xref: /titanic_50/usr/src/lib/libm/common/Q/expm1l.c (revision 6aa4fc89ec1cf2cdf7d7c3b9ec059802ac9abe65)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  */
25 /*
26  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #if defined(ELFOBJ)
31 #pragma weak expm1l = __expm1l
32 #endif
33 #if !defined(__sparc)
34 #error Unsupported architecture
35 #endif
36 
37 /*
38  * expm1l(x)
39  *
40  * Table driven method
41  * Written by K.C. Ng, June 1995.
42  * Algorithm :
43  *	1. expm1(x) = x if x<2**-114
44  *	2. if |x| <= 0.0625 = 1/16, use approximation
45  *		expm1(x) = x + x*P/(2-P)
46  * where
47  * 	P = x - z*(P1+z*(P2+z*(P3+z*(P4+z*(P5+z*P6+z*P7))))), z = x*x;
48  * (this formula is derived from
49  *	2-P+x = R = x*(exp(x)+1)/(exp(x)-1) ~ 2 + x*x/6 - x^4/360 + ...)
50  *
51  * P1 =   1.66666666666666666666666666666638500528074603030e-0001
52  * P2 =  -2.77777777777777777777777759668391122822266551158e-0003
53  * P3 =   6.61375661375661375657437408890138814721051293054e-0005
54  * P4 =  -1.65343915343915303310185228411892601606669528828e-0006
55  * P5 =   4.17535139755122945763580609663414647067443411178e-0008
56  * P6 =  -1.05683795988668526689182102605260986731620026832e-0009
57  * P7 =   2.67544168821852702827123344217198187229611470514e-0011
58  *
59  * Accuracy: |R-x*(exp(x)+1)/(exp(x)-1)|<=2**-119.13
60  *
61  *	3. For 1/16 < |x| < 1.125, choose x(+-i) ~ +-(i+4.5)/64, i=0,..,67
62  *	   since
63  *		exp(x) = exp(xi+(x-xi))= exp(xi)*exp((x-xi))
64  *	   we have
65  *		expm1(x) = expm1(xi)+(exp(xi))*(expm1(x-xi))
66  *	   where
67  *		|s=x-xi| <= 1/128
68  *	   and
69  *	expm1(s)=2s/(2-R), R= s-s^2*(T1+s^2*(T2+s^2*(T3+s^2*(T4+s^2*T5))))
70  *
71  * T1 =   1.666666666666666666666666666660876387437e-1L,
72  * T2 =  -2.777777777777777777777707812093173478756e-3L,
73  * T3 =   6.613756613756613482074280932874221202424e-5L,
74  * T4 =  -1.653439153392139954169609822742235851120e-6L,
75  * T5 =   4.175314851769539751387852116610973796053e-8L;
76  *
77  *	4. For |x| >= 1.125, return exp(x)-1.
78  *	    (see algorithm for exp)
79  *
80  * Special cases:
81  *	expm1l(INF) is INF, expm1l(NaN) is NaN;
82  *	expm1l(-INF)= -1;
83  *	for finite argument, only expm1l(0)=0 is exact.
84  *
85  * Accuracy:
86  *	according to an error analysis, the error is always less than
87  *	2 ulp (unit in the last place).
88  *
89  * Misc. info.
90  *	For 113 bit long double
91  *		if x >  1.135652340629414394949193107797076342845e+4
92  *      then expm1l(x) overflow;
93  *
94  * Constants:
95  * Only decimal values are given. We assume that the compiler will convert
96  * from decimal to binary accurately enough to produce the correct
97  * hexadecimal values.
