125c28e83SPiotr Jasiukajtis /*
225c28e83SPiotr Jasiukajtis * CDDL HEADER START
325c28e83SPiotr Jasiukajtis *
425c28e83SPiotr Jasiukajtis * The contents of this file are subject to the terms of the
525c28e83SPiotr Jasiukajtis * Common Development and Distribution License (the "License").
625c28e83SPiotr Jasiukajtis * You may not use this file except in compliance with the License.
725c28e83SPiotr Jasiukajtis *
825c28e83SPiotr Jasiukajtis * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
925c28e83SPiotr Jasiukajtis * or http://www.opensolaris.org/os/licensing.
1025c28e83SPiotr Jasiukajtis * See the License for the specific language governing permissions
1125c28e83SPiotr Jasiukajtis * and limitations under the License.
1225c28e83SPiotr Jasiukajtis *
1325c28e83SPiotr Jasiukajtis * When distributing Covered Code, include this CDDL HEADER in each
1425c28e83SPiotr Jasiukajtis * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
1525c28e83SPiotr Jasiukajtis * If applicable, add the following below this CDDL HEADER, with the
1625c28e83SPiotr Jasiukajtis * fields enclosed by brackets "[]" replaced with your own identifying
1725c28e83SPiotr Jasiukajtis * information: Portions Copyright [yyyy] [name of copyright owner]
1825c28e83SPiotr Jasiukajtis *
1925c28e83SPiotr Jasiukajtis * CDDL HEADER END
2025c28e83SPiotr Jasiukajtis */
2125c28e83SPiotr Jasiukajtis
2225c28e83SPiotr Jasiukajtis /*
2325c28e83SPiotr Jasiukajtis * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
2425c28e83SPiotr Jasiukajtis */
2525c28e83SPiotr Jasiukajtis /*
2625c28e83SPiotr Jasiukajtis * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
2725c28e83SPiotr Jasiukajtis * Use is subject to license terms.
2825c28e83SPiotr Jasiukajtis */
2925c28e83SPiotr Jasiukajtis
30*ddc0e0b5SRichard Lowe #pragma weak __jnl = jnl
31*ddc0e0b5SRichard Lowe #pragma weak __ynl = ynl
3225c28e83SPiotr Jasiukajtis
3325c28e83SPiotr Jasiukajtis /*
3425c28e83SPiotr Jasiukajtis * floating point Bessel's function of the 1st and 2nd kind
3525c28e83SPiotr Jasiukajtis * of order n: jn(n,x),yn(n,x);
3625c28e83SPiotr Jasiukajtis *
3725c28e83SPiotr Jasiukajtis * Special cases:
3825c28e83SPiotr Jasiukajtis * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
3925c28e83SPiotr Jasiukajtis * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
4025c28e83SPiotr Jasiukajtis * Note 2. About jn(n,x), yn(n,x)
4125c28e83SPiotr Jasiukajtis * For n=0, j0(x) is called,
4225c28e83SPiotr Jasiukajtis * for n=1, j1(x) is called,
4325c28e83SPiotr Jasiukajtis * for n<x, forward recursion us used starting
4425c28e83SPiotr Jasiukajtis * from values of j0(x) and j1(x).
4525c28e83SPiotr Jasiukajtis * for n>x, a continued fraction approximation to
4625c28e83SPiotr Jasiukajtis * j(n,x)/j(n-1,x) is evaluated and then backward
4725c28e83SPiotr Jasiukajtis * recursion is used starting from a supposed value
4825c28e83SPiotr Jasiukajtis * for j(n,x). The resulting value of j(0,x) is
4925c28e83SPiotr Jasiukajtis * compared with the actual value to correct the
5025c28e83SPiotr Jasiukajtis * supposed value of j(n,x).
5125c28e83SPiotr Jasiukajtis *
5225c28e83SPiotr Jasiukajtis * yn(n,x) is similar in all respects, except
5325c28e83SPiotr Jasiukajtis * that forward recursion is used for all
5425c28e83SPiotr Jasiukajtis * values of n>1.
