xref: /titanic_50/usr/src/lib/libefi/common/rdwr_efi.c (revision 174bc6499d233e329ecd3d98a880a7b07df16bfa)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright 2014 Toomas Soome <tsoome@me.com>
26  */
27 
28 #include <stdio.h>
29 #include <stdlib.h>
30 #include <errno.h>
31 #include <strings.h>
32 #include <unistd.h>
33 #include <uuid/uuid.h>
34 #include <libintl.h>
35 #include <sys/types.h>
36 #include <sys/dkio.h>
37 #include <sys/vtoc.h>
38 #include <sys/mhd.h>
39 #include <sys/param.h>
40 #include <sys/dktp/fdisk.h>
41 #include <sys/efi_partition.h>
42 #include <sys/byteorder.h>
43 #include <sys/ddi.h>
44 
45 static struct uuid_to_ptag {
46 	struct uuid	uuid;
47 } conversion_array[] = {
48 	{ EFI_UNUSED },
49 	{ EFI_BOOT },
50 	{ EFI_ROOT },
51 	{ EFI_SWAP },
52 	{ EFI_USR },
53 	{ EFI_BACKUP },
54 	{ 0 },			/* STAND is never used */
55 	{ EFI_VAR },
56 	{ EFI_HOME },
57 	{ EFI_ALTSCTR },
58 	{ 0 },			/* CACHE is never used */
59 	{ EFI_RESERVED },
60 	{ EFI_SYSTEM },
61 	{ EFI_LEGACY_MBR },
62 	{ EFI_SYMC_PUB },
63 	{ EFI_SYMC_CDS },
64 	{ EFI_MSFT_RESV },
65 	{ EFI_DELL_BASIC },
66 	{ EFI_DELL_RAID },
67 	{ EFI_DELL_SWAP },
68 	{ EFI_DELL_LVM },
69 	{ EFI_DELL_RESV },
70 	{ EFI_AAPL_HFS },
71 	{ EFI_AAPL_UFS },
72 	{ EFI_BIOS_BOOT },
73 	{ EFI_FREEBSD_BOOT },
74 	{ EFI_FREEBSD_SWAP },
75 	{ EFI_FREEBSD_UFS },
76 	{ EFI_FREEBSD_VINUM },
77 	{ EFI_FREEBSD_ZFS }
78 };
79 
80 /*
81  * Default vtoc information for non-SVr4 partitions
82  */
83 struct dk_map2  default_vtoc_map[NDKMAP] = {
84 	{	V_ROOT,		0	},		/* a - 0 */
85 	{	V_SWAP,		V_UNMNT	},		/* b - 1 */
86 	{	V_BACKUP,	V_UNMNT	},		/* c - 2 */
87 	{	V_UNASSIGNED,	0	},		/* d - 3 */
88 	{	V_UNASSIGNED,	0	},		/* e - 4 */
89 	{	V_UNASSIGNED,	0	},		/* f - 5 */
90 	{	V_USR,		0	},		/* g - 6 */
91 	{	V_UNASSIGNED,	0	},		/* h - 7 */
92 
93 #if defined(_SUNOS_VTOC_16)
94 
95 #if defined(i386) || defined(__amd64)
96 	{	V_BOOT,		V_UNMNT	},		/* i - 8 */
97 	{	V_ALTSCTR,	0	},		/* j - 9 */
98 
99 #else
100 #error No VTOC format defined.
101 #endif			/* defined(i386) */
102 
103 	{	V_UNASSIGNED,	0	},		/* k - 10 */
104 	{	V_UNASSIGNED,	0	},		/* l - 11 */
105 	{	V_UNASSIGNED,	0	},		/* m - 12 */
106 	{	V_UNASSIGNED,	0	},		/* n - 13 */
107 	{	V_UNASSIGNED,	0	},		/* o - 14 */
108 	{	V_UNASSIGNED,	0	},		/* p - 15 */
109 #endif			/* defined(_SUNOS_VTOC_16) */
110 };
111 
112 #ifdef DEBUG
113 int efi_debug = 1;
114 #else
115 int efi_debug = 0;
116 #endif
117 
118 extern unsigned int	efi_crc32(const unsigned char *, unsigned int);
119 static int		efi_read(int, struct dk_gpt *);
120 
121 static int
122 read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize)
123 {
124 	struct dk_minfo		disk_info;
125 
126 	if ((ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info)) == -1)
127 		return (errno);
128 	*capacity = disk_info.dki_capacity;
129 	*lbsize = disk_info.dki_lbsize;
130 	return (0);
131 }
132 
133 /*
134  * the number of blocks the EFI label takes up (round up to nearest
135  * block)
136  */
137 #define	NBLOCKS(p, l)	(1 + ((((p) * (int)sizeof (efi_gpe_t))  + \
138 				((l) - 1)) / (l)))
139 /* number of partitions -- limited by what we can malloc */
140 #define	MAX_PARTS	((4294967295UL - sizeof (struct dk_gpt)) / \
141 			    sizeof (struct dk_part))
142 
143 int
144 efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc)
145 {
146 	diskaddr_t	capacity;
147 	uint_t		lbsize;
148 	uint_t		nblocks;
149 	size_t		length;
150 	struct dk_gpt	*vptr;
151 	struct uuid	uuid;
152 
153 	if (read_disk_info(fd, &capacity, &lbsize) != 0) {
154 		if (efi_debug)
155 			(void) fprintf(stderr,
156 			    "couldn't read disk information\n");
157 		return (-1);
158 	}
159 
160 	nblocks = NBLOCKS(nparts, lbsize);
161 	if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) {
162 		/* 16K plus one block for the GPT */
163 		nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1;
164 	}
165 
166 	if (nparts > MAX_PARTS) {
167 		if (efi_debug) {
168 			(void) fprintf(stderr,
169 			"the maximum number of partitions supported is %lu\n",
170 			    MAX_PARTS);
171 		}
172 		return (-1);
173 	}
174 
175 	length = sizeof (struct dk_gpt) +
176 	    sizeof (struct dk_part) * (nparts - 1);
177 
178 	if ((*vtoc = calloc(length, 1)) == NULL)
179 		return (-1);
180 
181 	vptr = *vtoc;
182 
183 	vptr->efi_version = EFI_VERSION_CURRENT;
184 	vptr->efi_lbasize = lbsize;
185 	vptr->efi_nparts = nparts;
186 	/*
187 	 * add one block here for the PMBR; on disks with a 512 byte
188 	 * block size and 128 or fewer partitions, efi_first_u_lba
189 	 * should work out to "34"
190 	 */
191 	vptr->efi_first_u_lba = nblocks + 1;
192 	vptr->efi_last_lba = capacity - 1;
193 	vptr->efi_altern_lba = capacity -1;
194 	vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks;
195 
196 	(void) uuid_generate((uchar_t *)&uuid);
197 	UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid);
198 	return (0);
199 }
200 
201 /*
202  * Read EFI - return partition number upon success.
