xref: /titanic_50/usr/src/lib/libefi/common/rdwr_efi.c (revision e7da395a007eee67416a7380ecc1fb2141ef39d1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <stdio.h>
28 #include <stdlib.h>
29 #include <errno.h>
30 #include <strings.h>
31 #include <unistd.h>
32 #include <uuid/uuid.h>
33 #include <libintl.h>
34 #include <sys/types.h>
35 #include <sys/dkio.h>
36 #include <sys/vtoc.h>
37 #include <sys/mhd.h>
38 #include <sys/param.h>
39 #include <sys/dktp/fdisk.h>
40 #include <sys/efi_partition.h>
41 #include <sys/byteorder.h>
42 #include <sys/ddi.h>
43 
44 static struct uuid_to_ptag {
45 	struct uuid	uuid;
46 } conversion_array[] = {
47 	{ EFI_UNUSED },
48 	{ EFI_BOOT },
49 	{ EFI_ROOT },
50 	{ EFI_SWAP },
51 	{ EFI_USR },
52 	{ EFI_BACKUP },
53 	{ 0 },			/* STAND is never used */
54 	{ EFI_VAR },
55 	{ EFI_HOME },
56 	{ EFI_ALTSCTR },
57 	{ 0 },			/* CACHE (cachefs) is never used */
58 	{ EFI_RESERVED },
59 	{ EFI_SYSTEM },
60 	{ EFI_LEGACY_MBR },
61 	{ EFI_RESV3 },
62 	{ EFI_RESV4 },
63 	{ EFI_MSFT_RESV },
64 	{ EFI_DELL_BASIC },
65 	{ EFI_DELL_RAID },
66 	{ EFI_DELL_SWAP },
67 	{ EFI_DELL_LVM },
68 	{ EFI_DELL_RESV },
69 	{ EFI_AAPL_HFS },
70 	{ EFI_AAPL_UFS }
71 };
72 
73 /*
74  * Default vtoc information for non-SVr4 partitions
75  */
76 struct dk_map2  default_vtoc_map[NDKMAP] = {
77 	{	V_ROOT,		0	},		/* a - 0 */
78 	{	V_SWAP,		V_UNMNT	},		/* b - 1 */
79 	{	V_BACKUP,	V_UNMNT	},		/* c - 2 */
80 	{	V_UNASSIGNED,	0	},		/* d - 3 */
81 	{	V_UNASSIGNED,	0	},		/* e - 4 */
82 	{	V_UNASSIGNED,	0	},		/* f - 5 */
83 	{	V_USR,		0	},		/* g - 6 */
84 	{	V_UNASSIGNED,	0	},		/* h - 7 */
85 
86 #if defined(_SUNOS_VTOC_16)
87 
88 #if defined(i386) || defined(__amd64)
89 	{	V_BOOT,		V_UNMNT	},		/* i - 8 */
90 	{	V_ALTSCTR,	0	},		/* j - 9 */
91 
92 #else
93 #error No VTOC format defined.
94 #endif			/* defined(i386) */
95 
96 	{	V_UNASSIGNED,	0	},		/* k - 10 */
97 	{	V_UNASSIGNED,	0	},		/* l - 11 */
98 	{	V_UNASSIGNED,	0	},		/* m - 12 */
99 	{	V_UNASSIGNED,	0	},		/* n - 13 */
100 	{	V_UNASSIGNED,	0	},		/* o - 14 */
101 	{	V_UNASSIGNED,	0	},		/* p - 15 */
102 #endif			/* defined(_SUNOS_VTOC_16) */
103 };
104 
105 #ifdef DEBUG
106 int efi_debug = 1;
107 #else
108 int efi_debug = 0;
109 #endif
110 
111 extern unsigned int	efi_crc32(const unsigned char *, unsigned int);
112 static int		efi_read(int, struct dk_gpt *);
113 
114 static int
115 read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize)
116 {
117 	struct dk_minfo		disk_info;
118 
119 	if ((ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info)) == -1)
120 		return (errno);
121 	*capacity = disk_info.dki_capacity;
122 	*lbsize = disk_info.dki_lbsize;
123 	return (0);
124 }
125 
126 /*
127  * the number of blocks the EFI label takes up (round up to nearest
128  * block)
129  */
130 #define	NBLOCKS(p, l)	(1 + ((((p) * (int)sizeof (efi_gpe_t))  + \
131 				((l) - 1)) / (l)))
132 /* number of partitions -- limited by what we can malloc */
133 #define	MAX_PARTS	((4294967295UL - sizeof (struct dk_gpt)) / \
134 			    sizeof (struct dk_part))
135 
136 int
137 efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc)
138 {
139 	diskaddr_t	capacity;
140 	uint_t		lbsize;
141 	uint_t		nblocks;
142 	size_t		length;
143 	struct dk_gpt	*vptr;
144 	struct uuid	uuid;
145 
146 	if (read_disk_info(fd, &capacity, &lbsize) != 0) {
147 		if (efi_debug)
148 			(void) fprintf(stderr,
149 			    "couldn't read disk information\n");
150 		return (-1);
151 	}
152 
153 	nblocks = NBLOCKS(nparts, lbsize);
154 	if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) {
155 		/* 16K plus one block for the GPT */
156 		nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1;
157 	}
158 
159 	if (nparts > MAX_PARTS) {
160 		if (efi_debug) {
161 			(void) fprintf(stderr,
162 			"the maximum number of partitions supported is %lu\n",
163 			    MAX_PARTS);
164 		}
165 		return (-1);
166 	}
167 
168 	length = sizeof (struct dk_gpt) +
169 	    sizeof (struct dk_part) * (nparts - 1);
170 
171 	if ((*vtoc = calloc(length, 1)) == NULL)
172 		return (-1);
173 
174 	vptr = *vtoc;
175 
176 	vptr->efi_version = EFI_VERSION_CURRENT;
177 	vptr->efi_lbasize = lbsize;
178 	vptr->efi_nparts = nparts;
179 	/*
180 	 * add one block here for the PMBR; on disks with a 512 byte
181 	 * block size and 128 or fewer partitions, efi_first_u_lba
182 	 * should work out to "34"
183 	 */
184 	vptr->efi_first_u_lba = nblocks + 1;
185 	vptr->efi_last_lba = capacity - 1;
186 	vptr->efi_altern_lba = capacity -1;
187 	vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks;
188 
189 	(void) uuid_generate((uchar_t *)&uuid);
190 	UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid);
191 	return (0);
192 }
193 
194 /*
195  * Read EFI - return partition number upon success.
