1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <libipmi.h> 28 #include <stddef.h> 29 #include <string.h> 30 #include <strings.h> 31 #include <math.h> 32 33 #include "ipmi_impl.h" 34 35 /* 36 * This macros are used by ipmi_sdr_conv_reading. They were taken verbatim from 37 * the source for ipmitool (v1.88) 38 */ 39 #define tos32(val, bits) ((val & ((1<<((bits)-1)))) ? (-((val) & \ 40 (1<<((bits)-1))) | (val)) : (val)) 41 42 #define __TO_TOL(mtol) (uint16_t)(BSWAP_16(mtol) & 0x3f) 43 44 #define __TO_M(mtol) (int16_t)(tos32((((BSWAP_16(mtol) & 0xff00) >> 8) | \ 45 ((BSWAP_16(mtol) & 0xc0) << 2)), 10)) 46 47 #define __TO_B(bacc) (int32_t)(tos32((((BSWAP_32(bacc) & \ 48 0xff000000) >> 24) | \ 49 ((BSWAP_32(bacc) & 0xc00000) >> 14)), 10)) 50 51 #define __TO_ACC(bacc) (uint32_t)(((BSWAP_32(bacc) & 0x3f0000) >> 16) | \ 52 ((BSWAP_32(bacc) & 0xf000) >> 6)) 53 54 #define __TO_ACC_EXP(bacc) (uint32_t)((BSWAP_32(bacc) & 0xc00) >> 10) 55 #define __TO_R_EXP(bacc) (int32_t)(tos32(((BSWAP_32(bacc) & 0xf0) >> 4),\ 56 4)) 57 #define __TO_B_EXP(bacc) (int32_t)(tos32((BSWAP_32(bacc) & 0xf), 4)) 58 59 #define SDR_SENSOR_L_LINEAR 0x00 60 #define SDR_SENSOR_L_LN 0x01 61 #define SDR_SENSOR_L_LOG10 0x02 62 #define SDR_SENSOR_L_LOG2 0x03 63 #define SDR_SENSOR_L_E 0x04 64 #define SDR_SENSOR_L_EXP10 0x05 65 #define SDR_SENSOR_L_EXP2 0x06 66 #define SDR_SENSOR_L_1_X 0x07 67 #define SDR_SENSOR_L_SQR 0x08 68 #define SDR_SENSOR_L_CUBE 0x09 69 #define SDR_SENSOR_L_SQRT 0x0a 70 #define SDR_SENSOR_L_CUBERT 0x0b 71 #define SDR_SENSOR_L_NONLINEAR 0x70 72 73 /* 74 * Analog sensor reading data formats 75 * 76 * See Section 43.1 77 */ 78 #define IPMI_DATA_FMT_UNSIGNED 0 79 #define IPMI_DATA_FMT_ONESCOMP 1 80 #define IPMI_DATA_FMT_TWOSCOMP 2 81 82 #define IPMI_SDR_HDR_SZ offsetof(ipmi_sdr_t, is_record) 83 84 typedef struct ipmi_sdr_cache_ent { 85 char *isc_name; 86 struct ipmi_sdr *isc_sdr; 87 ipmi_hash_link_t isc_link; 88 } ipmi_sdr_cache_ent_t; 89 90 typedef struct ipmi_cmd_get_sdr { 91 uint16_t ic_gs_resid; 92 uint16_t ic_gs_recid; 93 uint8_t ic_gs_offset; 94 uint8_t ic_gs_len; 95 } ipmi_cmd_get_sdr_t; 96 97 typedef struct ipmi_rsp_get_sdr { 98 uint16_t ir_gs_next; 99 uint8_t ir_gs_record[1]; 100 } ipmi_rsp_get_sdr_t; 101 102 /* 103 * "Get SDR Repostiory Info" command. 104 */ 105 ipmi_sdr_info_t * 106 ipmi_sdr_get_info(ipmi_handle_t *ihp) 107 { 108 ipmi_cmd_t cmd, *rsp; 109 ipmi_sdr_info_t *sip; 110 uint16_t tmp16; 111 uint32_t tmp32; 112 113 cmd.ic_netfn = IPMI_NETFN_STORAGE; 114 cmd.ic_lun = 0; 115 cmd.ic_cmd = IPMI_CMD_GET_SDR_INFO; 116 cmd.ic_dlen = 0; 117 cmd.ic_data = NULL; 118 119 if ((rsp = ipmi_send(ihp, &cmd)) == NULL) 120 return (NULL); 121 122 sip = rsp->ic_data; 123 124 tmp16 = LE_IN16(&sip->isi_record_count); 125 (void) memcpy(&sip->isi_record_count, &tmp16, sizeof (tmp16)); 126 127 tmp16 = LE_IN16(&sip->isi_free_space); 128 (void) memcpy(&sip->isi_free_space, &tmp16, sizeof (tmp16)); 129 130 tmp32 = LE_IN32(&sip->isi_add_ts); 131 (void) memcpy(&sip->isi_add_ts, &tmp32, sizeof (tmp32)); 132 133 tmp32 = LE_IN32(&sip->isi_erase_ts); 134 (void) memcpy(&sip->isi_erase_ts, &tmp32, sizeof (tmp32)); 135 136 return (sip); 137 } 138 139 /* 140 * Issue the "Reserve SDR Repository" command. 