.  When the size of memory taken to
105  * get to the aligned address from malloc'ed address is the minimum size
106  * OVERHEAD, we create a header taking only one OVERHEAD space with magic
107  * number MTMALLOC_MEMALIGN_MIN_MAGIC, and we know by subtracting OVERHEAD
108  * from memaligned address, we can get to the malloc'ed address. Otherwise,
109  * we create a memalign header taking two OVERHEAD space, one stores
110  * MTMALLOC_MEMALIGN_MAGIC magic number, the other one points back to the
111  * malloc'ed address.
112  */
113 
114 #if defined(__i386) || defined(__amd64)
115 #include <arpa/inet.h>	/* for htonl() */
116 #endif
117 
118 static void * morecore(size_t);
119 static int setup_caches(void);
120 static void create_cache(cache_t *, size_t bufsize, uint_t hunks);
121 static void * malloc_internal(size_t, percpu_t *);
122 static void * oversize(size_t);
123 static oversize_t *find_oversize(size_t);
124 static void add_oversize(oversize_t *);
125 static void copy_pattern(uint32_t, void *, size_t);
126 static void * verify_pattern(uint32_t, void *, size_t);
127 static void reinit_cpu_list(void);
128 static void reinit_cache(cache_t *);
129 static void free_oversize(oversize_t *);
130 static oversize_t *oversize_header_alloc(uintptr_t, size_t);
131 
132 /*
133  * oversize hash table stuff
134  */
135 #define	NUM_BUCKETS	67	/* must be prime */
136 #define	HASH_OVERSIZE(caddr)	((uintptr_t)(caddr) % NUM_BUCKETS)
137 oversize_t *ovsz_hashtab[NUM_BUCKETS];
138 
139 /*
140  * Gets a decent "current cpu identifier", to be used to reduce contention.
141  * Eventually, this should be replaced by an interface to get the actual
142  * CPU sequence number in libthread/liblwp.
143  */
144 extern uint_t _thr_self();
145 #pragma weak _thr_self
146 #define	get_curcpu_func() (curcpu_func)_thr_self
147 
148 #define	ALIGN(x, a)	((((uintptr_t)(x) + ((uintptr_t)(a) - 1)) \
149 			& ~((uintptr_t)(a) - 1)))
150 
151 /* need this to deal with little endianess of x86 */
152 #if defined(__i386) || defined(__amd64)
153 #define	FLIP_EM(x)	htonl((x))
154 #else
155 #define	FLIP_EM(x)	(x)
156 #endif
157 
158 #define	INSERT_ONLY			0
159 #define	COALESCE_LEFT			0x00000001
160 #define	COALESCE_RIGHT			0x00000002
161 #define	COALESCE_WITH_BOTH_SIDES	(COALESCE_LEFT | COALESCE_RIGHT)
162 
163 #define	OVERHEAD	8	/* size needed to write cache addr */
164 #define	HUNKSIZE	8192	/* just a multiplier */
165 
166 #define	MAX_CACHED_SHIFT	16	/* 64K is the max cached size */
167 #define	MAX_CACHED		(1 << MAX_CACHED_SHIFT)
168 #define	MIN_CACHED_SHIFT	4	/* smaller requests rounded up */
169 #define	MTMALLOC_MIN_ALIGN	8	/* min guaranteed alignment */
170 
171 #define	NUM_CACHES	(MAX_CACHED_SHIFT - MIN_CACHED_SHIFT + 1)
172 #define	CACHELIST_SIZE	ALIGN(NUM_CACHES * sizeof (cache_head_t), \
173     CACHE_COHERENCY_UNIT)
174 
175 #define	MINSIZE		9	/* for requestsize, tunable */
176 #define	MAXSIZE		256	/* arbitrary, big enough, for requestsize */
177 
178 #define	FREEPATTERN	0xdeadbeef /* debug fill pattern for free buf */
179 #define	INITPATTERN	0xbaddcafe /* debug fill pattern for new buf */
180 
181 #define	misaligned(p)	((unsigned)(p) & (sizeof (int) - 1))
182 #define	IS_OVERSIZE(x, y)	(((x) < (y)) && (((x) > MAX_CACHED)? 1 : 0))
183 
184 static long requestsize = MINSIZE; /* 9 pages per cache; tunable; 9 is min */
185 
186 static uint_t cpu_mask;
187 static curcpu_func curcpu;
188 
189 static int32_t debugopt;
190 static int32_t reinit;
191 
192 static percpu_t *cpu_list;
193 static oversize_t oversize_list;
194 static mutex_t oversize_lock;
195 
196 static int ncpus;
197 
198 #define	MTMALLOC_OVERSIZE_MAGIC		((uintptr_t)&oversize_list)
199 #define	MTMALLOC_MEMALIGN_MAGIC		((uintptr_t)&oversize_list + 1)
200 #define	MTMALLOC_MEMALIGN_MIN_MAGIC	((uintptr_t)&oversize_list + 2)
201 
202 /*
203  * We require allocations handed out to be aligned on MTMALLOC_MIN_ALIGN-byte
204  * boundaries. We round up sizeof (oversize_t) (when necessary) to ensure that
205  * this is achieved.
206  */
207 #define	OVSZ_SIZE		(ALIGN(sizeof (oversize_t), MTMALLOC_MIN_ALIGN))
208 #define	OVSZ_HEADER_SIZE	(OVSZ_SIZE + OVERHEAD)
209 
210 /*
211  * memalign header takes 2 OVERHEAD space.  One for memalign magic, and the
212  * other one points back to the start address of originally allocated space.
213  */
214 #define	MEMALIGN_HEADER_SIZE	2 * OVERHEAD
215 #define	MEMALIGN_HEADER_ALLOC(x, shift, malloc_addr)\
216 	if (shift == OVERHEAD)\
217 		*((uintptr_t *)((caddr_t)x - OVERHEAD)) = \
218 			MTMALLOC_MEMALIGN_MIN_MAGIC; \
219 	else {\
220 		*((uintptr_t *)((caddr_t)x - OVERHEAD)) = \
221 			MTMALLOC_MEMALIGN_MAGIC; \
222 		*((uintptr_t *)((caddr_t)x - 2 * OVERHEAD)) = \
223 			(uintptr_t)malloc_addr; \
224 	}
225 
226 void *
227 malloc(size_t bytes)
228 {
229 	percpu_t *list_rotor;
230 	uint_t	list_index;
231 
232 	/*
233 	 * this test is due to linking with libthread.
234 	 * There are malloc calls prior to this library
235 	 * being initialized.
