xref: /titanic_50/usr/src/lib/libc/port/threads/synch.c (revision d89fccd8788afe1e920f842edd883fe192a1b8fe)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 
23 /*
24  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
25  * Use is subject to license terms.
26  */
27 
28 #pragma ident	"%Z%%M%	%I%	%E% SMI"
29 
30 #include <sys/sdt.h>
31 
32 #include "lint.h"
33 #include "thr_uberdata.h"
34 
35 /*
36  * This mutex is initialized to be held by lwp#1.
37  * It is used to block a thread that has returned from a mutex_lock()
38  * of a PTHREAD_PRIO_INHERIT mutex with an unrecoverable error.
39  */
40 mutex_t	stall_mutex = DEFAULTMUTEX;
41 
42 static int shared_mutex_held(mutex_t *);
43 
44 /*
45  * Lock statistics support functions.
46  */
47 void
48 record_begin_hold(tdb_mutex_stats_t *msp)
49 {
50 	tdb_incr(msp->mutex_lock);
51 	msp->mutex_begin_hold = gethrtime();
52 }
53 
54 hrtime_t
55 record_hold_time(tdb_mutex_stats_t *msp)
56 {
57 	hrtime_t now = gethrtime();
58 
59 	if (msp->mutex_begin_hold)
60 		msp->mutex_hold_time += now - msp->mutex_begin_hold;
61 	msp->mutex_begin_hold = 0;
62 	return (now);
63 }
64 
65 /*
66  * Called once at library initialization.
67  */
68 void
69 mutex_setup(void)
70 {
71 	if (set_lock_byte(&stall_mutex.mutex_lockw))
72 		thr_panic("mutex_setup() cannot acquire stall_mutex");
73 	stall_mutex.mutex_owner = (uintptr_t)curthread;
74 }
75 
76 /*
77  * The default spin counts of 1000 and 500 are experimentally determined.
78  * On sun4u machines with any number of processors they could be raised
79  * to 10,000 but that (experimentally) makes almost no difference.
80  * The environment variables:
81  *	_THREAD_ADAPTIVE_SPIN=count
82  *	_THREAD_RELEASE_SPIN=count
83  * can be used to override and set the counts in the range [0 .. 1,000,000].
84  */
85 int	thread_adaptive_spin = 1000;
86 uint_t	thread_max_spinners = 100;
87 int	thread_release_spin = 500;
88 int	thread_queue_verify = 0;
89 static	int	ncpus;
90 
91 /*
92  * Distinguish spinning for queue locks from spinning for regular locks.
93  * The environment variable:
94  *	_THREAD_QUEUE_SPIN=count
95  * can be used to override and set the count in the range [0 .. 1,000,000].
96  * There is no release spin concept for queue locks.
97  */
98 int	thread_queue_spin = 1000;
99 
100 /*
101  * Use the otherwise-unused 'mutex_ownerpid' field of a USYNC_THREAD
102  * mutex to be a count of adaptive spins in progress.
103  */
104 #define	mutex_spinners	mutex_ownerpid
105 
106 void
107 _mutex_set_typeattr(mutex_t *mp, int attr)
108 {
109 	mp->mutex_type |= (uint8_t)attr;
110 }
111 
112 /*
113  * 'type' can be one of USYNC_THREAD or USYNC_PROCESS, possibly
114  * augmented by the flags LOCK_RECURSIVE and/or LOCK_ERRORCHECK,
115  * or it can be USYNC_PROCESS_ROBUST with no extra flags.
116  */
117 #pragma weak _private_mutex_init = __mutex_init
118 #pragma weak mutex_init = __mutex_init
119 #pragma weak _mutex_init = __mutex_init
120 /* ARGSUSED2 */
121 int
122 __mutex_init(mutex_t *mp, int type, void *arg)
123 {
124 	int error;
125 
126 	switch (type & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) {
127 	case USYNC_THREAD:
128 	case USYNC_PROCESS:
129 		(void) _memset(mp, 0, sizeof (*mp));
130 		mp->mutex_type = (uint8_t)type;
131 		mp->mutex_flag = LOCK_INITED;
132 		error = 0;
133 		break;
134 	case USYNC_PROCESS_ROBUST:
135 		if (type & (LOCK_RECURSIVE|LOCK_ERRORCHECK))
136 			error = EINVAL;
137 		else
138 			error = ___lwp_mutex_init(mp, type);
139 		break;
140 	default:
141 		error = EINVAL;
142 		break;
143 	}
144 	if (error == 0)
145 		mp->mutex_magic = MUTEX_MAGIC;
146 	return (error);
147 }
148 
149 /*
150  * Delete mp from list of ceil mutexes owned by curthread.
151  * Return 1 if the head of the chain was updated.
152  */
153 int
154 _ceil_mylist_del(mutex_t *mp)
155 {
156 	ulwp_t *self = curthread;
157 	mxchain_t **mcpp;
158 	mxchain_t *mcp;
159 
160 	mcpp = &self->ul_mxchain;
161 	while ((*mcpp)->mxchain_mx != mp)
162 		mcpp = &(*mcpp)->mxchain_next;
163 	mcp = *mcpp;
164 	*mcpp = mcp->mxchain_next;
165 	lfree(mcp, sizeof (*mcp));
166 	return (mcpp == &self->ul_mxchain);
167 }
168 
169 /*
170  * Add mp to head of list of ceil mutexes owned by curthread.
171  * Return ENOMEM if no memory could be allocated.
172  */
173 int
174 _ceil_mylist_add(mutex_t *mp)
175 {
176 	ulwp_t *self = curthread;
177 	mxchain_t *mcp;
178 
179 	if ((mcp = lmalloc(sizeof (*mcp))) == NULL)
180 		return (ENOMEM);
181 	mcp->mxchain_mx = mp;
182 	mcp->mxchain_next = self->ul_mxchain;
183 	self->ul_mxchain = mcp;
184 	return (0);
185 }
186 
187 /*
188  * Inherit priority from ceiling.  The inheritance impacts the effective
189  * priority, not the assigned priority.  See _thread_setschedparam_main().
190  */
191 void
192 _ceil_prio_inherit(int ceil)
193 {
194 	ulwp_t *self = curthread;
195 	struct sched_param param;
196 
197 	(void) _memset(&param, 0, sizeof (param));
198 	param.sched_priority = ceil;
199 	if (_thread_setschedparam_main(self->ul_lwpid,
200 	    self->ul_policy, &param, PRIO_INHERIT)) {
201 		/*
202 		 * Panic since unclear what error code to return.
203 		 * If we do return the error codes returned by above
204 		 * called routine, update the man page...
205 		 */
206 		thr_panic("_thread_setschedparam_main() fails");
207 	}
208 }
209 
210 /*
211  * Waive inherited ceiling priority.  Inherit from head of owned ceiling locks
212  * if holding at least one ceiling lock.  If no ceiling locks are held at this
213  * point, disinherit completely, reverting back to assigned priority.
214  */
215 void
216 _ceil_prio_waive(void)
217 {
218 	ulwp_t *self = curthread;
219 	struct sched_param param;
220 
221 	(void) _memset(&param, 0, sizeof (param));
222 	if (self->ul_mxchain == NULL) {
223 		/*
224 		 * No ceil locks held.  Zero the epri, revert back to ul_pri.
225 		 * Since thread's hash lock is not held, one cannot just
226 		 * read ul_pri here...do it in the called routine...
227 		 */
228 		param.sched_priority = self->ul_pri;	/* ignored */
229 		if (_thread_setschedparam_main(self->ul_lwpid,
230 		    self->ul_policy, &param, PRIO_DISINHERIT))
231 			thr_panic("_thread_setschedparam_main() fails");
232 	} else {
233 		/*
234 		 * Set priority to that of the mutex at the head
235 		 * of the ceilmutex chain.
236 		 */
237 		param.sched_priority =
238 		    self->ul_mxchain->mxchain_mx->mutex_ceiling;
239 		if (_thread_setschedparam_main(self->ul_lwpid,
240 		    self->ul_policy, &param, PRIO_INHERIT))
241 			thr_panic("_thread_setschedparam_main() fails");
242 	}
243 }
244 
245 /*
246  * Non-preemptive spin locks.  Used by queue_lock().
247  * No lock statistics are gathered for these locks.
248  */
249 void
250 spin_lock_set(mutex_t *mp)
251 {
252 	ulwp_t *self = curthread;
253 
254 	no_preempt(self);
255 	if (set_lock_byte(&mp->mutex_lockw) == 0) {
256 		mp->mutex_owner = (uintptr_t)self;
257 		return;
258 	}
259 	/*
260 	 * Spin for a while, attempting to acquire the lock.
261 	 */
262 	if (self->ul_spin_lock_spin != UINT_MAX)
263 		self->ul_spin_lock_spin++;
264 	if (mutex_queuelock_adaptive(mp) == 0 ||
265 	    set_lock_byte(&mp->mutex_lockw) == 0) {
266 		mp->mutex_owner = (uintptr_t)self;
267 		return;
268 	}
269 	/*
270 	 * Try harder if we were previously at a no premption level.
271 	 */
272 	if (self->ul_preempt > 1) {
273 		if (self->ul_spin_lock_spin2 != UINT_MAX)
274 			self->ul_spin_lock_spin2++;
275 		if (mutex_queuelock_adaptive(mp) == 0 ||
276 		    set_lock_byte(&mp->mutex_lockw) == 0) {
277 			mp->mutex_owner = (uintptr_t)self;
278 			return;
279 		}
280 	}
281 	/*
282 	 * Give up and block in the kernel for the mutex.
283 	 */
284 	if (self->ul_spin_lock_sleep != UINT_MAX)
285 		self->ul_spin_lock_sleep++;
286 	(void) ___lwp_mutex_timedlock(mp, NULL);
287 	mp->mutex_owner = (uintptr_t)self;
288 }
289 
290 void
291 spin_lock_clear(mutex_t *mp)
292 {
293 	ulwp_t *self = curthread;
294 
295 	mp->mutex_owner = 0;
296 	if (swap32(&mp->mutex_lockword, 0) & WAITERMASK) {
297 		(void) ___lwp_mutex_wakeup(mp);
298 		if (self->ul_spin_lock_wakeup != UINT_MAX)
299 			self->ul_spin_lock_wakeup++;
300 	}
301 	preempt(self);
302 }
303 
304 /*
305  * Allocate the sleep queue hash table.
306  */
307 void
308 queue_alloc(void)
309 {
310 	ulwp_t *self = curthread;
311 	uberdata_t *udp = self->ul_uberdata;
312 	void *data;
313 	int i;
314 
315 	/*
316 	 * No locks are needed; we call here only when single-threaded.
317 	 */
318 	ASSERT(self == udp->ulwp_one);
319 	ASSERT(!udp->uberflags.uf_mt);
320 	if ((data = _private_mmap(NULL, 2 * QHASHSIZE * sizeof (queue_head_t),
321 	    PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1, (off_t)0))
322 	    == MAP_FAILED)
323 		thr_panic("cannot allocate thread queue_head table");
324 	udp->queue_head = (queue_head_t *)data;
325 	for (i = 0; i < 2 * QHASHSIZE; i++)
326 		udp->queue_head[i].qh_lock.mutex_magic = MUTEX_MAGIC;
327 }
328 
329 #if defined(THREAD_DEBUG)
330 
331 /*
332  * Debugging: verify correctness of a sleep queue.
333  */
334 void
335 QVERIFY(queue_head_t *qp)
336 {
337 	ulwp_t *self = curthread;
338 	uberdata_t *udp = self->ul_uberdata;
339 	ulwp_t *ulwp;
340 	ulwp_t *prev;
341 	uint_t index;
342 	uint32_t cnt = 0;
343 	char qtype;
344 	void *wchan;
345 
346 	ASSERT(qp >= udp->queue_head && (qp - udp->queue_head) < 2 * QHASHSIZE);
347 	ASSERT(MUTEX_OWNED(&qp->qh_lock, self));
348 	ASSERT((qp->qh_head != NULL && qp->qh_tail != NULL) ||
349 		(qp->qh_head == NULL && qp->qh_tail == NULL));
350 	if (!thread_queue_verify)
351 		return;
352 	/* real expensive stuff, only for _THREAD_QUEUE_VERIFY */
353 	qtype = ((qp - udp->queue_head) < QHASHSIZE)? MX : CV;
354 	for (prev = NULL, ulwp = qp->qh_head; ulwp != NULL;
355 	    prev = ulwp, ulwp = ulwp->ul_link, cnt++) {
356 		ASSERT(ulwp->ul_qtype == qtype);
357 		ASSERT(ulwp->ul_wchan != NULL);
358 		ASSERT(ulwp->ul_sleepq == qp);
359 		wchan = ulwp->ul_wchan;
360 		index = QUEUE_HASH(wchan, qtype);
361 		ASSERT(&udp->queue_head[index] == qp);
362 	}
363 	ASSERT(qp->qh_tail == prev);
364 	ASSERT(qp->qh_qlen == cnt);
365 }
366 
367 #else	/* THREAD_DEBUG */
368 
369 #define	QVERIFY(qp)
370 
371 #endif	/* THREAD_DEBUG */
372 
373 /*
374  * Acquire a queue head.
375  */
376 queue_head_t *
377 queue_lock(void *wchan, int qtype)
378 {
379 	uberdata_t *udp = curthread->ul_uberdata;
380 	queue_head_t *qp;
381 
382 	ASSERT(qtype == MX || qtype == CV);
383 
384 	/*
385 	 * It is possible that we could be called while still single-threaded.
386 	 * If so, we call queue_alloc() to allocate the queue_head[] array.
387 	 */
388 	if ((qp = udp->queue_head) == NULL) {
389 		queue_alloc();
390 		qp = udp->queue_head;
391 	}
392 	qp += QUEUE_HASH(wchan, qtype);
393 	spin_lock_set(&qp->qh_lock);
394 	/*
395 	 * At once per nanosecond, qh_lockcount will wrap after 512 years.
396 	 * Were we to care about this, we could peg the value at UINT64_MAX.
397 	 */
398 	qp->qh_lockcount++;
399 	QVERIFY(qp);
400 	return (qp);
401 }
402 
403 /*
404  * Release a queue head.
405  */
406 void
407 queue_unlock(queue_head_t *qp)
408 {
409 	QVERIFY(qp);
410 	spin_lock_clear(&qp->qh_lock);
411 }
412 
413 /*
414  * For rwlock queueing, we must queue writers ahead of readers of the
415  * same priority.  We do this by making writers appear to have a half
416  * point higher priority for purposes of priority comparisons below.
417  */
418 #define	CMP_PRIO(ulwp)	((real_priority(ulwp) << 1) + (ulwp)->ul_writer)
419 
420 void
421 enqueue(queue_head_t *qp, ulwp_t *ulwp, void *wchan, int qtype)
422 {
423 	ulwp_t **ulwpp;
424 	ulwp_t *next;
425 	int pri = CMP_PRIO(ulwp);
426 	int force_fifo = (qtype & FIFOQ);
427 	int do_fifo;
428 
429 	qtype &= ~FIFOQ;
430 	ASSERT(qtype == MX || qtype == CV);
431 	ASSERT(MUTEX_OWNED(&qp->qh_lock, curthread));
432 	ASSERT(ulwp->ul_sleepq != qp);
433 
434 	/*
435 	 * LIFO queue ordering is unfair and can lead to starvation,
436 	 * but it gives better performance for heavily contended locks.