141 */ 142 static int 143 ipmi_sdr_reserve_repository(ipmi_handle_t *ihp) 144 { 145 ipmi_cmd_t cmd, *rsp; 146 147 cmd.ic_netfn = IPMI_NETFN_STORAGE; 148 cmd.ic_lun = 0; 149 cmd.ic_cmd = IPMI_CMD_RESERVE_SDR_REPOSITORY; 150 cmd.ic_dlen = 0; 151 cmd.ic_data = NULL; 152 153 if ((rsp = ipmi_send(ihp, &cmd)) == NULL) 154 return (-1); 155 156 ihp->ih_reservation = *((uint16_t *)rsp->ic_data); 157 return (0); 158 } 159 160 /* 161 * Returns B_TRUE if the repository has changed since the cached copy was last 162 * referenced. 163 */ 164 boolean_t 165 ipmi_sdr_changed(ipmi_handle_t *ihp) 166 { 167 ipmi_sdr_info_t *sip; 168 169 if ((sip = ipmi_sdr_get_info(ihp)) == NULL) 170 return (B_TRUE); 171 172 return (sip->isi_add_ts > ihp->ih_sdr_ts || 173 sip->isi_erase_ts > ihp->ih_sdr_ts || 174 ipmi_hash_first(ihp->ih_sdr_cache) == NULL); 175 } 176 177 /* 178 * Refresh the cache of sensor data records. 179 */ 180 int 181 ipmi_sdr_refresh(ipmi_handle_t *ihp) 182 { 183 uint16_t id; 184 ipmi_sdr_t *sdr; 185 ipmi_sdr_cache_ent_t *ent; 186 size_t namelen; 187 uint8_t type; 188 char *name; 189 ipmi_sdr_info_t *sip; 190 191 if ((sip = ipmi_sdr_get_info(ihp)) == NULL) 192 return (-1); 193 194 if (sip->isi_add_ts <= ihp->ih_sdr_ts && 195 sip->isi_erase_ts <= ihp->ih_sdr_ts && 196 ipmi_hash_first(ihp->ih_sdr_cache) != NULL) 197 return (0); 198 199 ipmi_sdr_clear(ihp); 200 ipmi_entity_clear(ihp); 201 ihp->ih_sdr_ts = MAX(sip->isi_add_ts, sip->isi_erase_ts); 202 203 /* 204 * Iterate over all existing SDRs and add them to the cache. 205 */ 206 id = IPMI_SDR_FIRST; 207 while (id != IPMI_SDR_LAST) { 208 if ((sdr = ipmi_sdr_get(ihp, id, &id)) == NULL) 209 goto error; 210 211 /* 212 * Extract the name from the record-specific data. 213 */ 214 switch (sdr->is_type) { 215 case IPMI_SDR_TYPE_GENERIC_LOCATOR: 216 { 217 ipmi_sdr_generic_locator_t *glp = 218 (ipmi_sdr_generic_locator_t *) 219 sdr->is_record; 220 namelen = glp->is_gl_idlen; 221 type = glp->is_gl_idtype; 222 name = glp->is_gl_idstring; 223 break; 224 } 225 226 case IPMI_SDR_TYPE_FRU_LOCATOR: 227 { 228 ipmi_sdr_fru_locator_t *flp = 229 (ipmi_sdr_fru_locator_t *) 230 sdr->is_record; 231 namelen = flp->is_fl_idlen; 232 name = flp->is_fl_idstring; 233 type = flp->is_fl_idtype; 234 break; 235 } 236 237 case IPMI_SDR_TYPE_COMPACT_SENSOR: 238 { 239 ipmi_sdr_compact_sensor_t *csp = 240 (ipmi_sdr_compact_sensor_t *) 241 sdr->is_record; 242 uint16_t tmp; 243 244 namelen = csp->is_cs_idlen; 245 type = csp->is_cs_idtype; 246 name = csp->is_cs_idstring; 247 248 tmp = LE_IN16(&csp->is_cs_assert_mask); 249 (void) memcpy(&csp->is_cs_assert_mask, &tmp, 250 sizeof (tmp)); 251 252 tmp = LE_IN16(&csp->is_cs_deassert_mask); 253 (void) memcpy(&csp->is_cs_deassert_mask, &tmp, 254 sizeof (tmp)); 255 256 tmp = LE_IN16(&csp->is_cs_reading_mask); 257 (void) memcpy(&csp->is_cs_reading_mask, &tmp, 258 sizeof (tmp)); 259 break; 260 } 261 262 case IPMI_SDR_TYPE_FULL_SENSOR: 263 { 264 ipmi_sdr_full_sensor_t *fsp = 265 (ipmi_sdr_full_sensor_t *) 266 sdr->is_record; 267 uint16_t tmp; 268 269 namelen = fsp->is_fs_idlen; 270 type = fsp->is_fs_idtype; 271 name = fsp->is_fs_idstring; 272 273 tmp = LE_IN16(&fsp->is_fs_assert_mask); 274 (void) memcpy(&fsp->is_fs_assert_mask, &tmp, 275 sizeof (tmp)); 276 277 tmp = LE_IN16(&fsp->is_fs_deassert_mask); 278 (void) memcpy(&fsp->is_fs_deassert_mask, &tmp, 279 sizeof (tmp)); 280 281 tmp = LE_IN16(&fsp->is_fs_reading_mask); 282 (void) memcpy(&fsp->is_fs_reading_mask, &tmp, 283 sizeof (tmp)); 284 break; 285 } 286 287 case IPMI_SDR_TYPE_EVENT_ONLY: 288 { 289 ipmi_sdr_event_only_t *esp = 290 (ipmi_sdr_event_only_t *) 291 sdr->is_record; 292 namelen = esp->is_eo_idlen; 293 type = esp->is_eo_idtype; 294 name = esp->is_eo_idstring; 295 break; 296 } 297 298 case IPMI_SDR_TYPE_MANAGEMENT_LOCATOR: 299 { 300 ipmi_sdr_management_locator_t *msp = 301 (ipmi_sdr_management_locator_t *) 302 sdr->is_record; 303 namelen = msp->is_ml_idlen; 304 type = msp->is_ml_idtype; 305 name = msp->is_ml_idstring; 306 break; 307 } 308 309 case IPMI_SDR_TYPE_MANAGEMENT_CONFIRMATION: 310 { 311 ipmi_sdr_management_confirmation_t *mcp = 312 (ipmi_sdr_management_confirmation_t *) 313 sdr->is_record; 314 uint16_t tmp; 315 316 name = NULL; 317 tmp = LE_IN16(&mcp->is_mc_product); 318 (void) memcpy(&mcp->is_mc_product, &tmp, 319 sizeof (tmp)); 320 break; 321 } 322 323 default: 324 name = NULL; 325 } 326 327 if ((ent = ipmi_zalloc(ihp, 328 sizeof (ipmi_sdr_cache_ent_t))) == NULL) { 329 free(sdr); 330 goto error; 331 } 332 333 ent->isc_sdr = sdr; 334 335 if (name != NULL) { 336 if ((ent->isc_name = ipmi_alloc(ihp, namelen + 1)) == 337 NULL) { 338 ipmi_free(ihp, ent->isc_sdr); 339 ipmi_free(ihp, ent); 340 goto error; 341 } 342 343 ipmi_decode_string(type, namelen, name, ent->isc_name); 344 } 345 346 /* 347 * This should never happen. It means that the SP has returned 348 * a SDR record twice, with the same name and ID. This has 349 * been observed on service processors that don't correctly 350 * return SDR_LAST during iteration, so assume we've looped in 351 * the SDR and return gracefully. 352 */ 353 if (ipmi_hash_lookup(ihp->ih_sdr_cache, ent) != NULL) { 354 ipmi_free(ihp, ent->isc_sdr); 355 ipmi_free(ihp, ent->isc_name); 356 ipmi_free(ihp, ent); 357 break; 358 } 359 360 ipmi_hash_insert(ihp->ih_sdr_cache, ent); 361 } 362 363 return (0); 364 365 error: 366 ipmi_sdr_clear(ihp); 367 ipmi_entity_clear(ihp); 368 return (-1); 369 } 370 371 /* 372 * Hash routines. We allow lookup by name, but since not all entries have 373 * names, we fall back to the entry pointer, which is guaranteed to be unique. 