196  */
197 int
198 efi_alloc_and_read(int fd, struct dk_gpt **vtoc)
199 {
200 	int			rval;
201 	uint32_t		nparts;
202 	int			length;
203 
204 	/* figure out the number of entries that would fit into 16K */
205 	nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t);
206 	length = (int) sizeof (struct dk_gpt) +
207 	    (int) sizeof (struct dk_part) * (nparts - 1);
208 	if ((*vtoc = calloc(length, 1)) == NULL)
209 		return (VT_ERROR);
210 
211 	(*vtoc)->efi_nparts = nparts;
212 	rval = efi_read(fd, *vtoc);
213 
214 	if ((rval == VT_EINVAL) && (*vtoc)->efi_nparts > nparts) {
215 		void *tmp;
216 		length = (int) sizeof (struct dk_gpt) +
217 		    (int) sizeof (struct dk_part) *
218 		    ((*vtoc)->efi_nparts - 1);
219 		nparts = (*vtoc)->efi_nparts;
220 		if ((tmp = realloc(*vtoc, length)) == NULL) {
221 			free (*vtoc);
222 			*vtoc = NULL;
223 			return (VT_ERROR);
224 		} else {
225 			*vtoc = tmp;
226 			rval = efi_read(fd, *vtoc);
227 		}
228 	}
229 
230 	if (rval < 0) {
231 		if (efi_debug) {
232 			(void) fprintf(stderr,
233 			    "read of EFI table failed, rval=%d\n", rval);
234 		}
235 		free (*vtoc);
236 		*vtoc = NULL;
237 	}
238 
239 	return (rval);
240 }
241 
242 static int
243 efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc)
244 {
245 	void *data = dk_ioc->dki_data;
246 	int error;
247 
248 	dk_ioc->dki_data_64 = (uint64_t)(uintptr_t)data;
249 	error = ioctl(fd, cmd, (void *)dk_ioc);
250 	dk_ioc->dki_data = data;
251 
252 	return (error);
253 }
254 
255 static int
256 check_label(int fd, dk_efi_t *dk_ioc)
257 {
258 	efi_gpt_t		*efi;
259 	uint_t			crc;
260 
261 	if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) {
262 		switch (errno) {
263 		case EIO:
264 			return (VT_EIO);
265 		default:
266 			return (VT_ERROR);
267 		}
268 	}
269 	efi = dk_ioc->dki_data;
270 	if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) {
271 		if (efi_debug)
272 			(void) fprintf(stderr,
273 			    "Bad EFI signature: 0x%llx != 0x%llx\n",
274 			    (long long)efi->efi_gpt_Signature,
275 			    (long long)LE_64(EFI_SIGNATURE));
276 		return (VT_EINVAL);
277 	}
278 
279 	/*
280 	 * check CRC of the header; the size of the header should
281 	 * never be larger than one block
282 	 */
283 	crc = efi->efi_gpt_HeaderCRC32;
284 	efi->efi_gpt_HeaderCRC32 = 0;
285 
286 	if (((len_t)LE_32(efi->efi_gpt_HeaderSize) > dk_ioc->dki_length) ||
287 	    crc != LE_32(efi_crc32((unsigned char *)efi,
288 	    LE_32(efi->efi_gpt_HeaderSize)))) {
289 		if (efi_debug)
290 			(void) fprintf(stderr,
291 			    "Bad EFI CRC: 0x%x != 0x%x\n",
292 			    crc,
293 			    LE_32(efi_crc32((unsigned char *)efi,
294 			    sizeof (struct efi_gpt))));
295 		return (VT_EINVAL);
296 	}
297 
298 	return (0);
299 }
300 
301 static int
302 efi_read(int fd, struct dk_gpt *vtoc)
303 {
304 	int			i, j;
305 	int			label_len;
306 	int			rval = 0;
307 	int			md_flag = 0;
308 	int			vdc_flag = 0;
309 	struct dk_minfo		disk_info;
310 	dk_efi_t		dk_ioc;
311 	efi_gpt_t		*efi;
312 	efi_gpe_t		*efi_parts;
313 	struct dk_cinfo		dki_info;
314 	uint32_t		user_length;
315 	boolean_t		legacy_label = B_FALSE;
316 
317 	/*
318 	 * get the partition number for this file descriptor.
