xref: /titanic_50/usr/src/lib/libm/common/C/sincospi.c (revision 587644a8567e6a9533f88401daa59cbd78c4632f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  */
25 /*
26  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #pragma weak sincospi = __sincospi
31 
32 /* INDENT OFF */
33 /*
34  * void sincospi(double x, double *s, double *c)
35  * *s = sin(pi*x); *c = cos(pi*x);
36  *
37  * Algorithm, 10/17/2002, K.C. Ng
38  * ------------------------------
39  * Let y = |4x|, z = floor(y), and n = (int)(z mod 8.0) (displayed in binary).
40  *	1. If y == z, then x is a multiple of pi/4. Return the following values:
41  *             ---------------------------------------------------
42  *               n  x mod 2    sin(x*pi)    cos(x*pi)   tan(x*pi)
43  *             ---------------------------------------------------
44  *              000  0.00       +0 ___       +1 ___      +0
45  *              001  0.25       +\/0.5       +\/0.5      +1
46  *              010  0.50       +1 ___       +0 ___      +inf
47  *              011  0.75       +\/0.5       -\/0.5      -1
48  *              100  1.00       -0 ___       -1 ___      +0
49  *              101  1.25       -\/0.5       -\/0.5      +1
50  *              110  1.50       -1 ___       -0 ___      +inf
51  *              111  1.75       -\/0.5       +\/0.5      -1
52  *             ---------------------------------------------------
53  *      2. Otherwise,
54  *             ---------------------------------------------------
55  *               n     t        sin(x*pi)    cos(x*pi)   tan(x*pi)
56  *             ---------------------------------------------------
57  *              000  (y-z)/4	 sinpi(t)     cospi(t)    tanpi(t)
58  *              001  (z+1-y)/4   cospi(t)     sinpi(t)	  1/tanpi(t)
59  *              010  (y-z)/4	 cospi(t)    -sinpi(t)   -1/tanpi(t)
60  *              011  (z+1-y)/4	 sinpi(t)    -cospi(t)	 -tanpi(t)
61  *              100  (y-z)/4	-sinpi(t)    -cospi(t)    tanpi(t)
62  *              101  (z+1-y)/4	-cospi(t)    -sinpi(t)	  1/tanpi(t)
63  *              110  (y-z)/4	-cospi(t)     sinpi(t)	 -1/tanpi(t)
64  *              111  (z+1-y)/4	-sinpi(t)     cospi(t)	 -tanpi(t)
65  *             ---------------------------------------------------
66  *
67  * NOTE. This program compute sinpi/cospi(t<0.25) by __k_sin/cos(pi*t, 0.0).
68  * This will return a result with error slightly more than one ulp (but less
69  * than 2 ulp). If one wants accurate result,  one may break up pi*t in
70  * high (tpi_h) and low (tpi_l) parts and call __k_sin/cos(tip_h, tip_lo)
71  * instead.
72  */
73 
74 #include "libm.h"
75 #include "libm_synonyms.h"
76 #include "libm_protos.h"
77 #include "libm_macros.h"
78 #include <math.h>
79 #if defined(__SUNPRO_C)
80 #include <sunmath.h>
81 #endif
82 
83 static const double
84 	pi 	= 3.14159265358979323846,	/* 400921FB,54442D18 */
85 	sqrth_h = 0.70710678118654757273731092936941422522068023681640625,
86 	sqrth_l = -4.8336466567264565185935844299127932213411660131004e-17;
87 /* INDENT ON */
88 
89 void
90 sincospi(double x, double *s, double *c) {
91 	double y, z, t;
92 	int n, ix, k;
93 	int hx = ((int *) &x)[HIWORD];
94 	unsigned h, lx = ((unsigned *) &x)[LOWORD];
95 
96 	ix = hx & ~0x80000000;
97 	n = (ix >> 20) - 0x3ff;
98 	if (n >= 51) {			/* |x| >= 2**51 */
99 		if (n >= 1024)
100 #if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN)
101 			*s = *c = ix >= 0x7ff80000 ? x : x - x;
102 			/* assumes sparc-like QNaN */
103 #else
104 			*s = *c = x - x;
105 #endif
106 		else {
107 			if (n >= 53)  {
108 				*s = 0.0;
109 				*c = 1.0;
110 			}
111 			else if (n == 52)  {
112 				if ((lx & 1) == 0) {
113 					*s = 0.0;
114 					*c = 1.0;
115 				}
116 				else {
117 					*s = -0.0;
118 					*c = -1.0;
119 				}
120 			}
121 			else {	/* n == 51 */
122 				if ((lx & 1) == 0) {
123 					*s = 0.0;
124 					*c = 1.0;
125 				}
126 				else {
127 					*s = 1.0;
128 					*c = 0.0;
129 				}
130 				if ((lx & 2) != 0) {
131 					*s = -*s;
132 					*c = -*c;
133 				}
134 			}
135 		}
136 	}
137 	else if (n < -2) 	/* |x| < 0.25 */
138 		*s = __k_sincos(pi * fabs(x), 0.0, c);
139 	else {
140 		/* y = |4x|, z = floor(y), and n = (int)(z mod 8.0) */
141 		if (ix < 0x41C00000) {		/* |x| < 2**29 */
142 			y = 4.0 * fabs(x);
143 			n = (int) y;		/* exact */
144 			z = (double) n;
145 			k = z == y;
146 			t = (y - z) * 0.25;
147 		}
148 		else {				/* 2**29 <= |x| < 2**51 */
149 			y = fabs(x);
150 			k = 50 - n;
151 			n = lx >> k;
152 			h = n << k;
153 			((unsigned *) &z)[LOWORD] = h;
154 			((int *) &z)[HIWORD] = ix;
155 			k = h == lx;
156 			t = y - z;
157 		}
158 		if (k) {			/* x = N/4 */
159 			if ((n & 1) != 0)
160 				*s = *c = sqrth_h + sqrth_l;
161 			else
162 				if ((n & 2) == 0) {
163 					*s = 0.0;
164 					*c = 1.0;
165 				}
166 				else {
167 					*s = 1.0;
168 					*c = 0.0;
169 				}
170 				y = (n & 2) == 0 ? 0.0 : 1.0;
171 				if ((n & 4) != 0)
172 					*s = -*s;
173 				if (((n + 1) & 4) != 0)
174 					*c = -*c;
175 		}
176 		else {
177 			if ((n & 1) != 0)
178 				t = 0.25 - t;
179 			if (((n + (n & 1)) & 2) == 0)
180 				*s = __k_sincos(pi * t, 0.0, c);
181 			else
182 				*c = __k_sincos(pi * t, 0.0, s);
183 				if ((n & 4) != 0)
184 					*s = -*s;
185 				if (((n + 2) & 4) != 0)
186 					*c = -*c;
187 		}
188 	}
189 	if (hx < 0)
190 		*s = -*s;
191 }
192