1*25c28e83SPiotr Jasiukajtis /*
2*25c28e83SPiotr Jasiukajtis * CDDL HEADER START
3*25c28e83SPiotr Jasiukajtis *
4*25c28e83SPiotr Jasiukajtis * The contents of this file are subject to the terms of the
5*25c28e83SPiotr Jasiukajtis * Common Development and Distribution License (the "License").
6*25c28e83SPiotr Jasiukajtis * You may not use this file except in compliance with the License.
7*25c28e83SPiotr Jasiukajtis *
8*25c28e83SPiotr Jasiukajtis * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9*25c28e83SPiotr Jasiukajtis * or http://www.opensolaris.org/os/licensing.
10*25c28e83SPiotr Jasiukajtis * See the License for the specific language governing permissions
11*25c28e83SPiotr Jasiukajtis * and limitations under the License.
12*25c28e83SPiotr Jasiukajtis *
13*25c28e83SPiotr Jasiukajtis * When distributing Covered Code, include this CDDL HEADER in each
14*25c28e83SPiotr Jasiukajtis * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15*25c28e83SPiotr Jasiukajtis * If applicable, add the following below this CDDL HEADER, with the
16*25c28e83SPiotr Jasiukajtis * fields enclosed by brackets "[]" replaced with your own identifying
17*25c28e83SPiotr Jasiukajtis * information: Portions Copyright [yyyy] [name of copyright owner]
18*25c28e83SPiotr Jasiukajtis *
19*25c28e83SPiotr Jasiukajtis * CDDL HEADER END
20*25c28e83SPiotr Jasiukajtis */
21*25c28e83SPiotr Jasiukajtis
22*25c28e83SPiotr Jasiukajtis /*
23*25c28e83SPiotr Jasiukajtis * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24*25c28e83SPiotr Jasiukajtis */
25*25c28e83SPiotr Jasiukajtis /*
26*25c28e83SPiotr Jasiukajtis * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27*25c28e83SPiotr Jasiukajtis * Use is subject to license terms.
28*25c28e83SPiotr Jasiukajtis */
29*25c28e83SPiotr Jasiukajtis
30*25c28e83SPiotr Jasiukajtis /* INDENT OFF */
31*25c28e83SPiotr Jasiukajtis /*
32*25c28e83SPiotr Jasiukajtis * double __k_cexp(double x, int *n);
33*25c28e83SPiotr Jasiukajtis * Returns the exponential of x in the form of 2**n * y, y=__k_cexp(x,&n).
34*25c28e83SPiotr Jasiukajtis *
35*25c28e83SPiotr Jasiukajtis * Method
36*25c28e83SPiotr Jasiukajtis * 1. Argument reduction:
37*25c28e83SPiotr Jasiukajtis * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
38*25c28e83SPiotr Jasiukajtis * Given x, find r and integer k such that
39*25c28e83SPiotr Jasiukajtis *
40*25c28e83SPiotr Jasiukajtis * x = k*ln2 + r, |r| <= 0.5*ln2.
41*25c28e83SPiotr Jasiukajtis *
42*25c28e83SPiotr Jasiukajtis * Here r will be represented as r = hi-lo for better
43*25c28e83SPiotr Jasiukajtis * accuracy.
44*25c28e83SPiotr Jasiukajtis *
45*25c28e83SPiotr Jasiukajtis * 2. Approximation of exp(r) by a special rational function on
46*25c28e83SPiotr Jasiukajtis * the interval [0,0.34658]:
47*25c28e83SPiotr Jasiukajtis * Write
48*25c28e83SPiotr Jasiukajtis * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
49*25c28e83SPiotr Jasiukajtis * We use a special Remez algorithm on [0,0.34658] to generate
50*25c28e83SPiotr Jasiukajtis * a polynomial of degree 5 to approximate R. The maximum error
51*25c28e83SPiotr Jasiukajtis * of this polynomial approximation is bounded by 2**-59. In
52*25c28e83SPiotr Jasiukajtis * other words,
53*25c28e83SPiotr Jasiukajtis * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
54*25c28e83SPiotr Jasiukajtis * (where z=r*r, and the values of P1 to P5 are listed below)
55*25c28e83SPiotr Jasiukajtis * and
56*25c28e83SPiotr Jasiukajtis * | 5 | -59
57*25c28e83SPiotr Jasiukajtis * | 2.0+P1*z+...+P5*z - R(z) | <= 2
58*25c28e83SPiotr Jasiukajtis * | |
59*25c28e83SPiotr Jasiukajtis * The computation of exp(r) thus becomes
60*25c28e83SPiotr Jasiukajtis * 2*r
61*25c28e83SPiotr Jasiukajtis * exp(r) = 1 + -------
62*25c28e83SPiotr Jasiukajtis * R - r
63*25c28e83SPiotr Jasiukajtis * r*R1(r)
64*25c28e83SPiotr Jasiukajtis * = 1 + r + ----------- (for better accuracy)
65*25c28e83SPiotr Jasiukajtis * 2 - R1(r)
66*25c28e83SPiotr Jasiukajtis * where
67*25c28e83SPiotr Jasiukajtis * 2 4 10
68*25c28e83SPiotr Jasiukajtis * R1(r) = r - (P1*r + P2*r + ... + P5*r ).