5525c28e83SPiotr Jasiukajtis *
5625c28e83SPiotr Jasiukajtis */
5725c28e83SPiotr Jasiukajtis
5825c28e83SPiotr Jasiukajtis #include "libm.h"
5925c28e83SPiotr Jasiukajtis #include "longdouble.h"
6025c28e83SPiotr Jasiukajtis #include <float.h> /* LDBL_MAX */
6125c28e83SPiotr Jasiukajtis
6225c28e83SPiotr Jasiukajtis #define GENERIC long double
6325c28e83SPiotr Jasiukajtis
6425c28e83SPiotr Jasiukajtis static const GENERIC
6525c28e83SPiotr Jasiukajtis invsqrtpi = 5.641895835477562869480794515607725858441e-0001L,
6625c28e83SPiotr Jasiukajtis two = 2.0L,
6725c28e83SPiotr Jasiukajtis zero = 0.0L,
6825c28e83SPiotr Jasiukajtis one = 1.0L;
6925c28e83SPiotr Jasiukajtis
7025c28e83SPiotr Jasiukajtis GENERIC
jnl(n,x)7125c28e83SPiotr Jasiukajtis jnl(n, x) int n; GENERIC x; {
7225c28e83SPiotr Jasiukajtis int i, sgn;
7325c28e83SPiotr Jasiukajtis GENERIC a, b, temp, z, w;
7425c28e83SPiotr Jasiukajtis
7525c28e83SPiotr Jasiukajtis /*
7625c28e83SPiotr Jasiukajtis * J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
7725c28e83SPiotr Jasiukajtis * Thus, J(-n,x) = J(n,-x)
7825c28e83SPiotr Jasiukajtis */
7925c28e83SPiotr Jasiukajtis if (n < 0) {
8025c28e83SPiotr Jasiukajtis n = -n;
8125c28e83SPiotr Jasiukajtis x = -x;
8225c28e83SPiotr Jasiukajtis }
8325c28e83SPiotr Jasiukajtis if (n == 0)
8425c28e83SPiotr Jasiukajtis return (j0l(x));
8525c28e83SPiotr Jasiukajtis if (n == 1)
8625c28e83SPiotr Jasiukajtis return (j1l(x));
8725c28e83SPiotr Jasiukajtis if (x != x)
8825c28e83SPiotr Jasiukajtis return (x+x);
8925c28e83SPiotr Jasiukajtis if ((n&1) == 0)
9025c28e83SPiotr Jasiukajtis sgn = 0; /* even n */
9125c28e83SPiotr Jasiukajtis else
9225c28e83SPiotr Jasiukajtis sgn = signbitl(x); /* old n */
9325c28e83SPiotr Jasiukajtis x = fabsl(x);
9425c28e83SPiotr Jasiukajtis if (x == zero || !finitel(x)) b = zero;
9525c28e83SPiotr Jasiukajtis else if ((GENERIC)n <= x) {
9625c28e83SPiotr Jasiukajtis /*
9725c28e83SPiotr Jasiukajtis * Safe to use
9825c28e83SPiotr Jasiukajtis * J(n+1,x)=2n/x *J(n,x)-J(n-1,x)
9925c28e83SPiotr Jasiukajtis */
10025c28e83SPiotr Jasiukajtis if (x > 1.0e91L) {
10125c28e83SPiotr Jasiukajtis /*
10225c28e83SPiotr Jasiukajtis * x >> n**2
10325c28e83SPiotr Jasiukajtis * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
10425c28e83SPiotr Jasiukajtis * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
10525c28e83SPiotr Jasiukajtis * Let s=sin(x), c=cos(x),
10625c28e83SPiotr Jasiukajtis * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
10725c28e83SPiotr Jasiukajtis *
10825c28e83SPiotr Jasiukajtis * n sin(xn)*sqt2 cos(xn)*sqt2