437 	 * We use thread_queue_fifo (range is 0..8) to determine
438 	 * the frequency of FIFO vs LIFO queuing:
439 	 *	0 : every 256th time	(almost always LIFO)
440 	 *	1 : every 128th time
441 	 *	2 : every 64th  time
442 	 *	3 : every 32nd  time
443 	 *	4 : every 16th  time	(the default value, mostly LIFO)
444 	 *	5 : every 8th   time
445 	 *	6 : every 4th   time
446 	 *	7 : every 2nd   time
447 	 *	8 : every time		(never LIFO, always FIFO)
448 	 * Note that there is always some degree of FIFO ordering.
449 	 * This breaks live lock conditions that occur in applications
450 	 * that are written assuming (incorrectly) that threads acquire
451 	 * locks fairly, that is, in roughly round-robin order.
452 	 * In any event, the queue is maintained in priority order.
453 	 *
454 	 * If we are given the FIFOQ flag in qtype, fifo queueing is forced.
455 	 * SUSV3 requires this for semaphores.
456 	 */
457 	do_fifo = (force_fifo ||
458 		((++qp->qh_qcnt << curthread->ul_queue_fifo) & 0xff) == 0);
459 
460 	if (qp->qh_head == NULL) {
461 		/*
462 		 * The queue is empty.  LIFO/FIFO doesn't matter.
463 		 */
464 		ASSERT(qp->qh_tail == NULL);
465 		ulwpp = &qp->qh_head;
466 	} else if (do_fifo) {
467 		/*
468 		 * Enqueue after the last thread whose priority is greater
469 		 * than or equal to the priority of the thread being queued.
470 		 * Attempt first to go directly onto the tail of the queue.
471 		 */
472 		if (pri <= CMP_PRIO(qp->qh_tail))
473 			ulwpp = &qp->qh_tail->ul_link;
474 		else {
475 			for (ulwpp = &qp->qh_head; (next = *ulwpp) != NULL;
476 			    ulwpp = &next->ul_link)
477 				if (pri > CMP_PRIO(next))
478 					break;
479 		}
480 	} else {
481 		/*
482 		 * Enqueue before the first thread whose priority is less
483 		 * than or equal to the priority of the thread being queued.
484 		 * Hopefully we can go directly onto the head of the queue.
485 		 */
486 		for (ulwpp = &qp->qh_head; (next = *ulwpp) != NULL;
487 		    ulwpp = &next->ul_link)
488 			if (pri >= CMP_PRIO(next))
489 				break;
490 	}
491 	if ((ulwp->ul_link = *ulwpp) == NULL)
492 		qp->qh_tail = ulwp;
493 	*ulwpp = ulwp;
494 
495 	ulwp->ul_sleepq = qp;
496 	ulwp->ul_wchan = wchan;
497 	ulwp->ul_qtype = qtype;
498 	if (qp->qh_qmax < ++qp->qh_qlen)
499 		qp->qh_qmax = qp->qh_qlen;
500 }
501 
502 /*
503  * Return a pointer to the queue slot of the
504  * highest priority thread on the queue.
505  * On return, prevp, if not NULL, will contain a pointer
506  * to the thread's predecessor on the queue
507  */
508 static ulwp_t **
509 queue_slot(queue_head_t *qp, void *wchan, int *more, ulwp_t **prevp)
510 {
511 	ulwp_t **ulwpp;
512 	ulwp_t *ulwp;
513 	ulwp_t *prev = NULL;
514 	ulwp_t **suspp = NULL;
515 	ulwp_t *susprev;
516 
517 	ASSERT(MUTEX_OWNED(&qp->qh_lock, curthread));
518 
519 	/*
520 	 * Find a waiter on the sleep queue.
521 	 */
522 	for (ulwpp = &qp->qh_head; (ulwp = *ulwpp) != NULL;
523 	    prev = ulwp, ulwpp = &ulwp->ul_link) {
524 		if (ulwp->ul_wchan == wchan) {
525 			if (!ulwp->ul_stop)
526 				break;
527 			/*
528 			 * Try not to return a suspended thread.
529 			 * This mimics the old libthread's behavior.
530 			 */
531 			if (suspp == NULL) {
532 				suspp = ulwpp;
533 				susprev = prev;
534 			}
535 		}
536 	}
537 
538 	if (ulwp == NULL && suspp != NULL) {
539 		ulwp = *(ulwpp = suspp);
540 		prev = susprev;
541 		suspp = NULL;
542 	}
543 	if (ulwp == NULL) {
544 		if (more != NULL)
545 			*more = 0;
546 		return (NULL);
547 	}
548 
549 	if (prevp != NULL)
550 		*prevp = prev;
551 	if (more == NULL)
552 		return (ulwpp);
553 
554 	/*
555 	 * Scan the remainder of the queue for another waiter.
556 	 */
557 	if (suspp != NULL) {
558 		*more = 1;
559 		return (ulwpp);
560 	}
561 	for (ulwp = ulwp->ul_link; ulwp != NULL; ulwp = ulwp->ul_link) {
562 		if (ulwp->ul_wchan == wchan) {
563 			*more = 1;
564 			return (ulwpp);
565 		}
566 	}
567 
568 	*more = 0;
569 	return (ulwpp);
570 }
571 
572 ulwp_t *
573 dequeue(queue_head_t *qp, void *wchan, int *more)
574 {
575 	ulwp_t **ulwpp;
576 	ulwp_t *ulwp;
577 	ulwp_t *prev;
578 
579 	if ((ulwpp = queue_slot(qp, wchan, more, &prev)) == NULL)
580 		return (NULL);
581 
582 	/*
583 	 * Dequeue the waiter.
584 	 */
585 	ulwp = *ulwpp;
586 	*ulwpp = ulwp->ul_link;
587 	ulwp->ul_link = NULL;
588 	if (qp->qh_tail == ulwp)
589 		qp->qh_tail = prev;
590 	qp->qh_qlen--;
591 	ulwp->ul_sleepq = NULL;
592 	ulwp->ul_wchan = NULL;
593 
594 	return (ulwp);
595 }
596 
597 /*
598  * Return a pointer to the highest priority thread sleeping on wchan.
599  */
600 ulwp_t *
601 queue_waiter(queue_head_t *qp, void *wchan)
602 {
603 	ulwp_t **ulwpp;
604 
605 	if ((ulwpp = queue_slot(qp, wchan, NULL, NULL)) == NULL)
606 		return (NULL);
607 	return (*ulwpp);
608 }
609 
610 uint8_t
611 dequeue_self(queue_head_t *qp, void *wchan)
612 {
613 	ulwp_t *self = curthread;
614 	ulwp_t **ulwpp;
615 	ulwp_t *ulwp;
616 	ulwp_t *prev = NULL;
617 	int found = 0;
618 	int more = 0;
619 
620 	ASSERT(MUTEX_OWNED(&qp->qh_lock, self));
621 
622 	/* find self on the sleep queue */
623 	for (ulwpp = &qp->qh_head; (ulwp = *ulwpp) != NULL;
624 	    prev = ulwp, ulwpp = &ulwp->ul_link) {
625 		if (ulwp == self) {
626 			/* dequeue ourself */
627 			*ulwpp = self->ul_link;
628 			if (qp->qh_tail == self)
629 				qp->qh_tail = prev;
630 			qp->qh_qlen--;
631 			ASSERT(self->ul_wchan == wchan);
632 			self->ul_cvmutex = NULL;
633 			self->ul_sleepq = NULL;
634 			self->ul_wchan = NULL;
635 			self->ul_cv_wake = 0;
636 			self->ul_link = NULL;
637 			found = 1;
638 			break;
639 		}
640 		if (ulwp->ul_wchan == wchan)
641 			more = 1;
642 	}
643 
644 	if (!found)
645 		thr_panic("dequeue_self(): curthread not found on queue");
646 
647 	if (more)
648 		return (1);
649 
650 	/* scan the remainder of the queue for another waiter */
651 	for (ulwp = *ulwpp; ulwp != NULL; ulwp = ulwp->ul_link) {
652 		if (ulwp->ul_wchan == wchan)
653 			return (1);
654 	}
655 
656 	return (0);
657 }
658 
659 /*
660  * Called from call_user_handler() and _thrp_suspend() to take
661  * ourself off of our sleep queue so we can grab locks.
662  */
663 void
664 unsleep_self(void)
665 {
666 	ulwp_t *self = curthread;
667 	queue_head_t *qp;
668 
669 	/*
670 	 * Calling enter_critical()/exit_critical() here would lead
671 	 * to recursion.  Just manipulate self->ul_critical directly.
672 	 */
673 	self->ul_critical++;
674 	self->ul_writer = 0;
675 	while (self->ul_sleepq != NULL) {
676 		qp = queue_lock(self->ul_wchan, self->ul_qtype);
677 		/*
678 		 * We may have been moved from a CV queue to a
679 		 * mutex queue while we were attempting queue_lock().
680 		 * If so, just loop around and try again.
681 		 * dequeue_self() clears self->ul_sleepq.
682 		 */
683 		if (qp == self->ul_sleepq)
684 			(void) dequeue_self(qp, self->ul_wchan);
685 		queue_unlock(qp);
686 	}
687 	self->ul_critical--;
688 }
689 
690 /*
691  * Common code for calling the the ___lwp_mutex_timedlock() system call.
692  * Returns with mutex_owner and mutex_ownerpid set correctly.
693  */
694 int
695 mutex_lock_kernel(mutex_t *mp, timespec_t *tsp, tdb_mutex_stats_t *msp)
696 {
697 	ulwp_t *self = curthread;
698 	uberdata_t *udp = self->ul_uberdata;
699 	hrtime_t begin_sleep;
700 	int error;
701 
702 	self->ul_sp = stkptr();
703 	self->ul_wchan = mp;
704 	if (__td_event_report(self, TD_SLEEP, udp)) {
705 		self->ul_td_evbuf.eventnum = TD_SLEEP;
706 		self->ul_td_evbuf.eventdata = mp;
707 		tdb_event(TD_SLEEP, udp);
708 	}
709 	if (msp) {
710 		tdb_incr(msp->mutex_sleep);
711 		begin_sleep = gethrtime();
712 	}
713 
714 	DTRACE_PROBE1(plockstat, mutex__block, mp);
715 
716 	for (;;) {
717 		if ((error = ___lwp_mutex_timedlock(mp, tsp)) != 0) {
718 			DTRACE_PROBE2(plockstat, mutex__blocked, mp, 0);
719 			DTRACE_PROBE2(plockstat, mutex__error, mp, error);
720 			break;
721 		}
722 
723 		if (mp->mutex_type & (USYNC_PROCESS | USYNC_PROCESS_ROBUST)) {
724 			/*
725 			 * Defend against forkall().  We may be the child,
726 			 * in which case we don't actually own the mutex.
727 			 */
728 			enter_critical(self);
729 			if (mp->mutex_ownerpid == udp->pid) {
730 				mp->mutex_owner = (uintptr_t)self;
731 				exit_critical(self);
732 				DTRACE_PROBE2(plockstat, mutex__blocked, mp, 1);
733 				DTRACE_PROBE3(plockstat, mutex__acquire, mp,
734 				    0, 0);
735 				break;
736 			}
737 			exit_critical(self);
738 		} else {
739 			mp->mutex_owner = (uintptr_t)self;
740 			DTRACE_PROBE2(plockstat, mutex__blocked, mp, 1);
741 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
742 			break;
743 		}
744 	}
745 	if (msp)
746 		msp->mutex_sleep_time += gethrtime() - begin_sleep;
747 	self->ul_wchan = NULL;
748 	self->ul_sp = 0;
749 
750 	return (error);
751 }
752 
753 /*
754  * Common code for calling the ___lwp_mutex_trylock() system call.
755  * Returns with mutex_owner and mutex_ownerpid set correctly.
756  */
757 int
758 mutex_trylock_kernel(mutex_t *mp)
759 {
760 	ulwp_t *self = curthread;
761 	uberdata_t *udp = self->ul_uberdata;
762 	int error;
763 
764 	for (;;) {
765 		if ((error = ___lwp_mutex_trylock(mp)) != 0) {
766 			if (error != EBUSY) {
767 				DTRACE_PROBE2(plockstat, mutex__error, mp,
768 				    error);
769 			}
770 			break;
771 		}
772 
773 		if (mp->mutex_type & (USYNC_PROCESS | USYNC_PROCESS_ROBUST)) {
774 			/*
775 			 * Defend against forkall().  We may be the child,
776 			 * in which case we don't actually own the mutex.
777 			 */
778 			enter_critical(self);
779 			if (mp->mutex_ownerpid == udp->pid) {
780 				mp->mutex_owner = (uintptr_t)self;
781 				exit_critical(self);
782 				DTRACE_PROBE3(plockstat, mutex__acquire, mp,
783 				    0, 0);
784 				break;
785 			}
786 			exit_critical(self);
787 		} else {
788 			mp->mutex_owner = (uintptr_t)self;
789 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
790 			break;
791 		}
792 	}
793 
794 	return (error);
795 }
796 
797 volatile sc_shared_t *
798 setup_schedctl(void)
799 {
800 	ulwp_t *self = curthread;
801 	volatile sc_shared_t *scp;
802 	sc_shared_t *tmp;
803 
804 	if ((scp = self->ul_schedctl) == NULL && /* no shared state yet */
805 	    !self->ul_vfork &&			/* not a child of vfork() */
806 	    !self->ul_schedctl_called) {	/* haven't been called before */
807 		enter_critical(self);
808 		self->ul_schedctl_called = &self->ul_uberdata->uberflags;
809 		if ((tmp = __schedctl()) != (sc_shared_t *)(-1))
810 			self->ul_schedctl = scp = tmp;
811 		exit_critical(self);
812 	}
813 	/*
814 	 * Unless the call to setup_schedctl() is surrounded
815 	 * by enter_critical()/exit_critical(), the address
816 	 * we are returning could be invalid due to a forkall()
817 	 * having occurred in another thread.
818 	 */
819 	return (scp);
820 }
821 
822 /*
823  * Interfaces from libsched, incorporated into libc.
824  * libsched.so.1 is now a filter library onto libc.
825  */
826 #pragma weak schedctl_lookup = _schedctl_init
827 #pragma weak _schedctl_lookup = _schedctl_init
828 #pragma weak schedctl_init = _schedctl_init
829 schedctl_t *
830 _schedctl_init(void)
831 {
832 	volatile sc_shared_t *scp = setup_schedctl();
833 	return ((scp == NULL)? NULL : (schedctl_t *)&scp->sc_preemptctl);
834 }
835 
836 #pragma weak schedctl_exit = _schedctl_exit
837 void
838 _schedctl_exit(void)
839 {
840 }
841 
842 /*
843  * Contract private interface for java.
844  * Set up the schedctl data if it doesn't exist yet.
845  * Return a pointer to the pointer to the schedctl data.
846  */
847 volatile sc_shared_t *volatile *
848 _thr_schedctl(void)
849 {
850 	ulwp_t *self = curthread;
851 	volatile sc_shared_t *volatile *ptr;
852 
853 	if (self->ul_vfork)
854 		return (NULL);
855 	if (*(ptr = &self->ul_schedctl) == NULL)
856 		(void) setup_schedctl();
857 	return (ptr);
858 }
859 
860 /*
861  * Block signals and attempt to block preemption.
862  * no_preempt()/preempt() must be used in pairs but can be nested.
863  */
864 void
865 no_preempt(ulwp_t *self)
866 {
867 	volatile sc_shared_t *scp;
868 
869 	if (self->ul_preempt++ == 0) {
870 		enter_critical(self);
871 		if ((scp = self->ul_schedctl) != NULL ||
872 		    (scp = setup_schedctl()) != NULL) {
873 			/*
874 			 * Save the pre-existing preempt value.
875 			 */
876 			self->ul_savpreempt = scp->sc_preemptctl.sc_nopreempt;
877 			scp->sc_preemptctl.sc_nopreempt = 1;
878 		}
879 	}
880 }
881 
882 /*
883  * Undo the effects of no_preempt().