203  */
204 int
205 efi_alloc_and_read(int fd, struct dk_gpt **vtoc)
206 {
207 	int			rval;
208 	uint32_t		nparts;
209 	int			length;
210 
211 	/* figure out the number of entries that would fit into 16K */
212 	nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t);
213 	length = (int) sizeof (struct dk_gpt) +
214 	    (int) sizeof (struct dk_part) * (nparts - 1);
215 	if ((*vtoc = calloc(length, 1)) == NULL)
216 		return (VT_ERROR);
217 
218 	(*vtoc)->efi_nparts = nparts;
219 	rval = efi_read(fd, *vtoc);
220 
221 	if ((rval == VT_EINVAL) && (*vtoc)->efi_nparts > nparts) {
222 		void *tmp;
223 		length = (int) sizeof (struct dk_gpt) +
224 		    (int) sizeof (struct dk_part) *
225 		    ((*vtoc)->efi_nparts - 1);
226 		nparts = (*vtoc)->efi_nparts;
227 		if ((tmp = realloc(*vtoc, length)) == NULL) {
228 			free (*vtoc);
229 			*vtoc = NULL;
230 			return (VT_ERROR);
231 		} else {
232 			*vtoc = tmp;
233 			rval = efi_read(fd, *vtoc);
234 		}
235 	}
236 
237 	if (rval < 0) {
238 		if (efi_debug) {
239 			(void) fprintf(stderr,
240 			    "read of EFI table failed, rval=%d\n", rval);
241 		}
242 		free (*vtoc);
243 		*vtoc = NULL;
244 	}
245 
246 	return (rval);
247 }
248 
249 static int
250 efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc)
251 {
252 	void *data = dk_ioc->dki_data;
253 	int error;
254 
255 	dk_ioc->dki_data_64 = (uint64_t)(uintptr_t)data;
256 	error = ioctl(fd, cmd, (void *)dk_ioc);
257 	dk_ioc->dki_data = data;
258 
259 	return (error);
260 }
261 
262 static int
263 check_label(int fd, dk_efi_t *dk_ioc)
264 {
265 	efi_gpt_t		*efi;
266 	uint_t			crc;
267 
268 	if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) {
269 		switch (errno) {
270 		case EIO:
271 			return (VT_EIO);
272 		default:
273 			return (VT_ERROR);
274 		}
275 	}
276 	efi = dk_ioc->dki_data;
277 	if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) {
278 		if (efi_debug)
279 			(void) fprintf(stderr,
280 			    "Bad EFI signature: 0x%llx != 0x%llx\n",
281 			    (long long)efi->efi_gpt_Signature,
282 			    (long long)LE_64(EFI_SIGNATURE));
283 		return (VT_EINVAL);
284 	}
285 
286 	/*
287 	 * check CRC of the header; the size of the header should
288 	 * never be larger than one block
289 	 */
290 	crc = efi->efi_gpt_HeaderCRC32;
291 	efi->efi_gpt_HeaderCRC32 = 0;
292 
293 	if (((len_t)LE_32(efi->efi_gpt_HeaderSize) > dk_ioc->dki_length) ||
294 	    crc != LE_32(efi_crc32((unsigned char *)efi,
295 	    LE_32(efi->efi_gpt_HeaderSize)))) {
296 		if (efi_debug)
297 			(void) fprintf(stderr,
298 			    "Bad EFI CRC: 0x%x != 0x%x\n",
299 			    crc,
300 			    LE_32(efi_crc32((unsigned char *)efi,
301 			    sizeof (struct efi_gpt))));
302 		return (VT_EINVAL);
303 	}
304 
305 	return (0);
306 }
307 
308 static int
309 efi_read(int fd, struct dk_gpt *vtoc)
310 {
311 	int			i, j;
312 	int			label_len;
313 	int			rval = 0;
314 	int			vdc_flag = 0;
315 	struct dk_minfo		disk_info;
316 	dk_efi_t		dk_ioc;
317 	efi_gpt_t		*efi;
318 	efi_gpe_t		*efi_parts;
319 	struct dk_cinfo		dki_info;
320 	uint32_t		user_length;
321 	boolean_t		legacy_label = B_FALSE;
322 
323 	/*
324 	 * get the partition number for this file descriptor.
