xref: /titanic_50/usr/src/lib/libm/common/complex/catanf.c (revision 084c18406d32a8fbb6b9a40d864e7c7ddb5b4d9d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
23  */
24 /*
25  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
26  * Use is subject to license terms.
27  */
28 
29 #pragma weak __catanf = catanf
30 
31 #include "libm.h"
32 #include "complex_wrapper.h"
33 
34 #if defined(__i386) && !defined(__amd64)
35 extern int __swapRP(int);
36 #endif
37 
38 static const float
39 	pi_2 = 1.570796326794896558e+00F,
40 	zero = 0.0F,
41 	half = 0.5F,
42 	two = 2.0F,
43 	one = 1.0F;
44 
45 fcomplex
46 catanf(fcomplex z) {
47 	fcomplex	ans;
48 	float		x, y, ax, ay, t;
49 	double		dx, dy, dt;
50 	int		hx, hy, ix, iy;
51 
52 	x = F_RE(z);
53 	y = F_IM(z);
54 	ax = fabsf(x);
55 	ay = fabsf(y);
56 	hx = THE_WORD(x);
57 	hy = THE_WORD(y);
58 	ix = hx & 0x7fffffff;
59 	iy = hy & 0x7fffffff;
60 
61 	if (ix >= 0x7f800000) {		/* x is inf or NaN */
62 		if (ix == 0x7f800000) {
63 			F_RE(ans) = pi_2;
64 			F_IM(ans) = zero;
65 		} else {
66 			F_RE(ans) = x * x;
67 			if (iy == 0 || iy == 0x7f800000)
68 				F_IM(ans) = zero;
69 			else
70 				F_IM(ans) = (fabsf(y) - ay) / (fabsf(y) - ay);
71 		}
72 	} else if (iy >= 0x7f800000) {	/* y is inf or NaN */
73 		if (iy == 0x7f800000) {
74 			F_RE(ans) = pi_2;
75 			F_IM(ans) = zero;
76 		} else {
77 			F_RE(ans) = (fabsf(x) - ax) / (fabsf(x) - ax);
78 			F_IM(ans) = y * y;
79 		}
80 	} else if (ix == 0) {
81 		/* INDENT OFF */
82 		/*
83 		 * x = 0
84 		 *      1                            1
85 		 * A = --- * atan2(2x, 1-x*x-y*y) = --- atan2(0,1-|y|)
86 		 *      2                            2
87 		 *
88 		 *     1     [ (y+1)*(y+1) ]   1          2      1         2y
89 		 * B = - log [ ----------- ] = - log (1+ ---) or - log(1+ ----)
90 		 *     4     [ (y-1)*(y-1) ]   2         y-1     2         1-y
91 		 */
92 		/* INDENT ON */
93 		t = one - ay;
94 		if (iy == 0x3f800000) {
95 			/* y=1: catan(0,1)=(0,+inf) with 1/0 signal */
96 			F_IM(ans) = ay / ax;
97 			F_RE(ans) = zero;
98 		} else if (iy > 0x3f800000) {	/* y>1 */
99 			F_IM(ans) = half * log1pf(two / (-t));
100 			F_RE(ans) = pi_2;
101 		} else {		/* y<1 */
102 			F_IM(ans) = half * log1pf((ay + ay) / t);
103 			F_RE(ans) = zero;
104 		}
105 	} else {
106 		/* INDENT OFF */
107 		/*
108 		 * use double precision x,y
109 		 *      1
110 		 * A = --- * atan2(2x, 1-x*x-y*y)
111 		 *      2
112 		 *
113 		 *     1     [ x*x+(y+1)*(y+1) ]   1               4y
114 		 * B = - log [ --------------- ] = - log (1+ -----------------)
115 		 *     4     [ x*x+(y-1)*(y-1) ]   4         x*x + (y-1)*(y-1)
116 		 */
117 		/* INDENT ON */
118 #if defined(__i386) && !defined(__amd64)
119 		int	rp = __swapRP(fp_extended);
120 #endif
121 		dx = (double)ax;
122 		dy = (double)ay;
123 		F_RE(ans) = (float)(0.5 * atan2(dx + dx,
124 		    1.0 - dx * dx - dy * dy));
125 		dt = dy - 1.0;
126 		F_IM(ans) = (float)(0.25 * log1p(4.0 * dy /
127 		    (dx * dx + dt * dt)));
128 #if defined(__i386) && !defined(__amd64)
129 		if (rp != fp_extended)
130 			(void) __swapRP(rp);
131 #endif
132 	}
133 	if (hx < 0)
134 		F_RE(ans) = -F_RE(ans);
135 	if (hy < 0)
136 		F_IM(ans) = -F_IM(ans);
137 	return (ans);
138 }
139