236 	 *
237 	 * If setup_caches fails, we set ENOMEM and return NULL
238 	 */
239 	if (cpu_list == (percpu_t *)NULL) {
240 		if (setup_caches() == 0) {
241 			errno = ENOMEM;
242 			return (NULL);
243 		}
244 	}
245 
246 	if (bytes > MAX_CACHED)
247 		return (oversize(bytes));
248 
249 	list_index = (curcpu() & cpu_mask);
250 
251 	list_rotor = &cpu_list[list_index];
252 
253 	return (malloc_internal(bytes, list_rotor));
254 }
255 
256 void *
257 realloc(void * ptr, size_t bytes)
258 {
259 	void *new, *data_ptr;
260 	cache_t *cacheptr;
261 	caddr_t mem;
262 	size_t shift = 0;
263 
264 	if (ptr == NULL)
265 		return (malloc(bytes));
266 
267 	if (bytes == 0) {
268 		free(ptr);
269 		return (NULL);
270 	}
271 
272 	data_ptr = ptr;
273 	mem = (caddr_t)ptr - OVERHEAD;
274 
275 	new = malloc(bytes);
276 
277 	if (new == NULL)
278 		return (NULL);
279 
280 	/*
281 	 * If new == ptr, ptr has previously been freed. Passing a freed pointer
282 	 * to realloc() is not allowed - unless the caller specifically states
283 	 * otherwise, in which case we must avoid freeing ptr (ie new) before we
284 	 * return new. There is (obviously) no requirement to memcpy() ptr to
285 	 * new before we return.
286 	 */
287 	if (new == ptr) {
288 		if (!(debugopt & MTDOUBLEFREE))
289 			abort();
290 		return (new);
291 	}
292 
293 	if (*(uintptr_t *)mem == MTMALLOC_MEMALIGN_MAGIC) {
294 		mem -= OVERHEAD;
295 		ptr = (void *)*(uintptr_t *)mem;
296 		mem = (caddr_t)ptr - OVERHEAD;
297 		shift = (size_t)((uintptr_t)data_ptr - (uintptr_t)ptr);
298 	} else if (*(uintptr_t *)mem == MTMALLOC_MEMALIGN_MIN_MAGIC) {
299 		ptr = (void *) mem;
300 		mem -= OVERHEAD;
301 		shift = OVERHEAD;
302 	}
303 
304 	if (*(uintptr_t *)mem == MTMALLOC_OVERSIZE_MAGIC) {
305 		oversize_t *old;
306 
307 		old = (oversize_t *)(mem - OVSZ_SIZE);
308 		(void) memcpy(new, data_ptr, MIN(bytes, old->size - shift));
309 		free(ptr);
310 		return (new);
311 	}
312 
313 	cacheptr = (cache_t *)*(uintptr_t *)mem;
314 
315 	(void) memcpy(new, data_ptr,
316 		MIN(cacheptr->mt_size - OVERHEAD - shift, bytes));
317 	free(ptr);
318 
319 	return (new);
320 }
321 
322 void *
323 calloc(size_t nelem, size_t bytes)
324 {
325 	void * ptr;
326 	size_t size = nelem * bytes;
327 
328 	ptr = malloc(size);
329 	if (ptr == NULL)
330 		return (NULL);
331 	bzero(ptr, size);
332 
333 	return (ptr);
334 }
335 
336 void
337 free(void * ptr)
338 {
339 	cache_t *cacheptr;
340 	caddr_t mem;
341 	int32_t i;
342 	caddr_t freeblocks;
343 	uintptr_t offset;
344 	uchar_t mask;
345 	int32_t which_bit, num_bytes;
346 
347 	if (ptr == NULL)
348 		return;
349 
350 	mem = (caddr_t)ptr - OVERHEAD;
351 
352 	if (*(uintptr_t *)mem == MTMALLOC_MEMALIGN_MAGIC) {
353 		mem -= OVERHEAD;
354 		ptr = (void *)*(uintptr_t *)mem;
355 		mem = (caddr_t)ptr - OVERHEAD;
356 	} else if (*(uintptr_t *)mem == MTMALLOC_MEMALIGN_MIN_MAGIC) {
357 		ptr = (void *) mem;
358 		mem -= OVERHEAD;
359 	}
360 
361 	if (*(uintptr_t *)mem == MTMALLOC_OVERSIZE_MAGIC) {
362 		oversize_t *big, **opp;
363 		int bucket;
364 
365 		big = (oversize_t *)(mem - OVSZ_SIZE);
366 		(void) mutex_lock(&oversize_lock);
367 
368 		bucket = HASH_OVERSIZE(big->addr);
369 		for (opp = &ovsz_hashtab[bucket]; *opp != NULL;
370 		    opp = &(*opp)->hash_next)
371 			if (*opp == big)
372 				break;
373 
374 		if (*opp == NULL) {
375 			if (!(debugopt & MTDOUBLEFREE))
376 				abort();
377 			(void) mutex_unlock(&oversize_lock);
378 			return;
379 		}
380 
381 		*opp = big->hash_next;	/* remove big from the hash table */
382 		big->hash_next = NULL;
383 
384 		if (debugopt & MTDEBUGPATTERN)
385 			copy_pattern(FREEPATTERN, ptr, big->size);
386 		add_oversize(big);
387 		(void) mutex_unlock(&oversize_lock);
388 		return;
389 	}
390 
391 	cacheptr = (cache_t *)*(uintptr_t *)mem;
392 	freeblocks = cacheptr->mt_freelist;
393 
394 	/*
395 	 * This is the distance measured in bits into the arena.
396 	 * The value of offset is in bytes but there is a 1-1 correlation
397 	 * between distance into the arena and distance into the
398 	 * freelist bitmask.
399 	 */
400 	offset = mem - cacheptr->mt_arena;
401 
402 	/*
403 	 * i is total number of bits to offset into freelist bitmask.
404 	 */
405 
406 	i = offset / cacheptr->mt_size;
407 
408 	num_bytes = i >> 3;
409 
410 	/*
411 	 * which_bit is the bit offset into the byte in the freelist.
412 	 * if our freelist bitmask looks like 0xf3 and we are freeing
413 	 * block 5 (ie: the 6th block) our mask will be 0xf7 after
414 	 * the free. Things go left to right that's why the mask is 0x80
415 	 * and not 0x01.
416 	 */
417 	which_bit = i - (num_bytes << 3);
418 
419 	mask = 0x80 >> which_bit;
420 
421 	freeblocks += num_bytes;
422 
423 	if (debugopt & MTDEBUGPATTERN)
424 		copy_pattern(FREEPATTERN, ptr, cacheptr->mt_size - OVERHEAD);
425 
426 	(void) mutex_lock(&cacheptr->mt_cache_lock);
427 
428 	if (*freeblocks & mask) {
429 		if (!(debugopt & MTDOUBLEFREE))
430 			abort();
431 	} else {
432 		*freeblocks |= mask;
433 		cacheptr->mt_nfree++;
434 	}
435 
436 	(void) mutex_unlock(&cacheptr->mt_cache_lock);
437 }
438 
439 void *
440 memalign(size_t alignment, size_t size)
441 {
442 	size_t alloc_size;
443 	uintptr_t offset;
444 	void *alloc_buf;
445 	void *ret_buf;
446 
447 	if (size == 0 || alignment == 0 ||
448 		misaligned(alignment) ||
449 		(alignment & (alignment - 1)) != 0) {
450 		errno = EINVAL;
451 		return (NULL);
452 	}
453 
454 	/* <= MTMALLOC_MIN_ALIGN, malloc can provide directly */
455 	if (alignment <= MTMALLOC_MIN_ALIGN)
456 		return (malloc(size));
457 
458 	alloc_size = size + alignment - MTMALLOC_MIN_ALIGN;
459 
460 	if (alloc_size < size) { /* overflow */
461 		errno = ENOMEM;
462 		return (NULL);
463 	}
464 
465 	alloc_buf = malloc(alloc_size);
466 
467 	if (alloc_buf == NULL)
468 		/* malloc sets errno */
469 		return (NULL);
470 
471 	/*
472 	 * If alloc_size > MAX_CACHED, malloc() will have returned a multiple of
473 	 * MTMALLOC_MIN_ALIGN, having rounded-up alloc_size if necessary. Since
474 	 * we will use alloc_size to return the excess fragments to the free
475 	 * list, we also round-up alloc_size if necessary.