325 	 */
326 	if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) {
327 		if (efi_debug) {
328 			(void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
329 		}
330 		switch (errno) {
331 		case EIO:
332 			return (VT_EIO);
333 		case EINVAL:
334 			return (VT_EINVAL);
335 		default:
336 			return (VT_ERROR);
337 		}
338 	}
339 
340 	if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) &&
341 	    (strncmp(dki_info.dki_dname, "vdc", 4) == 0)) {
342 		/*
343 		 * The controller and drive name "vdc" (virtual disk client)
344 		 * indicates a LDoms virtual disk.
345 		 */
346 		vdc_flag++;
347 	}
348 
349 	/* get the LBA size */
350 	if (ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info) == -1) {
351 		if (efi_debug) {
352 			(void) fprintf(stderr,
353 			    "assuming LBA 512 bytes %d\n",
354 			    errno);
355 		}
356 		disk_info.dki_lbsize = DEV_BSIZE;
357 	}
358 	if (disk_info.dki_lbsize == 0) {
359 		if (efi_debug) {
360 			(void) fprintf(stderr,
361 			    "efi_read: assuming LBA 512 bytes\n");
362 		}
363 		disk_info.dki_lbsize = DEV_BSIZE;
364 	}
365 	/*
366 	 * Read the EFI GPT to figure out how many partitions we need
367 	 * to deal with.
368 	 */
369 	dk_ioc.dki_lba = 1;
370 	if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) {
371 		label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize;
372 	} else {
373 		label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) +
374 		    disk_info.dki_lbsize;
375 		if (label_len % disk_info.dki_lbsize) {
376 			/* pad to physical sector size */
377 			label_len += disk_info.dki_lbsize;
378 			label_len &= ~(disk_info.dki_lbsize - 1);
379 		}
380 	}
381 
382 	if ((dk_ioc.dki_data = calloc(label_len, 1)) == NULL)
383 		return (VT_ERROR);
384 
385 	dk_ioc.dki_length = disk_info.dki_lbsize;
386 	user_length = vtoc->efi_nparts;
387 	efi = dk_ioc.dki_data;
388 	if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) {
389 		/*
390 		 * No valid label here; try the alternate. Note that here
391 		 * we just read GPT header and save it into dk_ioc.data,
392 		 * Later, we will read GUID partition entry array if we
393 		 * can get valid GPT header.
394 		 */
395 
396 		/*
397 		 * This is a workaround for legacy systems. In the past, the
398 		 * last sector of SCSI disk was invisible on x86 platform. At
399 		 * that time, backup label was saved on the next to the last
400 		 * sector. It is possible for users to move a disk from previous
401 		 * solaris system to present system. Here, we attempt to search
402 		 * legacy backup EFI label first.
403 		 */
404 		dk_ioc.dki_lba = disk_info.dki_capacity - 2;
405 		dk_ioc.dki_length = disk_info.dki_lbsize;
406 		rval = check_label(fd, &dk_ioc);
407 		if (rval == VT_EINVAL) {
408 			/*
409 			 * we didn't find legacy backup EFI label, try to
410 			 * search backup EFI label in the last block.
411 			 */
412 			dk_ioc.dki_lba = disk_info.dki_capacity - 1;
413 			dk_ioc.dki_length = disk_info.dki_lbsize;
414 			rval = check_label(fd, &dk_ioc);
415 			if (rval == 0) {
416 				legacy_label = B_TRUE;
417 				if (efi_debug)
418 					(void) fprintf(stderr,
419 					    "efi_read: primary label corrupt; "
420 					    "using EFI backup label located on"
421 					    " the last block\n");
422 			}
423 		} else {
424 			if ((efi_debug) && (rval == 0))
425 				(void) fprintf(stderr, "efi_read: primary label"
426 				    " corrupt; using legacy EFI backup label "
427 				    " located on the next to last block\n");
428 		}
429 
430 		if (rval == 0) {
431 			dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
432 			vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT;
433 			vtoc->efi_nparts =
434 			    LE_32(efi->efi_gpt_NumberOfPartitionEntries);
435 			/*
436 			 * Partition tables are between backup GPT header
437 			 * table and ParitionEntryLBA (the starting LBA of
438 			 * the GUID partition entries array). Now that we
439 			 * already got valid GPT header and saved it in
440 			 * dk_ioc.dki_data, we try to get GUID partition
441 			 * entry array here.
442 			 */
443 			/* LINTED */
444 			dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
445 			    + disk_info.dki_lbsize);
446 			if (legacy_label)
447 				dk_ioc.dki_length = disk_info.dki_capacity - 1 -
448 				    dk_ioc.dki_lba;
449 			else
450 				dk_ioc.dki_length = disk_info.dki_capacity - 2 -
451 				    dk_ioc.dki_lba;
452 			dk_ioc.dki_length *= disk_info.dki_lbsize;
453 			if (dk_ioc.dki_length >
454 			    ((len_t)label_len - sizeof (*dk_ioc.dki_data))) {
455 				rval = VT_EINVAL;
456 			} else {
457 				/*
458 				 * read GUID partition entry array
459 				 */
460 				rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
461 			}
462 		}
463 
464 	} else if (rval == 0) {
465 
466 		dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
467 		/* LINTED */
468 		dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
469 		    + disk_info.dki_lbsize);
470 		dk_ioc.dki_length = label_len - disk_info.dki_lbsize;
471 		rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
472 
473 	} else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) {
474 		/*
475 		 * When the device is a LDoms virtual disk, the DKIOCGETEFI
476 		 * ioctl can fail with EINVAL if the virtual disk backend
477 		 * is a ZFS volume serviced by a domain running an old version
478 		 * of Solaris. This is because the DKIOCGETEFI ioctl was
479 		 * initially incorrectly implemented for a ZFS volume and it
480 		 * expected the GPT and GPE to be retrieved with a single ioctl.