884  */
885 void
886 preempt(ulwp_t *self)
887 {
888 	volatile sc_shared_t *scp;
889 
890 	ASSERT(self->ul_preempt > 0);
891 	if (--self->ul_preempt == 0) {
892 		if ((scp = self->ul_schedctl) != NULL) {
893 			/*
894 			 * Restore the pre-existing preempt value.
895 			 */
896 			scp->sc_preemptctl.sc_nopreempt = self->ul_savpreempt;
897 			if (scp->sc_preemptctl.sc_yield &&
898 			    scp->sc_preemptctl.sc_nopreempt == 0) {
899 				lwp_yield();
900 				if (scp->sc_preemptctl.sc_yield) {
901 					/*
902 					 * Shouldn't happen.  This is either
903 					 * a race condition or the thread
904 					 * just entered the real-time class.
905 					 */
906 					lwp_yield();
907 					scp->sc_preemptctl.sc_yield = 0;
908 				}
909 			}
910 		}
911 		exit_critical(self);
912 	}
913 }
914 
915 /*
916  * If a call to preempt() would cause the current thread to yield or to
917  * take deferred actions in exit_critical(), then unpark the specified
918  * lwp so it can run while we delay.  Return the original lwpid if the
919  * unpark was not performed, else return zero.  The tests are a repeat
920  * of some of the tests in preempt(), above.  This is a statistical
921  * optimization solely for cond_sleep_queue(), below.
922  */
923 static lwpid_t
924 preempt_unpark(ulwp_t *self, lwpid_t lwpid)
925 {
926 	volatile sc_shared_t *scp = self->ul_schedctl;
927 
928 	ASSERT(self->ul_preempt == 1 && self->ul_critical > 0);
929 	if ((scp != NULL && scp->sc_preemptctl.sc_yield) ||
930 	    (self->ul_curplease && self->ul_critical == 1)) {
931 		(void) __lwp_unpark(lwpid);
932 		lwpid = 0;
933 	}
934 	return (lwpid);
935 }
936 
937 /*
938  * Spin for a while, trying to grab the lock.  We know that we
939  * failed set_lock_byte(&mp->mutex_lockw) once before coming here.
940  * If this fails, return EBUSY and let the caller deal with it.
941  * If this succeeds, return 0 with mutex_owner set to curthread.
942  */
943 int
944 mutex_trylock_adaptive(mutex_t *mp)
945 {
946 	ulwp_t *self = curthread;
947 	ulwp_t *ulwp;
948 	volatile sc_shared_t *scp;
949 	volatile uint8_t *lockp;
950 	volatile uint64_t *ownerp;
951 	int count, max = self->ul_adaptive_spin;
952 
953 	ASSERT(!(mp->mutex_type & (USYNC_PROCESS | USYNC_PROCESS_ROBUST)));
954 
955 	if (max == 0 || (mp->mutex_spinners >= self->ul_max_spinners))
956 		return (EBUSY);
957 
958 	lockp = (volatile uint8_t *)&mp->mutex_lockw;
959 	ownerp = (volatile uint64_t *)&mp->mutex_owner;
960 
961 	DTRACE_PROBE1(plockstat, mutex__spin, mp);
962 
963 	/*
964 	 * This spin loop is unfair to lwps that have already dropped into
965 	 * the kernel to sleep.  They will starve on a highly-contended mutex.
966 	 * This is just too bad.  The adaptive spin algorithm is intended
967 	 * to allow programs with highly-contended locks (that is, broken
968 	 * programs) to execute with reasonable speed despite their contention.
969 	 * Being fair would reduce the speed of such programs and well-written
970 	 * programs will not suffer in any case.
971 	 */
972 	enter_critical(self);		/* protects ul_schedctl */
973 	incr32(&mp->mutex_spinners);
974 	for (count = 0; count < max; count++) {
975 		if (*lockp == 0 && set_lock_byte(lockp) == 0) {
976 			*ownerp = (uintptr_t)self;
977 			decr32(&mp->mutex_spinners);
978 			exit_critical(self);
979 			DTRACE_PROBE2(plockstat, mutex__spun, 1, count);
980 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, count);
981 			return (0);
982 		}
983 		SMT_PAUSE();
984 		/*
985 		 * Stop spinning if the mutex owner is not running on
986 		 * a processor; it will not drop the lock any time soon
987 		 * and we would just be wasting time to keep spinning.
988 		 *
989 		 * Note that we are looking at another thread (ulwp_t)
990 		 * without ensuring that the other thread does not exit.
991 		 * The scheme relies on ulwp_t structures never being
992 		 * deallocated by the library (the library employs a free
993 		 * list of ulwp_t structs that are reused when new threads
994 		 * are created) and on schedctl shared memory never being
995 		 * deallocated once created via __schedctl().
996 		 *
997 		 * Thus, the worst that can happen when the spinning thread
998 		 * looks at the owner's schedctl data is that it is looking
999 		 * at some other thread's schedctl data.  This almost never
1000 		 * happens and is benign when it does.
1001 		 */
1002 		if ((ulwp = (ulwp_t *)(uintptr_t)*ownerp) != NULL &&
1003 		    ((scp = ulwp->ul_schedctl) == NULL ||
1004 		    scp->sc_state != SC_ONPROC))
1005 			break;
1006 	}
1007 	decr32(&mp->mutex_spinners);
1008 	exit_critical(self);
1009 
1010 	DTRACE_PROBE2(plockstat, mutex__spun, 0, count);
1011 
1012 	return (EBUSY);
1013 }
1014 
1015 /*
1016  * Same as mutex_trylock_adaptive(), except specifically for queue locks.
1017  * The owner field is not set here; the caller (spin_lock_set()) sets it.
1018  */
1019 int
1020 mutex_queuelock_adaptive(mutex_t *mp)
1021 {
1022 	ulwp_t *ulwp;
1023 	volatile sc_shared_t *scp;
1024 	volatile uint8_t *lockp;
1025 	volatile uint64_t *ownerp;
1026 	int count = curthread->ul_queue_spin;
1027 
1028 	ASSERT(mp->mutex_type == USYNC_THREAD);
1029 
1030 	if (count == 0)
1031 		return (EBUSY);
1032 
1033 	lockp = (volatile uint8_t *)&mp->mutex_lockw;
1034 	ownerp = (volatile uint64_t *)&mp->mutex_owner;
1035 	while (--count >= 0) {
1036 		if (*lockp == 0 && set_lock_byte(lockp) == 0)
1037 			return (0);
1038 		SMT_PAUSE();
1039 		if ((ulwp = (ulwp_t *)(uintptr_t)*ownerp) != NULL &&
1040 		    ((scp = ulwp->ul_schedctl) == NULL ||
1041 		    scp->sc_state != SC_ONPROC))
1042 			break;
1043 	}
1044 
1045 	return (EBUSY);
1046 }
1047 
1048 /*
1049  * Like mutex_trylock_adaptive(), but for process-shared mutexes.
1050  * Spin for a while, trying to grab the lock.  We know that we
1051  * failed set_lock_byte(&mp->mutex_lockw) once before coming here.
1052  * If this fails, return EBUSY and let the caller deal with it.
1053  * If this succeeds, return 0 with mutex_owner set to curthread
1054  * and mutex_ownerpid set to the current pid.
1055  */
1056 int
1057 mutex_trylock_process(mutex_t *mp)
1058 {
1059 	ulwp_t *self = curthread;
1060 	uberdata_t *udp = self->ul_uberdata;
1061 	int count;
1062 	volatile uint8_t *lockp;
1063 	volatile uint64_t *ownerp;
1064 	volatile int32_t *pidp;
1065 	pid_t pid, newpid;
1066 	uint64_t owner, newowner;
1067 
1068 	if ((count = ncpus) == 0)
1069 		count = ncpus = (int)_sysconf(_SC_NPROCESSORS_ONLN);
1070 	count = (count > 1)? self->ul_adaptive_spin : 0;
1071 
1072 	ASSERT((mp->mutex_type & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) ==
1073 		USYNC_PROCESS);
1074 
1075 	if (count == 0)
1076 		return (EBUSY);
1077 
1078 	lockp = (volatile uint8_t *)&mp->mutex_lockw;
1079 	ownerp = (volatile uint64_t *)&mp->mutex_owner;
1080 	pidp = (volatile int32_t *)&mp->mutex_ownerpid;
1081 	owner = *ownerp;
1082 	pid = *pidp;
1083 	/*
1084 	 * This is a process-shared mutex.
1085 	 * We cannot know if the owner is running on a processor.
1086 	 * We just spin and hope that it is on a processor.
1087 	 */
1088 	while (--count >= 0) {
1089 		if (*lockp == 0) {
1090 			enter_critical(self);
1091 			if (set_lock_byte(lockp) == 0) {
1092 				*ownerp = (uintptr_t)self;
1093 				*pidp = udp->pid;
1094 				exit_critical(self);
1095 				DTRACE_PROBE3(plockstat, mutex__acquire, mp,
1096 				    0, 0);
1097 				return (0);
1098 			}
1099 			exit_critical(self);
1100 		} else if ((newowner = *ownerp) == owner &&
1101 		    (newpid = *pidp) == pid) {
1102 			SMT_PAUSE();
1103 			continue;
1104 		}
1105 		/*
1106 		 * The owner of the lock changed; start the count over again.
1107 		 * This may be too aggressive; it needs testing.
1108 		 */
1109 		owner = newowner;
1110 		pid = newpid;
1111 		count = self->ul_adaptive_spin;
1112 	}
1113 
1114 	return (EBUSY);
1115 }
1116 
1117 /*
1118  * Mutex wakeup code for releasing a USYNC_THREAD mutex.
1119  * Returns the lwpid of the thread that was dequeued, if any.
1120  * The caller of mutex_wakeup() must call __lwp_unpark(lwpid)
1121  * to wake up the specified lwp.
1122  */
1123 lwpid_t
1124 mutex_wakeup(mutex_t *mp)
1125 {
1126 	lwpid_t lwpid = 0;
1127 	queue_head_t *qp;
1128 	ulwp_t *ulwp;
1129 	int more;
1130 
1131 	/*
1132 	 * Dequeue a waiter from the sleep queue.  Don't touch the mutex
1133 	 * waiters bit if no one was found on the queue because the mutex
1134 	 * might have been deallocated or reallocated for another purpose.
1135 	 */
1136 	qp = queue_lock(mp, MX);
1137 	if ((ulwp = dequeue(qp, mp, &more)) != NULL) {
1138 		lwpid = ulwp->ul_lwpid;
1139 		mp->mutex_waiters = (more? 1 : 0);
1140 	}
1141 	queue_unlock(qp);
1142 	return (lwpid);
1143 }
1144 
1145 /*
1146  * Spin for a while, testing to see if the lock has been grabbed.
1147  * If this fails, call mutex_wakeup() to release a waiter.
1148  */
1149 lwpid_t
1150 mutex_unlock_queue(mutex_t *mp)
1151 {
1152 	ulwp_t *self = curthread;
1153 	uint32_t *lockw = &mp->mutex_lockword;
1154 	lwpid_t lwpid;
1155 	volatile uint8_t *lockp;
1156 	volatile uint32_t *spinp;
1157 	int count;
1158 
1159 	/*
1160 	 * We use the swap primitive to clear the lock, but we must
1161 	 * atomically retain the waiters bit for the remainder of this
1162 	 * code to work.  We first check to see if the waiters bit is
1163 	 * set and if so clear the lock by swapping in a word containing
1164 	 * only the waiters bit.  This could produce a false positive test
1165 	 * for whether there are waiters that need to be waked up, but
1166 	 * this just causes an extra call to mutex_wakeup() to do nothing.
1167 	 * The opposite case is more delicate:  If there are no waiters,
1168 	 * we swap in a zero lock byte and a zero waiters bit.  The result
1169 	 * of the swap could indicate that there really was a waiter so in
1170 	 * this case we go directly to mutex_wakeup() without performing
1171 	 * any of the adaptive code because the waiter bit has been cleared
1172 	 * and the adaptive code is unreliable in this case.
1173 	 */
1174 	if (!(*lockw & WAITERMASK)) {	/* no waiter exists right now */
1175 		mp->mutex_owner = 0;
1176 		DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
1177 		if (!(swap32(lockw, 0) & WAITERMASK))	/* still no waiters */
1178 			return (0);
1179 		no_preempt(self);	/* ensure a prompt wakeup */
1180 		lwpid = mutex_wakeup(mp);
1181 	} else {
1182 		no_preempt(self);	/* ensure a prompt wakeup */
1183 		lockp = (volatile uint8_t *)&mp->mutex_lockw;
1184 		spinp = (volatile uint32_t *)&mp->mutex_spinners;
1185 		mp->mutex_owner = 0;
1186 		DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
1187 		(void) swap32(lockw, WAITER);	/* clear lock, retain waiter */
1188 
1189 		/*
1190 		 * We spin here fewer times than mutex_trylock_adaptive().
1191 		 * We are trying to balance two conflicting goals:
1192 		 * 1. Avoid waking up anyone if a spinning thread
1193 		 *    grabs the lock.
1194 		 * 2. Wake up a sleeping thread promptly to get on
1195 		 *    with useful work.
1196 		 * We don't spin at all if there is no acquiring spinner;
1197 		 * (mp->mutex_spinners is non-zero if there are spinners).
1198 		 */
1199 		for (count = self->ul_release_spin;
1200 		    *spinp && count > 0; count--) {
1201 			/*
1202 			 * There is a waiter that we will have to wake
1203 			 * up unless someone else grabs the lock while
1204 			 * we are busy spinning.  Like the spin loop in
1205 			 * mutex_trylock_adaptive(), this spin loop is
1206 			 * unfair to lwps that have already dropped into
1207 			 * the kernel to sleep.  They will starve on a
1208 			 * highly-contended mutex.  Too bad.
1209 			 */
1210 			if (*lockp != 0) {	/* somebody grabbed the lock */
1211 				preempt(self);
1212 				return (0);
1213 			}
1214 			SMT_PAUSE();
1215 		}
1216 
1217 		/*
1218 		 * No one grabbed the lock.
1219 		 * Wake up some lwp that is waiting for it.
1220 		 */
1221 		mp->mutex_waiters = 0;
1222 		lwpid = mutex_wakeup(mp);
1223 	}
1224 
1225 	if (lwpid == 0)
1226 		preempt(self);
1227 	return (lwpid);
1228 }
1229 
1230 /*
1231  * Like mutex_unlock_queue(), but for process-shared mutexes.
1232  * We tested the waiters field before calling here and it was non-zero.
1233  */
1234 void
1235 mutex_unlock_process(mutex_t *mp)
1236 {
1237 	ulwp_t *self = curthread;
1238 	int count;
1239 	volatile uint8_t *lockp;
1240 
1241 	/*
1242 	 * See the comments in mutex_unlock_queue(), above.
1243 	 */
1244 	if ((count = ncpus) == 0)
1245 		count = ncpus = (int)_sysconf(_SC_NPROCESSORS_ONLN);
1246 	count = (count > 1)? self->ul_release_spin : 0;
1247 	no_preempt(self);
1248 	mp->mutex_owner = 0;
1249 	mp->mutex_ownerpid = 0;
1250 	DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
1251 	if (count == 0) {
1252 		/* clear lock, test waiter */
1253 		if (!(swap32(&mp->mutex_lockword, 0) & WAITERMASK)) {
1254 			/* no waiters now */
1255 			preempt(self);
1256 			return;
1257 		}
1258 	} else {
1259 		/* clear lock, retain waiter */
1260 		(void) swap32(&mp->mutex_lockword, WAITER);
1261 		lockp = (volatile uint8_t *)&mp->mutex_lockw;
1262 		while (--count >= 0) {
1263 			if (*lockp != 0) {
1264 				/* somebody grabbed the lock */
1265 				preempt(self);
1266 				return;
1267 			}
1268 			SMT_PAUSE();
1269 		}
1270 		/*
1271 		 * We must clear the waiters field before going
1272 		 * to the kernel, else it could remain set forever.