319 	 */
320 	if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) {
321 		if (efi_debug) {
322 			(void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
323 		}
324 		switch (errno) {
325 		case EIO:
326 			return (VT_EIO);
327 		case EINVAL:
328 			return (VT_EINVAL);
329 		default:
330 			return (VT_ERROR);
331 		}
332 	}
333 	if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
334 	    (strncmp(dki_info.dki_dname, "md", 3) == 0)) {
335 		md_flag++;
336 	} else if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) &&
337 	    (strncmp(dki_info.dki_dname, "vdc", 4) == 0)) {
338 		/*
339 		 * The controller and drive name "vdc" (virtual disk client)
340 		 * indicates a LDoms virtual disk.
341 		 */
342 		vdc_flag++;
343 	}
344 
345 	/* get the LBA size */
346 	if (ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info) == -1) {
347 		if (efi_debug) {
348 			(void) fprintf(stderr,
349 			    "assuming LBA 512 bytes %d\n",
350 			    errno);
351 		}
352 		disk_info.dki_lbsize = DEV_BSIZE;
353 	}
354 	if (disk_info.dki_lbsize == 0) {
355 		if (efi_debug) {
356 			(void) fprintf(stderr,
357 			    "efi_read: assuming LBA 512 bytes\n");
358 		}
359 		disk_info.dki_lbsize = DEV_BSIZE;
360 	}
361 	/*
362 	 * Read the EFI GPT to figure out how many partitions we need
363 	 * to deal with.
364 	 */
365 	dk_ioc.dki_lba = 1;
366 	if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) {
367 		label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize;
368 	} else {
369 		label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) +
370 		    disk_info.dki_lbsize;
371 		if (label_len % disk_info.dki_lbsize) {
372 			/* pad to physical sector size */
373 			label_len += disk_info.dki_lbsize;
374 			label_len &= ~(disk_info.dki_lbsize - 1);
375 		}
376 	}
377 
378 	if ((dk_ioc.dki_data = calloc(label_len, 1)) == NULL)
379 		return (VT_ERROR);
380 
381 	dk_ioc.dki_length = disk_info.dki_lbsize;
382 	user_length = vtoc->efi_nparts;
383 	efi = dk_ioc.dki_data;
384 	if (md_flag) {
385 		dk_ioc.dki_length = label_len;
386 		if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
387 			switch (errno) {
388 			case EIO:
389 				return (VT_EIO);
390 			default:
391 				return (VT_ERROR);
392 			}
393 		}
394 	} else if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) {
395 		/*
396 		 * No valid label here; try the alternate. Note that here
397 		 * we just read GPT header and save it into dk_ioc.data,
398 		 * Later, we will read GUID partition entry array if we
399 		 * can get valid GPT header.
400 		 */
401 
402 		/*
403 		 * This is a workaround for legacy systems. In the past, the
404 		 * last sector of SCSI disk was invisible on x86 platform. At
405 		 * that time, backup label was saved on the next to the last
406 		 * sector. It is possible for users to move a disk from previous
407 		 * solaris system to present system. Here, we attempt to search
408 		 * legacy backup EFI label first.
409 		 */
410 		dk_ioc.dki_lba = disk_info.dki_capacity - 2;
411 		dk_ioc.dki_length = disk_info.dki_lbsize;
412 		rval = check_label(fd, &dk_ioc);
413 		if (rval == VT_EINVAL) {
414 			/*
415 			 * we didn't find legacy backup EFI label, try to
416 			 * search backup EFI label in the last block.
417 			 */
418 			dk_ioc.dki_lba = disk_info.dki_capacity - 1;
419 			dk_ioc.dki_length = disk_info.dki_lbsize;
420 			rval = check_label(fd, &dk_ioc);
421 			if (rval == 0) {
422 				legacy_label = B_TRUE;
423 				if (efi_debug)
424 					(void) fprintf(stderr,
425 					    "efi_read: primary label corrupt; "
426 					    "using EFI backup label located on"
427 					    " the last block\n");
428 			}
429 		} else {
430 			if ((efi_debug) && (rval == 0))
431 				(void) fprintf(stderr, "efi_read: primary label"
432 				    " corrupt; using legacy EFI backup label "
433 				    " located on the next to last block\n");
434 		}
435 
436 		if (rval == 0) {
437 			dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
438 			vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT;
439 			vtoc->efi_nparts =
440 			    LE_32(efi->efi_gpt_NumberOfPartitionEntries);
441 			/*
442 			 * Partition tables are between backup GPT header
443 			 * table and ParitionEntryLBA (the starting LBA of
444 			 * the GUID partition entries array). Now that we
445 			 * already got valid GPT header and saved it in
446 			 * dk_ioc.dki_data, we try to get GUID partition
447 			 * entry array here.
448 			 */
449 			/* LINTED */
450 			dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
451 			    + disk_info.dki_lbsize);
452 			if (legacy_label)
453 				dk_ioc.dki_length = disk_info.dki_capacity - 1 -
454 				    dk_ioc.dki_lba;
455 			else
456 				dk_ioc.dki_length = disk_info.dki_capacity - 2 -
457 				    dk_ioc.dki_lba;
458 			dk_ioc.dki_length *= disk_info.dki_lbsize;
459 			if (dk_ioc.dki_length >
460 			    ((len_t)label_len - sizeof (*dk_ioc.dki_data))) {
461 				rval = VT_EINVAL;
462 			} else {
463 				/*
464 				 * read GUID partition entry array
465 				 */
466 				rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
467 			}
468 		}
469 
470 	} else if (rval == 0) {
471 
472 		dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
473 		/* LINTED */
474 		dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
475 		    + disk_info.dki_lbsize);
476 		dk_ioc.dki_length = label_len - disk_info.dki_lbsize;
477 		rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
478 
479 	} else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) {
480 		/*
481 		 * When the device is a LDoms virtual disk, the DKIOCGETEFI
482 		 * ioctl can fail with EINVAL if the virtual disk backend
483 		 * is a ZFS volume serviced by a domain running an old version
484 		 * of Solaris. This is because the DKIOCGETEFI ioctl was
485 		 * initially incorrectly implemented for a ZFS volume and it
486 		 * expected the GPT and GPE to be retrieved with a single ioctl.