481 		 * So we try to read the GPT and the GPE using that old style
482 		 * ioctl.
483 		 */
484 		dk_ioc.dki_lba = 1;
485 		dk_ioc.dki_length = label_len;
486 		rval = check_label(fd, &dk_ioc);
487 	}
488 
489 	if (rval < 0) {
490 		free(efi);
491 		return (rval);
492 	}
493 
494 	/* LINTED -- always longlong aligned */
495 	efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize);
496 
497 	/*
498 	 * Assemble this into a "dk_gpt" struct for easier
499 	 * digestibility by applications.
500 	 */
501 	vtoc->efi_version = LE_32(efi->efi_gpt_Revision);
502 	vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries);
503 	vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry);
504 	vtoc->efi_lbasize = disk_info.dki_lbsize;
505 	vtoc->efi_last_lba = disk_info.dki_capacity - 1;
506 	vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA);
507 	vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA);
508 	vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA);
509 	UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID);
510 
511 	/*
512 	 * If the array the user passed in is too small, set the length
513 	 * to what it needs to be and return
514 	 */
515 	if (user_length < vtoc->efi_nparts) {
516 		return (VT_EINVAL);
517 	}
518 
519 	for (i = 0; i < vtoc->efi_nparts; i++) {
520 
521 		UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid,
522 		    efi_parts[i].efi_gpe_PartitionTypeGUID);
523 
524 		for (j = 0;
525 		    j < sizeof (conversion_array)
526 		    / sizeof (struct uuid_to_ptag); j++) {
527 
528 			if (bcmp(&vtoc->efi_parts[i].p_guid,
529 			    &conversion_array[j].uuid,
530 			    sizeof (struct uuid)) == 0) {
531 				vtoc->efi_parts[i].p_tag = j;
532 				break;
533 			}
534 		}
535 		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
536 			continue;
537 		vtoc->efi_parts[i].p_flag =
538 		    LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs);
539 		vtoc->efi_parts[i].p_start =
540 		    LE_64(efi_parts[i].efi_gpe_StartingLBA);
541 		vtoc->efi_parts[i].p_size =
542 		    LE_64(efi_parts[i].efi_gpe_EndingLBA) -
543 		    vtoc->efi_parts[i].p_start + 1;
544 		for (j = 0; j < EFI_PART_NAME_LEN; j++) {
545 			vtoc->efi_parts[i].p_name[j] =
546 			    (uchar_t)LE_16(
547 			    efi_parts[i].efi_gpe_PartitionName[j]);
548 		}
549 
550 		UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid,
551 		    efi_parts[i].efi_gpe_UniquePartitionGUID);
552 	}
553 	free(efi);
554 
555 	return (dki_info.dki_partition);
556 }
557 
558 /* writes a "protective" MBR */
559 static int
560 write_pmbr(int fd, struct dk_gpt *vtoc)
561 {
562 	dk_efi_t	dk_ioc;
563 	struct mboot	mb;
564 	uchar_t		*cp;
565 	diskaddr_t	size_in_lba;
566 	uchar_t		*buf;
567 	int		len;
568 
569 	len = (vtoc->efi_lbasize == 0) ? sizeof (mb) : vtoc->efi_lbasize;
570 	buf = calloc(len, 1);
571 
572 	/*
573 	 * Preserve any boot code and disk signature if the first block is
574 	 * already an MBR.