374 * The end result is that entities without names cannot be looked up, but will 375 * show up during iteration. 376 */ 377 static const void * 378 ipmi_sdr_hash_convert(const void *p) 379 { 380 return (p); 381 } 382 383 static ulong_t 384 ipmi_sdr_hash_compute(const void *p) 385 { 386 const ipmi_sdr_cache_ent_t *ep = p; 387 388 if (ep->isc_name) 389 return (ipmi_hash_strhash(ep->isc_name)); 390 else 391 return (ipmi_hash_ptrhash(ep)); 392 } 393 394 static int 395 ipmi_sdr_hash_compare(const void *a, const void *b) 396 { 397 const ipmi_sdr_cache_ent_t *ap = a; 398 const ipmi_sdr_cache_ent_t *bp = b; 399 400 if (ap->isc_name == NULL || bp->isc_name == NULL) 401 return (-1); 402 403 if (strcmp(ap->isc_name, bp->isc_name) != 0) 404 return (-1); 405 406 /* 407 * While it is strange for a service processor to report multiple 408 * entries with the same name, we allow it by treating the (name, id) 409 * as the unique identifier. When looking up by name, the SDR pointer 410 * is NULL, and we return the first matching name. 411 */ 412 if (ap->isc_sdr == NULL || bp->isc_sdr == NULL) 413 return (0); 414 415 if (ap->isc_sdr->is_id == bp->isc_sdr->is_id) 416 return (0); 417 else 418 return (-1); 419 } 420 421 int 422 ipmi_sdr_init(ipmi_handle_t *ihp) 423 { 424 if ((ihp->ih_sdr_cache = ipmi_hash_create(ihp, 425 offsetof(ipmi_sdr_cache_ent_t, isc_link), 426 ipmi_sdr_hash_convert, ipmi_sdr_hash_compute, 427 ipmi_sdr_hash_compare)) == NULL) 428 return (-1); 429 430 return (0); 431 } 432 433 void 434 ipmi_sdr_clear(ipmi_handle_t *ihp) 435 { 436 ipmi_sdr_cache_ent_t *ent; 437 438 while ((ent = ipmi_hash_first(ihp->ih_sdr_cache)) != NULL) { 439 ipmi_hash_remove(ihp->ih_sdr_cache, ent); 440 ipmi_free(ihp, ent->isc_sdr); 441 ipmi_free(ihp, ent->isc_name); 442 ipmi_free(ihp, ent); 443 } 444 } 445 446 void 447 ipmi_sdr_fini(ipmi_handle_t *ihp) 448 { 449 if (ihp->ih_sdr_cache != NULL) { 450 ipmi_sdr_clear(ihp); 451 ipmi_hash_destroy(ihp->ih_sdr_cache); 452 } 453 } 454 455 ipmi_sdr_t * 456 ipmi_sdr_get(ipmi_handle_t *ihp, uint16_t id, uint16_t *next) 457 { 458 uint8_t offset = IPMI_SDR_HDR_SZ, count = 0, chunksz = 16, sdr_sz; 459 ipmi_cmd_t cmd, *rsp; 460 ipmi_cmd_get_sdr_t req; 461 ipmi_sdr_t *sdr; 462 int i = 0; 463 char *buf; 464 465 req.ic_gs_resid = ihp->ih_reservation; 466 req.ic_gs_recid = id; 467 468 cmd.ic_netfn = IPMI_NETFN_STORAGE; 469 cmd.ic_lun = 0; 470 cmd.ic_cmd = IPMI_CMD_GET_SDR; 471 cmd.ic_dlen = sizeof (req); 472 cmd.ic_data = &req; 473 474 /* 475 * The size of the SDR is contained in the 5th byte of the SDR header, 476 * so we'll read the first 5 bytes to get the size, so we know how big 477 * to make the buffer. 