1273 		 */
1274 		mp->mutex_waiters = 0;
1275 	}
1276 	(void) ___lwp_mutex_wakeup(mp);
1277 	preempt(self);
1278 }
1279 
1280 /*
1281  * Return the real priority of a thread.
1282  */
1283 int
1284 real_priority(ulwp_t *ulwp)
1285 {
1286 	if (ulwp->ul_epri == 0)
1287 		return (ulwp->ul_mappedpri? ulwp->ul_mappedpri : ulwp->ul_pri);
1288 	return (ulwp->ul_emappedpri? ulwp->ul_emappedpri : ulwp->ul_epri);
1289 }
1290 
1291 void
1292 stall(void)
1293 {
1294 	for (;;)
1295 		(void) mutex_lock_kernel(&stall_mutex, NULL, NULL);
1296 }
1297 
1298 /*
1299  * Acquire a USYNC_THREAD mutex via user-level sleep queues.
1300  * We failed set_lock_byte(&mp->mutex_lockw) before coming here.
1301  * Returns with mutex_owner set correctly.
1302  */
1303 int
1304 mutex_lock_queue(ulwp_t *self, tdb_mutex_stats_t *msp, mutex_t *mp,
1305 	timespec_t *tsp)
1306 {
1307 	uberdata_t *udp = curthread->ul_uberdata;
1308 	queue_head_t *qp;
1309 	hrtime_t begin_sleep;
1310 	int error = 0;
1311 
1312 	self->ul_sp = stkptr();
1313 	if (__td_event_report(self, TD_SLEEP, udp)) {
1314 		self->ul_wchan = mp;
1315 		self->ul_td_evbuf.eventnum = TD_SLEEP;
1316 		self->ul_td_evbuf.eventdata = mp;
1317 		tdb_event(TD_SLEEP, udp);
1318 	}
1319 	if (msp) {
1320 		tdb_incr(msp->mutex_sleep);
1321 		begin_sleep = gethrtime();
1322 	}
1323 
1324 	DTRACE_PROBE1(plockstat, mutex__block, mp);
1325 
1326 	/*
1327 	 * Put ourself on the sleep queue, and while we are
1328 	 * unable to grab the lock, go park in the kernel.
1329 	 * Take ourself off the sleep queue after we acquire the lock.
1330 	 * The waiter bit can be set/cleared only while holding the queue lock.
1331 	 */
1332 	qp = queue_lock(mp, MX);
1333 	enqueue(qp, self, mp, MX);
1334 	mp->mutex_waiters = 1;
1335 	for (;;) {
1336 		if (set_lock_byte(&mp->mutex_lockw) == 0) {
1337 			mp->mutex_owner = (uintptr_t)self;
1338 			DTRACE_PROBE2(plockstat, mutex__blocked, mp, 1);
1339 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
1340 			mp->mutex_waiters = dequeue_self(qp, mp);
1341 			break;
1342 		}
1343 		set_parking_flag(self, 1);
1344 		queue_unlock(qp);
1345 		/*
1346 		 * __lwp_park() will return the residual time in tsp
1347 		 * if we are unparked before the timeout expires.
1348 		 */
1349 		if ((error = __lwp_park(tsp, 0)) == EINTR)
1350 			error = 0;
1351 		set_parking_flag(self, 0);
1352 		/*
1353 		 * We could have taken a signal or suspended ourself.
1354 		 * If we did, then we removed ourself from the queue.
1355 		 * Someone else may have removed us from the queue
1356 		 * as a consequence of mutex_unlock().  We may have
1357 		 * gotten a timeout from __lwp_park().  Or we may still
1358 		 * be on the queue and this is just a spurious wakeup.
1359 		 */
1360 		qp = queue_lock(mp, MX);
1361 		if (self->ul_sleepq == NULL) {
1362 			if (error) {
1363 				DTRACE_PROBE2(plockstat, mutex__blocked, mp, 0);
1364 				DTRACE_PROBE2(plockstat, mutex__error, mp,
1365 				    error);
1366 				break;
1367 			}
1368 			if (set_lock_byte(&mp->mutex_lockw) == 0) {
1369 				mp->mutex_owner = (uintptr_t)self;
1370 				DTRACE_PROBE2(plockstat, mutex__blocked, mp, 1);
1371 				DTRACE_PROBE3(plockstat, mutex__acquire, mp,
1372 				    0, 0);
1373 				break;
1374 			}
1375 			enqueue(qp, self, mp, MX);
1376 			mp->mutex_waiters = 1;
1377 		}
1378 		ASSERT(self->ul_sleepq == qp &&
1379 		    self->ul_qtype == MX &&
1380 		    self->ul_wchan == mp);
1381 		if (error) {
1382 			mp->mutex_waiters = dequeue_self(qp, mp);
1383 			DTRACE_PROBE2(plockstat, mutex__blocked, mp, 0);
1384 			DTRACE_PROBE2(plockstat, mutex__error, mp, error);
1385 			break;
1386 		}
1387 	}
1388 
1389 	ASSERT(self->ul_sleepq == NULL && self->ul_link == NULL &&
1390 	    self->ul_wchan == NULL);
1391 	self->ul_sp = 0;
1392 
1393 	queue_unlock(qp);
1394 	if (msp)
1395 		msp->mutex_sleep_time += gethrtime() - begin_sleep;
1396 
1397 	ASSERT(error == 0 || error == EINVAL || error == ETIME);
1398 	return (error);
1399 }
1400 
1401 /*
1402  * Returns with mutex_owner set correctly.
1403  */
1404 int
1405 mutex_lock_internal(mutex_t *mp, timespec_t *tsp, int try)
1406 {
1407 	ulwp_t *self = curthread;
1408 	uberdata_t *udp = self->ul_uberdata;
1409 	int mtype = mp->mutex_type;
1410 	tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp);
1411 	int error = 0;
1412 
1413 	ASSERT(try == MUTEX_TRY || try == MUTEX_LOCK);
1414 
1415 	if (!self->ul_schedctl_called)
1416 		(void) setup_schedctl();
1417 
1418 	if (msp && try == MUTEX_TRY)
1419 		tdb_incr(msp->mutex_try);
1420 
1421 	if ((mtype & (LOCK_RECURSIVE|LOCK_ERRORCHECK)) && mutex_is_held(mp)) {
1422 		if (mtype & LOCK_RECURSIVE) {
1423 			if (mp->mutex_rcount == RECURSION_MAX) {
1424 				error = EAGAIN;
1425 			} else {
1426 				mp->mutex_rcount++;
1427 				DTRACE_PROBE3(plockstat, mutex__acquire, mp,
1428 				    1, 0);
1429 				return (0);
1430 			}
1431 		} else if (try == MUTEX_TRY) {
1432 			return (EBUSY);
1433 		} else {
1434 			DTRACE_PROBE2(plockstat, mutex__error, mp, EDEADLK);
1435 			return (EDEADLK);
1436 		}
1437 	}
1438 
1439 	if (self->ul_error_detection && try == MUTEX_LOCK &&
1440 	    tsp == NULL && mutex_is_held(mp))
1441 		lock_error(mp, "mutex_lock", NULL, NULL);
1442 
1443 	if (mtype &
1444 	    (USYNC_PROCESS_ROBUST|PTHREAD_PRIO_INHERIT|PTHREAD_PRIO_PROTECT)) {
1445 		uint8_t ceil;
1446 		int myprio;
1447 
1448 		if (mtype & PTHREAD_PRIO_PROTECT) {
1449 			ceil = mp->mutex_ceiling;
1450 			ASSERT(_validate_rt_prio(SCHED_FIFO, ceil) == 0);
1451 			myprio = real_priority(self);
1452 			if (myprio > ceil) {
1453 				DTRACE_PROBE2(plockstat, mutex__error, mp,
1454 				    EINVAL);
1455 				return (EINVAL);
1456 			}
1457 			if ((error = _ceil_mylist_add(mp)) != 0) {
1458 				DTRACE_PROBE2(plockstat, mutex__error, mp,
1459 				    error);
1460 				return (error);
1461 			}
1462 			if (myprio < ceil)
1463 				_ceil_prio_inherit(ceil);
1464 		}
1465 
1466 		if (mtype & PTHREAD_PRIO_INHERIT) {
1467 			/* go straight to the kernel */
1468 			if (try == MUTEX_TRY)
1469 				error = mutex_trylock_kernel(mp);
1470 			else	/* MUTEX_LOCK */
1471 				error = mutex_lock_kernel(mp, tsp, msp);
1472 			/*
1473 			 * The kernel never sets or clears the lock byte
1474 			 * for PTHREAD_PRIO_INHERIT mutexes.
1475 			 * Set it here for debugging consistency.
1476 			 */
1477 			switch (error) {
1478 			case 0:
1479 			case EOWNERDEAD:
1480 				mp->mutex_lockw = LOCKSET;
1481 				break;
1482 			}
1483 		} else if (mtype & USYNC_PROCESS_ROBUST) {
1484 			/* go straight to the kernel */
1485 			if (try == MUTEX_TRY)
1486 				error = mutex_trylock_kernel(mp);
1487 			else	/* MUTEX_LOCK */
1488 				error = mutex_lock_kernel(mp, tsp, msp);
1489 		} else {	/* PTHREAD_PRIO_PROTECT */
1490 			/*
1491 			 * Try once at user level before going to the kernel.
1492 			 * If this is a process shared mutex then protect
1493 			 * against forkall() while setting mp->mutex_ownerpid.
1494 			 */
1495 			if (mtype & (USYNC_PROCESS | USYNC_PROCESS_ROBUST)) {
1496 				enter_critical(self);
1497 				if (set_lock_byte(&mp->mutex_lockw) == 0) {
1498 					mp->mutex_owner = (uintptr_t)self;
1499 					mp->mutex_ownerpid = udp->pid;
1500 					exit_critical(self);
1501 					DTRACE_PROBE3(plockstat,
1502 					    mutex__acquire, mp, 0, 0);
1503 				} else {
1504 					exit_critical(self);
1505 					error = EBUSY;
1506 				}
1507 			} else {
1508 				if (set_lock_byte(&mp->mutex_lockw) == 0) {
1509 					mp->mutex_owner = (uintptr_t)self;
1510 					DTRACE_PROBE3(plockstat,
1511 					    mutex__acquire, mp, 0, 0);
1512 				} else {
1513 					error = EBUSY;
1514 				}
1515 			}
1516 			if (error && try == MUTEX_LOCK)
1517 				error = mutex_lock_kernel(mp, tsp, msp);
1518 		}
1519 
1520 		if (error) {
1521 			if (mtype & PTHREAD_PRIO_INHERIT) {
1522 				switch (error) {
1523 				case EOWNERDEAD:
1524 				case ENOTRECOVERABLE:
1525 					if (mtype & PTHREAD_MUTEX_ROBUST_NP)
1526 						break;
1527 					if (error == EOWNERDEAD) {
1528 						/*
1529 						 * We own the mutex; unlock it.
1530 						 * It becomes ENOTRECOVERABLE.
1531 						 * All waiters are waked up.
1532 						 */
1533 						mp->mutex_owner = 0;
1534 						mp->mutex_ownerpid = 0;
1535 						DTRACE_PROBE2(plockstat,
1536 						    mutex__release, mp, 0);
1537 						mp->mutex_lockw = LOCKCLEAR;
1538 						(void) ___lwp_mutex_unlock(mp);
1539 					}
1540 					/* FALLTHROUGH */
1541 				case EDEADLK:
1542 					if (try == MUTEX_LOCK)
1543 						stall();
1544 					error = EBUSY;
1545 					break;
1546 				}
1547 			}
1548 			if ((mtype & PTHREAD_PRIO_PROTECT) &&
1549 			    error != EOWNERDEAD) {
1550 				(void) _ceil_mylist_del(mp);
1551 				if (myprio < ceil)
1552 					_ceil_prio_waive();
1553 			}
1554 		}
1555 	} else if (mtype & USYNC_PROCESS) {
1556 		/*
1557 		 * This is a process shared mutex.  Protect against
1558 		 * forkall() while setting mp->mutex_ownerpid.
1559 		 */
1560 		enter_critical(self);
1561 		if (set_lock_byte(&mp->mutex_lockw) == 0) {
1562 			mp->mutex_owner = (uintptr_t)self;
1563 			mp->mutex_ownerpid = udp->pid;
1564 			exit_critical(self);
1565 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
1566 		} else {
1567 			/* try a little harder */
1568 			exit_critical(self);
1569 			error = mutex_trylock_process(mp);
1570 		}
1571 		if (error && try == MUTEX_LOCK)
1572 			error = mutex_lock_kernel(mp, tsp, msp);
1573 	} else  {	/* USYNC_THREAD */
1574 		/* try once */
1575 		if (set_lock_byte(&mp->mutex_lockw) == 0) {
1576 			mp->mutex_owner = (uintptr_t)self;
1577 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
1578 		} else {
1579 			/* try a little harder if we don't own the mutex */
1580 			error = EBUSY;
1581 			if (MUTEX_OWNER(mp) != self)
1582 				error = mutex_trylock_adaptive(mp);
1583 			if (error && try == MUTEX_LOCK)		/* go park */
1584 				error = mutex_lock_queue(self, msp, mp, tsp);
1585 		}
1586 	}
1587 
1588 	switch (error) {
1589 	case EOWNERDEAD:
1590 	case ELOCKUNMAPPED:
1591 		mp->mutex_owner = (uintptr_t)self;
1592 		DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
1593 		/* FALLTHROUGH */
1594 	case 0:
1595 		if (msp)
1596 			record_begin_hold(msp);
1597 		break;
1598 	default:
1599 		if (try == MUTEX_TRY) {
1600 			if (msp)
1601 				tdb_incr(msp->mutex_try_fail);
1602 			if (__td_event_report(self, TD_LOCK_TRY, udp)) {
1603 				self->ul_td_evbuf.eventnum = TD_LOCK_TRY;
1604 				tdb_event(TD_LOCK_TRY, udp);
1605 			}
1606 		}
1607 		break;
1608 	}
1609 
1610 	return (error);
1611 }
1612 
1613 int
1614 fast_process_lock(mutex_t *mp, timespec_t *tsp, int mtype, int try)
1615 {
1616 	ulwp_t *self = curthread;
1617 	uberdata_t *udp = self->ul_uberdata;
1618 
1619 	/*
1620 	 * We know that USYNC_PROCESS is set in mtype and that
1621 	 * zero, one, or both of the flags LOCK_RECURSIVE and
1622 	 * LOCK_ERRORCHECK are set, and that no other flags are set.