476 	 */
477 	if ((alloc_size > MAX_CACHED) &&
478 	    (alloc_size & (MTMALLOC_MIN_ALIGN - 1)))
479 		alloc_size = ALIGN(alloc_size, MTMALLOC_MIN_ALIGN);
480 
481 	if ((offset = (uintptr_t)alloc_buf & (alignment - 1)) == 0) {
482 		/* aligned correctly */
483 
484 		size_t frag_size = alloc_size -
485 			(size + MTMALLOC_MIN_ALIGN + OVSZ_HEADER_SIZE);
486 
487 		/*
488 		 * If the leftover piece of the memory > MAX_CACHED,
489 		 * split off the piece and return it back to the freelist.
490 		 */
491 		if (IS_OVERSIZE(frag_size, alloc_size)) {
492 			oversize_t *orig, *tail;
493 			uintptr_t taddr;
494 			size_t data_size;
495 			taddr = ALIGN((uintptr_t)alloc_buf + size,
496 					MTMALLOC_MIN_ALIGN);
497 			data_size = taddr - (uintptr_t)alloc_buf;
498 			orig = (oversize_t *)((uintptr_t)alloc_buf -
499 					OVSZ_HEADER_SIZE);
500 			frag_size = orig->size - data_size -
501 					OVSZ_HEADER_SIZE;
502 			orig->size = data_size;
503 			tail = oversize_header_alloc(taddr, frag_size);
504 			free_oversize(tail);
505 		}
506 		ret_buf = alloc_buf;
507 	} else {
508 		uchar_t	oversize_bits = 0;
509 		size_t	head_sz, data_sz, tail_sz;
510 		uintptr_t ret_addr, taddr, shift, tshift;
511 		oversize_t *orig, *tail;
512 		size_t tsize;
513 
514 		/* needs to be aligned */
515 		shift = alignment - offset;
516 
517 		assert(shift >= MTMALLOC_MIN_ALIGN);
518 
519 		ret_addr = ((uintptr_t)alloc_buf + shift);
520 		ret_buf = (void *)ret_addr;
521 
522 		if (alloc_size <= MAX_CACHED) {
523 			MEMALIGN_HEADER_ALLOC(ret_addr, shift, alloc_buf);
524 			return (ret_buf);
525 		}
526 
527 		/*
528 		 * Only check for the fragments when the memory is allocted
529 		 * from oversize_list.  Split off a fragment and return it
530 		 * to the oversize freelist when it's > MAX_CACHED.
531 		 */
532 
533 		head_sz = shift - MAX(MEMALIGN_HEADER_SIZE, OVSZ_HEADER_SIZE);
534 
535 		tail_sz = alloc_size -
536 			(shift + size + MTMALLOC_MIN_ALIGN + OVSZ_HEADER_SIZE);
537 
538 		oversize_bits |= IS_OVERSIZE(head_sz, alloc_size) |
539 				IS_OVERSIZE(size, alloc_size) << DATA_SHIFT |
540 				IS_OVERSIZE(tail_sz, alloc_size) << TAIL_SHIFT;
541 
542 		switch (oversize_bits) {
543 			case NONE_OVERSIZE:
544 			case DATA_OVERSIZE:
545 				MEMALIGN_HEADER_ALLOC(ret_addr, shift,
546 					alloc_buf);
547 				break;
548 			case HEAD_OVERSIZE:
549 				/*
550 				 * If we can extend data > MAX_CACHED and have
551 				 * head still > MAX_CACHED, we split head-end
552 				 * as the case of head-end and data oversized,
553 				 * otherwise just create memalign header.
554 				 */
555 				tsize = (shift + size) - (MAX_CACHED + 8 +
556 					MTMALLOC_MIN_ALIGN + OVSZ_HEADER_SIZE);
557 
558 				if (!IS_OVERSIZE(tsize, alloc_size)) {
559 					MEMALIGN_HEADER_ALLOC(ret_addr, shift,
560 						alloc_buf);
561 					break;
562 				} else {
563 					tsize += OVSZ_HEADER_SIZE;
564 					taddr = ALIGN((uintptr_t)alloc_buf +
565 						tsize, MTMALLOC_MIN_ALIGN);
566 					tshift = ret_addr - taddr;
567 					MEMALIGN_HEADER_ALLOC(ret_addr, tshift,
568 						taddr);
569 					ret_addr = taddr;
570 					shift = ret_addr - (uintptr_t)alloc_buf;
571 				}
572 				/* FALLTHROUGH */
573 			case HEAD_AND_DATA_OVERSIZE:
574 				/*
575 				 * Split off the head fragment and
576 				 * return it back to oversize freelist.
577 				 * Create oversize header for the piece
578 				 * of (data + tail fragment).
579 				 */
580 				orig = (oversize_t *)((uintptr_t)alloc_buf -
581 						OVSZ_HEADER_SIZE);
582 				(void) oversize_header_alloc(ret_addr -
583 						OVSZ_HEADER_SIZE,
584 						(orig->size - shift));
585 				orig->size = shift - OVSZ_HEADER_SIZE;
586 
587 				/* free up the head fragment */
588 				free_oversize(orig);
589 				break;
590 			case TAIL_OVERSIZE:
591 				/*
592 				 * If we can extend data > MAX_CACHED and have
593 				 * tail-end still > MAX_CACHED, we split tail
594 				 * end, otherwise just create memalign header.
595 				 */
596 				orig = (oversize_t *)((uintptr_t)alloc_buf -
597 						OVSZ_HEADER_SIZE);
598 				tsize =  orig->size - (MAX_CACHED + 8 +
599 					shift + OVSZ_HEADER_SIZE +
600 					MTMALLOC_MIN_ALIGN);
601 				if (!IS_OVERSIZE(tsize, alloc_size)) {
602 					MEMALIGN_HEADER_ALLOC(ret_addr, shift,
603 						alloc_buf);
604 					break;
605 				} else {
606 					size = MAX_CACHED + 8;
607 				}
608 				/* FALLTHROUGH */
609 			case DATA_AND_TAIL_OVERSIZE:
610 				/*
611 				 * Split off the tail fragment and
612 				 * return it back to oversize freelist.
613 				 * Create memalign header and adjust
614 				 * the size for the piece of
615 				 * (head fragment + data).