487 		 * So we try to read the GPT and the GPE using that old style
488 		 * ioctl.
489 		 */
490 		dk_ioc.dki_lba = 1;
491 		dk_ioc.dki_length = label_len;
492 		rval = check_label(fd, &dk_ioc);
493 	}
494 
495 	if (rval < 0) {
496 		free(efi);
497 		return (rval);
498 	}
499 
500 	/* LINTED -- always longlong aligned */
501 	efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize);
502 
503 	/*
504 	 * Assemble this into a "dk_gpt" struct for easier
505 	 * digestibility by applications.
506 	 */
507 	vtoc->efi_version = LE_32(efi->efi_gpt_Revision);
508 	vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries);
509 	vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry);
510 	vtoc->efi_lbasize = disk_info.dki_lbsize;
511 	vtoc->efi_last_lba = disk_info.dki_capacity - 1;
512 	vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA);
513 	vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA);
514 	vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA);
515 	UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID);
516 
517 	/*
518 	 * If the array the user passed in is too small, set the length
519 	 * to what it needs to be and return
520 	 */
521 	if (user_length < vtoc->efi_nparts) {
522 		return (VT_EINVAL);
523 	}
524 
525 	for (i = 0; i < vtoc->efi_nparts; i++) {
526 
527 		UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid,
528 		    efi_parts[i].efi_gpe_PartitionTypeGUID);
529 
530 		for (j = 0;
531 		    j < sizeof (conversion_array)
532 		    / sizeof (struct uuid_to_ptag); j++) {
533 
534 			if (bcmp(&vtoc->efi_parts[i].p_guid,
535 			    &conversion_array[j].uuid,
536 			    sizeof (struct uuid)) == 0) {
537 				vtoc->efi_parts[i].p_tag = j;
538 				break;
539 			}
540 		}
541 		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
542 			continue;
543 		vtoc->efi_parts[i].p_flag =
544 		    LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs);
545 		vtoc->efi_parts[i].p_start =
546 		    LE_64(efi_parts[i].efi_gpe_StartingLBA);
547 		vtoc->efi_parts[i].p_size =
548 		    LE_64(efi_parts[i].efi_gpe_EndingLBA) -
549 		    vtoc->efi_parts[i].p_start + 1;
550 		for (j = 0; j < EFI_PART_NAME_LEN; j++) {
551 			vtoc->efi_parts[i].p_name[j] =
552 			    (uchar_t)LE_16(
553 			    efi_parts[i].efi_gpe_PartitionName[j]);
554 		}
555 
556 		UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid,
557 		    efi_parts[i].efi_gpe_UniquePartitionGUID);
558 	}
559 	free(efi);
560 
561 	return (dki_info.dki_partition);
562 }
563 
564 /* writes a "protective" MBR */
565 static int
566 write_pmbr(int fd, struct dk_gpt *vtoc)
567 {
568 	dk_efi_t	dk_ioc;
569 	struct mboot	mb;
570 	uchar_t		*cp;
571 	diskaddr_t	size_in_lba;
572 	uchar_t		*buf;
573 	int		len;
574 
575 	len = (vtoc->efi_lbasize == 0) ? sizeof (mb) : vtoc->efi_lbasize;
576 	buf = calloc(len, 1);
577 
578 	/*
579 	 * Preserve any boot code and disk signature if the first block is
580 	 * already an MBR.
581 	 */
582 	dk_ioc.dki_lba = 0;
583 	dk_ioc.dki_length = len;
584 	/* LINTED -- always longlong aligned */
585 	dk_ioc.dki_data = (efi_gpt_t *)buf;
586 	if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
587 		(void *) memcpy(&mb, buf, sizeof (mb));
588 		bzero(&mb, sizeof (mb));
589 		mb.signature = LE_16(MBB_MAGIC);
590 	} else {
591 		(void *) memcpy(&mb, buf, sizeof (mb));
592 		if (mb.signature != LE_16(MBB_MAGIC)) {
593 			bzero(&mb, sizeof (mb));
594 			mb.signature = LE_16(MBB_MAGIC);
595 		}
596 	}
597 
598 	bzero(&mb.parts, sizeof (mb.parts));
599 	cp = (uchar_t *)&mb.parts[0];
600 	/* bootable or not */
601 	*cp++ = 0;
602 	/* beginning CHS; 0xffffff if not representable */
603 	*cp++ = 0xff;
604 	*cp++ = 0xff;
605 	*cp++ = 0xff;
606 	/* OS type */
607 	*cp++ = EFI_PMBR;
608 	/* ending CHS; 0xffffff if not representable */
609 	*cp++ = 0xff;
610 	*cp++ = 0xff;
611 	*cp++ = 0xff;
612 	/* starting LBA: 1 (little endian format) by EFI definition */
613 	*cp++ = 0x01;
614 	*cp++ = 0x00;
615 	*cp++ = 0x00;
616 	*cp++ = 0x00;
617 	/* ending LBA: last block on the disk (little endian format) */
618 	size_in_lba = vtoc->efi_last_lba;
619 	if (size_in_lba < 0xffffffff) {
620 		*cp++ = (size_in_lba & 0x000000ff);
621 		*cp++ = (size_in_lba & 0x0000ff00) >> 8;
622 		*cp++ = (size_in_lba & 0x00ff0000) >> 16;
623 		*cp++ = (size_in_lba & 0xff000000) >> 24;
624 	} else {
625 		*cp++ = 0xff;
626 		*cp++ = 0xff;
627 		*cp++ = 0xff;