98  */
99 
100 #include "libm.h"
101 
102 extern const long double _TBL_expl_hi[], _TBL_expl_lo[];
103 extern const long double _TBL_expm1lx[], _TBL_expm1l[];
104 
105 static const long double
106 	zero		= +0.0L,
107 	one		= +1.0L,
108 	two		= +2.0L,
109 	ln2_64		= +1.083042469624914545964425189778400898568e-2L,
110 	ovflthreshold	= +1.135652340629414394949193107797076342845e+4L,
111 	invln2_32	= +4.616624130844682903551758979206054839765e+1L,
112 	ln2_32hi	= +2.166084939249829091928849858592451515688e-2L,
113 	ln2_32lo	= +5.209643502595475652782654157501186731779e-27L,
114 	huge		= +1.0e4000L,
115 	tiny		= +1.0e-4000L,
116 	P1 = +1.66666666666666666666666666666638500528074603030e-0001L,
117 	P2 = -2.77777777777777777777777759668391122822266551158e-0003L,
118 	P3 = +6.61375661375661375657437408890138814721051293054e-0005L,
119 	P4 = -1.65343915343915303310185228411892601606669528828e-0006L,
120 	P5 = +4.17535139755122945763580609663414647067443411178e-0008L,
121 	P6 = -1.05683795988668526689182102605260986731620026832e-0009L,
122 	P7 = +2.67544168821852702827123344217198187229611470514e-0011L,
123 /* rational approximation coeffs for [-(ln2)/64,(ln2)/64] */
124 	T1 = +1.666666666666666666666666666660876387437e-1L,
125 	T2 = -2.777777777777777777777707812093173478756e-3L,
126 	T3 = +6.613756613756613482074280932874221202424e-5L,
127 	T4 = -1.653439153392139954169609822742235851120e-6L,
128 	T5 = +4.175314851769539751387852116610973796053e-8L;
129 
130 long double
131 expm1l(long double x) {
132 	int hx, ix, j, k, m;
133 	long double t, r, s, w;
134 
135 	hx = ((int *) &x)[HIXWORD];
136 	ix = hx & ~0x80000000;
137 	if (ix >= 0x7fff0000) {
138 		if (x != x)
139 			return (x + x);	/* NaN */
140 		if (x < zero)
141 			return (-one);	/* -inf */
142 		return (x);	/* +inf */
143 	}
144 	if (ix < 0x3fff4000) {	/* |x| < 1.25 */
145 		if (ix < 0x3ffb0000) {	/* |x| < 0.0625 */
146 			if (ix < 0x3f8d0000) {
147 				if ((int) x == 0)
148 					return (x);	/* |x|<2^-114 */
149 			}
150 			t = x * x;
151 			r = (x - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t *
152 				(P5 + t * (P6 + t * P7)))))));
153 			return (x + (x * r) / (two - r));
154 		}
155 		/* compute i = [64*x] */
156 		m = 0x4009 - (ix >> 16);
157 		j = ((ix & 0x0000ffff) | 0x10000) >> m;	/* j=4,...,67 */
158 		if (hx < 0)
159 			j += 82;			/* negative */
160 		s = x - _TBL_expm1lx[j];
161 		t = s * s;
162 		r = s - t * (T1 + t * (T2 + t * (T3 + t * (T4 + t * T5))));
163 		r = (s + s) / (two - r);
164 		w = _TBL_expm1l[j];
165 		return (w + (w + one) * r);
166 	}
167 	if (hx > 0) {
168 		if (x > ovflthreshold)
169 			return (huge * huge);
170 		k = (int) (invln2_32 * (x + ln2_64));
171 	} else {
172 		if (x < -80.0)
173 			return (tiny - x / x);
174 		k = (int) (invln2_32 * (x - ln2_64));
175 	}
176 	j = k & 0x1f;
177 	m = k >> 5;
178 	t = (long double) k;
179 	x = (x - t * ln2_32hi) - t * ln2_32lo;
180 	t = x * x;
181 	r = (x - t * (T1 + t * (T2 + t * (T3 + t * (T4 + t * T5))))) - two;
182 	x = _TBL_expl_hi[j] - ((_TBL_expl_hi[j] * (x + x)) / r -
183 		_TBL_expl_lo[j]);
184 	return (scalbnl(x, m) - one);
185 }
186