616 				 */
617 				taddr = ALIGN(ret_addr + size,
618 						MTMALLOC_MIN_ALIGN);
619 				data_sz = (size_t)(taddr -
620 						(uintptr_t)alloc_buf);
621 				orig = (oversize_t *)((uintptr_t)alloc_buf -
622 						OVSZ_HEADER_SIZE);
623 				tsize = orig->size - data_sz;
624 				orig->size = data_sz;
625 				MEMALIGN_HEADER_ALLOC(ret_buf, shift,
626 					alloc_buf);
627 				tsize -= OVSZ_HEADER_SIZE;
628 				tail = oversize_header_alloc(taddr,  tsize);
629 				free_oversize(tail);
630 				break;
631 			case HEAD_AND_TAIL_OVERSIZE:
632 				/*
633 				 * Split off the head fragment.
634 				 * We try to free up tail-end when we can
635 				 * extend data size to (MAX_CACHED + 8)
636 				 * and remain tail-end oversized.
637 				 * The bottom line is all split pieces
638 				 * should be oversize in size.
639 				 */
640 				orig = (oversize_t *)((uintptr_t)alloc_buf -
641 					OVSZ_HEADER_SIZE);
642 				tsize =  orig->size - (MAX_CACHED + 8 +
643 					OVSZ_HEADER_SIZE + shift +
644 					MTMALLOC_MIN_ALIGN);
645 
646 				if (!IS_OVERSIZE(tsize, alloc_size)) {
647 					/*
648 					 * If the chunk is not big enough
649 					 * to make both data and tail oversize
650 					 * we just keep them as one piece.
651 					 */
652 					(void) oversize_header_alloc(ret_addr -
653 						OVSZ_HEADER_SIZE,
654 						orig->size - shift);
655 					orig->size = shift -
656 						OVSZ_HEADER_SIZE;
657 					free_oversize(orig);
658 					break;
659 				} else {
660 					/*
661 					 * extend data size > MAX_CACHED
662 					 * and handle it as head, data, tail
663 					 * are all oversized.
664 					 */
665 					size = MAX_CACHED + 8;
666 				}
667 				/* FALLTHROUGH */
668 			case ALL_OVERSIZE:
669 				/*
670 				 * split off the head and tail fragments,
671 				 * return them back to the oversize freelist.
672 				 * Alloc oversize header for data seg.
673 				 */
674 				orig = (oversize_t *)((uintptr_t)alloc_buf -
675 					OVSZ_HEADER_SIZE);
676 				tsize = orig->size;
677 				orig->size = shift - OVSZ_HEADER_SIZE;
678 				free_oversize(orig);
679 
680 				taddr = ALIGN(ret_addr + size,
681 					MTMALLOC_MIN_ALIGN);
682 				data_sz = taddr - ret_addr;
683 				assert(tsize > (shift + data_sz +
684 					OVSZ_HEADER_SIZE));
685 				tail_sz = tsize -
686 					(shift + data_sz + OVSZ_HEADER_SIZE);
687 
688 				/* create oversize header for data seg */
689 				(void) oversize_header_alloc(ret_addr -
690 					OVSZ_HEADER_SIZE, data_sz);
691 
692 				/* create oversize header for tail fragment */
693 				tail = oversize_header_alloc(taddr, tail_sz);
694 				free_oversize(tail);
695 				break;
696 			default:
697 				/* should not reach here */
698 				assert(0);
699 		}
700 	}
701 	return (ret_buf);
702 }
703 
704 
705 void *
706 valloc(size_t size)
707 {
708 	static unsigned pagesize;
709 
710 	if (size == 0)
711 		return (NULL);
712 
713 	if (!pagesize)
714 		pagesize = sysconf(_SC_PAGESIZE);
715 
716 	return (memalign(pagesize, size));
717 }
718 
719 void
720 mallocctl(int cmd, long value)
721 {
722 	switch (cmd) {
723 
724 	case MTDEBUGPATTERN:
725 		/*
726 		 * Reinitialize free blocks in case malloc() is called prior
727 		 * to mallocctl().
728 		 */
729 		if (value && !(debugopt & cmd)) {
730 			reinit++;
731 			debugopt |= cmd;
732 			reinit_cpu_list();
733 		}
734 		/*FALLTHRU*/
735 	case MTDOUBLEFREE:
736 	case MTINITBUFFER:
737 		if (value)
738 			debugopt |= cmd;
739 		else
740 			debugopt &= ~cmd;
741 		break;
742 	case MTCHUNKSIZE:
743 		if (value >= MINSIZE && value <= MAXSIZE)
744 			requestsize = value;
745 		break;
746 	default:
747 		break;
748 	}
749 }
750 
751 /*
752  * if this function is changed, update the fallback code in setup_caches to
753  * set ncpus to the number of possible return values. (currently 1)
754  */
755 static uint_t
756 fallback_curcpu(void)
757 {
758 	return (0);
759 }
760 
761 /*
762  * Returns non-zero on success, zero on failure.
763  *
764  * This carefully doesn't set cpu_list until initialization is finished.
765  */
766 static int
767 setup_caches(void)
768 {
769 	static mutex_t init_lock = DEFAULTMUTEX;
770 
771 	uintptr_t oldbrk;
772 	uintptr_t newbrk;
773 
774 	size_t cache_space_needed;
775 	size_t padding;
776 
777 	curcpu_func new_curcpu;
778 	uint_t new_cpu_mask;
779 	percpu_t *new_cpu_list;
780 
781 	uint_t i, j;
782 	uintptr_t list_addr;
783 
784 	(void) mutex_lock(&init_lock);
785 	if (cpu_list != NULL) {
786 		(void) mutex_unlock(&init_lock);
787 		return (1); 		/* success -- already initialized */
788 	}
789 
790 	new_curcpu = get_curcpu_func();
791 	if (new_curcpu == NULL) {
792 		new_curcpu = fallback_curcpu;
793 		ncpus = 1;
794 	} else {
795 		if ((ncpus = 2 * sysconf(_SC_NPROCESSORS_CONF)) <= 0)
796 			ncpus = 4; /* decent default value */
797 	}
798 	assert(ncpus > 0);
799 
800 	/* round ncpus up to a power of 2 */
801 	while (ncpus & (ncpus - 1))
802 		ncpus++;
803 
804 	new_cpu_mask = ncpus - 1;	/* create the cpu mask */
805 
806 	/*
807 	 * We now do some magic with the brk.  What we want to get in the
808 	 * end is a bunch of well-aligned stuff in a big initial allocation.
809 	 * Along the way, we do sanity checks to make sure no one else has
810 	 * touched the brk (which shouldn't happen, but it's always good to
811 	 * check)
812 	 *
813 	 * First, make sure sbrk is sane, and store the current brk in oldbrk.
814 	 */
815 	oldbrk = (uintptr_t)sbrk(0);
816 	if ((void *)oldbrk == (void *)-1) {
817 		(void) mutex_unlock(&init_lock);
818 		return (0);	/* sbrk is broken -- we're doomed. */
819 	}
820 
821 	/*
822 	 * Now, align the brk to a multiple of CACHE_COHERENCY_UNIT, so that
823 	 * the percpu structures and cache lists will be properly aligned.
824 	 *
825 	 *   2.  All hunks will be page-aligned, assuming HUNKSIZE >= PAGESIZE,
826 	 *	so they can be paged out individually.