628 		*cp++ = 0xff;
629 	}
630 
631 	(void *) memcpy(buf, &mb, sizeof (mb));
632 	/* LINTED -- always longlong aligned */
633 	dk_ioc.dki_data = (efi_gpt_t *)buf;
634 	dk_ioc.dki_lba = 0;
635 	dk_ioc.dki_length = len;
636 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
637 		free(buf);
638 		switch (errno) {
639 		case EIO:
640 			return (VT_EIO);
641 		case EINVAL:
642 			return (VT_EINVAL);
643 		default:
644 			return (VT_ERROR);
645 		}
646 	}
647 	free(buf);
648 	return (0);
649 }
650 
651 /* make sure the user specified something reasonable */
652 static int
653 check_input(struct dk_gpt *vtoc)
654 {
655 	int			resv_part = -1;
656 	int			i, j;
657 	diskaddr_t		istart, jstart, isize, jsize, endsect;
658 
659 	/*
660 	 * Sanity-check the input (make sure no partitions overlap)
661 	 */
662 	for (i = 0; i < vtoc->efi_nparts; i++) {
663 		/* It can't be unassigned and have an actual size */
664 		if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
665 		    (vtoc->efi_parts[i].p_size != 0)) {
666 			if (efi_debug) {
667 				(void) fprintf(stderr,
668 "partition %d is \"unassigned\" but has a size of %llu",
669 				    i,
670 				    vtoc->efi_parts[i].p_size);
671 			}
672 			return (VT_EINVAL);
673 		}
674 		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
675 			if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
676 				continue;
677 			/* we have encountered an unknown uuid */
678 			vtoc->efi_parts[i].p_tag = 0xff;
679 		}
680 		if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
681 			if (resv_part != -1) {
682 				if (efi_debug) {
683 					(void) fprintf(stderr,
684 "found duplicate reserved partition at %d\n",
685 					    i);
686 				}
687 				return (VT_EINVAL);
688 			}
689 			resv_part = i;
690 		}
691 		if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
692 		    (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
693 			if (efi_debug) {
694 				(void) fprintf(stderr,
695 				    "Partition %d starts at %llu.  ",
696 				    i,
697 				    vtoc->efi_parts[i].p_start);
698 				(void) fprintf(stderr,
699 				    "It must be between %llu and %llu.\n",
700 				    vtoc->efi_first_u_lba,
701 				    vtoc->efi_last_u_lba);
702 			}
703 			return (VT_EINVAL);
704 		}
705 		if ((vtoc->efi_parts[i].p_start +
706 		    vtoc->efi_parts[i].p_size <
707 		    vtoc->efi_first_u_lba) ||
708 		    (vtoc->efi_parts[i].p_start +
709 		    vtoc->efi_parts[i].p_size >
710 		    vtoc->efi_last_u_lba + 1)) {
711 			if (efi_debug) {
712 				(void) fprintf(stderr,
713 				    "Partition %d ends at %llu.  ",
714 				    i,
715 				    vtoc->efi_parts[i].p_start +
716 				    vtoc->efi_parts[i].p_size);
717 				(void) fprintf(stderr,
718 				    "It must be between %llu and %llu.\n",
719 				    vtoc->efi_first_u_lba,
720 				    vtoc->efi_last_u_lba);
721 			}
722 			return (VT_EINVAL);
723 		}
724 
725 		for (j = 0; j < vtoc->efi_nparts; j++) {
726 			isize = vtoc->efi_parts[i].p_size;
727 			jsize = vtoc->efi_parts[j].p_size;
728 			istart = vtoc->efi_parts[i].p_start;
729 			jstart = vtoc->efi_parts[j].p_start;
730 			if ((i != j) && (isize != 0) && (jsize != 0)) {
731 				endsect = jstart + jsize -1;
732 				if ((jstart <= istart) &&
733 				    (istart <= endsect)) {
734 					if (efi_debug) {
735 						(void) fprintf(stderr,
736 "Partition %d overlaps partition %d.",
737 						    i, j);
738 					}
739 					return (VT_EINVAL);
740 				}
741 			}
742 		}
743 	}
744 	/* just a warning for now */
745 	if ((resv_part == -1) && efi_debug) {
746 		(void) fprintf(stderr,
747 		    "no reserved partition found\n");
748 	}
749 	return (0);
750 }
751 
752 /*
753  * add all the unallocated space to the current label
754  */
755 int
756 efi_use_whole_disk(int fd)
757 {
758 	struct dk_gpt		*efi_label;
759 	int			rval;
760 	int			i;
761 	uint_t			phy_last_slice = 0;
762 	diskaddr_t		pl_start = 0;
763 	diskaddr_t		pl_size;
764 
765 	rval = efi_alloc_and_read(fd, &efi_label);
766 	if (rval < 0) {
767 		return (rval);
768 	}
769 
770 	/* find the last physically non-zero partition */
771 	for (i = 0; i < efi_label->efi_nparts - 2; i ++) {
772 		if (pl_start < efi_label->efi_parts[i].p_start) {
773 			pl_start = efi_label->efi_parts[i].p_start;
774 			phy_last_slice = i;
775 		}
776 	}
777 	pl_size = efi_label->efi_parts[phy_last_slice].p_size;
778 
779 	/*
780 	 * If alter_lba is 1, we are using the backup label.
