xref: /titanic_50/usr/src/lib/libm/common/complex/cacosl.c (revision 6d6fcbbb256ba9a8fe3e6076ae8a1f493b1f1a99)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  */
25 /*
26  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #pragma weak __cacosl = cacosl
31 
32 #include "libm.h"		/* acosl/atanl/fabsl/isinfl/log1pl/logl/sqrtl */
33 #include "complex_wrapper.h"
34 #include "longdouble.h"
35 
36 /* INDENT OFF */
37 static const long double
38 zero = 0.0L,
39 one = 1.0L,
40 Acrossover = 1.5L,
41 Bcrossover = 0.6417L,
42 half = 0.5L,
43 ln2 = 6.931471805599453094172321214581765680755e-0001L,
44 Foursqrtu = 7.3344154702193886624856495681939326638255e-2466L,	/* 2**-8189 */
45 #if defined(__x86)
46 E = 5.4210108624275221700372640043497085571289e-20L,		/* 2**-64 */
47 pi = 3.141592653589793238295968524909085317631252110004425048828125L,
48 pi_l = 1.666748583704175665659172893706807721468195923078e-19L,
49 pi_2 = 1.5707963267948966191479842624545426588156260L,
50 pi_2_l = 8.3337429185208783282958644685340386073409796e-20L,
51 pi_4 = 0.78539816339744830957399213122727132940781302750110626220703125L,
52 pi_4_l = 4.166871459260439164147932234267019303670489807695410e-20L,
53 pi3_4 = 2.35619449019234492872197639368181398822343908250331878662109375L,
54 pi3_4_l = 1.250061437778131749244379670280105791101146942308e-19L;
55 #else
56 E = 9.6296497219361792652798897129246365926905e-35L,		/* 2**-113 */
57 pi = 3.1415926535897932384626433832795027974790680981372955730045043318L,
58 pi_l = 8.6718101301237810247970440260433519687623233462565303417759356862e-35L,
59 pi_2 = 1.5707963267948966192313216916397513987395340L,
60 pi_2_l = 4.3359050650618905123985220130216759843811616e-35L,
61 pi_4 = 0.785398163397448309615660845819875699369767024534323893251126L,
62 pi_4_l = 2.167952532530945256199261006510837992190580836564132585443e-35L,
63 pi3_4 = 2.35619449019234492884698253745962709810930107360297167975337824L,
64 pi3_4_l = 6.503857597592835768597783019532513976571742509692397756331e-35L;
65 #endif
66 /* INDENT ON */
67 
68 #if defined(__x86)
69 static const int ip1 = 0x40400000;	/* 2**65 */
70 #else
71 static const int ip1 = 0x40710000;	/* 2**114 */
72 #endif
73 
74 ldcomplex
75 cacosl(ldcomplex z) {
76 	long double x, y, t, R, S, A, Am1, B, y2, xm1, xp1, Apx;
77 	int ix, iy, hx, hy;
78 	ldcomplex ans;
79 
80 	x = LD_RE(z);
81 	y = LD_IM(z);
82 	hx = HI_XWORD(x);
83 	hy = HI_XWORD(y);
84 	ix = hx & 0x7fffffff;
85 	iy = hy & 0x7fffffff;
86 
87 	/* x is 0 */
88 	if (x == zero) {
89 		if (y == zero || (iy >= 0x7fff0000)) {
90 			LD_RE(ans) = pi_2 + pi_2_l;
91 			LD_IM(ans) = -y;
92 			return (ans);
93 		}
94 	}
95 
96 	/* |y| is inf or NaN */
97 	if (iy >= 0x7fff0000) {
98 		if (isinfl(y)) {	/* cacos(x + i inf) =  pi/2 - i inf */
99 			LD_IM(ans) = -y;
100 			if (ix < 0x7fff0000) {
101 				LD_RE(ans) = pi_2 + pi_2_l;
102 			} else if (isinfl(x)) {
103 				if (hx >= 0)
104 					LD_RE(ans) = pi_4 + pi_4_l;
105 				else
106 					LD_RE(ans) = pi3_4 + pi3_4_l;
107 			} else {
108 				LD_RE(ans) = x;
109 			}
110 		} else {		/* cacos(x + i NaN) = NaN  + i NaN */
111 			LD_RE(ans) = y + x;
112 			if (isinfl(x))
113 				LD_IM(ans) = -fabsl(x);
114 			else
115 				LD_IM(ans) = y;
116 		}
117 		return (ans);
118 	}
119 
120 	y = fabsl(y);
121 
122 	if (ix >= 0x7fff0000) {	/* x is inf or NaN */
123 		if (isinfl(x)) {	/* x is INF */
124 			LD_IM(ans) = -fabsl(x);
125 			if (iy >= 0x7fff0000) {
126 				if (isinfl(y)) {
127 					/* INDENT OFF */
128 					/* cacos(inf + i inf) = pi/4 - i inf */
129 					/* cacos(-inf+ i inf) =3pi/4 - i inf */
130 					/* INDENT ON */
131 					if (hx >= 0)
132 						LD_RE(ans) = pi_4 + pi_4_l;
133 					else
134 						LD_RE(ans) = pi3_4 + pi3_4_l;
135 				} else
136 					/* INDENT OFF */
137 					/* cacos(inf + i NaN) = NaN  - i inf  */
138 					/* INDENT ON */
139 					LD_RE(ans) = y + y;
140 			} else {
141 				/* INDENT OFF */