1623 	 */
1624 	enter_critical(self);
1625 	if (set_lock_byte(&mp->mutex_lockw) == 0) {
1626 		mp->mutex_owner = (uintptr_t)self;
1627 		mp->mutex_ownerpid = udp->pid;
1628 		exit_critical(self);
1629 		DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
1630 		return (0);
1631 	}
1632 	exit_critical(self);
1633 
1634 	if ((mtype & ~USYNC_PROCESS) && shared_mutex_held(mp)) {
1635 		if (mtype & LOCK_RECURSIVE) {
1636 			if (mp->mutex_rcount == RECURSION_MAX)
1637 				return (EAGAIN);
1638 			mp->mutex_rcount++;
1639 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 1, 0);
1640 			return (0);
1641 		}
1642 		if (try == MUTEX_LOCK) {
1643 			DTRACE_PROBE2(plockstat, mutex__error, mp, EDEADLK);
1644 			return (EDEADLK);
1645 		}
1646 		return (EBUSY);
1647 	}
1648 
1649 	/* try a little harder if we don't own the mutex */
1650 	if (!shared_mutex_held(mp) && mutex_trylock_process(mp) == 0)
1651 		return (0);
1652 
1653 	if (try == MUTEX_LOCK)
1654 		return (mutex_lock_kernel(mp, tsp, NULL));
1655 
1656 	if (__td_event_report(self, TD_LOCK_TRY, udp)) {
1657 		self->ul_td_evbuf.eventnum = TD_LOCK_TRY;
1658 		tdb_event(TD_LOCK_TRY, udp);
1659 	}
1660 	return (EBUSY);
1661 }
1662 
1663 static int
1664 slow_lock(ulwp_t *self, mutex_t *mp, timespec_t *tsp)
1665 {
1666 	int error = 0;
1667 
1668 	if (MUTEX_OWNER(mp) == self || mutex_trylock_adaptive(mp) != 0)
1669 		error = mutex_lock_queue(self, NULL, mp, tsp);
1670 	return (error);
1671 }
1672 
1673 int
1674 mutex_lock_impl(mutex_t *mp, timespec_t *tsp)
1675 {
1676 	ulwp_t *self = curthread;
1677 	uberdata_t *udp = self->ul_uberdata;
1678 	uberflags_t *gflags;
1679 	int mtype;
1680 
1681 	/*
1682 	 * Optimize the case of USYNC_THREAD, including
1683 	 * the LOCK_RECURSIVE and LOCK_ERRORCHECK cases,
1684 	 * no error detection, no lock statistics,
1685 	 * and the process has only a single thread.
1686 	 * (Most likely a traditional single-threaded application.)
1687 	 */
1688 	if ((((mtype = mp->mutex_type) & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) |
1689 	    udp->uberflags.uf_all) == 0) {
1690 		/*
1691 		 * Only one thread exists so we don't need an atomic operation.
1692 		 */
1693 		if (mp->mutex_lockw == 0) {
1694 			mp->mutex_lockw = LOCKSET;
1695 			mp->mutex_owner = (uintptr_t)self;
1696 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
1697 			return (0);
1698 		}
1699 		if (mtype && MUTEX_OWNER(mp) == self) {
1700 			/*
1701 			 * LOCK_RECURSIVE, LOCK_ERRORCHECK, or both.
1702 			 */
1703 			if (mtype & LOCK_RECURSIVE) {
1704 				if (mp->mutex_rcount == RECURSION_MAX)
1705 					return (EAGAIN);
1706 				mp->mutex_rcount++;
1707 				DTRACE_PROBE3(plockstat, mutex__acquire, mp,
1708 				    1, 0);
1709 				return (0);
1710 			}
1711 			DTRACE_PROBE2(plockstat, mutex__error, mp, EDEADLK);
1712 			return (EDEADLK);	/* LOCK_ERRORCHECK */
1713 		}
1714 		/*
1715 		 * We have reached a deadlock, probably because the
1716 		 * process is executing non-async-signal-safe code in
1717 		 * a signal handler and is attempting to acquire a lock
1718 		 * that it already owns.  This is not surprising, given
1719 		 * bad programming practices over the years that has
1720 		 * resulted in applications calling printf() and such
1721 		 * in their signal handlers.  Unless the user has told
1722 		 * us that the signal handlers are safe by setting:
1723 		 *	export _THREAD_ASYNC_SAFE=1
1724 		 * we return EDEADLK rather than actually deadlocking.
1725 		 */
1726 		if (tsp == NULL &&
1727 		    MUTEX_OWNER(mp) == self && !self->ul_async_safe) {
1728 			DTRACE_PROBE2(plockstat, mutex__error, mp, EDEADLK);
1729 			return (EDEADLK);
1730 		}
1731 	}
1732 
1733 	/*
1734 	 * Optimize the common cases of USYNC_THREAD or USYNC_PROCESS,
1735 	 * no error detection, and no lock statistics.
1736 	 * Include LOCK_RECURSIVE and LOCK_ERRORCHECK cases.
1737 	 */
1738 	if ((gflags = self->ul_schedctl_called) != NULL &&
1739 	    (gflags->uf_trs_ted |
1740 	    (mtype & ~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK))) == 0) {
1741 
1742 		if (mtype & USYNC_PROCESS)
1743 			return (fast_process_lock(mp, tsp, mtype, MUTEX_LOCK));
1744 
1745 		if (set_lock_byte(&mp->mutex_lockw) == 0) {
1746 			mp->mutex_owner = (uintptr_t)self;
1747 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
1748 			return (0);
1749 		}
1750 
1751 		if (mtype && MUTEX_OWNER(mp) == self) {
1752 			if (mtype & LOCK_RECURSIVE) {
1753 				if (mp->mutex_rcount == RECURSION_MAX)
1754 					return (EAGAIN);
1755 				mp->mutex_rcount++;
1756 				DTRACE_PROBE3(plockstat, mutex__acquire, mp,
1757 				    1, 0);
1758 				return (0);
1759 			}
1760 			DTRACE_PROBE2(plockstat, mutex__error, mp, EDEADLK);
1761 			return (EDEADLK);	/* LOCK_ERRORCHECK */
1762 		}
1763 
1764 		return (slow_lock(self, mp, tsp));
1765 	}
1766 
1767 	/* else do it the long way */
1768 	return (mutex_lock_internal(mp, tsp, MUTEX_LOCK));
1769 }
1770 
1771 #pragma weak _private_mutex_lock = __mutex_lock
1772 #pragma weak mutex_lock = __mutex_lock
1773 #pragma weak _mutex_lock = __mutex_lock
1774 #pragma weak pthread_mutex_lock = __mutex_lock
1775 #pragma weak _pthread_mutex_lock = __mutex_lock
1776 int
1777 __mutex_lock(mutex_t *mp)
1778 {
1779 	ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
1780 	return (mutex_lock_impl(mp, NULL));
1781 }
1782 
1783 #pragma weak pthread_mutex_timedlock = _pthread_mutex_timedlock
1784 int
1785 _pthread_mutex_timedlock(mutex_t *mp, const timespec_t *abstime)
1786 {
1787 	timespec_t tslocal;
1788 	int error;
1789 
1790 	ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
1791 	abstime_to_reltime(CLOCK_REALTIME, abstime, &tslocal);
1792 	error = mutex_lock_impl(mp, &tslocal);
1793 	if (error == ETIME)
1794 		error = ETIMEDOUT;
1795 	return (error);
1796 }
1797 
1798 #pragma weak pthread_mutex_reltimedlock_np = _pthread_mutex_reltimedlock_np
1799 int
1800 _pthread_mutex_reltimedlock_np(mutex_t *mp, const timespec_t *reltime)
1801 {
1802 	timespec_t tslocal;
1803 	int error;
1804 
1805 	ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
1806 	tslocal = *reltime;
1807 	error = mutex_lock_impl(mp, &tslocal);
1808 	if (error == ETIME)
1809 		error = ETIMEDOUT;
1810 	return (error);
1811 }
1812 
1813 static int
1814 slow_trylock(mutex_t *mp, ulwp_t *self)
1815 {
1816 	if (MUTEX_OWNER(mp) == self ||
1817 	    mutex_trylock_adaptive(mp) != 0) {
1818 		uberdata_t *udp = self->ul_uberdata;
1819 
1820 		if (__td_event_report(self, TD_LOCK_TRY, udp)) {
1821 			self->ul_td_evbuf.eventnum = TD_LOCK_TRY;
1822 			tdb_event(TD_LOCK_TRY, udp);
1823 		}
1824 		return (EBUSY);
1825 	}
1826 	return (0);
1827 }
1828 
1829 #pragma weak _private_mutex_trylock = __mutex_trylock
1830 #pragma weak mutex_trylock = __mutex_trylock
1831 #pragma weak _mutex_trylock = __mutex_trylock
1832 #pragma weak pthread_mutex_trylock = __mutex_trylock
1833 #pragma weak _pthread_mutex_trylock = __mutex_trylock
1834 int
1835 __mutex_trylock(mutex_t *mp)
1836 {
1837 	ulwp_t *self = curthread;
1838 	uberdata_t *udp = self->ul_uberdata;
1839 	uberflags_t *gflags;
1840 	int mtype;
1841 
1842 	ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
1843 	/*
1844 	 * Optimize the case of USYNC_THREAD, including
1845 	 * the LOCK_RECURSIVE and LOCK_ERRORCHECK cases,
1846 	 * no error detection, no lock statistics,
1847 	 * and the process has only a single thread.
1848 	 * (Most likely a traditional single-threaded application.)
1849 	 */
1850 	if ((((mtype = mp->mutex_type) & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) |
1851 	    udp->uberflags.uf_all) == 0) {
1852 		/*
1853 		 * Only one thread exists so we don't need an atomic operation.
1854 		 */
1855 		if (mp->mutex_lockw == 0) {
1856 			mp->mutex_lockw = LOCKSET;
1857 			mp->mutex_owner = (uintptr_t)self;
1858 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
1859 			return (0);
1860 		}
1861 		if (mtype && MUTEX_OWNER(mp) == self) {
1862 			if (mtype & LOCK_RECURSIVE) {
1863 				if (mp->mutex_rcount == RECURSION_MAX)
1864 					return (EAGAIN);
1865 				mp->mutex_rcount++;
1866 				DTRACE_PROBE3(plockstat, mutex__acquire, mp,
1867 				    1, 0);
1868 				return (0);
1869 			}
1870 			return (EDEADLK);	/* LOCK_ERRORCHECK */
1871 		}
1872 		return (EBUSY);
1873 	}
1874 
1875 	/*
1876 	 * Optimize the common cases of USYNC_THREAD or USYNC_PROCESS,
1877 	 * no error detection, and no lock statistics.
1878 	 * Include LOCK_RECURSIVE and LOCK_ERRORCHECK cases.
1879 	 */
1880 	if ((gflags = self->ul_schedctl_called) != NULL &&
1881 	    (gflags->uf_trs_ted |
1882 	    (mtype & ~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK))) == 0) {
1883 
1884 		if (mtype & USYNC_PROCESS)
1885 			return (fast_process_lock(mp, NULL, mtype, MUTEX_TRY));
1886 
1887 		if (set_lock_byte(&mp->mutex_lockw) == 0) {
1888 			mp->mutex_owner = (uintptr_t)self;
1889 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
1890 			return (0);
1891 		}
1892 
1893 		if (mtype && MUTEX_OWNER(mp) == self) {
1894 			if (mtype & LOCK_RECURSIVE) {
1895 				if (mp->mutex_rcount == RECURSION_MAX)
1896 					return (EAGAIN);
1897 				mp->mutex_rcount++;
1898 				DTRACE_PROBE3(plockstat, mutex__acquire, mp,
1899 				    1, 0);
1900 				return (0);
1901 			}
1902 			return (EBUSY);		/* LOCK_ERRORCHECK */
1903 		}
1904 
1905 		return (slow_trylock(mp, self));
1906 	}
1907 
1908 	/* else do it the long way */
1909 	return (mutex_lock_internal(mp, NULL, MUTEX_TRY));
1910 }
1911 
1912 int
1913 mutex_unlock_internal(mutex_t *mp)
1914 {
1915 	ulwp_t *self = curthread;
1916 	uberdata_t *udp = self->ul_uberdata;
1917 	int mtype = mp->mutex_type;
1918 	tdb_mutex_stats_t *msp;
1919 	int error;
1920 	lwpid_t lwpid;
1921 
1922 	if ((mtype & LOCK_ERRORCHECK) && !mutex_is_held(mp))
1923 		return (EPERM);
1924 
1925 	if (self->ul_error_detection && !mutex_is_held(mp))
1926 		lock_error(mp, "mutex_unlock", NULL, NULL);
1927 
1928 	if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) {
1929 		mp->mutex_rcount--;
1930 		DTRACE_PROBE2(plockstat, mutex__release, mp, 1);
1931 		return (0);
1932 	}
1933 
1934 	if ((msp = MUTEX_STATS(mp, udp)) != NULL)
1935 		(void) record_hold_time(msp);
1936 
1937 	if (mtype &
1938 	    (USYNC_PROCESS_ROBUST|PTHREAD_PRIO_INHERIT|PTHREAD_PRIO_PROTECT)) {
1939 		no_preempt(self);
1940 		mp->mutex_owner = 0;
1941 		mp->mutex_ownerpid = 0;
1942 		DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
1943 		if (mtype & PTHREAD_PRIO_INHERIT) {
1944 			mp->mutex_lockw = LOCKCLEAR;
1945 			error = ___lwp_mutex_unlock(mp);
1946 		} else if (mtype & USYNC_PROCESS_ROBUST) {
1947 			error = ___lwp_mutex_unlock(mp);
1948 		} else {
1949 			if (swap32(&mp->mutex_lockword, 0) & WAITERMASK)
1950 				(void) ___lwp_mutex_wakeup(mp);
1951 			error = 0;
1952 		}
1953 		if (mtype & PTHREAD_PRIO_PROTECT) {
1954 			if (_ceil_mylist_del(mp))
1955 				_ceil_prio_waive();
1956 		}
1957 		preempt(self);
1958 	} else if (mtype & USYNC_PROCESS) {
1959 		if (mp->mutex_lockword & WAITERMASK)
1960 			mutex_unlock_process(mp);
1961 		else {
1962 			mp->mutex_owner = 0;
1963 			mp->mutex_ownerpid = 0;
1964 			DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
1965 			if (swap32(&mp->mutex_lockword, 0) & WAITERMASK) {
1966 				no_preempt(self);
1967 				(void) ___lwp_mutex_wakeup(mp);
1968 				preempt(self);
1969 			}
1970 		}
1971 		error = 0;
1972 	} else {	/* USYNC_THREAD */
1973 		if ((lwpid = mutex_unlock_queue(mp)) != 0) {
1974 			(void) __lwp_unpark(lwpid);
1975 			preempt(self);
1976 		}
1977 		error = 0;
1978 	}
1979 
1980 	return (error);
1981 }
1982 
1983 #pragma weak _private_mutex_unlock = __mutex_unlock
1984 #pragma weak mutex_unlock = __mutex_unlock
1985 #pragma weak _mutex_unlock = __mutex_unlock
1986 #pragma weak pthread_mutex_unlock = __mutex_unlock
1987 #pragma weak _pthread_mutex_unlock = __mutex_unlock
1988 int
1989 __mutex_unlock(mutex_t *mp)
1990 {
1991 	ulwp_t *self = curthread;
1992 	uberdata_t *udp = self->ul_uberdata;
1993 	uberflags_t *gflags;
1994 	lwpid_t lwpid;
1995 	int mtype;
1996 	short el;
1997 
1998 	/*
1999 	 * Optimize the case of USYNC_THREAD, including
2000 	 * the LOCK_RECURSIVE and LOCK_ERRORCHECK cases,
2001 	 * no error detection, no lock statistics,
2002 	 * and the process has only a single thread.
2003 	 * (Most likely a traditional single-threaded application.)
2004 	 */
2005 	if ((((mtype = mp->mutex_type) & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) |
2006 	    udp->uberflags.uf_all) == 0) {
2007 		if (mtype) {
2008 			/*
2009 			 * At this point we know that one or both of the
2010 			 * flags LOCK_RECURSIVE or LOCK_ERRORCHECK is set.