827 	 */
828 	newbrk = ALIGN(oldbrk, CACHE_COHERENCY_UNIT);
829 	if (newbrk != oldbrk && (uintptr_t)sbrk(newbrk - oldbrk) != oldbrk) {
830 		(void) mutex_unlock(&init_lock);
831 		return (0);	/* someone else sbrked */
832 	}
833 
834 	/*
835 	 * For each cpu, there is one percpu_t and a list of caches
836 	 */
837 	cache_space_needed = ncpus * (sizeof (percpu_t) + CACHELIST_SIZE);
838 
839 	new_cpu_list = (percpu_t *)sbrk(cache_space_needed);
840 
841 	if (new_cpu_list == (percpu_t *)-1 ||
842 	    (uintptr_t)new_cpu_list != newbrk) {
843 		(void) mutex_unlock(&init_lock);
844 		return (0);	/* someone else sbrked */
845 	}
846 
847 	/*
848 	 * Finally, align the brk to HUNKSIZE so that all hunks are
849 	 * page-aligned, to avoid edge-effects.
850 	 */
851 
852 	newbrk = (uintptr_t)new_cpu_list + cache_space_needed;
853 
854 	padding = ALIGN(newbrk, HUNKSIZE) - newbrk;
855 
856 	if (padding > 0 && (uintptr_t)sbrk(padding) != newbrk) {
857 		(void) mutex_unlock(&init_lock);
858 		return (0);	/* someone else sbrked */
859 	}
860 
861 	list_addr = ((uintptr_t)new_cpu_list + (sizeof (percpu_t) * ncpus));
862 
863 	/* initialize the percpu list */
864 	for (i = 0; i < ncpus; i++) {
865 		new_cpu_list[i].mt_caches = (cache_head_t *)list_addr;
866 		for (j = 0; j < NUM_CACHES; j++) {
867 			new_cpu_list[i].mt_caches[j].mt_cache = NULL;
868 			new_cpu_list[i].mt_caches[j].mt_hint = NULL;
869 		}
870 
871 		bzero(&new_cpu_list[i].mt_parent_lock, sizeof (mutex_t));
872 
873 		/* get the correct cache list alignment */
874 		list_addr += CACHELIST_SIZE;
875 	}
876 
877 	/*
878 	 * Initialize oversize listhead
879 	 */
880 	oversize_list.next_bysize = &oversize_list;
881 	oversize_list.prev_bysize = &oversize_list;
882 	oversize_list.next_byaddr = &oversize_list;
883 	oversize_list.prev_byaddr = &oversize_list;
884 	oversize_list.addr = NULL;
885 	oversize_list.size = 0;		/* sentinal */
886 
887 	/*
888 	 * now install the global variables, leaving cpu_list for last, so that
889 	 * there aren't any race conditions.
890 	 */
891 	curcpu = new_curcpu;
892 	cpu_mask = new_cpu_mask;
893 	cpu_list = new_cpu_list;
894 
895 	(void) mutex_unlock(&init_lock);
896 
897 	return (1);
898 }
899 
900 static void
901 create_cache(cache_t *cp, size_t size, uint_t chunksize)
902 {
903 	long nblocks;
904 
905 	bzero(&cp->mt_cache_lock, sizeof (mutex_t));
906 	cp->mt_size = size;
907 	cp->mt_freelist = ((caddr_t)cp + sizeof (cache_t));
908 	cp->mt_span = chunksize * HUNKSIZE - sizeof (cache_t);
909 	cp->mt_hunks = chunksize;
910 	/*
911 	 * rough calculation. We will need to adjust later.
912 	 */
913 	nblocks = cp->mt_span / cp->mt_size;
914 	nblocks >>= 3;
915 	if (nblocks == 0) { /* less than 8 free blocks in this pool */
916 		int32_t numblocks = 0;
917 		long i = cp->mt_span;
918 		size_t sub = cp->mt_size;
919 		uchar_t mask = 0;
920 
921 		while (i > sub) {
922 			numblocks++;
923 			i -= sub;
924 		}
925 		nblocks = numblocks;
926 		cp->mt_arena = (caddr_t)ALIGN(cp->mt_freelist + 8, 8);
927 		cp->mt_nfree = numblocks;
928 		while (numblocks--) {
929 			mask |= 0x80 >> numblocks;
930 		}
931 		*(cp->mt_freelist) = mask;
932 	} else {
933 		cp->mt_arena = (caddr_t)ALIGN((caddr_t)cp->mt_freelist +
934 			nblocks, 32);
935 		/* recompute nblocks */
936 		nblocks = (uintptr_t)((caddr_t)cp->mt_freelist +
937 			cp->mt_span - cp->mt_arena) / cp->mt_size;
938 		cp->mt_nfree = ((nblocks >> 3) << 3);
939 		/* Set everything to free */
940 		(void) memset(cp->mt_freelist, 0xff, nblocks >> 3);
941 	}
942 
943 	if (debugopt & MTDEBUGPATTERN)
944 		copy_pattern(FREEPATTERN, cp->mt_arena, cp->mt_size * nblocks);
945 
946 	cp->mt_next = NULL;
947 }
948 
949 static void
950 reinit_cpu_list(void)
951 {
952 	oversize_t *wp = oversize_list.next_bysize;
953 	percpu_t *cpuptr;
954 	cache_t *thiscache;
955 	cache_head_t *cachehead;
956 
957 	if (wp == NULL || cpu_list == NULL) {
958 		reinit = 0;
959 		return;
960 	}
961 
962 	/* Reinitialize free oversize blocks. */
963 	(void) mutex_lock(&oversize_lock);
964 	if (debugopt & MTDEBUGPATTERN)
965 		for (; wp != &oversize_list; wp = wp->next_bysize)
966 			copy_pattern(FREEPATTERN, wp->addr, wp->size);
967 	(void) mutex_unlock(&oversize_lock);
968 
969 	/* Reinitialize free blocks. */
970 	for (cpuptr = &cpu_list[0]; cpuptr < &cpu_list[ncpus]; cpuptr++) {
971 		(void) mutex_lock(&cpuptr->mt_parent_lock);
972 		for (cachehead = &cpuptr->mt_caches[0]; cachehead <
973 			&cpuptr->mt_caches[NUM_CACHES]; cachehead++) {
974 			for (thiscache = cachehead->mt_cache; thiscache != NULL;
975 				thiscache = thiscache->mt_next) {
976 				(void) mutex_lock(&thiscache->mt_cache_lock);
977 				if (thiscache->mt_nfree == 0) {
978 					(void) mutex_unlock(
979 					    &thiscache->mt_cache_lock);
980 					continue;
981 				}
982 				if (thiscache != NULL)
983 					reinit_cache(thiscache);
984 				(void) mutex_unlock(&thiscache->mt_cache_lock);
985 			}
986 		}
987 		(void) mutex_unlock(&cpuptr->mt_parent_lock);
988 	}
989 	reinit = 0;
990 }
991 
992 static void
993 reinit_cache(cache_t *thiscache)
994 {
995 	uint32_t *freeblocks; /* not a uintptr_t on purpose */
996 	int32_t i, n;
997 	caddr_t ret;
998 
999 	freeblocks = (uint32_t *)thiscache->mt_freelist;
1000 	while (freeblocks < (uint32_t *)thiscache->mt_arena) {
1001 		if (*freeblocks & 0xffffffff) {
1002 		    for (i = 0; i < 32; i++) {
1003 			if (FLIP_EM(*freeblocks) & (0x80000000 >> i)) {
1004 				n = (uintptr_t)(((freeblocks -
1005 				    (uint32_t *)thiscache->mt_freelist) << 5)
1006 				    + i) * thiscache->mt_size;
1007 				ret = thiscache->mt_arena + n;
1008 				ret += OVERHEAD;
1009 				copy_pattern(FREEPATTERN, ret,
1010 				    thiscache->mt_size);
1011 			}
1012 		    }
1013 		}
1014 		freeblocks++;
1015 	}
1016 }
1017 
1018 static void *
1019 malloc_internal(size_t size, percpu_t *cpuptr)
1020 {
1021 	cache_head_t *cachehead;
1022 	cache_t *thiscache, *hintcache;
1023 	int32_t i, n, logsz, bucket;
1024 	uint32_t index;
1025 	uint32_t *freeblocks; /* not a uintptr_t on purpose */
1026 	caddr_t ret;
1027 
1028 	logsz = MIN_CACHED_SHIFT;
1029 
1030 	while (size > (1 << logsz))
1031 		logsz++;
1032 
1033 	bucket = logsz - MIN_CACHED_SHIFT;
1034 
1035 	(void) mutex_lock(&cpuptr->mt_parent_lock);
1036 
1037 	/*
1038 	 * Find a cache of the appropriate size with free buffers.