575 	 */
576 	dk_ioc.dki_lba = 0;
577 	dk_ioc.dki_length = len;
578 	/* LINTED -- always longlong aligned */
579 	dk_ioc.dki_data = (efi_gpt_t *)buf;
580 	if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
581 		(void) memcpy(&mb, buf, sizeof (mb));
582 		bzero(&mb, sizeof (mb));
583 		mb.signature = LE_16(MBB_MAGIC);
584 	} else {
585 		(void) memcpy(&mb, buf, sizeof (mb));
586 		if (mb.signature != LE_16(MBB_MAGIC)) {
587 			bzero(&mb, sizeof (mb));
588 			mb.signature = LE_16(MBB_MAGIC);
589 		}
590 	}
591 
592 	bzero(&mb.parts, sizeof (mb.parts));
593 	cp = (uchar_t *)&mb.parts[0];
594 	/* bootable or not */
595 	*cp++ = 0;
596 	/* beginning CHS; 0xffffff if not representable */
597 	*cp++ = 0xff;
598 	*cp++ = 0xff;
599 	*cp++ = 0xff;
600 	/* OS type */
601 	*cp++ = EFI_PMBR;
602 	/* ending CHS; 0xffffff if not representable */
603 	*cp++ = 0xff;
604 	*cp++ = 0xff;
605 	*cp++ = 0xff;
606 	/* starting LBA: 1 (little endian format) by EFI definition */
607 	*cp++ = 0x01;
608 	*cp++ = 0x00;
609 	*cp++ = 0x00;
610 	*cp++ = 0x00;
611 	/* ending LBA: last block on the disk (little endian format) */
612 	size_in_lba = vtoc->efi_last_lba;
613 	if (size_in_lba < 0xffffffff) {
614 		*cp++ = (size_in_lba & 0x000000ff);
615 		*cp++ = (size_in_lba & 0x0000ff00) >> 8;
616 		*cp++ = (size_in_lba & 0x00ff0000) >> 16;
617 		*cp++ = (size_in_lba & 0xff000000) >> 24;
618 	} else {
619 		*cp++ = 0xff;
620 		*cp++ = 0xff;
621 		*cp++ = 0xff;
622 		*cp++ = 0xff;
623 	}
624 
625 	(void) memcpy(buf, &mb, sizeof (mb));
626 	/* LINTED -- always longlong aligned */
627 	dk_ioc.dki_data = (efi_gpt_t *)buf;
628 	dk_ioc.dki_lba = 0;
629 	dk_ioc.dki_length = len;
630 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
631 		free(buf);
632 		switch (errno) {
633 		case EIO:
634 			return (VT_EIO);
635 		case EINVAL:
636 			return (VT_EINVAL);
637 		default:
638 			return (VT_ERROR);
639 		}
640 	}
641 	free(buf);
642 	return (0);
643 }
644 
645 /* make sure the user specified something reasonable */
646 static int
647 check_input(struct dk_gpt *vtoc)
648 {
649 	int			resv_part = -1;
650 	int			i, j;
651 	diskaddr_t		istart, jstart, isize, jsize, endsect;
652 
653 	/*
654 	 * Sanity-check the input (make sure no partitions overlap)
655 	 */
656 	for (i = 0; i < vtoc->efi_nparts; i++) {
657 		/* It can't be unassigned and have an actual size */
658 		if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
659 		    (vtoc->efi_parts[i].p_size != 0)) {
660 			if (efi_debug) {
661 				(void) fprintf(stderr,
662 "partition %d is \"unassigned\" but has a size of %llu",
663 				    i,
664 				    vtoc->efi_parts[i].p_size);
665 			}
666 			return (VT_EINVAL);
667 		}
668 		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
669 			if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
670 				continue;
671 			/* we have encountered an unknown uuid */
672 			vtoc->efi_parts[i].p_tag = 0xff;
673 		}
674 		if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
675 			if (resv_part != -1) {
676 				if (efi_debug) {
677 					(void) fprintf(stderr,
678 "found duplicate reserved partition at %d\n",
679 					    i);
680 				}
681 				return (VT_EINVAL);
682 			}
683 			resv_part = i;
684 		}
685 		if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
686 		    (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
687 			if (efi_debug) {
688 				(void) fprintf(stderr,
689 				    "Partition %d starts at %llu.  ",
690 				    i,
691 				    vtoc->efi_parts[i].p_start);
692 				(void) fprintf(stderr,
693 				    "It must be between %llu and %llu.\n",
694 				    vtoc->efi_first_u_lba,
695 				    vtoc->efi_last_u_lba);
696 			}
697 			return (VT_EINVAL);
698 		}
699 		if ((vtoc->efi_parts[i].p_start +
700 		    vtoc->efi_parts[i].p_size <
701 		    vtoc->efi_first_u_lba) ||
702 		    (vtoc->efi_parts[i].p_start +
703 		    vtoc->efi_parts[i].p_size >
704 		    vtoc->efi_last_u_lba + 1)) {
705 			if (efi_debug) {
706 				(void) fprintf(stderr,
707 				    "Partition %d ends at %llu.  ",
708 				    i,
709 				    vtoc->efi_parts[i].p_start +
710 				    vtoc->efi_parts[i].p_size);
711 				(void) fprintf(stderr,
712 				    "It must be between %llu and %llu.\n",
713 				    vtoc->efi_first_u_lba,
714 				    vtoc->efi_last_u_lba);
715 			}
716 			return (VT_EINVAL);
717 		}
718 
719 		for (j = 0; j < vtoc->efi_nparts; j++) {
720 			isize = vtoc->efi_parts[i].p_size;
721 			jsize = vtoc->efi_parts[j].p_size;
722 			istart = vtoc->efi_parts[i].p_start;
723 			jstart = vtoc->efi_parts[j].p_start;
724 			if ((i != j) && (isize != 0) && (jsize != 0)) {
725 				endsect = jstart + jsize -1;
726 				if ((jstart <= istart) &&
727 				    (istart <= endsect)) {
728 					if (efi_debug) {
729 						(void) fprintf(stderr,
730 "Partition %d overlaps partition %d.",
731 						    i, j);
732 					}
733 					return (VT_EINVAL);
734 				}
735 			}
736 		}
737 	}
738 	/* just a warning for now */
739 	if ((resv_part == -1) && efi_debug) {
740 		(void) fprintf(stderr,
741 		    "no reserved partition found\n");
742 	}
743 	return (0);
744 }
745 
746 /*
747  * add all the unallocated space to the current label
748  */
749 int
750 efi_use_whole_disk(int fd)
751 {
752 	struct dk_gpt		*efi_label;
753 	int			rval;
754 	int			i;
755 	uint_t			phy_last_slice = 0;
756 	diskaddr_t		pl_start = 0;
757 	diskaddr_t		pl_size;
758 
759 	rval = efi_alloc_and_read(fd, &efi_label);
760 	if (rval < 0) {
761 		return (rval);
762 	}
763 
764 	/* find the last physically non-zero partition */
765 	for (i = 0; i < efi_label->efi_nparts - 2; i ++) {
766 		if (pl_start < efi_label->efi_parts[i].p_start) {
767 			pl_start = efi_label->efi_parts[i].p_start;
768 			phy_last_slice = i;
769 		}
770 	}
771 	pl_size = efi_label->efi_parts[phy_last_slice].p_size;
772 
773 	/*
774 	 * If alter_lba is 1, we are using the backup label.