2011 			 */
2012 			if ((mtype & LOCK_ERRORCHECK) && !MUTEX_OWNED(mp, self))
2013 				return (EPERM);
2014 			if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) {
2015 				mp->mutex_rcount--;
2016 				DTRACE_PROBE2(plockstat, mutex__release, mp, 1);
2017 				return (0);
2018 			}
2019 		}
2020 		/*
2021 		 * Only one thread exists so we don't need an atomic operation.
2022 		 * Also, there can be no waiters.
2023 		 */
2024 		mp->mutex_owner = 0;
2025 		mp->mutex_lockword = 0;
2026 		DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
2027 		return (0);
2028 	}
2029 
2030 	/*
2031 	 * Optimize the common cases of USYNC_THREAD or USYNC_PROCESS,
2032 	 * no error detection, and no lock statistics.
2033 	 * Include LOCK_RECURSIVE and LOCK_ERRORCHECK cases.
2034 	 */
2035 	if ((gflags = self->ul_schedctl_called) != NULL) {
2036 		if (((el = gflags->uf_trs_ted) | mtype) == 0) {
2037 fast_unlock:
2038 			if (!(mp->mutex_lockword & WAITERMASK)) {
2039 				/* no waiter exists right now */
2040 				mp->mutex_owner = 0;
2041 				DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
2042 				if (swap32(&mp->mutex_lockword, 0) &
2043 				    WAITERMASK) {
2044 					/* a waiter suddenly appeared */
2045 					no_preempt(self);
2046 					if ((lwpid = mutex_wakeup(mp)) != 0)
2047 						(void) __lwp_unpark(lwpid);
2048 					preempt(self);
2049 				}
2050 			} else if ((lwpid = mutex_unlock_queue(mp)) != 0) {
2051 				(void) __lwp_unpark(lwpid);
2052 				preempt(self);
2053 			}
2054 			return (0);
2055 		}
2056 		if (el)		/* error detection or lock statistics */
2057 			goto slow_unlock;
2058 		if ((mtype & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) == 0) {
2059 			/*
2060 			 * At this point we know that one or both of the
2061 			 * flags LOCK_RECURSIVE or LOCK_ERRORCHECK is set.
2062 			 */
2063 			if ((mtype & LOCK_ERRORCHECK) && !MUTEX_OWNED(mp, self))
2064 				return (EPERM);
2065 			if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) {
2066 				mp->mutex_rcount--;
2067 				DTRACE_PROBE2(plockstat, mutex__release, mp, 1);
2068 				return (0);
2069 			}
2070 			goto fast_unlock;
2071 		}
2072 		if ((mtype &
2073 		    ~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK)) == 0) {
2074 			/*
2075 			 * At this point we know that zero, one, or both of the
2076 			 * flags LOCK_RECURSIVE or LOCK_ERRORCHECK is set and
2077 			 * that the USYNC_PROCESS flag is set.
2078 			 */
2079 			if ((mtype & LOCK_ERRORCHECK) && !shared_mutex_held(mp))
2080 				return (EPERM);
2081 			if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) {
2082 				mp->mutex_rcount--;
2083 				DTRACE_PROBE2(plockstat, mutex__release, mp, 1);
2084 				return (0);
2085 			}
2086 			if (mp->mutex_lockword & WAITERMASK)
2087 				mutex_unlock_process(mp);
2088 			else {
2089 				mp->mutex_owner = 0;
2090 				mp->mutex_ownerpid = 0;
2091 				DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
2092 				if (swap32(&mp->mutex_lockword, 0) &
2093 				    WAITERMASK) {
2094 					no_preempt(self);
2095 					(void) ___lwp_mutex_wakeup(mp);
2096 					preempt(self);
2097 				}
2098 			}
2099 			return (0);
2100 		}
2101 	}
2102 
2103 	/* else do it the long way */
2104 slow_unlock:
2105 	return (mutex_unlock_internal(mp));
2106 }
2107 
2108 /*
2109  * Internally to the library, almost all mutex lock/unlock actions
2110  * go through these lmutex_ functions, to protect critical regions.
2111  * We replicate a bit of code from __mutex_lock() and __mutex_unlock()
2112  * to make these functions faster since we know that the mutex type
2113  * of all internal locks is USYNC_THREAD.  We also know that internal
2114  * locking can never fail, so we panic if it does.
2115  */
2116 void
2117 lmutex_lock(mutex_t *mp)
2118 {
2119 	ulwp_t *self = curthread;
2120 	uberdata_t *udp = self->ul_uberdata;
2121 
2122 	ASSERT(mp->mutex_type == USYNC_THREAD);
2123 
2124 	enter_critical(self);
2125 	/*
2126 	 * Optimize the case of no lock statistics and only a single thread.
2127 	 * (Most likely a traditional single-threaded application.)
2128 	 */
2129 	if (udp->uberflags.uf_all == 0) {
2130 		/*
2131 		 * Only one thread exists; the mutex must be free.
2132 		 */
2133 		ASSERT(mp->mutex_lockw == 0);
2134 		mp->mutex_lockw = LOCKSET;
2135 		mp->mutex_owner = (uintptr_t)self;
2136 		DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
2137 	} else {
2138 		tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp);
2139 
2140 		if (!self->ul_schedctl_called)
2141 			(void) setup_schedctl();
2142 
2143 		if (set_lock_byte(&mp->mutex_lockw) == 0) {
2144 			mp->mutex_owner = (uintptr_t)self;
2145 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
2146 		} else if (mutex_trylock_adaptive(mp) != 0) {
2147 			(void) mutex_lock_queue(self, msp, mp, NULL);
2148 		}
2149 
2150 		if (msp)
2151 			record_begin_hold(msp);
2152 	}
2153 }
2154 
2155 void
2156 lmutex_unlock(mutex_t *mp)
2157 {
2158 	ulwp_t *self = curthread;
2159 	uberdata_t *udp = self->ul_uberdata;
2160 
2161 	ASSERT(mp->mutex_type == USYNC_THREAD);
2162 
2163 	/*
2164 	 * Optimize the case of no lock statistics and only a single thread.
2165 	 * (Most likely a traditional single-threaded application.)
2166 	 */
2167 	if (udp->uberflags.uf_all == 0) {
2168 		/*
2169 		 * Only one thread exists so there can be no waiters.
2170 		 */
2171 		mp->mutex_owner = 0;
2172 		mp->mutex_lockword = 0;
2173 		DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
2174 	} else {
2175 		tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp);
2176 		lwpid_t lwpid;
2177 
2178 		if (msp)
2179 			(void) record_hold_time(msp);
2180 		if ((lwpid = mutex_unlock_queue(mp)) != 0) {
2181 			(void) __lwp_unpark(lwpid);
2182 			preempt(self);
2183 		}
2184 	}
2185 	exit_critical(self);
2186 }
2187 
2188 static int
2189 shared_mutex_held(mutex_t *mparg)
2190 {
2191 	/*
2192 	 * There is an inherent data race in the current ownership design.
2193 	 * The mutex_owner and mutex_ownerpid fields cannot be set or tested
2194 	 * atomically as a pair. The original implementation tested each
2195 	 * field just once. This was exposed to trivial false positives in
2196 	 * the case of multiple multithreaded processes with thread addresses
2197 	 * in common. To close the window to an acceptable level we now use a
2198 	 * sequence of five tests: pid-thr-pid-thr-pid. This ensures that any
2199 	 * single interruption will still leave one uninterrupted sequence of
2200 	 * pid-thr-pid tests intact.
2201 	 *
2202 	 * It is assumed that all updates are always ordered thr-pid and that
2203 	 * we have TSO hardware.
2204 	 */
2205 	volatile mutex_t *mp = (volatile mutex_t *)mparg;
2206 	ulwp_t *self = curthread;
2207 	uberdata_t *udp = self->ul_uberdata;
2208 
2209 	if (mp->mutex_ownerpid != udp->pid)
2210 		return (0);
2211 
2212 	if (!MUTEX_OWNED(mp, self))
2213 		return (0);
2214 
2215 	if (mp->mutex_ownerpid != udp->pid)
2216 		return (0);
2217 
2218 	if (!MUTEX_OWNED(mp, self))
2219 		return (0);
2220 
2221 	if (mp->mutex_ownerpid != udp->pid)
2222 		return (0);
2223 
2224 	return (1);
2225 }
2226 
2227 /*
2228  * Some crufty old programs define their own version of _mutex_held()
2229  * to be simply return(1).  This breaks internal libc logic, so we
2230  * define a private version for exclusive use by libc, mutex_is_held(),
2231  * and also a new public function, __mutex_held(), to be used in new
2232  * code to circumvent these crufty old programs.
2233  */
2234 #pragma weak mutex_held = mutex_is_held
2235 #pragma weak _mutex_held = mutex_is_held
2236 #pragma weak __mutex_held = mutex_is_held
2237 int
2238 mutex_is_held(mutex_t *mp)
2239 {
2240 	if (mp->mutex_type & (USYNC_PROCESS | USYNC_PROCESS_ROBUST))
2241 		return (shared_mutex_held(mp));
2242 	return (MUTEX_OWNED(mp, curthread));
2243 }
2244 
2245 #pragma weak _private_mutex_destroy = __mutex_destroy
2246 #pragma weak mutex_destroy = __mutex_destroy
2247 #pragma weak _mutex_destroy = __mutex_destroy
2248 #pragma weak pthread_mutex_destroy = __mutex_destroy
2249 #pragma weak _pthread_mutex_destroy = __mutex_destroy
2250 int
2251 __mutex_destroy(mutex_t *mp)
2252 {
2253 	mp->mutex_magic = 0;
2254 	mp->mutex_flag &= ~LOCK_INITED;
2255 	tdb_sync_obj_deregister(mp);
2256 	return (0);
2257 }
2258 
2259 /*
2260  * Spin locks are separate from ordinary mutexes,
2261  * but we use the same data structure for them.
2262  */
2263 
2264 #pragma weak pthread_spin_init = _pthread_spin_init
2265 int
2266 _pthread_spin_init(pthread_spinlock_t *lock, int pshared)
2267 {
2268 	mutex_t *mp = (mutex_t *)lock;
2269 
2270 	(void) _memset(mp, 0, sizeof (*mp));
2271 	if (pshared == PTHREAD_PROCESS_SHARED)
2272 		mp->mutex_type = USYNC_PROCESS;
2273 	else
2274 		mp->mutex_type = USYNC_THREAD;
2275 	mp->mutex_flag = LOCK_INITED;
2276 	mp->mutex_magic = MUTEX_MAGIC;
2277 	return (0);
2278 }
2279 
2280 #pragma weak pthread_spin_destroy = _pthread_spin_destroy
2281 int
2282 _pthread_spin_destroy(pthread_spinlock_t *lock)
2283 {
2284 	(void) _memset(lock, 0, sizeof (*lock));
2285 	return (0);
2286 }
2287 
2288 #pragma weak pthread_spin_trylock = _pthread_spin_trylock
2289 int
2290 _pthread_spin_trylock(pthread_spinlock_t *lock)
2291 {
2292 	mutex_t *mp = (mutex_t *)lock;
2293 	ulwp_t *self = curthread;
2294 	int error = 0;
2295 
2296 	no_preempt(self);
2297 	if (set_lock_byte(&mp->mutex_lockw) != 0)
2298 		error = EBUSY;
2299 	else {
2300 		mp->mutex_owner = (uintptr_t)self;
2301 		if (mp->mutex_type == USYNC_PROCESS)
2302 			mp->mutex_ownerpid = self->ul_uberdata->pid;
2303 		DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
2304 	}
2305 	preempt(self);
2306 	return (error);
2307 }
2308 
2309 #pragma weak pthread_spin_lock = _pthread_spin_lock
2310 int
2311 _pthread_spin_lock(pthread_spinlock_t *lock)
2312 {
2313 	volatile uint8_t *lockp =
2314 		(volatile uint8_t *)&((mutex_t *)lock)->mutex_lockw;
2315 
2316 	ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
2317 	/*
2318 	 * We don't care whether the owner is running on a processor.
2319 	 * We just spin because that's what this interface requires.
2320 	 */
2321 	for (;;) {
2322 		if (*lockp == 0) {	/* lock byte appears to be clear */
2323 			if (_pthread_spin_trylock(lock) == 0)
2324 				return (0);
2325 		}
2326 		SMT_PAUSE();
2327 	}
2328 }
2329 
2330 #pragma weak pthread_spin_unlock = _pthread_spin_unlock
2331 int
2332 _pthread_spin_unlock(pthread_spinlock_t *lock)
2333 {
2334 	mutex_t *mp = (mutex_t *)lock;
2335 	ulwp_t *self = curthread;
2336 
2337 	no_preempt(self);
2338 	mp->mutex_owner = 0;
2339 	mp->mutex_ownerpid = 0;
2340 	DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
2341 	(void) swap32(&mp->mutex_lockword, 0);
2342 	preempt(self);
2343 	return (0);
2344 }
2345 
2346 #pragma weak cond_init = _cond_init
2347 /* ARGSUSED2 */
2348 int
2349 _cond_init(cond_t *cvp, int type, void *arg)
2350 {
2351 	if (type != USYNC_THREAD && type != USYNC_PROCESS)
2352 		return (EINVAL);
2353 	(void) _memset(cvp, 0, sizeof (*cvp));
2354 	cvp->cond_type = (uint16_t)type;
2355 	cvp->cond_magic = COND_MAGIC;
2356 	return (0);
2357 }
2358 
2359 /*
2360  * cond_sleep_queue(): utility function for cond_wait_queue().
2361  *
2362  * Go to sleep on a condvar sleep queue, expect to be waked up
2363  * by someone calling cond_signal() or cond_broadcast() or due
2364  * to receiving a UNIX signal or being cancelled, or just simply
2365  * due to a spurious wakeup (like someome calling forkall()).
2366  *
2367  * The associated mutex is *not* reacquired before returning.
2368  * That must be done by the caller of cond_sleep_queue().
2369  */
2370 int
2371 cond_sleep_queue(cond_t *cvp, mutex_t *mp, timespec_t *tsp)
2372 {
2373 	ulwp_t *self = curthread;
2374 	queue_head_t *qp;
2375 	queue_head_t *mqp;
2376 	lwpid_t lwpid;
2377 	int signalled;
2378 	int error;
2379 
2380 	/*
2381 	 * Put ourself on the CV sleep queue, unlock the mutex, then
2382 	 * park ourself and unpark a candidate lwp to grab the mutex.
2383 	 * We must go onto the CV sleep queue before dropping the
2384 	 * mutex in order to guarantee atomicity of the operation.
2385 	 */
2386 	self->ul_sp = stkptr();
2387 	qp = queue_lock(cvp, CV);
2388 	enqueue(qp, self, cvp, CV);
2389 	cvp->cond_waiters_user = 1;
2390 	self->ul_cvmutex = mp;
2391 	self->ul_cv_wake = (tsp != NULL);
2392 	self->ul_signalled = 0;
2393 	lwpid = mutex_unlock_queue(mp);
2394 	for (;;) {
2395 		set_parking_flag(self, 1);
2396 		queue_unlock(qp);
2397 		if (lwpid != 0) {
2398 			lwpid = preempt_unpark(self, lwpid);
2399 			preempt(self);
2400 		}
2401 		/*
2402 		 * We may have a deferred signal present,
2403 		 * in which case we should return EINTR.
2404 		 * Also, we may have received a SIGCANCEL; if so
2405 		 * and we are cancelable we should return EINTR.
2406 		 * We force an immediate EINTR return from
2407 		 * __lwp_park() by turning our parking flag off.
2408 		 */
2409 		if (self->ul_cursig != 0 ||
2410 		    (self->ul_cancelable && self->ul_cancel_pending))
2411 			set_parking_flag(self, 0);
2412 		/*
2413 		 * __lwp_park() will return the residual time in tsp
2414 		 * if we are unparked before the timeout expires.