1039 	 *
1040 	 * We don't need to lock each cache as we check their mt_nfree count,
1041 	 * since:
1042 	 *	1.  We are only looking for caches with mt_nfree > 0.  If a
1043 	 *	   free happens during our search, it will increment mt_nfree,
1044 	 *	   which will not effect the test.
1045 	 *	2.  Allocations can decrement mt_nfree, but they can't happen
1046 	 *	   as long as we hold mt_parent_lock.
1047 	 */
1048 
1049 	cachehead = &cpuptr->mt_caches[bucket];
1050 
1051 	/* Search through the list, starting at the mt_hint */
1052 	thiscache = cachehead->mt_hint;
1053 
1054 	while (thiscache != NULL && thiscache->mt_nfree == 0)
1055 		thiscache = thiscache->mt_next;
1056 
1057 	if (thiscache == NULL) {
1058 		/* wrap around -- search up to the hint */
1059 		thiscache = cachehead->mt_cache;
1060 		hintcache = cachehead->mt_hint;
1061 
1062 		while (thiscache != NULL && thiscache != hintcache &&
1063 		    thiscache->mt_nfree == 0)
1064 			thiscache = thiscache->mt_next;
1065 
1066 		if (thiscache == hintcache)
1067 			thiscache = NULL;
1068 	}
1069 
1070 
1071 	if (thiscache == NULL) { /* there are no free caches */
1072 		int32_t thisrequest = requestsize;
1073 		int32_t buffer_size = (1 << logsz) + OVERHEAD;
1074 
1075 		thiscache = (cache_t *)morecore(thisrequest * HUNKSIZE);
1076 
1077 		if (thiscache == (cache_t *)-1) {
1078 		    (void) mutex_unlock(&cpuptr->mt_parent_lock);
1079 		    errno = EAGAIN;
1080 		    return (NULL);
1081 		}
1082 		create_cache(thiscache, buffer_size, thisrequest);
1083 
1084 		/* link in the new block at the beginning of the list */
1085 		thiscache->mt_next = cachehead->mt_cache;
1086 		cachehead->mt_cache = thiscache;
1087 	}
1088 
1089 	/* update the hint to the cache we found or created */
1090 	cachehead->mt_hint = thiscache;
1091 
1092 	/* thiscache now points to a cache with available space */
1093 	(void) mutex_lock(&thiscache->mt_cache_lock);
1094 
1095 	freeblocks = (uint32_t *)thiscache->mt_freelist;
1096 	while (freeblocks < (uint32_t *)thiscache->mt_arena) {
1097 		if (*freeblocks & 0xffffffff)
1098 			break;
1099 		freeblocks++;
1100 		if (freeblocks < (uint32_t *)thiscache->mt_arena &&
1101 		    *freeblocks & 0xffffffff)
1102 			break;
1103 		freeblocks++;
1104 		if (freeblocks < (uint32_t *)thiscache->mt_arena &&
1105 		    *freeblocks & 0xffffffff)
1106 			break;
1107 		freeblocks++;
1108 		if (freeblocks < (uint32_t *)thiscache->mt_arena &&
1109 		    *freeblocks & 0xffffffff)
1110 			break;
1111 		freeblocks++;
1112 	}
1113 
1114 	/*
1115 	 * the offset from mt_freelist to freeblocks is the offset into
1116 	 * the arena. Be sure to include the offset into freeblocks
1117 	 * of the bitmask. n is the offset.
1118 	 */
1119 	for (i = 0; i < 32; ) {
1120 		if (FLIP_EM(*freeblocks) & (0x80000000 >> i++))
1121 			break;
1122 		if (FLIP_EM(*freeblocks) & (0x80000000 >> i++))
1123 			break;
1124 		if (FLIP_EM(*freeblocks) & (0x80000000 >> i++))
1125 			break;
1126 		if (FLIP_EM(*freeblocks) & (0x80000000 >> i++))
1127 			break;
1128 	}
1129 	index = 0x80000000 >> --i;
1130 
1131 
1132 	*freeblocks &= FLIP_EM(~index);
1133 
1134 	thiscache->mt_nfree--;
1135 
1136 	(void) mutex_unlock(&thiscache->mt_cache_lock);
1137 	(void) mutex_unlock(&cpuptr->mt_parent_lock);
1138 
1139 	n = (uintptr_t)(((freeblocks - (uint32_t *)thiscache->mt_freelist) << 5)
1140 		+ i) * thiscache->mt_size;
1141 	/*
1142 	 * Now you have the offset in n, you've changed the free mask
1143 	 * in the freelist. Nothing left to do but find the block
1144 	 * in the arena and put the value of thiscache in the word
1145 	 * ahead of the handed out address and return the memory
1146 	 * back to the user.
1147 	 */
1148 	ret = thiscache->mt_arena + n;
1149 
1150 	/* Store the cache addr for this buf. Makes free go fast. */
1151 	*(uintptr_t *)ret = (uintptr_t)thiscache;
1152 
1153 	/*
1154 	 * This assert makes sure we don't hand out memory that is not
1155 	 * owned by this cache.
