xref: /titanic_50/usr/src/lib/libm/common/LD/__tanl.c (revision 6aa4fc89ec1cf2cdf7d7c3b9ec059802ac9abe65)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  */
25 /*
26  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 /* INDENT OFF */
31 /*
32  * __k_tanl( long double x;  long double y; int k )
33  * kernel tan/cotan function on [-pi/4, pi/4], pi/4 ~ 0.785398164
34  * Input x is assumed to be bounded by ~pi/4 in magnitude.
35  * Input y is the tail of x.
36  * Input k indicate -- tan if k=0; else -1/tan
37  *
38  * Table look up algorithm
39  *	1. by tan(-x) = -tan(x), need only to consider positive x
40  *	2. if x < 5/32 = [0x3ffc4000, 0] = 0.15625 , then
41  *	     if x < 2^-57 (hx < 0x3fc40000 0), set w=x with inexact if x !=  0
42  *	     else
43  *		z = x*x;
44  *		w = x + (y+(x*z)*(t1+z*(t2+z*(t3+z*(t4+z*(t5+z*t6))))))
45  *	   return (k == 0 ? w : 1/w);
46  *	3. else
47  *		ht = (hx + 0x400)&0x7ffff800	(round x to a break point t)
48  *		lt = 0
49  *		i  = (hy-0x3ffc4000)>>11;	(i<=64)
50  *		x' = (x - t)+y 			(|x'| ~<= 2^-7)
51  *	   By
52  *		tan(t+x')
53  *		  = (tan(t)+tan(x'))/(1-tan(x')tan(t))
54  *	   We have
55  *		             sin(x')+tan(t)*(tan(t)*sin(x'))
56  *		  = tan(t) + -------------------------------	for k=0
57  *			        cos(x') - tan(t)*sin(x')
58  *
59  *		             cos(x') - tan(t)*sin(x')
60  *		  = - --------------------------------------	for k=1
61  *		       tan(t) + tan(t)*(cos(x')-1) + sin(x')
62  *
63  *
64  *	   where 	tan(t) is from the table,
65  *			sin(x') = x + pp1*x^3 + ...+ pp5*x^11
66  *			cos(x') = 1 + qq1*x^2 + ...+ qq5*x^10
67  */
68 
69 #include "libm.h"
70 
71 #include <sys/isa_defs.h>
72 
73 extern const long double _TBL_tanl_hi[], _TBL_tanl_lo[];
74 static const long double
75 one	= 1.0,
76 /*
77  * |sin(x) - (x+pp1*x^3+...+ pp5*x^11)| <= 2^-122.32 for |x|<1/64
78  */
79 pp1	= -1.666666666666666666666666666586782940810e-0001L,
80 pp2	=  8.333333333333333333333003723660929317540e-0003L,
81 pp3	= -1.984126984126984076045903483778337804470e-0004L,
82 pp4	=  2.755731922361906641319723106210900949413e-0006L,
83 pp5	= -2.505198398570947019093998469135012057673e-0008L,
84 /*
85  *                   2           10        -123.84
86  * |cos(x) - (1+qq1*x +...+ qq5*x  )| <= 2        for |x|<=1/128
87  */
88 qq1	= -4.999999999999999999999999999999378373641e-0001L,
89 qq2	=  4.166666666666666666666665478399327703130e-0002L,
90 qq3	= -1.388888888888888888058211230618051613494e-0003L,
91 qq4	=  2.480158730156105377771585658905303111866e-0005L,
92 qq5	= -2.755728099762526325736488376695157008736e-0007L,
93 /*
94  * |tan(x) - (x+t1*x^3+...+t6*x^13)|
95  * |------------------------------ | <= 2^-59.73 for |x|<0.15625
96  * |                x              |
97  */
98 t1	=  3.333333333333333333333333333333423342490e-0001L,
99 t2	=  1.333333333333333333333333333093838744537e-0001L,
100 t3	=  5.396825396825396825396827906318682662250e-0002L,
101 t4	=  2.186948853615520282185576976994418486911e-0002L,
102 t5	=  8.863235529902196573354554519991152936246e-0003L,
103 t6	=  3.592128036572480064652191427543994878790e-0003L,
104 t7	=  1.455834387051455257856833807581901305474e-0003L,
105 t8	=  5.900274409318599857829983256201725587477e-0004L,
106 t9	=  2.391291152117265181501116961901122362937e-0004L,
107 t10	=  9.691533169382729742394024173194981882375e-0005L,
108 t11	=  3.927994733186415603228178184225780859951e-0005L,
109 t12	=  1.588300018848323824227640064883334101288e-0005L,
110 t13	=  6.916271223396808311166202285131722231723e-0006L;
111 /* INDENT ON */
112 long double
113 __k_tanl(long double x, long double y, int k) {
114 	long double a, t, z, w = 0.0, s, c;
115 	int *pt = (int *) &t, *px = (int *) &x;
116 	int i, j, hx, ix;
117 
118 	t = 1.0;
119 #if defined(__i386) || defined(__amd64)
120 	XTOI(px, hx);
121 #else
122 	hx = px[0];
123 #endif
124 	ix = hx & 0x7fffffff;
125 	if (ix < 0x3ffc4000) {
126 		if (ix < 0x3fc60000) {
127 			if ((i = (int) x) == 0)	/* generate inexact */
128 				w = x;
129 		} else {
130 			z = x * x;
131 			if (ix < 0x3ff30000)	/* 2**-12 */
132 				t = z * (t1 + z * (t2 + z * (t3 + z * t4)));
133 			else
134 				t = z * (t1 + z * (t2 + z * (t3 + z * (t4 +
135 					z * (t5 + z * (t6 + z * (t7 + z *
136 					(t8 + z * (t9 + z * (t10 + z * (t11 +
137 					z * (t12 + z * t13))))))))))));
138 			t = y + x * t;
139 			w = x + t;
140 		}
141 		return (k == 0 ? w : -one / w);
142 	}
143 	j = (ix + 0x400) & 0x7ffff800;
144 	i = (j - 0x3ffc4000) >> 11;
145 #if defined(__i386) || defined(__amd64)
146 	ITOX(j, pt);
147 #else
148 	pt[0] = j;
149 #endif
150 	if (hx > 0)
151 		x = y - (t - x);
152 	else
153 		x = (-y) - (t + x);
154 	a = _TBL_tanl_hi[i];
155 	z = x * x;
156 	/* cos(x)-1 */
157 	t = z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5))));
158 	/* sin(x) */
159 	s = x * (one + z * (pp1 + z * (pp2 + z * (pp3 + z * (pp4 + z *
160 		pp5)))));
161 	if (k == 0) {
162 		w = a * s;
163 		t = _TBL_tanl_lo[i] + (s + a * w) / (one - (w - t));
164 		return (hx < 0 ? -a - t : a + t);
165 	} else {
166 		w = s + a * t;
167 		c = w + _TBL_tanl_lo[i];
168 		z = (one - (a * s - t));
169 		return (hx >= 0 ? z / (-a - c) : z / (a + c));
170 	}
171 }
172