69*25c28e83SPiotr Jasiukajtis *
70*25c28e83SPiotr Jasiukajtis * 3. Return n = k and __k_cexp = exp(r).
71*25c28e83SPiotr Jasiukajtis *
72*25c28e83SPiotr Jasiukajtis * Special cases:
73*25c28e83SPiotr Jasiukajtis * exp(INF) is INF, exp(NaN) is NaN;
74*25c28e83SPiotr Jasiukajtis * exp(-INF) is 0, and
75*25c28e83SPiotr Jasiukajtis * for finite argument, only exp(0)=1 is exact.
76*25c28e83SPiotr Jasiukajtis *
77*25c28e83SPiotr Jasiukajtis * Range and Accuracy:
78*25c28e83SPiotr Jasiukajtis * When |x| is really big, say |x| > 50000, the accuracy
79*25c28e83SPiotr Jasiukajtis * is not important because the ultimate result will over or under
80*25c28e83SPiotr Jasiukajtis * flow. So we will simply replace n = 50000 and r = 0.0. For
81*25c28e83SPiotr Jasiukajtis * moderate size x, according to an error analysis, the error is
82*25c28e83SPiotr Jasiukajtis * always less than 1 ulp (unit in the last place).
83*25c28e83SPiotr Jasiukajtis *
84*25c28e83SPiotr Jasiukajtis * Constants:
85*25c28e83SPiotr Jasiukajtis * The hexadecimal values are the intended ones for the following
86*25c28e83SPiotr Jasiukajtis * constants. The decimal values may be used, provided that the
87*25c28e83SPiotr Jasiukajtis * compiler will convert from decimal to binary accurately enough
88*25c28e83SPiotr Jasiukajtis * to produce the hexadecimal values shown.
89*25c28e83SPiotr Jasiukajtis */
90*25c28e83SPiotr Jasiukajtis /* INDENT ON */
91*25c28e83SPiotr Jasiukajtis
92*25c28e83SPiotr Jasiukajtis #include "libm.h" /* __k_cexp */
93*25c28e83SPiotr Jasiukajtis #include "complex_wrapper.h" /* HI_WORD/LO_WORD */
94*25c28e83SPiotr Jasiukajtis
95*25c28e83SPiotr Jasiukajtis /* INDENT OFF */
96*25c28e83SPiotr Jasiukajtis static const double
97*25c28e83SPiotr Jasiukajtis one = 1.0,
98*25c28e83SPiotr Jasiukajtis two128 = 3.40282366920938463463e+38,
99*25c28e83SPiotr Jasiukajtis halF[2] = {
100*25c28e83SPiotr Jasiukajtis 0.5, -0.5,
101*25c28e83SPiotr Jasiukajtis },
102*25c28e83SPiotr Jasiukajtis ln2HI[2] = {
103*25c28e83SPiotr Jasiukajtis 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
104*25c28e83SPiotr Jasiukajtis -6.93147180369123816490e-01, /* 0xbfe62e42, 0xfee00000 */
105*25c28e83SPiotr Jasiukajtis },
106*25c28e83SPiotr Jasiukajtis ln2LO[2] = {
107*25c28e83SPiotr Jasiukajtis 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
108*25c28e83SPiotr Jasiukajtis -1.90821492927058770002e-10, /* 0xbdea39ef, 0x35793c76 */
109*25c28e83SPiotr Jasiukajtis },
110*25c28e83SPiotr Jasiukajtis invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
111*25c28e83SPiotr Jasiukajtis P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
112*25c28e83SPiotr Jasiukajtis P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
113*25c28e83SPiotr Jasiukajtis P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
114*25c28e83SPiotr Jasiukajtis P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
115*25c28e83SPiotr Jasiukajtis P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
116*25c28e83SPiotr Jasiukajtis /* INDENT ON */
117*25c28e83SPiotr Jasiukajtis
118*25c28e83SPiotr Jasiukajtis double
__k_cexp(double x,int * n)119*25c28e83SPiotr Jasiukajtis __k_cexp(double x, int *n) {
120*25c28e83SPiotr Jasiukajtis double hi = 0.0L, lo = 0.0L, c, t;