1156 	 */
1157 	assert(ret + thiscache->mt_size <= thiscache->mt_freelist +
1158 		thiscache->mt_span);
1159 
1160 	ret += OVERHEAD;
1161 
1162 	assert(((uintptr_t)ret & 7) == 0); /* are we 8 byte aligned */
1163 
1164 	if (reinit == 0 && (debugopt & MTDEBUGPATTERN))
1165 		if (verify_pattern(FREEPATTERN, ret, size))
1166 			abort();	/* reference after free */
1167 
1168 	if (debugopt & MTINITBUFFER)
1169 		copy_pattern(INITPATTERN, ret, size);
1170 	return ((void *)ret);
1171 }
1172 
1173 static void *
1174 morecore(size_t bytes)
1175 {
1176 	void * ret;
1177 
1178 	if (bytes > LONG_MAX) {
1179 		intptr_t wad;
1180 		/*
1181 		 * The request size is too big. We need to do this in
1182 		 * chunks. Sbrk only takes an int for an arg.
1183 		 */
1184 		if (bytes == ULONG_MAX)
1185 			return ((void *)-1);
1186 
1187 		ret = sbrk(0);
1188 		wad = LONG_MAX;
1189 		while (wad > 0) {
1190 			if (sbrk(wad) == (void *)-1) {
1191 				if (ret != sbrk(0))
1192 					(void) sbrk(-LONG_MAX);
1193 				return ((void *)-1);
1194 			}
1195 			bytes -= LONG_MAX;
1196 			wad = bytes;
1197 		}
1198 	} else
1199 		ret = sbrk(bytes);
1200 
1201 	return (ret);
1202 }
1203 
1204 
1205 static void *
1206 oversize(size_t size)
1207 {
1208 	caddr_t ret;
1209 	oversize_t *big;
1210 	int bucket;
1211 
1212 	/*
1213 	 * The idea with the global lock is that we are sure to
1214 	 * block in the kernel anyway since given an oversize alloc
1215 	 * we are sure to have to call morecore();
1216 	 */
1217 	(void) mutex_lock(&oversize_lock);
1218 
1219 	/*
1220 	 * Since we ensure every address we hand back is
1221 	 * MTMALLOC_MIN_ALIGN-byte aligned, ALIGNing size ensures that the
1222 	 * memory handed out is MTMALLOC_MIN_ALIGN-byte aligned at both ends.
1223 	 * This eases the implementation of MTDEBUGPATTERN and MTINITPATTERN,
1224 	 * particularly where coalescing occurs.
1225 	 */
1226 	size = ALIGN(size, MTMALLOC_MIN_ALIGN);
1227 
1228 	if ((big = find_oversize(size)) != NULL) {
1229 		if (reinit == 0 && (debugopt & MTDEBUGPATTERN))
1230 			if (verify_pattern(FREEPATTERN, big->addr, size))
1231 				abort();	/* reference after free */
1232 	} else {
1233 		/* Get more 8-byte aligned memory from heap */
1234 		ret = morecore(size + OVSZ_HEADER_SIZE);
1235 		if (ret == (caddr_t)-1) {
1236 			(void) mutex_unlock(&oversize_lock);
1237 			errno = ENOMEM;
1238 			return (NULL);
1239 		}
1240 		big = oversize_header_alloc((uintptr_t)ret, size);
1241 	}
1242 	ret = big->addr;
1243 
1244 	/* Add big to the hash table at the head of the relevant bucket. */
1245 	bucket = HASH_OVERSIZE(ret);
1246 	big->hash_next = ovsz_hashtab[bucket];
1247 	ovsz_hashtab[bucket] = big;
1248 
1249 	if (debugopt & MTINITBUFFER)
1250 		copy_pattern(INITPATTERN, ret, size);
1251 
1252 	(void) mutex_unlock(&oversize_lock);
1253 	assert(((uintptr_t)ret & 7) == 0); /* are we 8 byte aligned */
1254 	return ((void *)ret);
1255 }
1256 
1257 static void
1258 insert_oversize(oversize_t *op, oversize_t *nx)
1259 {
1260 	oversize_t *sp;
1261 
1262 	/* locate correct insertion point in size-ordered list */
1263 	for (sp = oversize_list.next_bysize;
1264 	    sp != &oversize_list && (op->size > sp->size);
1265 	    sp = sp->next_bysize)
1266 		;
1267 
1268 	/* link into size-ordered list */
1269 	op->next_bysize = sp;
1270 	op->prev_bysize = sp->prev_bysize;
1271 	op->prev_bysize->next_bysize = op;
1272 	op->next_bysize->prev_bysize = op;
1273 
1274 	/*
1275 	 * link item into address-ordered list
1276 	 * (caller provides insertion point as an optimization)
1277 	 */
1278 	op->next_byaddr = nx;
1279 	op->prev_byaddr = nx->prev_byaddr;
1280 	op->prev_byaddr->next_byaddr = op;
1281 	op->next_byaddr->prev_byaddr = op;
1282 
1283 }
1284 
1285 static void
1286 unlink_oversize(oversize_t *lp)
1287 {
1288 	/* unlink from address list */
1289 	lp->prev_byaddr->next_byaddr = lp->next_byaddr;
1290 	lp->next_byaddr->prev_byaddr = lp->prev_byaddr;
1291 
1292 	/* unlink from size list */
1293 	lp->prev_bysize->next_bysize = lp->next_bysize;
1294 	lp->next_bysize->prev_bysize = lp->prev_bysize;
1295 }
1296 
1297 static void
1298 position_oversize_by_size(oversize_t *op)
1299 {
1300 	oversize_t *sp;
1301 
1302 	if (op->size > op->next_bysize->size ||
1303 	    op->size < op->prev_bysize->size) {
1304 
1305 		/* unlink from size list */
1306 		op->prev_bysize->next_bysize = op->next_bysize;
1307 		op->next_bysize->prev_bysize = op->prev_bysize;
1308 
1309 		/* locate correct insertion point in size-ordered list */
1310 		for (sp = oversize_list.next_bysize;
1311 		    sp != &oversize_list && (op->size > sp->size);
1312 		    sp = sp->next_bysize)
1313 			;
1314 
1315 		/* link into size-ordered list */
1316 		op->next_bysize = sp;
1317 		op->prev_bysize = sp->prev_bysize;
1318 		op->prev_bysize->next_bysize = op;
1319 		op->next_bysize->prev_bysize = op;
1320 	}
1321 }
1322 
1323 static void
1324 add_oversize(oversize_t *lp)
1325 {
1326 	int merge_flags = INSERT_ONLY;
1327 	oversize_t *nx;  	/* ptr to item right of insertion point */
1328 	oversize_t *pv;  	/* ptr to item left of insertion point */
1329 	uint_t size_lp, size_pv, size_nx;
1330 	uintptr_t endp_lp, endp_pv, endp_nx;
1331 
1332 	/*
1333 	 * Locate insertion point in address-ordered list
1334 	 */
1335 
1336 	for (nx = oversize_list.next_byaddr;
1337 	    nx != &oversize_list && (lp->addr > nx->addr);
1338 	    nx = nx->next_byaddr)
1339 		;
1340 
1341 	/*
1342 	 * Determine how to add chunk to oversize freelist
1343 	 */
1344 
1345 	size_lp = OVSZ_HEADER_SIZE + lp->size;
1346 	endp_lp = ALIGN((uintptr_t)lp + size_lp, MTMALLOC_MIN_ALIGN);
1347 	size_lp = endp_lp - (uintptr_t)lp;
1348 
1349 	pv = nx->prev_byaddr;
1350 
1351 	if (pv->size) {
1352 
1353 		size_pv = OVSZ_HEADER_SIZE + pv->size;
1354 		endp_pv = ALIGN((uintptr_t)pv + size_pv,
1355 		    MTMALLOC_MIN_ALIGN);
1356 		size_pv = endp_pv - (uintptr_t)pv;
1357 
1358 		/* Check for adjacency with left chunk */
1359 		if ((uintptr_t)lp == endp_pv)
1360 			merge_flags |= COALESCE_LEFT;
1361 	}
1362 
1363 	if (nx->size) {
1364 
1365 	    /* Check for adjacency with right chunk */
1366 	    if ((uintptr_t)nx == endp_lp) {
1367 		size_nx = OVSZ_HEADER_SIZE + nx->size;
1368 		endp_nx = ALIGN((uintptr_t)nx + size_nx,
1369 		    MTMALLOC_MIN_ALIGN);
1370 		size_nx = endp_nx - (uintptr_t)nx;
1371 		merge_flags |= COALESCE_RIGHT;
1372 	    }
1373 	}
1374 
1375 	/*
1376 	 * If MTDEBUGPATTERN==1, lp->addr will have been overwritten with
1377 	 * FREEPATTERN for lp->size bytes. If we can merge, the oversize
1378 	 * header(s) that will also become part of the memory available for
1379 	 * reallocation (ie lp and/or nx) must also be overwritten with
1380 	 * FREEPATTERN or we will SIGABRT when this memory is next reallocated.