478 */ 479 req.ic_gs_offset = 0; 480 req.ic_gs_len = IPMI_SDR_HDR_SZ; 481 for (i = 0; i < ihp->ih_retries; i++) { 482 if ((rsp = ipmi_send(ihp, &cmd)) != NULL) 483 break; 484 485 if (ipmi_errno(ihp) != EIPMI_INVALID_RESERVATION) 486 return (NULL); 487 488 if (ipmi_sdr_reserve_repository(ihp) != 0) 489 return (NULL); 490 req.ic_gs_resid = ihp->ih_reservation; 491 } 492 if (rsp == NULL) 493 return (NULL); 494 495 sdr = (ipmi_sdr_t *)((ipmi_rsp_get_sdr_t *)rsp->ic_data)->ir_gs_record; 496 sdr_sz = sdr->is_length; 497 498 if ((buf = ipmi_zalloc(ihp, sdr_sz + IPMI_SDR_HDR_SZ)) == NULL) { 499 (void) ipmi_set_error(ihp, EIPMI_NOMEM, NULL); 500 return (NULL); 501 } 502 (void) memcpy(buf, (void *)sdr, IPMI_SDR_HDR_SZ); 503 504 /* 505 * Some SDRs can be bigger than the buffer sizes for a given bmc 506 * interface. Therefore we break up the process of reading in an entire 507 * SDR into multiple smaller reads. 508 */ 509 while (count < sdr_sz && i < ihp->ih_retries) { 510 req.ic_gs_offset = offset; 511 if (chunksz > (sdr_sz - count)) 512 chunksz = sdr_sz - count; 513 req.ic_gs_len = chunksz; 514 rsp = ipmi_send(ihp, &cmd); 515 516 if (rsp != NULL) { 517 count += chunksz; 518 sdr = (ipmi_sdr_t *) 519 ((ipmi_rsp_get_sdr_t *)rsp->ic_data)->ir_gs_record; 520 (void) memcpy(buf+offset, (void *)sdr, chunksz); 521 offset += chunksz; 522 i = 0; 523 } else if (ipmi_errno(ihp) == EIPMI_INVALID_RESERVATION) { 524 if (ipmi_sdr_reserve_repository(ihp) != 0) { 525 free(buf); 526 return (NULL); 527 } 528 req.ic_gs_resid = ihp->ih_reservation; 529 i++; 530 } else { 531 free(buf); 532 return (NULL); 533 } 534 } 535 *next = ((ipmi_rsp_get_sdr_t *)rsp->ic_data)->ir_gs_next; 536 537 return ((ipmi_sdr_t *)buf); 538 } 539 540 int 541 ipmi_sdr_iter(ipmi_handle_t *ihp, int (*func)(ipmi_handle_t *, 542 const char *, ipmi_sdr_t *, void *), void *data) 543 { 544 ipmi_sdr_cache_ent_t *ent; 545 int ret; 546 547 if (ipmi_hash_first(ihp->ih_sdr_cache) == NULL && 548 ipmi_sdr_refresh(ihp) != 0) 549 return (-1); 550 551 for (ent = ipmi_hash_first(ihp->ih_sdr_cache); ent != NULL; 552 ent = ipmi_hash_next(ihp->ih_sdr_cache, ent)) { 553 if ((ret = func(ihp, ent->isc_name, ent->isc_sdr, data)) != 0) 554 return (ret); 555 } 556 557 return (0); 558 } 559 560 ipmi_sdr_t * 561 ipmi_sdr_lookup(ipmi_handle_t *ihp, const char *idstr) 562 { 563 ipmi_sdr_cache_ent_t *ent, search; 564 565 if (ipmi_hash_first(ihp->ih_sdr_cache) == NULL && 566 ipmi_sdr_refresh(ihp) != 0) 567 return (NULL); 568 569 search.isc_name = (char *)idstr; 570 search.isc_sdr = NULL; 571 if ((ent = ipmi_hash_lookup(ihp->ih_sdr_cache, &search)) == NULL) { 572 (void) ipmi_set_error(ihp, EIPMI_NOT_PRESENT, NULL); 573 return (NULL); 574 } 575 576 return (ent->isc_sdr); 577 } 578 579 static void * 580 ipmi_sdr_lookup_common(ipmi_handle_t *ihp, const char *idstr, 581 uint8_t type) 582 { 583 ipmi_sdr_t *sdrp; 584 585 if ((sdrp = ipmi_sdr_lookup(ihp, idstr)) == NULL) 