10925c28e83SPiotr Jasiukajtis * ----------------------------------
11025c28e83SPiotr Jasiukajtis * 0 s-c c+s
11125c28e83SPiotr Jasiukajtis * 1 -s-c -c+s
11225c28e83SPiotr Jasiukajtis * 2 -s+c -c-s
11325c28e83SPiotr Jasiukajtis * 3 s+c c-s
11425c28e83SPiotr Jasiukajtis */
11525c28e83SPiotr Jasiukajtis switch (n&3) {
11625c28e83SPiotr Jasiukajtis case 0: temp = cosl(x)+sinl(x); break;
11725c28e83SPiotr Jasiukajtis case 1: temp = -cosl(x)+sinl(x); break;
11825c28e83SPiotr Jasiukajtis case 2: temp = -cosl(x)-sinl(x); break;
11925c28e83SPiotr Jasiukajtis case 3: temp = cosl(x)-sinl(x); break;
12025c28e83SPiotr Jasiukajtis }
12125c28e83SPiotr Jasiukajtis b = invsqrtpi*temp/sqrtl(x);
12225c28e83SPiotr Jasiukajtis } else {
12325c28e83SPiotr Jasiukajtis a = j0l(x);
12425c28e83SPiotr Jasiukajtis b = j1l(x);
12525c28e83SPiotr Jasiukajtis for (i = 1; i < n; i++) {
12625c28e83SPiotr Jasiukajtis temp = b;
12725c28e83SPiotr Jasiukajtis b = b*((GENERIC)(i+i)/x) - a; /* avoid underflow */
12825c28e83SPiotr Jasiukajtis a = temp;
12925c28e83SPiotr Jasiukajtis }
13025c28e83SPiotr Jasiukajtis }
13125c28e83SPiotr Jasiukajtis } else {
13225c28e83SPiotr Jasiukajtis if (x < 1e-17L) { /* use J(n,x) = 1/n!*(x/2)^n */
13325c28e83SPiotr Jasiukajtis b = powl(0.5L*x, (GENERIC)n);
13425c28e83SPiotr Jasiukajtis if (b != zero) {
13525c28e83SPiotr Jasiukajtis for (a = one, i = 1; i <= n; i++) a *= (GENERIC)i;
13625c28e83SPiotr Jasiukajtis b = b/a;
13725c28e83SPiotr Jasiukajtis }
13825c28e83SPiotr Jasiukajtis } else {
13925c28e83SPiotr Jasiukajtis /* use backward recurrence */
14025c28e83SPiotr Jasiukajtis /*
14125c28e83SPiotr Jasiukajtis * x x^2 x^2
14225c28e83SPiotr Jasiukajtis * J(n,x)/J(n-1,x) = ---- ------ ------ .....
14325c28e83SPiotr Jasiukajtis * 2n - 2(n+1) - 2(n+2)
14425c28e83SPiotr Jasiukajtis *
14525c28e83SPiotr Jasiukajtis * 1 1 1
14625c28e83SPiotr Jasiukajtis * (for large x) = ---- ------ ------ .....
14725c28e83SPiotr Jasiukajtis * 2n 2(n+1) 2(n+2)
14825c28e83SPiotr Jasiukajtis * -- - ------ - ------ -
14925c28e83SPiotr Jasiukajtis * x x x
15025c28e83SPiotr Jasiukajtis *
15125c28e83SPiotr Jasiukajtis * Let w = 2n/x and h=2/x, then the above quotient
15225c28e83SPiotr Jasiukajtis * is equal to the continued fraction:
15325c28e83SPiotr Jasiukajtis * 1
15425c28e83SPiotr Jasiukajtis * = -----------------------
15525c28e83SPiotr Jasiukajtis * 1
15625c28e83SPiotr Jasiukajtis * w - -----------------
15725c28e83SPiotr Jasiukajtis * 1
15825c28e83SPiotr Jasiukajtis * w+h - ---------
15925c28e83SPiotr Jasiukajtis * w+2h - ...