1381 	 */
1382 	switch (merge_flags) {
1383 
1384 	case INSERT_ONLY:		/* Coalescing not possible */
1385 		insert_oversize(lp, nx);
1386 		break;
1387 	case COALESCE_LEFT:
1388 		pv->size += size_lp;
1389 		position_oversize_by_size(pv);
1390 		if (debugopt & MTDEBUGPATTERN)
1391 			copy_pattern(FREEPATTERN, lp, OVSZ_HEADER_SIZE);
1392 		break;
1393 	case COALESCE_RIGHT:
1394 		unlink_oversize(nx);
1395 		lp->size += size_nx;
1396 		insert_oversize(lp, pv->next_byaddr);
1397 		if (debugopt & MTDEBUGPATTERN)
1398 			copy_pattern(FREEPATTERN, nx, OVSZ_HEADER_SIZE);
1399 		break;
1400 	case COALESCE_WITH_BOTH_SIDES:	/* Merge (with right) to the left */
1401 		pv->size += size_lp + size_nx;
1402 		unlink_oversize(nx);
1403 		position_oversize_by_size(pv);
1404 		if (debugopt & MTDEBUGPATTERN) {
1405 			copy_pattern(FREEPATTERN, lp, OVSZ_HEADER_SIZE);
1406 			copy_pattern(FREEPATTERN, nx, OVSZ_HEADER_SIZE);
1407 		}
1408 		break;
1409 	}
1410 }
1411 
1412 /*
1413  * Find memory on our list that is at least size big. If we find a block that is
1414  * big enough, we break it up and return the associated oversize_t struct back
1415  * to the calling client. Any leftover piece of that block is returned to the
1416  * freelist.
1417  */
1418 static oversize_t *
1419 find_oversize(size_t size)
1420 {
1421 	oversize_t *wp = oversize_list.next_bysize;
1422 	while (wp != &oversize_list && size > wp->size)
1423 		wp = wp->next_bysize;
1424 
1425 	if (wp == &oversize_list) /* empty list or nothing big enough */
1426 		return (NULL);
1427 	/* breaking up a chunk of memory */
1428 	if ((long)((wp->size - (size + OVSZ_HEADER_SIZE + MTMALLOC_MIN_ALIGN)))
1429 	    > MAX_CACHED) {
1430 		caddr_t off;
1431 		oversize_t *np;
1432 		size_t osize;
1433 		off = (caddr_t)ALIGN(wp->addr + size,
1434 		    MTMALLOC_MIN_ALIGN);
1435 		osize = wp->size;
1436 		wp->size = (size_t)(off - wp->addr);
1437 		np = oversize_header_alloc((uintptr_t)off,
1438 		    osize - (wp->size + OVSZ_HEADER_SIZE));
1439 		if ((long)np->size < 0)
1440 			abort();
1441 		unlink_oversize(wp);
1442 		add_oversize(np);
1443 	} else {
1444 		unlink_oversize(wp);
1445 	}
1446 	return (wp);
1447 }
1448 
1449 static void
1450 copy_pattern(uint32_t pattern, void *buf_arg, size_t size)
1451 {
1452 	uint32_t *bufend = (uint32_t *)((char *)buf_arg + size);
1453 	uint32_t *buf = buf_arg;
1454 
1455 	while (buf < bufend - 3) {
1456 		buf[3] = buf[2] = buf[1] = buf[0] = pattern;
1457 		buf += 4;
1458 	}
1459 	while (buf < bufend)
1460 		*buf++ = pattern;
1461 }
1462 
1463 static void *
1464 verify_pattern(uint32_t pattern, void *buf_arg, size_t size)
1465 {
1466 	uint32_t *bufend = (uint32_t *)((char *)buf_arg + size);
1467 	uint32_t *buf;
1468 
1469 	for (buf = buf_arg; buf < bufend; buf++)
1470 		if (*buf != pattern)
1471 			return (buf);
1472 	return (NULL);
1473 }
1474 
1475 static void
1476 free_oversize(oversize_t *ovp)
1477 {
1478 	assert(((uintptr_t)ovp->addr & 7) == 0); /* are we 8 byte aligned */
1479 	assert(ovp->size > MAX_CACHED);
1480 
1481 	ovp->next_bysize = ovp->prev_bysize = NULL;
1482 	ovp->next_byaddr = ovp->prev_byaddr = NULL;
1483 	(void) mutex_lock(&oversize_lock);
1484 	add_oversize(ovp);
1485 	(void) mutex_unlock(&oversize_lock);
1486 }
1487 
1488 static oversize_t *
1489 oversize_header_alloc(uintptr_t mem, size_t size)
1490 {
1491 	oversize_t *ovsz_hdr;
1492 
1493 	assert(size > MAX_CACHED);
1494 
1495 	ovsz_hdr = (oversize_t *)mem;
1496 	ovsz_hdr->prev_bysize = NULL;
1497 	ovsz_hdr->next_bysize = NULL;
1498 	ovsz_hdr->prev_byaddr = NULL;
1499 	ovsz_hdr->next_byaddr = NULL;
1500 	ovsz_hdr->hash_next = NULL;
1501 	ovsz_hdr->size = size;
1502 	mem += OVSZ_SIZE;
1503 	*(uintptr_t *)mem = MTMALLOC_OVERSIZE_MAGIC;
1504 	mem += OVERHEAD;
1505 	assert(((uintptr_t)mem & 7) == 0); /* are we 8 byte aligned */
1506 	ovsz_hdr->addr = (caddr_t)mem;
1507 	return (ovsz_hdr);
1508 }
1509