781 	 * Since we can locate the backup label by disk capacity,
782 	 * there must be no unallocated space.
783 	 */
784 	if ((efi_label->efi_altern_lba == 1) || (efi_label->efi_altern_lba
785 	    >= efi_label->efi_last_lba)) {
786 		if (efi_debug) {
787 			(void) fprintf(stderr,
788 			    "efi_use_whole_disk: requested space not found\n");
789 		}
790 		efi_free(efi_label);
791 		return (VT_ENOSPC);
792 	}
793 
794 	/*
795 	 * If there is space between the last physically non-zero partition
796 	 * and the reserved partition, just add the unallocated space to this
797 	 * area. Otherwise, the unallocated space is added to the last
798 	 * physically non-zero partition.
799 	 */
800 	if (pl_start + pl_size - 1 == efi_label->efi_last_u_lba -
801 	    EFI_MIN_RESV_SIZE) {
802 		efi_label->efi_parts[phy_last_slice].p_size +=
803 		    efi_label->efi_last_lba - efi_label->efi_altern_lba;
804 	}
805 
806 	/*
807 	 * Move the reserved partition. There is currently no data in
808 	 * here except fabricated devids (which get generated via
809 	 * efi_write()). So there is no need to copy data.
810 	 */
811 	efi_label->efi_parts[efi_label->efi_nparts - 1].p_start +=
812 	    efi_label->efi_last_lba - efi_label->efi_altern_lba;
813 	efi_label->efi_last_u_lba += efi_label->efi_last_lba
814 	    - efi_label->efi_altern_lba;
815 
816 	rval = efi_write(fd, efi_label);
817 	if (rval < 0) {
818 		if (efi_debug) {
819 			(void) fprintf(stderr,
820 			    "efi_use_whole_disk:fail to write label, rval=%d\n",
821 			    rval);
822 		}
823 		efi_free(efi_label);
824 		return (rval);
825 	}
826 
827 	efi_free(efi_label);
828 	return (0);
829 }
830 
831 
832 /*
833  * write EFI label and backup label
834  */
835 int
836 efi_write(int fd, struct dk_gpt *vtoc)
837 {
838 	dk_efi_t		dk_ioc;
839 	efi_gpt_t		*efi;
840 	efi_gpe_t		*efi_parts;
841 	int			i, j;
842 	struct dk_cinfo		dki_info;
843 	int			md_flag = 0;
844 	int			nblocks;
845 	diskaddr_t		lba_backup_gpt_hdr;
846 
847 	if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) {
848 		if (efi_debug)
849 			(void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
850 		switch (errno) {
851 		case EIO:
852 			return (VT_EIO);
853 		case EINVAL:
854 			return (VT_EINVAL);
855 		default:
856 			return (VT_ERROR);
857 		}
858 	}
859 
860 	/* check if we are dealing wih a metadevice */
861 	if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
862 	    (strncmp(dki_info.dki_dname, "md", 3) == 0)) {
863 		md_flag = 1;
864 	}
865 
866 	if (check_input(vtoc)) {
867 		/*
868 		 * not valid; if it's a metadevice just pass it down
869 		 * because SVM will do its own checking
870 		 */
871 		if (md_flag == 0) {
872 			return (VT_EINVAL);
873 		}
874 	}
875 
876 	dk_ioc.dki_lba = 1;
877 	if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) {
878 		dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize;
879 	} else {
880 		dk_ioc.dki_length = NBLOCKS(vtoc->efi_nparts,
881 		    vtoc->efi_lbasize) *
882 		    vtoc->efi_lbasize;
883 	}
884 
885 	/*
886 	 * the number of blocks occupied by GUID partition entry array
887 	 */
888 	nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1;
889 
890 	/*
891 	 * Backup GPT header is located on the block after GUID
892 	 * partition entry array. Here, we calculate the address
893 	 * for backup GPT header.
894 	 */
895 	lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks;
896 	if ((dk_ioc.dki_data = calloc(dk_ioc.dki_length, 1)) == NULL)
897 		return (VT_ERROR);
898 
899 	efi = dk_ioc.dki_data;
900 
901 	/* stuff user's input into EFI struct */
902 	efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
903 	efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */
904 	efi->efi_gpt_HeaderSize = LE_32(sizeof (struct efi_gpt));
905 	efi->efi_gpt_Reserved1 = 0;
906 	efi->efi_gpt_MyLBA = LE_64(1ULL);
907 	efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr);
908 	efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba);
909 	efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba);
910 	efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
911 	efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts);
912 	efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe));
913 	UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid);
914 
915 	/* LINTED -- always longlong aligned */
916 	efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize);
917 
918 	for (i = 0; i < vtoc->efi_nparts; i++) {
919 		for (j = 0;
920 		    j < sizeof (conversion_array) /
921 		    sizeof (struct uuid_to_ptag); j++) {
922 
923 			if (vtoc->efi_parts[i].p_tag == j) {
924 				UUID_LE_CONVERT(
925 				    efi_parts[i].efi_gpe_PartitionTypeGUID,
926 				    conversion_array[j].uuid);
927 				break;
928 			}
929 		}
930 
931 		if (j == sizeof (conversion_array) /
932 		    sizeof (struct uuid_to_ptag)) {
933 			/*
934 			 * If we didn't have a matching uuid match, bail here.
935 			 * Don't write a label with unknown uuid.