2415 		 */
2416 		error = __lwp_park(tsp, lwpid);
2417 		set_parking_flag(self, 0);
2418 		lwpid = 0;	/* unpark the other lwp only once */
2419 		/*
2420 		 * We were waked up by cond_signal(), cond_broadcast(),
2421 		 * by an interrupt or timeout (EINTR or ETIME),
2422 		 * or we may just have gotten a spurious wakeup.
2423 		 */
2424 		qp = queue_lock(cvp, CV);
2425 		mqp = queue_lock(mp, MX);
2426 		if (self->ul_sleepq == NULL)
2427 			break;
2428 		/*
2429 		 * We are on either the condvar sleep queue or the
2430 		 * mutex sleep queue.  If we are on the mutex sleep
2431 		 * queue, continue sleeping.  If we are on the condvar
2432 		 * sleep queue, break out of the sleep if we were
2433 		 * interrupted or we timed out (EINTR or ETIME).
2434 		 * Else this is a spurious wakeup; continue the loop.
2435 		 */
2436 		if (self->ul_sleepq == mqp)		/* mutex queue */
2437 			tsp = NULL;
2438 		else if (self->ul_sleepq == qp) {	/* condvar queue */
2439 			if (error) {
2440 				cvp->cond_waiters_user = dequeue_self(qp, cvp);
2441 				break;
2442 			}
2443 			/*
2444 			 * Else a spurious wakeup on the condvar queue.
2445 			 * __lwp_park() has already adjusted the timeout.
2446 			 */
2447 		} else {
2448 			thr_panic("cond_sleep_queue(): thread not on queue");
2449 		}
2450 		queue_unlock(mqp);
2451 	}
2452 
2453 	self->ul_sp = 0;
2454 	ASSERT(self->ul_cvmutex == NULL && self->ul_cv_wake == 0);
2455 	ASSERT(self->ul_sleepq == NULL && self->ul_link == NULL &&
2456 	    self->ul_wchan == NULL);
2457 
2458 	signalled = self->ul_signalled;
2459 	self->ul_signalled = 0;
2460 	queue_unlock(qp);
2461 	queue_unlock(mqp);
2462 
2463 	/*
2464 	 * If we were concurrently cond_signal()d and any of:
2465 	 * received a UNIX signal, were cancelled, or got a timeout,
2466 	 * then perform another cond_signal() to avoid consuming it.
2467 	 */
2468 	if (error && signalled)
2469 		(void) cond_signal_internal(cvp);
2470 
2471 	return (error);
2472 }
2473 
2474 int
2475 cond_wait_queue(cond_t *cvp, mutex_t *mp, timespec_t *tsp,
2476 	tdb_mutex_stats_t *msp)
2477 {
2478 	ulwp_t *self = curthread;
2479 	int error;
2480 
2481 	/*
2482 	 * The old thread library was programmed to defer signals
2483 	 * while in cond_wait() so that the associated mutex would
2484 	 * be guaranteed to be held when the application signal
2485 	 * handler was invoked.
2486 	 *
2487 	 * We do not behave this way by default; the state of the
2488 	 * associated mutex in the signal handler is undefined.
2489 	 *
2490 	 * To accommodate applications that depend on the old
2491 	 * behavior, the _THREAD_COND_WAIT_DEFER environment
2492 	 * variable can be set to 1 and we will behave in the
2493 	 * old way with respect to cond_wait().
2494 	 */
2495 	if (self->ul_cond_wait_defer)
2496 		sigoff(self);
2497 
2498 	error = cond_sleep_queue(cvp, mp, tsp);
2499 
2500 	/*
2501 	 * Reacquire the mutex.
2502 	 */
2503 	if (set_lock_byte(&mp->mutex_lockw) == 0) {
2504 		mp->mutex_owner = (uintptr_t)self;
2505 		DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
2506 	} else if (mutex_trylock_adaptive(mp) != 0) {
2507 		(void) mutex_lock_queue(self, msp, mp, NULL);
2508 	}
2509 
2510 	if (msp)
2511 		record_begin_hold(msp);
2512 
2513 	/*
2514 	 * Take any deferred signal now, after we have reacquired the mutex.
2515 	 */
2516 	if (self->ul_cond_wait_defer)
2517 		sigon(self);
2518 
2519 	return (error);
2520 }
2521 
2522 /*
2523  * cond_sleep_kernel(): utility function for cond_wait_kernel().
2524  * See the comment ahead of cond_sleep_queue(), above.
2525  */
2526 int
2527 cond_sleep_kernel(cond_t *cvp, mutex_t *mp, timespec_t *tsp)
2528 {
2529 	int mtype = mp->mutex_type;
2530 	ulwp_t *self = curthread;
2531 	int error;
2532 
2533 	if (mtype & PTHREAD_PRIO_PROTECT) {
2534 		if (_ceil_mylist_del(mp))
2535 			_ceil_prio_waive();
2536 	}
2537 
2538 	self->ul_sp = stkptr();
2539 	self->ul_wchan = cvp;
2540 	mp->mutex_owner = 0;
2541 	mp->mutex_ownerpid = 0;
2542 	if (mtype & PTHREAD_PRIO_INHERIT)
2543 		mp->mutex_lockw = LOCKCLEAR;
2544 	/*
2545 	 * ___lwp_cond_wait() returns immediately with EINTR if
2546 	 * set_parking_flag(self,0) is called on this lwp before it
2547 	 * goes to sleep in the kernel.  sigacthandler() calls this
2548 	 * when a deferred signal is noted.  This assures that we don't
2549 	 * get stuck in ___lwp_cond_wait() with all signals blocked
2550 	 * due to taking a deferred signal before going to sleep.
2551 	 */
2552 	set_parking_flag(self, 1);
2553 	if (self->ul_cursig != 0 ||
2554 	    (self->ul_cancelable && self->ul_cancel_pending))
2555 		set_parking_flag(self, 0);
2556 	error = ___lwp_cond_wait(cvp, mp, tsp, 1);
2557 	set_parking_flag(self, 0);
2558 	self->ul_sp = 0;
2559 	self->ul_wchan = NULL;
2560 	return (error);
2561 }
2562 
2563 int
2564 cond_wait_kernel(cond_t *cvp, mutex_t *mp, timespec_t *tsp)
2565 {
2566 	ulwp_t *self = curthread;
2567 	int error;
2568 	int merror;
2569 
2570 	/*
2571 	 * See the large comment in cond_wait_queue(), above.
2572 	 */
2573 	if (self->ul_cond_wait_defer)
2574 		sigoff(self);
2575 
2576 	error = cond_sleep_kernel(cvp, mp, tsp);
2577 
2578 	/*
2579 	 * Override the return code from ___lwp_cond_wait()
2580 	 * with any non-zero return code from mutex_lock().
2581 	 * This addresses robust lock failures in particular;
2582 	 * the caller must see the EOWNERDEAD or ENOTRECOVERABLE
2583 	 * errors in order to take corrective action.
2584 	 */
2585 	if ((merror = _private_mutex_lock(mp)) != 0)
2586 		error = merror;
2587 
2588 	/*
2589 	 * Take any deferred signal now, after we have reacquired the mutex.
2590 	 */
2591 	if (self->ul_cond_wait_defer)
2592 		sigon(self);
2593 
2594 	return (error);
2595 }
2596 
2597 /*
2598  * Common code for _cond_wait() and _cond_timedwait()
2599  */
2600 int
2601 cond_wait_common(cond_t *cvp, mutex_t *mp, timespec_t *tsp)
2602 {
2603 	int mtype = mp->mutex_type;
2604 	hrtime_t begin_sleep = 0;
2605 	ulwp_t *self = curthread;
2606 	uberdata_t *udp = self->ul_uberdata;
2607 	tdb_cond_stats_t *csp = COND_STATS(cvp, udp);
2608 	tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp);
2609 	uint8_t rcount;
2610 	int error = 0;
2611 
2612 	/*
2613 	 * The SUSV3 Posix spec for pthread_cond_timedwait() states:
2614 	 *	Except in the case of [ETIMEDOUT], all these error checks
2615 	 *	shall act as if they were performed immediately at the
2616 	 *	beginning of processing for the function and shall cause
2617 	 *	an error return, in effect, prior to modifying the state
2618 	 *	of the mutex specified by mutex or the condition variable
2619 	 *	specified by cond.
2620 	 * Therefore, we must return EINVAL now if the timout is invalid.
2621 	 */
2622 	if (tsp != NULL &&
2623 	    (tsp->tv_sec < 0 || (ulong_t)tsp->tv_nsec >= NANOSEC))
2624 		return (EINVAL);
2625 
2626 	if (__td_event_report(self, TD_SLEEP, udp)) {
2627 		self->ul_sp = stkptr();
2628 		self->ul_wchan = cvp;
2629 		self->ul_td_evbuf.eventnum = TD_SLEEP;
2630 		self->ul_td_evbuf.eventdata = cvp;
2631 		tdb_event(TD_SLEEP, udp);
2632 		self->ul_sp = 0;
2633 	}
2634 	if (csp) {
2635 		if (tsp)
2636 			tdb_incr(csp->cond_timedwait);
2637 		else
2638 			tdb_incr(csp->cond_wait);
2639 	}
2640 	if (msp)
2641 		begin_sleep = record_hold_time(msp);
2642 	else if (csp)
2643 		begin_sleep = gethrtime();
2644 
2645 	if (self->ul_error_detection) {
2646 		if (!mutex_is_held(mp))
2647 			lock_error(mp, "cond_wait", cvp, NULL);
2648 		if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0)
2649 			lock_error(mp, "recursive mutex in cond_wait",
2650 				cvp, NULL);
2651 		if (cvp->cond_type & USYNC_PROCESS) {
2652 			if (!(mtype & (USYNC_PROCESS | USYNC_PROCESS_ROBUST)))
2653 				lock_error(mp, "cond_wait", cvp,
2654 					"condvar process-shared, "
2655 					"mutex process-private");
2656 		} else {
2657 			if (mtype & (USYNC_PROCESS | USYNC_PROCESS_ROBUST))
2658 				lock_error(mp, "cond_wait", cvp,
2659 					"condvar process-private, "
2660 					"mutex process-shared");
2661 		}
2662 	}
2663 
2664 	/*
2665 	 * We deal with recursive mutexes by completely
2666 	 * dropping the lock and restoring the recursion
2667 	 * count after waking up.  This is arguably wrong,
2668 	 * but it obeys the principle of least astonishment.
2669 	 */
2670 	rcount = mp->mutex_rcount;
2671 	mp->mutex_rcount = 0;
2672 	if ((mtype & (USYNC_PROCESS | USYNC_PROCESS_ROBUST |
2673 	    PTHREAD_PRIO_INHERIT | PTHREAD_PRIO_PROTECT)) |
2674 	    (cvp->cond_type & USYNC_PROCESS))
2675 		error = cond_wait_kernel(cvp, mp, tsp);
2676 	else
2677 		error = cond_wait_queue(cvp, mp, tsp, msp);
2678 	mp->mutex_rcount = rcount;
2679 
2680 	if (csp) {
2681 		hrtime_t lapse = gethrtime() - begin_sleep;
2682 		if (tsp == NULL)
2683 			csp->cond_wait_sleep_time += lapse;
2684 		else {
2685 			csp->cond_timedwait_sleep_time += lapse;
2686 			if (error == ETIME)
2687 				tdb_incr(csp->cond_timedwait_timeout);
2688 		}
2689 	}
2690 	return (error);
2691 }
2692 
2693 /*
2694  * cond_wait() is a cancellation point but _cond_wait() is not.
2695  * System libraries call the non-cancellation version.
2696  * It is expected that only applications call the cancellation version.
2697  */
2698 int
2699 _cond_wait(cond_t *cvp, mutex_t *mp)
2700 {
2701 	ulwp_t *self = curthread;
2702 	uberdata_t *udp = self->ul_uberdata;
2703 	uberflags_t *gflags;
2704 
2705 	/*
2706 	 * Optimize the common case of USYNC_THREAD plus
2707 	 * no error detection, no lock statistics, and no event tracing.
2708 	 */
2709 	if ((gflags = self->ul_schedctl_called) != NULL &&
2710 	    (cvp->cond_type | mp->mutex_type | gflags->uf_trs_ted |
2711 	    self->ul_td_events_enable |
2712 	    udp->tdb.tdb_ev_global_mask.event_bits[0]) == 0)
2713 		return (cond_wait_queue(cvp, mp, NULL, NULL));
2714 
2715 	/*
2716 	 * Else do it the long way.
2717 	 */
2718 	return (cond_wait_common(cvp, mp, NULL));
2719 }
2720 
2721 int
2722 cond_wait(cond_t *cvp, mutex_t *mp)
2723 {
2724 	int error;
2725 
2726 	_cancelon();
2727 	error = _cond_wait(cvp, mp);
2728 	if (error == EINTR)
2729 		_canceloff();
2730 	else
2731 		_canceloff_nocancel();
2732 	return (error);
2733 }
2734 
2735 #pragma weak pthread_cond_wait = _pthread_cond_wait
2736 int
2737 _pthread_cond_wait(cond_t *cvp, mutex_t *mp)
2738 {
2739 	int error;
2740 
2741 	error = cond_wait(cvp, mp);
2742 	return ((error == EINTR)? 0 : error);
2743 }
2744 
2745 /*
2746  * cond_timedwait() is a cancellation point but _cond_timedwait() is not.
2747  * System libraries call the non-cancellation version.
2748  * It is expected that only applications call the cancellation version.
2749  */
2750 int
2751 _cond_timedwait(cond_t *cvp, mutex_t *mp, const timespec_t *abstime)
2752 {
2753 	clockid_t clock_id = cvp->cond_clockid;
2754 	timespec_t reltime;
2755 	int error;
2756 
2757 	if (clock_id != CLOCK_REALTIME && clock_id != CLOCK_HIGHRES)
2758 		clock_id = CLOCK_REALTIME;
2759 	abstime_to_reltime(clock_id, abstime, &reltime);
2760 	error = cond_wait_common(cvp, mp, &reltime);
2761 	if (error == ETIME && clock_id == CLOCK_HIGHRES) {
2762 		/*
2763 		 * Don't return ETIME if we didn't really get a timeout.
2764 		 * This can happen if we return because someone resets
2765 		 * the system clock.  Just return zero in this case,
2766 		 * giving a spurious wakeup but not a timeout.
2767 		 */
2768 		if ((hrtime_t)(uint32_t)abstime->tv_sec * NANOSEC +
2769 		    abstime->tv_nsec > gethrtime())
2770 			error = 0;
2771 	}
2772 	return (error);
2773 }
2774 
2775 int
2776 cond_timedwait(cond_t *cvp, mutex_t *mp, const timespec_t *abstime)
2777 {
2778 	int error;
2779 
2780 	_cancelon();
2781 	error = _cond_timedwait(cvp, mp, abstime);
2782 	if (error == EINTR)
2783 		_canceloff();
2784 	else
2785 		_canceloff_nocancel();
2786 	return (error);
2787 }
2788 
2789 #pragma weak pthread_cond_timedwait = _pthread_cond_timedwait
2790 int
2791 _pthread_cond_timedwait(cond_t *cvp, mutex_t *mp, const timespec_t *abstime)
2792 {
2793 	int error;
2794 
2795 	error = cond_timedwait(cvp, mp, abstime);
2796 	if (error == ETIME)
2797 		error = ETIMEDOUT;
2798 	else if (error == EINTR)
2799 		error = 0;
2800 	return (error);
2801 }
2802 
2803 /*
2804  * cond_reltimedwait() is a cancellation point but _cond_reltimedwait()
2805  * is not.  System libraries call the non-cancellation version.