121*25c28e83SPiotr Jasiukajtis int k, xsb;
122*25c28e83SPiotr Jasiukajtis unsigned hx, lx;
123*25c28e83SPiotr Jasiukajtis
124*25c28e83SPiotr Jasiukajtis hx = HI_WORD(x); /* high word of x */
125*25c28e83SPiotr Jasiukajtis lx = LO_WORD(x); /* low word of x */
126*25c28e83SPiotr Jasiukajtis xsb = (hx >> 31) & 1; /* sign bit of x */
127*25c28e83SPiotr Jasiukajtis hx &= 0x7fffffff; /* high word of |x| */
128*25c28e83SPiotr Jasiukajtis
129*25c28e83SPiotr Jasiukajtis /* filter out non-finite argument */
130*25c28e83SPiotr Jasiukajtis if (hx >= 0x40e86a00) { /* if |x| > 50000 */
131*25c28e83SPiotr Jasiukajtis if (hx >= 0x7ff00000) {
132*25c28e83SPiotr Jasiukajtis *n = 1;
133*25c28e83SPiotr Jasiukajtis if (((hx & 0xfffff) | lx) != 0)
134*25c28e83SPiotr Jasiukajtis return (x + x); /* NaN */
135*25c28e83SPiotr Jasiukajtis else
136*25c28e83SPiotr Jasiukajtis return ((xsb == 0) ? x : 0.0);
137*25c28e83SPiotr Jasiukajtis /* exp(+-inf)={inf,0} */
138*25c28e83SPiotr Jasiukajtis }
139*25c28e83SPiotr Jasiukajtis *n = (xsb == 0) ? 50000 : -50000;
140*25c28e83SPiotr Jasiukajtis return (one + ln2LO[1] * ln2LO[1]); /* generate inexact */
141*25c28e83SPiotr Jasiukajtis }
142*25c28e83SPiotr Jasiukajtis
143*25c28e83SPiotr Jasiukajtis *n = 0;
144*25c28e83SPiotr Jasiukajtis /* argument reduction */
145*25c28e83SPiotr Jasiukajtis if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
146*25c28e83SPiotr Jasiukajtis if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
147*25c28e83SPiotr Jasiukajtis hi = x - ln2HI[xsb];
148*25c28e83SPiotr Jasiukajtis lo = ln2LO[xsb];
149*25c28e83SPiotr Jasiukajtis k = 1 - xsb - xsb;
150*25c28e83SPiotr Jasiukajtis } else {
151*25c28e83SPiotr Jasiukajtis k = (int) (invln2 * x + halF[xsb]);
152*25c28e83SPiotr Jasiukajtis t = k;
153*25c28e83SPiotr Jasiukajtis hi = x - t * ln2HI[0];
154*25c28e83SPiotr Jasiukajtis /* t*ln2HI is exact for t<2**20 */
155*25c28e83SPiotr Jasiukajtis lo = t * ln2LO[0];
156*25c28e83SPiotr Jasiukajtis }
157*25c28e83SPiotr Jasiukajtis x = hi - lo;
158*25c28e83SPiotr Jasiukajtis *n = k;
159*25c28e83SPiotr Jasiukajtis } else if (hx < 0x3e300000) { /* when |x|<2**-28 */
160*25c28e83SPiotr Jasiukajtis return (one + x);
161*25c28e83SPiotr Jasiukajtis } else
162*25c28e83SPiotr Jasiukajtis k = 0;
163*25c28e83SPiotr Jasiukajtis
164*25c28e83SPiotr Jasiukajtis /* x is now in primary range */
165*25c28e83SPiotr Jasiukajtis t = x * x;
166*25c28e83SPiotr Jasiukajtis c = x - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
167*25c28e83SPiotr Jasiukajtis if (k == 0)
168*25c28e83SPiotr Jasiukajtis return (one - ((x * c) / (c - 2.0) - x));
169*25c28e83SPiotr Jasiukajtis else {
170*25c28e83SPiotr Jasiukajtis t = one - ((lo - (x * c) / (2.0 - c)) - hi);
171*25c28e83SPiotr Jasiukajtis if (k > 128) {
172*25c28e83SPiotr Jasiukajtis t *= two128;
173*25c28e83SPiotr Jasiukajtis *n = k - 128;
174*25c28e83SPiotr Jasiukajtis } else if (k > 0) {
175*25c28e83SPiotr Jasiukajtis HI_WORD(t) += (k << 20);
176*25c28e83SPiotr Jasiukajtis *n = 0;
177*25c28e83SPiotr Jasiukajtis }
178*25c28e83SPiotr Jasiukajtis return (t);
179*25c28e83SPiotr Jasiukajtis }
180*25c28e83SPiotr Jasiukajtis }
181