936 			 */
937 			if (efi_debug) {
938 				(void) fprintf(stderr,
939 				    "Unknown uuid for p_tag %d\n",
940 				    vtoc->efi_parts[i].p_tag);
941 			}
942 			return (VT_EINVAL);
943 		}
944 
945 		efi_parts[i].efi_gpe_StartingLBA =
946 		    LE_64(vtoc->efi_parts[i].p_start);
947 		efi_parts[i].efi_gpe_EndingLBA =
948 		    LE_64(vtoc->efi_parts[i].p_start +
949 		    vtoc->efi_parts[i].p_size - 1);
950 		efi_parts[i].efi_gpe_Attributes.PartitionAttrs =
951 		    LE_16(vtoc->efi_parts[i].p_flag);
952 		for (j = 0; j < EFI_PART_NAME_LEN; j++) {
953 			efi_parts[i].efi_gpe_PartitionName[j] =
954 			    LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]);
955 		}
956 		if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) &&
957 		    uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) {
958 			(void) uuid_generate((uchar_t *)
959 			    &vtoc->efi_parts[i].p_uguid);
960 		}
961 		bcopy(&vtoc->efi_parts[i].p_uguid,
962 		    &efi_parts[i].efi_gpe_UniquePartitionGUID,
963 		    sizeof (uuid_t));
964 	}
965 	efi->efi_gpt_PartitionEntryArrayCRC32 =
966 	    LE_32(efi_crc32((unsigned char *)efi_parts,
967 	    vtoc->efi_nparts * (int)sizeof (struct efi_gpe)));
968 	efi->efi_gpt_HeaderCRC32 =
969 	    LE_32(efi_crc32((unsigned char *)efi, sizeof (struct efi_gpt)));
970 
971 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
972 		free(dk_ioc.dki_data);
973 		switch (errno) {
974 		case EIO:
975 			return (VT_EIO);
976 		case EINVAL:
977 			return (VT_EINVAL);
978 		default:
979 			return (VT_ERROR);
980 		}
981 	}
982 	/* if it's a metadevice we're done */
983 	if (md_flag) {
984 		free(dk_ioc.dki_data);
985 		return (0);
986 	}
987 
988 	/* write backup partition array */
989 	dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1;
990 	dk_ioc.dki_length -= vtoc->efi_lbasize;
991 	/* LINTED */
992 	dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data +
993 	    vtoc->efi_lbasize);
994 
995 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
996 		/*
997 		 * we wrote the primary label okay, so don't fail
998 		 */
999 		if (efi_debug) {
1000 			(void) fprintf(stderr,
1001 			    "write of backup partitions to block %llu "
1002 			    "failed, errno %d\n",
1003 			    vtoc->efi_last_u_lba + 1,
1004 			    errno);
1005 		}
1006 	}
1007 	/*
1008 	 * now swap MyLBA and AlternateLBA fields and write backup
1009 	 * partition table header
1010 	 */
1011 	dk_ioc.dki_lba = lba_backup_gpt_hdr;
1012 	dk_ioc.dki_length = vtoc->efi_lbasize;
1013 	/* LINTED */
1014 	dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data -
1015 	    vtoc->efi_lbasize);
1016 	efi->efi_gpt_AlternateLBA = LE_64(1ULL);
1017 	efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr);
1018 	efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1);
1019 	efi->efi_gpt_HeaderCRC32 = 0;
1020 	efi->efi_gpt_HeaderCRC32 =
1021 	    LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data,
1022 	    sizeof (struct efi_gpt)));
1023 
1024 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1025 		if (efi_debug) {
1026 			(void) fprintf(stderr,
1027 			    "write of backup header to block %llu failed, "
1028 			    "errno %d\n",
1029 			    lba_backup_gpt_hdr,
1030 			    errno);
1031 		}
1032 	}
1033 	/* write the PMBR */
1034 	(void) write_pmbr(fd, vtoc);
1035 	free(dk_ioc.dki_data);
1036 	return (0);
1037 }
1038 
1039 void
1040 efi_free(struct dk_gpt *ptr)
1041 {
1042 	free(ptr);
1043 }
1044 
1045 /*
1046  * Input: File descriptor
1047  * Output: 1 if disk has an EFI label, or > 2TB with no VTOC or legacy MBR.
1048  * Otherwise 0.