775 	 * Since we can locate the backup label by disk capacity,
776 	 * there must be no unallocated space.
777 	 */
778 	if ((efi_label->efi_altern_lba == 1) || (efi_label->efi_altern_lba
779 	    >= efi_label->efi_last_lba)) {
780 		if (efi_debug) {
781 			(void) fprintf(stderr,
782 			    "efi_use_whole_disk: requested space not found\n");
783 		}
784 		efi_free(efi_label);
785 		return (VT_ENOSPC);
786 	}
787 
788 	/*
789 	 * If there is space between the last physically non-zero partition
790 	 * and the reserved partition, just add the unallocated space to this
791 	 * area. Otherwise, the unallocated space is added to the last
792 	 * physically non-zero partition.
793 	 */
794 	if (pl_start + pl_size - 1 == efi_label->efi_last_u_lba -
795 	    EFI_MIN_RESV_SIZE) {
796 		efi_label->efi_parts[phy_last_slice].p_size +=
797 		    efi_label->efi_last_lba - efi_label->efi_altern_lba;
798 	}
799 
800 	/*
801 	 * Move the reserved partition. There is currently no data in
802 	 * here except fabricated devids (which get generated via
803 	 * efi_write()). So there is no need to copy data.
804 	 */
805 	efi_label->efi_parts[efi_label->efi_nparts - 1].p_start +=
806 	    efi_label->efi_last_lba - efi_label->efi_altern_lba;
807 	efi_label->efi_last_u_lba += efi_label->efi_last_lba
808 	    - efi_label->efi_altern_lba;
809 
810 	rval = efi_write(fd, efi_label);
811 	if (rval < 0) {
812 		if (efi_debug) {
813 			(void) fprintf(stderr,
814 			    "efi_use_whole_disk:fail to write label, rval=%d\n",
815 			    rval);
816 		}
817 		efi_free(efi_label);
818 		return (rval);
819 	}
820 
821 	efi_free(efi_label);
822 	return (0);
823 }
824 
825 
826 /*
827  * write EFI label and backup label
828  */
829 int
830 efi_write(int fd, struct dk_gpt *vtoc)
831 {
832 	dk_efi_t		dk_ioc;
833 	efi_gpt_t		*efi;
834 	efi_gpe_t		*efi_parts;
835 	int			i, j;
836 	struct dk_cinfo		dki_info;
837 	int			nblocks;
838 	diskaddr_t		lba_backup_gpt_hdr;
839 
840 	if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) {
841 		if (efi_debug)
842 			(void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
843 		switch (errno) {
844 		case EIO:
845 			return (VT_EIO);
846 		case EINVAL:
847 			return (VT_EINVAL);
848 		default:
849 			return (VT_ERROR);
850 		}
851 	}
852 
853 	if (check_input(vtoc))
854 		return (VT_EINVAL);
855 
856 	dk_ioc.dki_lba = 1;
857 	if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) {
858 		dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize;
859 	} else {
860 		dk_ioc.dki_length = NBLOCKS(vtoc->efi_nparts,
861 		    vtoc->efi_lbasize) *
862 		    vtoc->efi_lbasize;
863 	}
864 
865 	/*
866 	 * the number of blocks occupied by GUID partition entry array
867 	 */
868 	nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1;
869 
870 	/*
871 	 * Backup GPT header is located on the block after GUID
872 	 * partition entry array. Here, we calculate the address
873 	 * for backup GPT header.
874 	 */
875 	lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks;
876 	if ((dk_ioc.dki_data = calloc(dk_ioc.dki_length, 1)) == NULL)
877 		return (VT_ERROR);
878 
879 	efi = dk_ioc.dki_data;
880 
881 	/* stuff user's input into EFI struct */
882 	efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
883 	efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */
884 	efi->efi_gpt_HeaderSize = LE_32(sizeof (struct efi_gpt));
885 	efi->efi_gpt_Reserved1 = 0;
886 	efi->efi_gpt_MyLBA = LE_64(1ULL);
887 	efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr);
888 	efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba);
889 	efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba);
890 	efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
891 	efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts);
892 	efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe));
893 	UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid);
894 
895 	/* LINTED -- always longlong aligned */
896 	efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize);
897 
898 	for (i = 0; i < vtoc->efi_nparts; i++) {
899 		for (j = 0;
900 		    j < sizeof (conversion_array) /
901 		    sizeof (struct uuid_to_ptag); j++) {
902 
903 			if (vtoc->efi_parts[i].p_tag == j) {
904 				UUID_LE_CONVERT(
905 				    efi_parts[i].efi_gpe_PartitionTypeGUID,
906 				    conversion_array[j].uuid);
907 				break;
908 			}
909 		}
910 
911 		if (j == sizeof (conversion_array) /
912 		    sizeof (struct uuid_to_ptag)) {
913 			/*
914 			 * If we didn't have a matching uuid match, bail here.