142 				/* cacos(inf + iy ) = 0  - i inf */
143 				/* cacos(-inf+ iy  ) = pi - i inf */
144 				/* INDENT ON */
145 				if (hx >= 0)
146 					LD_RE(ans) = zero;
147 				else
148 					LD_RE(ans) = pi + pi_l;
149 			}
150 		} else {		/* x is NaN */
151 			/* INDENT OFF */
152 			/*
153 			 * cacos(NaN + i inf) = NaN  - i inf
154 			 * cacos(NaN + i y  ) = NaN  + i NaN
155 			 * cacos(NaN + i NaN) = NaN  + i NaN
156 			 */
157 			/* INDENT ON */
158 			LD_RE(ans) = x + y;
159 			if (iy >= 0x7fff0000) {
160 				LD_IM(ans) = -y;
161 			} else {
162 				LD_IM(ans) = x;
163 			}
164 		}
165 		if (hy < 0)
166 			LD_IM(ans) = -LD_IM(ans);
167 		return (ans);
168 	}
169 
170 	if (y == zero) {	/* region 1: y=0 */
171 		if (ix < 0x3fff0000) {	/* |x| < 1 */
172 			LD_RE(ans) = acosl(x);
173 			LD_IM(ans) = zero;
174 		} else {
175 			LD_RE(ans) = zero;
176 			x = fabsl(x);
177 			if (ix >= ip1)	/* i386 ? 2**65 : 2**114 */
178 				LD_IM(ans) = ln2 + logl(x);
179 			else if (ix >= 0x3fff8000)	/* x > Acrossover */
180 				LD_IM(ans) = logl(x + sqrtl((x - one) * (x +
181 					one)));
182 			else {
183 				xm1 = x - one;
184 				LD_IM(ans) = log1pl(xm1 + sqrtl(xm1 * (x +
185 					one)));
186 			}
187 		}
188 	} else if (y <= E * fabsl(fabsl(x) - one)) {
189 		/* region 2: y < tiny*||x|-1| */
190 		if (ix < 0x3fff0000) {	/* x < 1 */
191 			LD_RE(ans) = acosl(x);
192 			x = fabsl(x);
193 			LD_IM(ans) = y / sqrtl((one + x) * (one - x));
194 		} else if (ix >= ip1) {	/* i386 ? 2**65 : 2**114 */
195 			if (hx >= 0)
196 				LD_RE(ans) = y / x;
197 			else {
198 				if (ix >= ip1 + 0x00040000)
199 					LD_RE(ans) = pi + pi_l;
200 				else {
201 					t = pi_l + y / x;
202 					LD_RE(ans) = pi + t;
203 				}
204 			}
205 			LD_IM(ans) = ln2 + logl(fabsl(x));
206 		} else {
207 			x = fabsl(x);
208 			t = sqrtl((x - one) * (x + one));
209 			LD_RE(ans) = (hx >= 0)? y / t : pi - (y / t - pi_l);
210 			if (ix >= 0x3fff8000)	/* x > Acrossover */
211 				LD_IM(ans) = logl(x + t);
212 			else
213 				LD_IM(ans) = log1pl(t - (one - x));
214 		}
215 	} else if (y < Foursqrtu) {	/* region 3 */
216 		t = sqrtl(y);
217 		LD_RE(ans) = (hx >= 0)? t : pi + pi_l;
218 		LD_IM(ans) = t;
219 	} else if (E * y - one >= fabsl(x)) {	/* region 4 */
220 		LD_RE(ans) = pi_2 + pi_2_l;
221 		LD_IM(ans) = ln2 + logl(y);
222 	} else if (ix >= 0x5ffb0000 || iy >= 0x5ffb0000) {
223 		/* region 5: x+1 and y are both (>= sqrt(max)/8) i.e. 2**8188 */
224 		t = x / y;
225 		LD_RE(ans) = atan2l(y, x);
226 		LD_IM(ans) = ln2 + logl(y) + half * log1pl(t * t);
227 	} else if (fabsl(x) < Foursqrtu) {
228 		/* region 6: x is very small, < 4sqrt(min) */
229 		LD_RE(ans) = pi_2 + pi_2_l;
230 		A = sqrtl(one + y * y);
231 		if (iy >= 0x3fff8000)	/* if y > Acrossover */
232 			LD_IM(ans) = logl(y + A);
233 		else
234 			LD_IM(ans) = half * log1pl((y + y) * (y + A));
235 	} else {	/* safe region */
236 		t = fabsl(x);
237 		y2 = y * y;
238 		xp1 = t + one;
239 		xm1 = t - one;
240 		R = sqrtl(xp1 * xp1 + y2);
241 		S = sqrtl(xm1 * xm1 + y2);
242 		A = half * (R + S);
243 		B = t / A;
244 
245 		if (B <= Bcrossover)
246 			LD_RE(ans) = (hx >= 0)? acosl(B) : acosl(-B);
247 		else {		/* use atan and an accurate approx to a-x */
248 			Apx = A + t;
249 			if (t <= one)
250 				LD_RE(ans) = atan2l(sqrtl(half * Apx * (y2 /
251 					(R + xp1) + (S - xm1))), x);
252 			else
253 				LD_RE(ans) = atan2l((y * sqrtl(half * (Apx /
254 					(R + xp1) + Apx / (S + xm1)))), x);
255 		}
256 		if (A <= Acrossover) {
257 			/* use log1p and an accurate approx to A-1 */
258 			if (ix < 0x3fff0000)
259 				Am1 = half * (y2 / (R + xp1) + y2 / (S - xm1));
260 			else
261 				Am1 = half * (y2 / (R + xp1) + (S + xm1));
262 			LD_IM(ans) = log1pl(Am1 + sqrtl(Am1 * (A + one)));
263 		} else {
264 			LD_IM(ans) = logl(A + sqrtl(A * A - one));
265 		}
266 	}
267 
268 	if (hy >= 0)
269 		LD_IM(ans) = -LD_IM(ans);
270 
271 	return (ans);
272 }
273