16025c28e83SPiotr Jasiukajtis *
16125c28e83SPiotr Jasiukajtis * To determine how many terms needed, let
16225c28e83SPiotr Jasiukajtis * Q(0) = w, Q(1) = w(w+h) - 1,
16325c28e83SPiotr Jasiukajtis * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
16425c28e83SPiotr Jasiukajtis * When Q(k) > 1e4 good for single
16525c28e83SPiotr Jasiukajtis * When Q(k) > 1e9 good for double
16625c28e83SPiotr Jasiukajtis * When Q(k) > 1e17 good for quaduple
16725c28e83SPiotr Jasiukajtis */
16825c28e83SPiotr Jasiukajtis /* determin k */
16925c28e83SPiotr Jasiukajtis GENERIC t, v;
17025c28e83SPiotr Jasiukajtis double q0, q1, h, tmp; int k, m;
17125c28e83SPiotr Jasiukajtis w = (n+n)/(double)x; h = 2.0/(double)x;
17225c28e83SPiotr Jasiukajtis q0 = w; z = w+h; q1 = w*z - 1.0; k = 1;
17325c28e83SPiotr Jasiukajtis while (q1 < 1.0e17) {
17425c28e83SPiotr Jasiukajtis k += 1; z += h;
17525c28e83SPiotr Jasiukajtis tmp = z*q1 - q0;
17625c28e83SPiotr Jasiukajtis q0 = q1;
17725c28e83SPiotr Jasiukajtis q1 = tmp;
17825c28e83SPiotr Jasiukajtis }
17925c28e83SPiotr Jasiukajtis m = n+n;
18025c28e83SPiotr Jasiukajtis for (t = zero, i = 2*(n+k); i >= m; i -= 2) t = one/(i/x-t);
18125c28e83SPiotr Jasiukajtis a = t;
18225c28e83SPiotr Jasiukajtis b = one;
18325c28e83SPiotr Jasiukajtis /*
18425c28e83SPiotr Jasiukajtis * estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
18525c28e83SPiotr Jasiukajtis * hence, if n*(log(2n/x)) > ...
18625c28e83SPiotr Jasiukajtis * single 8.8722839355e+01
18725c28e83SPiotr Jasiukajtis * double 7.09782712893383973096e+02
18825c28e83SPiotr Jasiukajtis * long double 1.1356523406294143949491931077970765006170e+04
18925c28e83SPiotr Jasiukajtis * then recurrent value may overflow and the result is
19025c28e83SPiotr Jasiukajtis * likely underflow to zero
19125c28e83SPiotr Jasiukajtis */
19225c28e83SPiotr Jasiukajtis tmp = n;
19325c28e83SPiotr Jasiukajtis v = two/x;
19425c28e83SPiotr Jasiukajtis tmp = tmp*logl(fabsl(v*tmp));
19525c28e83SPiotr Jasiukajtis if (tmp < 1.1356523406294143949491931077970765e+04L) {
19625c28e83SPiotr Jasiukajtis for (i = n-1; i > 0; i--) {
19725c28e83SPiotr Jasiukajtis temp = b;
19825c28e83SPiotr Jasiukajtis b = ((i+i)/x)*b - a;
19925c28e83SPiotr Jasiukajtis a = temp;
20025c28e83SPiotr Jasiukajtis }
20125c28e83SPiotr Jasiukajtis } else {
20225c28e83SPiotr Jasiukajtis for (i = n-1; i > 0; i--) {
20325c28e83SPiotr Jasiukajtis temp = b;
20425c28e83SPiotr Jasiukajtis b = ((i+i)/x)*b - a;
20525c28e83SPiotr Jasiukajtis a = temp;
20625c28e83SPiotr Jasiukajtis if (b > 1e1000L) {
20725c28e83SPiotr Jasiukajtis a /= b;
20825c28e83SPiotr Jasiukajtis t /= b;
20925c28e83SPiotr Jasiukajtis b = 1.0;
21025c28e83SPiotr Jasiukajtis }
21125c28e83SPiotr Jasiukajtis }
21225c28e83SPiotr Jasiukajtis }
21325c28e83SPiotr Jasiukajtis b = (t*j0l(x)/b);
21425c28e83SPiotr Jasiukajtis }
21525c28e83SPiotr Jasiukajtis }
21625c28e83SPiotr Jasiukajtis if (sgn == 1)
21725c28e83SPiotr Jasiukajtis return (-b);
21825c28e83SPiotr Jasiukajtis else
21925c28e83SPiotr Jasiukajtis return (b);
22025c28e83SPiotr Jasiukajtis }
22125c28e83SPiotr Jasiukajtis