1049  */
1050 int
1051 efi_type(int fd)
1052 {
1053 	struct vtoc vtoc;
1054 	struct extvtoc extvtoc;
1055 
1056 	if (ioctl(fd, DKIOCGEXTVTOC, &extvtoc) == -1) {
1057 		if (errno == ENOTSUP)
1058 			return (1);
1059 		else if (errno == ENOTTY) {
1060 			if (ioctl(fd, DKIOCGVTOC, &vtoc) == -1)
1061 				if (errno == ENOTSUP)
1062 					return (1);
1063 		}
1064 	}
1065 	return (0);
1066 }
1067 
1068 void
1069 efi_err_check(struct dk_gpt *vtoc)
1070 {
1071 	int			resv_part = -1;
1072 	int			i, j;
1073 	diskaddr_t		istart, jstart, isize, jsize, endsect;
1074 	int			overlap = 0;
1075 
1076 	/*
1077 	 * make sure no partitions overlap
1078 	 */
1079 	for (i = 0; i < vtoc->efi_nparts; i++) {
1080 		/* It can't be unassigned and have an actual size */
1081 		if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
1082 		    (vtoc->efi_parts[i].p_size != 0)) {
1083 			(void) fprintf(stderr,
1084 			    "partition %d is \"unassigned\" but has a size "
1085 			    "of %llu\n", i, vtoc->efi_parts[i].p_size);
1086 		}
1087 		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
1088 			continue;
1089 		}
1090 		if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
1091 			if (resv_part != -1) {
1092 				(void) fprintf(stderr,
1093 				    "found duplicate reserved partition at "
1094 				    "%d\n", i);
1095 			}
1096 			resv_part = i;
1097 			if (vtoc->efi_parts[i].p_size != EFI_MIN_RESV_SIZE)
1098 				(void) fprintf(stderr,
1099 				    "Warning: reserved partition size must "
1100 				    "be %d sectors\n", EFI_MIN_RESV_SIZE);
1101 		}
1102 		if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
1103 		    (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
1104 			(void) fprintf(stderr,
1105 			    "Partition %d starts at %llu\n",
1106 			    i,
1107 			    vtoc->efi_parts[i].p_start);
1108 			(void) fprintf(stderr,
1109 			    "It must be between %llu and %llu.\n",
1110 			    vtoc->efi_first_u_lba,
1111 			    vtoc->efi_last_u_lba);
1112 		}
1113 		if ((vtoc->efi_parts[i].p_start +
1114 		    vtoc->efi_parts[i].p_size <
1115 		    vtoc->efi_first_u_lba) ||
1116 		    (vtoc->efi_parts[i].p_start +
1117 		    vtoc->efi_parts[i].p_size >
1118 		    vtoc->efi_last_u_lba + 1)) {
1119 			(void) fprintf(stderr,
1120 			    "Partition %d ends at %llu\n",
1121 			    i,
1122 			    vtoc->efi_parts[i].p_start +
1123 			    vtoc->efi_parts[i].p_size);
1124 			(void) fprintf(stderr,
1125 			    "It must be between %llu and %llu.\n",
1126 			    vtoc->efi_first_u_lba,
1127 			    vtoc->efi_last_u_lba);
1128 		}
1129 
1130 		for (j = 0; j < vtoc->efi_nparts; j++) {
1131 			isize = vtoc->efi_parts[i].p_size;
1132 			jsize = vtoc->efi_parts[j].p_size;
1133 			istart = vtoc->efi_parts[i].p_start;
1134 			jstart = vtoc->efi_parts[j].p_start;
1135 			if ((i != j) && (isize != 0) && (jsize != 0)) {
1136 				endsect = jstart + jsize -1;
1137 				if ((jstart <= istart) &&
1138 				    (istart <= endsect)) {
1139 					if (!overlap) {
1140 					(void) fprintf(stderr,
1141 					    "label error: EFI Labels do not "
1142 					    "support overlapping partitions\n");
1143 					}
1144 					(void) fprintf(stderr,
1145 					    "Partition %d overlaps partition "
1146 					    "%d.\n", i, j);
1147 					overlap = 1;
1148 				}
1149 			}
1150 		}
1151 	}
1152 	/* make sure there is a reserved partition */
1153 	if (resv_part == -1) {
1154 		(void) fprintf(stderr,
1155 		    "no reserved partition found\n");
1156 	}
1157 }
1158 
1159 /*
1160  * We need to get information necessary to construct a *new* efi
1161  * label type
1162  */
1163 int
1164 efi_auto_sense(int fd, struct dk_gpt **vtoc)
1165 {
1166 
1167 	int	i;
1168 
1169 	/*
1170 	 * Now build the default partition table
1171 	 */
1172 	if (efi_alloc_and_init(fd, EFI_NUMPAR, vtoc) != 0) {
1173 		if (efi_debug) {
1174 			(void) fprintf(stderr, "efi_alloc_and_init failed.\n");
1175 		}
1176 		return (-1);
1177 	}
1178 
1179 	for (i = 0; i < min((*vtoc)->efi_nparts, V_NUMPAR); i++) {
1180 		(*vtoc)->efi_parts[i].p_tag = default_vtoc_map[i].p_tag;
1181 		(*vtoc)->efi_parts[i].p_flag = default_vtoc_map[i].p_flag;
1182 		(*vtoc)->efi_parts[i].p_start = 0;
1183 		(*vtoc)->efi_parts[i].p_size = 0;
1184 	}
1185 	/*
1186 	 * Make constants first
1187 	 * and variable partitions later
1188 	 */
1189 
1190 	/* root partition - s0 128 MB */
1191 	(*vtoc)->efi_parts[0].p_start = 34;
1192 	(*vtoc)->efi_parts[0].p_size = 262144;
1193 
1194 	/* partition - s1  128 MB */
1195 	(*vtoc)->efi_parts[1].p_start = 262178;
1196 	(*vtoc)->efi_parts[1].p_size = 262144;
1197 
1198 	/* partition -s2 is NOT the Backup disk */
1199 	(*vtoc)->efi_parts[2].p_tag = V_UNASSIGNED;
1200 
1201 	/* partition -s6 /usr partition - HOG */
1202 	(*vtoc)->efi_parts[6].p_start = 524322;
1203 	(*vtoc)->efi_parts[6].p_size = (*vtoc)->efi_last_u_lba - 524322
1204 	    - (1024 * 16);
1205 
1206 	/* efi reserved partition - s9 16K */
1207 	(*vtoc)->efi_parts[8].p_start = (*vtoc)->efi_last_u_lba - (1024 * 16);
1208 	(*vtoc)->efi_parts[8].p_size = (1024 * 16);
1209 	(*vtoc)->efi_parts[8].p_tag = V_RESERVED;
1210 	return (0);
1211 }
1212