915 			 * Don't write a label with unknown uuid.
916 			 */
917 			if (efi_debug) {
918 				(void) fprintf(stderr,
919 				    "Unknown uuid for p_tag %d\n",
920 				    vtoc->efi_parts[i].p_tag);
921 			}
922 			return (VT_EINVAL);
923 		}
924 
925 		efi_parts[i].efi_gpe_StartingLBA =
926 		    LE_64(vtoc->efi_parts[i].p_start);
927 		efi_parts[i].efi_gpe_EndingLBA =
928 		    LE_64(vtoc->efi_parts[i].p_start +
929 		    vtoc->efi_parts[i].p_size - 1);
930 		efi_parts[i].efi_gpe_Attributes.PartitionAttrs =
931 		    LE_16(vtoc->efi_parts[i].p_flag);
932 		for (j = 0; j < EFI_PART_NAME_LEN; j++) {
933 			efi_parts[i].efi_gpe_PartitionName[j] =
934 			    LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]);
935 		}
936 		if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) &&
937 		    uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) {
938 			(void) uuid_generate((uchar_t *)
939 			    &vtoc->efi_parts[i].p_uguid);
940 		}
941 		bcopy(&vtoc->efi_parts[i].p_uguid,
942 		    &efi_parts[i].efi_gpe_UniquePartitionGUID,
943 		    sizeof (uuid_t));
944 	}
945 	efi->efi_gpt_PartitionEntryArrayCRC32 =
946 	    LE_32(efi_crc32((unsigned char *)efi_parts,
947 	    vtoc->efi_nparts * (int)sizeof (struct efi_gpe)));
948 	efi->efi_gpt_HeaderCRC32 =
949 	    LE_32(efi_crc32((unsigned char *)efi, sizeof (struct efi_gpt)));
950 
951 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
952 		free(dk_ioc.dki_data);
953 		switch (errno) {
954 		case EIO:
955 			return (VT_EIO);
956 		case EINVAL:
957 			return (VT_EINVAL);
958 		default:
959 			return (VT_ERROR);
960 		}
961 	}
962 
963 	/* write backup partition array */
964 	dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1;
965 	dk_ioc.dki_length -= vtoc->efi_lbasize;
966 	/* LINTED */
967 	dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data +
968 	    vtoc->efi_lbasize);
969 
970 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
971 		/*
972 		 * we wrote the primary label okay, so don't fail
973 		 */
974 		if (efi_debug) {
975 			(void) fprintf(stderr,
976 			    "write of backup partitions to block %llu "
977 			    "failed, errno %d\n",
978 			    vtoc->efi_last_u_lba + 1,
979 			    errno);
980 		}
981 	}
982 	/*
983 	 * now swap MyLBA and AlternateLBA fields and write backup
984 	 * partition table header
985 	 */
986 	dk_ioc.dki_lba = lba_backup_gpt_hdr;
987 	dk_ioc.dki_length = vtoc->efi_lbasize;
988 	/* LINTED */
989 	dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data -
990 	    vtoc->efi_lbasize);
991 	efi->efi_gpt_AlternateLBA = LE_64(1ULL);
992 	efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr);
993 	efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1);
994 	efi->efi_gpt_HeaderCRC32 = 0;
995 	efi->efi_gpt_HeaderCRC32 =
996 	    LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data,
997 	    sizeof (struct efi_gpt)));
998 
999 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1000 		if (efi_debug) {
1001 			(void) fprintf(stderr,
1002 			    "write of backup header to block %llu failed, "
1003 			    "errno %d\n",
1004 			    lba_backup_gpt_hdr,
1005 			    errno);
1006 		}
1007 	}
1008 	/* write the PMBR */
1009 	(void) write_pmbr(fd, vtoc);
1010 	free(dk_ioc.dki_data);
1011 	return (0);
1012 }
1013 
1014 void
1015 efi_free(struct dk_gpt *ptr)
1016 {
1017 	free(ptr);
1018 }
1019 
1020 /*
1021  * Input: File descriptor
1022  * Output: 1 if disk has an EFI label, or > 2TB with no VTOC or legacy MBR.
1023  * Otherwise 0.