ynl(n,x)22225c28e83SPiotr Jasiukajtis GENERIC ynl(n, x)
22325c28e83SPiotr Jasiukajtis int n; GENERIC x; {
22425c28e83SPiotr Jasiukajtis int i;
22525c28e83SPiotr Jasiukajtis int sign;
22625c28e83SPiotr Jasiukajtis GENERIC a, b, temp;
22725c28e83SPiotr Jasiukajtis
22825c28e83SPiotr Jasiukajtis if (x != x)
22925c28e83SPiotr Jasiukajtis return (x+x);
23025c28e83SPiotr Jasiukajtis if (x <= zero) {
23125c28e83SPiotr Jasiukajtis if (x == zero)
23225c28e83SPiotr Jasiukajtis return (-one/zero);
23325c28e83SPiotr Jasiukajtis else
23425c28e83SPiotr Jasiukajtis return (zero/zero);
23525c28e83SPiotr Jasiukajtis }
23625c28e83SPiotr Jasiukajtis sign = 1;
23725c28e83SPiotr Jasiukajtis if (n < 0) {
23825c28e83SPiotr Jasiukajtis n = -n;
23925c28e83SPiotr Jasiukajtis if ((n&1) == 1) sign = -1;
24025c28e83SPiotr Jasiukajtis }
24125c28e83SPiotr Jasiukajtis if (n == 0)
24225c28e83SPiotr Jasiukajtis return (y0l(x));
24325c28e83SPiotr Jasiukajtis if (n == 1)
24425c28e83SPiotr Jasiukajtis return (sign*y1l(x));
24525c28e83SPiotr Jasiukajtis if (!finitel(x))
24625c28e83SPiotr Jasiukajtis return (zero);
24725c28e83SPiotr Jasiukajtis
24825c28e83SPiotr Jasiukajtis if (x > 1.0e91L) { /* x >> n**2
24925c28e83SPiotr Jasiukajtis Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
25025c28e83SPiotr Jasiukajtis Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
25125c28e83SPiotr Jasiukajtis Let s = sin(x), c = cos(x),
25225c28e83SPiotr Jasiukajtis xn = x-(2n+1)*pi/4, sqt2 = sqrt(2), then
25325c28e83SPiotr Jasiukajtis
25425c28e83SPiotr Jasiukajtis n sin(xn)*sqt2 cos(xn)*sqt2
25525c28e83SPiotr Jasiukajtis ----------------------------------
25625c28e83SPiotr Jasiukajtis 0 s-c c+s
25725c28e83SPiotr Jasiukajtis 1 -s-c -c+s
25825c28e83SPiotr Jasiukajtis 2 -s+c -c-s
25925c28e83SPiotr Jasiukajtis 3 s+c c-s
26025c28e83SPiotr Jasiukajtis */
26125c28e83SPiotr Jasiukajtis switch (n&3) {
26225c28e83SPiotr Jasiukajtis case 0: temp = sinl(x)-cosl(x); break;
26325c28e83SPiotr Jasiukajtis case 1: temp = -sinl(x)-cosl(x); break;
26425c28e83SPiotr Jasiukajtis case 2: temp = -sinl(x)+cosl(x); break;
26525c28e83SPiotr Jasiukajtis case 3: temp = sinl(x)+cosl(x); break;
26625c28e83SPiotr Jasiukajtis }
26725c28e83SPiotr Jasiukajtis b = invsqrtpi*temp/sqrtl(x);
26825c28e83SPiotr Jasiukajtis } else {
26925c28e83SPiotr Jasiukajtis a = y0l(x);
27025c28e83SPiotr Jasiukajtis b = y1l(x);
27125c28e83SPiotr Jasiukajtis /*
27225c28e83SPiotr Jasiukajtis * fix 1262058 and take care of non-default rounding
27325c28e83SPiotr Jasiukajtis */
27425c28e83SPiotr Jasiukajtis for (i = 1; i < n; i++) {
27525c28e83SPiotr Jasiukajtis temp = b;
27625c28e83SPiotr Jasiukajtis b *= (GENERIC) (i + i) / x;
27725c28e83SPiotr Jasiukajtis if (b <= -LDBL_MAX)
27825c28e83SPiotr Jasiukajtis break;
27925c28e83SPiotr Jasiukajtis b -= a;
28025c28e83SPiotr Jasiukajtis a = temp;
28125c28e83SPiotr Jasiukajtis }
28225c28e83SPiotr Jasiukajtis }
28325c28e83SPiotr Jasiukajtis if (sign > 0)
28425c28e83SPiotr Jasiukajtis return (b);
28525c28e83SPiotr Jasiukajtis else
28625c28e83SPiotr Jasiukajtis return (-b);
28725c28e83SPiotr Jasiukajtis }
288