586 return (NULL); 587 588 if (sdrp->is_type != type) { 589 (void) ipmi_set_error(ihp, EIPMI_NOT_PRESENT, NULL); 590 return (NULL); 591 } 592 593 return (sdrp->is_record); 594 } 595 596 ipmi_sdr_fru_locator_t * 597 ipmi_sdr_lookup_fru(ipmi_handle_t *ihp, const char *idstr) 598 { 599 return (ipmi_sdr_lookup_common(ihp, idstr, 600 IPMI_SDR_TYPE_FRU_LOCATOR)); 601 } 602 603 ipmi_sdr_generic_locator_t * 604 ipmi_sdr_lookup_generic(ipmi_handle_t *ihp, const char *idstr) 605 { 606 return (ipmi_sdr_lookup_common(ihp, idstr, 607 IPMI_SDR_TYPE_GENERIC_LOCATOR)); 608 } 609 610 ipmi_sdr_compact_sensor_t * 611 ipmi_sdr_lookup_compact_sensor(ipmi_handle_t *ihp, const char *idstr) 612 { 613 return (ipmi_sdr_lookup_common(ihp, idstr, 614 IPMI_SDR_TYPE_COMPACT_SENSOR)); 615 } 616 617 ipmi_sdr_full_sensor_t * 618 ipmi_sdr_lookup_full_sensor(ipmi_handle_t *ihp, const char *idstr) 619 { 620 return (ipmi_sdr_lookup_common(ihp, idstr, 621 IPMI_SDR_TYPE_FULL_SENSOR)); 622 } 623 624 /* 625 * Mostly taken from ipmitool source v1.88 626 * 627 * This function converts the raw sensor reading returned by 628 * ipmi_get_sensor_reading to a unit-based value of type double. 629 */ 630 int 631 ipmi_sdr_conv_reading(ipmi_sdr_full_sensor_t *sensor, uint8_t val, 632 double *result) 633 { 634 int m, b, k1, k2; 635 636 m = __TO_M(sensor->is_fs_mtol); 637 b = __TO_B(sensor->is_fs_bacc); 638 k1 = __TO_B_EXP(sensor->is_fs_bacc); 639 k2 = __TO_R_EXP(sensor->is_fs_bacc); 640 641 switch (sensor->is_fs_analog_fmt) { 642 case IPMI_DATA_FMT_UNSIGNED: 643 *result = (double)(((m * val) + 644 (b * pow(10, k1))) * pow(10, k2)); 645 break; 646 case IPMI_DATA_FMT_ONESCOMP: 647 if (val & 0x80) 648 val++; 649 /* FALLTHRU */ 650 case IPMI_DATA_FMT_TWOSCOMP: 651 *result = (double)(((m * (int8_t)val) + 652 (b * pow(10, k1))) * pow(10, k2)); 653 break; 654 default: 655 /* This sensor does not return a numeric reading */ 656 return (-1); 657 } 658 659 switch (sensor->is_fs_sensor_linear_type) { 660 case SDR_SENSOR_L_LN: 661 *result = log(*result); 662 break; 663 case SDR_SENSOR_L_LOG10: 664 *result = log10(*result); 665 break; 666 case SDR_SENSOR_L_LOG2: 667 *result = (double)(log(*result) / log(2.0)); 668 break; 669 case SDR_SENSOR_L_E: 670 *result = exp(*result); 671 break; 672 case SDR_SENSOR_L_EXP10: 673 *result = pow(10.0, *result); 674 break; 675 case SDR_SENSOR_L_EXP2: 676 *result = pow(2.0, *result); 677 break; 678 case SDR_SENSOR_L_1_X: 679 *result = pow(*result, -1.0); /* 1/x w/o exception */ 680 break; 681 case SDR_SENSOR_L_SQR: 682 *result = pow(*result, 2.0); 683 break; 684 case SDR_SENSOR_L_CUBE: 685 *result = pow(*result, 3.0); 686 break; 687 case SDR_SENSOR_L_SQRT: 688 *result = sqrt(*result); 689 break; 690 case SDR_SENSOR_L_CUBERT: 691 *result = cbrt(*result); 692 break; 693 case SDR_SENSOR_L_LINEAR: 694 default: 695 break; 696 } 697 return (0); 698 } 699