1024  */
1025 int
1026 efi_type(int fd)
1027 {
1028 	struct vtoc vtoc;
1029 	struct extvtoc extvtoc;
1030 
1031 	if (ioctl(fd, DKIOCGEXTVTOC, &extvtoc) == -1) {
1032 		if (errno == ENOTSUP)
1033 			return (1);
1034 		else if (errno == ENOTTY) {
1035 			if (ioctl(fd, DKIOCGVTOC, &vtoc) == -1)
1036 				if (errno == ENOTSUP)
1037 					return (1);
1038 		}
1039 	}
1040 	return (0);
1041 }
1042 
1043 void
1044 efi_err_check(struct dk_gpt *vtoc)
1045 {
1046 	int			resv_part = -1;
1047 	int			i, j;
1048 	diskaddr_t		istart, jstart, isize, jsize, endsect;
1049 	int			overlap = 0;
1050 
1051 	/*
1052 	 * make sure no partitions overlap
1053 	 */
1054 	for (i = 0; i < vtoc->efi_nparts; i++) {
1055 		/* It can't be unassigned and have an actual size */
1056 		if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
1057 		    (vtoc->efi_parts[i].p_size != 0)) {
1058 			(void) fprintf(stderr,
1059 			    "partition %d is \"unassigned\" but has a size "
1060 			    "of %llu\n", i, vtoc->efi_parts[i].p_size);
1061 		}
1062 		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
1063 			continue;
1064 		}
1065 		if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
1066 			if (resv_part != -1) {
1067 				(void) fprintf(stderr,
1068 				    "found duplicate reserved partition at "
1069 				    "%d\n", i);
1070 			}
1071 			resv_part = i;
1072 			if (vtoc->efi_parts[i].p_size != EFI_MIN_RESV_SIZE)
1073 				(void) fprintf(stderr,
1074 				    "Warning: reserved partition size must "
1075 				    "be %d sectors\n", EFI_MIN_RESV_SIZE);
1076 		}
1077 		if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
1078 		    (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
1079 			(void) fprintf(stderr,
1080 			    "Partition %d starts at %llu\n",
1081 			    i,
1082 			    vtoc->efi_parts[i].p_start);
1083 			(void) fprintf(stderr,
1084 			    "It must be between %llu and %llu.\n",
1085 			    vtoc->efi_first_u_lba,
1086 			    vtoc->efi_last_u_lba);
1087 		}
1088 		if ((vtoc->efi_parts[i].p_start +
1089 		    vtoc->efi_parts[i].p_size <
1090 		    vtoc->efi_first_u_lba) ||
1091 		    (vtoc->efi_parts[i].p_start +
1092 		    vtoc->efi_parts[i].p_size >
1093 		    vtoc->efi_last_u_lba + 1)) {
1094 			(void) fprintf(stderr,
1095 			    "Partition %d ends at %llu\n",
1096 			    i,
1097 			    vtoc->efi_parts[i].p_start +
1098 			    vtoc->efi_parts[i].p_size);
1099 			(void) fprintf(stderr,
1100 			    "It must be between %llu and %llu.\n",
1101 			    vtoc->efi_first_u_lba,
1102 			    vtoc->efi_last_u_lba);
1103 		}
1104 
1105 		for (j = 0; j < vtoc->efi_nparts; j++) {
1106 			isize = vtoc->efi_parts[i].p_size;
1107 			jsize = vtoc->efi_parts[j].p_size;
1108 			istart = vtoc->efi_parts[i].p_start;
1109 			jstart = vtoc->efi_parts[j].p_start;
1110 			if ((i != j) && (isize != 0) && (jsize != 0)) {
1111 				endsect = jstart + jsize -1;
1112 				if ((jstart <= istart) &&
1113 				    (istart <= endsect)) {
1114 					if (!overlap) {
1115 					(void) fprintf(stderr,
1116 					    "label error: EFI Labels do not "
1117 					    "support overlapping partitions\n");
1118 					}
1119 					(void) fprintf(stderr,
1120 					    "Partition %d overlaps partition "
1121 					    "%d.\n", i, j);
1122 					overlap = 1;
1123 				}
1124 			}
1125 		}
1126 	}
1127 	/* make sure there is a reserved partition */
1128 	if (resv_part == -1) {
1129 		(void) fprintf(stderr,
1130 		    "no reserved partition found\n");
1131 	}
1132 }
1133 
1134 /*
1135  * We need to get information necessary to construct a *new* efi
1136  * label type
1137  */
1138 int
1139 efi_auto_sense(int fd, struct dk_gpt **vtoc)
1140 {
1141 
1142 	int	i;
1143 
1144 	/*
1145 	 * Now build the default partition table
1146 	 */
1147 	if (efi_alloc_and_init(fd, EFI_NUMPAR, vtoc) != 0) {
1148 		if (efi_debug) {
1149 			(void) fprintf(stderr, "efi_alloc_and_init failed.\n");
1150 		}
1151 		return (-1);
1152 	}
1153 
1154 	for (i = 0; i < min((*vtoc)->efi_nparts, V_NUMPAR); i++) {
1155 		(*vtoc)->efi_parts[i].p_tag = default_vtoc_map[i].p_tag;
1156 		(*vtoc)->efi_parts[i].p_flag = default_vtoc_map[i].p_flag;
1157 		(*vtoc)->efi_parts[i].p_start = 0;
1158 		(*vtoc)->efi_parts[i].p_size = 0;
1159 	}
1160 	/*
1161 	 * Make constants first
1162 	 * and variable partitions later
1163 	 */
1164 
1165 	/* root partition - s0 128 MB */
1166 	(*vtoc)->efi_parts[0].p_start = 34;
1167 	(*vtoc)->efi_parts[0].p_size = 262144;
1168 
1169 	/* partition - s1  128 MB */
1170 	(*vtoc)->efi_parts[1].p_start = 262178;
1171 	(*vtoc)->efi_parts[1].p_size = 262144;
1172 
1173 	/* partition -s2 is NOT the Backup disk */
1174 	(*vtoc)->efi_parts[2].p_tag = V_UNASSIGNED;
1175 
1176 	/* partition -s6 /usr partition - HOG */
1177 	(*vtoc)->efi_parts[6].p_start = 524322;
1178 	(*vtoc)->efi_parts[6].p_size = (*vtoc)->efi_last_u_lba - 524322
1179 	    - (1024 * 16);
1180 
1181 	/* efi reserved partition - s9 16K */
1182 	(*vtoc)->efi_parts[8].p_start = (*vtoc)->efi_last_u_lba - (1024 * 16);
1183 	(*vtoc)->efi_parts[8].p_size = (1024 * 16);
1184 	(*vtoc)->efi_parts[8].p_tag = V_RESERVED;
1185 	return (0);
1186 }
1187