2806  * It is expected that only applications call the cancellation version.
2807  */
2808 int
2809 _cond_reltimedwait(cond_t *cvp, mutex_t *mp, const timespec_t *reltime)
2810 {
2811 	timespec_t tslocal = *reltime;
2812 
2813 	return (cond_wait_common(cvp, mp, &tslocal));
2814 }
2815 
2816 #pragma weak cond_reltimedwait = _cond_reltimedwait_cancel
2817 int
2818 _cond_reltimedwait_cancel(cond_t *cvp, mutex_t *mp, const timespec_t *reltime)
2819 {
2820 	int error;
2821 
2822 	_cancelon();
2823 	error = _cond_reltimedwait(cvp, mp, reltime);
2824 	if (error == EINTR)
2825 		_canceloff();
2826 	else
2827 		_canceloff_nocancel();
2828 	return (error);
2829 }
2830 
2831 #pragma weak pthread_cond_reltimedwait_np = _pthread_cond_reltimedwait_np
2832 int
2833 _pthread_cond_reltimedwait_np(cond_t *cvp, mutex_t *mp,
2834 	const timespec_t *reltime)
2835 {
2836 	int error;
2837 
2838 	error = _cond_reltimedwait_cancel(cvp, mp, reltime);
2839 	if (error == ETIME)
2840 		error = ETIMEDOUT;
2841 	else if (error == EINTR)
2842 		error = 0;
2843 	return (error);
2844 }
2845 
2846 #pragma weak pthread_cond_signal = cond_signal_internal
2847 #pragma weak _pthread_cond_signal = cond_signal_internal
2848 #pragma weak cond_signal = cond_signal_internal
2849 #pragma weak _cond_signal = cond_signal_internal
2850 int
2851 cond_signal_internal(cond_t *cvp)
2852 {
2853 	ulwp_t *self = curthread;
2854 	uberdata_t *udp = self->ul_uberdata;
2855 	tdb_cond_stats_t *csp = COND_STATS(cvp, udp);
2856 	int error = 0;
2857 	queue_head_t *qp;
2858 	mutex_t *mp;
2859 	queue_head_t *mqp;
2860 	ulwp_t **ulwpp;
2861 	ulwp_t *ulwp;
2862 	ulwp_t *prev = NULL;
2863 	ulwp_t *next;
2864 	ulwp_t **suspp = NULL;
2865 	ulwp_t *susprev;
2866 
2867 	if (csp)
2868 		tdb_incr(csp->cond_signal);
2869 
2870 	if (cvp->cond_waiters_kernel)	/* someone sleeping in the kernel? */
2871 		error = __lwp_cond_signal(cvp);
2872 
2873 	if (!cvp->cond_waiters_user)	/* no one sleeping at user-level */
2874 		return (error);
2875 
2876 	/*
2877 	 * Move someone from the condvar sleep queue to the mutex sleep
2878 	 * queue for the mutex that he will acquire on being waked up.
2879 	 * We can do this only if we own the mutex he will acquire.
2880 	 * If we do not own the mutex, or if his ul_cv_wake flag
2881 	 * is set, just dequeue and unpark him.
2882 	 */
2883 	qp = queue_lock(cvp, CV);
2884 	for (ulwpp = &qp->qh_head; (ulwp = *ulwpp) != NULL;
2885 	    prev = ulwp, ulwpp = &ulwp->ul_link) {
2886 		if (ulwp->ul_wchan == cvp) {
2887 			if (!ulwp->ul_stop)
2888 				break;
2889 			/*
2890 			 * Try not to dequeue a suspended thread.
2891 			 * This mimics the old libthread's behavior.
2892 			 */
2893 			if (suspp == NULL) {
2894 				suspp = ulwpp;
2895 				susprev = prev;
2896 			}
2897 		}
2898 	}
2899 	if (ulwp == NULL && suspp != NULL) {
2900 		ulwp = *(ulwpp = suspp);
2901 		prev = susprev;
2902 		suspp = NULL;
2903 	}
2904 	if (ulwp == NULL) {	/* no one on the sleep queue */
2905 		cvp->cond_waiters_user = 0;
2906 		queue_unlock(qp);
2907 		return (error);
2908 	}
2909 	/*
2910 	 * Scan the remainder of the CV queue for another waiter.
2911 	 */
2912 	if (suspp != NULL) {
2913 		next = *suspp;
2914 	} else {
2915 		for (next = ulwp->ul_link; next != NULL; next = next->ul_link)
2916 			if (next->ul_wchan == cvp)
2917 				break;
2918 	}
2919 	if (next == NULL)
2920 		cvp->cond_waiters_user = 0;
2921 
2922 	/*
2923 	 * Inform the thread that he was the recipient of a cond_signal().
2924 	 * This lets him deal with cond_signal() and, concurrently,
2925 	 * one or more of a cancellation, a UNIX signal, or a timeout.
2926 	 * These latter conditions must not consume a cond_signal().
2927 	 */
2928 	ulwp->ul_signalled = 1;
2929 
2930 	/*
2931 	 * Dequeue the waiter but leave his ul_sleepq non-NULL
2932 	 * while we move him to the mutex queue so that he can
2933 	 * deal properly with spurious wakeups.
2934 	 */
2935 	*ulwpp = ulwp->ul_link;
2936 	if (qp->qh_tail == ulwp)
2937 		qp->qh_tail = prev;
2938 	qp->qh_qlen--;
2939 	ulwp->ul_link = NULL;
2940 
2941 	mp = ulwp->ul_cvmutex;		/* the mutex he will acquire */
2942 	ulwp->ul_cvmutex = NULL;
2943 	ASSERT(mp != NULL);
2944 
2945 	if (ulwp->ul_cv_wake || !MUTEX_OWNED(mp, self)) {
2946 		lwpid_t lwpid = ulwp->ul_lwpid;
2947 
2948 		no_preempt(self);
2949 		ulwp->ul_sleepq = NULL;
2950 		ulwp->ul_wchan = NULL;
2951 		ulwp->ul_cv_wake = 0;
2952 		queue_unlock(qp);
2953 		(void) __lwp_unpark(lwpid);
2954 		preempt(self);
2955 	} else {
2956 		mqp = queue_lock(mp, MX);
2957 		enqueue(mqp, ulwp, mp, MX);
2958 		mp->mutex_waiters = 1;
2959 		queue_unlock(mqp);
2960 		queue_unlock(qp);
2961 	}
2962 
2963 	return (error);
2964 }
2965 
2966 #define	MAXLWPS	128	/* max remembered lwpids before overflow */
2967 #define	NEWLWPS	2048	/* max remembered lwpids at first overflow */
2968 
2969 #pragma weak pthread_cond_broadcast = cond_broadcast_internal
2970 #pragma weak _pthread_cond_broadcast = cond_broadcast_internal
2971 #pragma weak cond_broadcast = cond_broadcast_internal
2972 #pragma weak _cond_broadcast = cond_broadcast_internal
2973 int
2974 cond_broadcast_internal(cond_t *cvp)
2975 {
2976 	ulwp_t *self = curthread;
2977 	uberdata_t *udp = self->ul_uberdata;
2978 	tdb_cond_stats_t *csp = COND_STATS(cvp, udp);
2979 	int error = 0;
2980 	queue_head_t *qp;
2981 	mutex_t *mp;
2982 	queue_head_t *mqp;
2983 	mutex_t *mp_cache = NULL;
2984 	queue_head_t *mqp_cache = NULL;
2985 	ulwp_t **ulwpp;
2986 	ulwp_t *ulwp;
2987 	ulwp_t *prev = NULL;
2988 	lwpid_t buffer[MAXLWPS];
2989 	lwpid_t *lwpid = buffer;
2990 	int nlwpid = 0;
2991 	int maxlwps = MAXLWPS;
2992 
2993 	if (csp)
2994 		tdb_incr(csp->cond_broadcast);
2995 
2996 	if (cvp->cond_waiters_kernel)	/* someone sleeping in the kernel? */
2997 		error = __lwp_cond_broadcast(cvp);
2998 
2999 	if (!cvp->cond_waiters_user)	/* no one sleeping at user-level */
3000 		return (error);
3001 
3002 	/*
3003 	 * Move everyone from the condvar sleep queue to the mutex sleep
3004 	 * queue for the mutex that they will acquire on being waked up.
3005 	 * We can do this only if we own the mutex they will acquire.
3006 	 * If we do not own the mutex, or if their ul_cv_wake flag
3007 	 * is set, just dequeue and unpark them.
3008 	 *
3009 	 * We keep track of lwpids that are to be unparked in lwpid[].
3010 	 * __lwp_unpark_all() is called to unpark all of them after
3011 	 * they have been removed from the sleep queue and the sleep
3012 	 * queue lock has been dropped.  If we run out of space in our
3013 	 * on-stack buffer, we need to allocate more but we can't call
3014 	 * lmalloc() because we are holding a queue lock when the overflow
3015 	 * occurs and lmalloc() acquires a lock.  We can't use alloca()
3016 	 * either because the application may have allocated a small stack
3017 	 * and we don't want to overrun the stack.  So we use the mmap()
3018 	 * system call directly since that path acquires no locks.
3019 	 */
3020 	qp = queue_lock(cvp, CV);
3021 	cvp->cond_waiters_user = 0;
3022 	ulwpp = &qp->qh_head;
3023 	while ((ulwp = *ulwpp) != NULL) {
3024 
3025 		if (ulwp->ul_wchan != cvp) {
3026 			prev = ulwp;
3027 			ulwpp = &ulwp->ul_link;
3028 			continue;
3029 		}
3030 
3031 		*ulwpp = ulwp->ul_link;
3032 		if (qp->qh_tail == ulwp)
3033 			qp->qh_tail = prev;
3034 		qp->qh_qlen--;
3035 		ulwp->ul_link = NULL;
3036 
3037 		mp = ulwp->ul_cvmutex;		/* his mutex */
3038 		ulwp->ul_cvmutex = NULL;
3039 		ASSERT(mp != NULL);
3040 
3041 		if (ulwp->ul_cv_wake || !MUTEX_OWNED(mp, self)) {
3042 			ulwp->ul_sleepq = NULL;
3043 			ulwp->ul_wchan = NULL;
3044 			ulwp->ul_cv_wake = 0;
3045 			if (nlwpid == maxlwps) {
3046 				/*
3047 				 * Allocate NEWLWPS ids on the first overflow.
3048 				 * Double the allocation each time after that.
3049 				 */
3050 				int newlwps = (lwpid == buffer)? NEWLWPS :
3051 						2 * maxlwps;
3052 				void *vaddr = _private_mmap(NULL,
3053 					newlwps * sizeof (lwpid_t),
3054 					PROT_READ|PROT_WRITE,
3055 					MAP_PRIVATE|MAP_ANON, -1, (off_t)0);
3056 				if (vaddr == MAP_FAILED) {
3057 					/*
3058 					 * Let's hope this never happens.
3059 					 * If it does, then we have a terrible
3060 					 * thundering herd on our hands.
3061 					 */
3062 					(void) __lwp_unpark_all(lwpid, nlwpid);
3063 					nlwpid = 0;
3064 				} else {
3065 					(void) _memcpy(vaddr, lwpid,
3066 						maxlwps * sizeof (lwpid_t));
3067 					if (lwpid != buffer)
3068 						(void) _private_munmap(lwpid,
3069 						    maxlwps * sizeof (lwpid_t));
3070 					lwpid = vaddr;
3071 					maxlwps = newlwps;
3072 				}
3073 			}
3074 			lwpid[nlwpid++] = ulwp->ul_lwpid;
3075 		} else {
3076 			if (mp != mp_cache) {
3077 				if (mqp_cache != NULL)
3078 					queue_unlock(mqp_cache);
3079 				mqp_cache = queue_lock(mp, MX);
3080 				mp_cache = mp;
3081 			}
3082 			mqp = mqp_cache;
3083 			enqueue(mqp, ulwp, mp, MX);
3084 			mp->mutex_waiters = 1;
3085 		}
3086 	}
3087 	if (mqp_cache != NULL)
3088 		queue_unlock(mqp_cache);
3089 	queue_unlock(qp);
3090 	if (nlwpid) {
3091 		if (nlwpid == 1)
3092 			(void) __lwp_unpark(lwpid[0]);
3093 		else
3094 			(void) __lwp_unpark_all(lwpid, nlwpid);
3095 	}
3096 	if (lwpid != buffer)
3097 		(void) _private_munmap(lwpid, maxlwps * sizeof (lwpid_t));
3098 
3099 	return (error);
3100 }
3101 
3102 #pragma weak pthread_cond_destroy = _cond_destroy
3103 #pragma weak _pthread_cond_destroy = _cond_destroy
3104 #pragma weak cond_destroy = _cond_destroy
3105 int
3106 _cond_destroy(cond_t *cvp)
3107 {
3108 	cvp->cond_magic = 0;
3109 	tdb_sync_obj_deregister(cvp);
3110 	return (0);
3111 }
3112 
3113 #if defined(THREAD_DEBUG)
3114 void
3115 assert_no_libc_locks_held(void)
3116 {
3117 	ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
3118 }
3119 #endif
3120 
3121 /* protected by link_lock */
3122 uint64_t spin_lock_spin;
3123 uint64_t spin_lock_spin2;
3124 uint64_t spin_lock_sleep;
3125 uint64_t spin_lock_wakeup;
3126 
3127 /*
3128  * Record spin lock statistics.
3129  * Called by a thread exiting itself in thrp_exit().
3130  * Also called via atexit() from the thread calling
3131  * exit() to do all the other threads as well.
3132  */
3133 void
3134 record_spin_locks(ulwp_t *ulwp)
3135 {
3136 	spin_lock_spin += ulwp->ul_spin_lock_spin;
3137 	spin_lock_spin2 += ulwp->ul_spin_lock_spin2;
3138 	spin_lock_sleep += ulwp->ul_spin_lock_sleep;
3139 	spin_lock_wakeup += ulwp->ul_spin_lock_wakeup;
3140 	ulwp->ul_spin_lock_spin = 0;
3141 	ulwp->ul_spin_lock_spin2 = 0;
3142 	ulwp->ul_spin_lock_sleep = 0;
3143 	ulwp->ul_spin_lock_wakeup = 0;
3144 }
3145 
3146 /*
3147  * atexit function:  dump the queue statistics to stderr.
3148  */
3149 #if !defined(__lint)
3150 #define	fprintf	_fprintf
3151 #endif
3152 #include <stdio.h>
3153 void
3154 dump_queue_statistics(void)
3155 {
3156 	uberdata_t *udp = curthread->ul_uberdata;
3157 	queue_head_t *qp;
3158 	int qn;
3159 	uint64_t spin_lock_total = 0;
3160 
3161 	if (udp->queue_head == NULL || thread_queue_dump == 0)
3162 		return;
3163 
3164 	if (fprintf(stderr, "\n%5d mutex queues:\n", QHASHSIZE) < 0 ||
3165 	    fprintf(stderr, "queue#   lockcount    max qlen\n") < 0)
3166 		return;
3167 	for (qn = 0, qp = udp->queue_head; qn < QHASHSIZE; qn++, qp++) {
3168 		if (qp->qh_lockcount == 0)
3169 			continue;
3170 		spin_lock_total += qp->qh_lockcount;
3171 		if (fprintf(stderr, "%5d %12llu%12u\n", qn,
3172 			(u_longlong_t)qp->qh_lockcount, qp->qh_qmax) < 0)
3173 				return;
3174 	}
3175 
3176 	if (fprintf(stderr, "\n%5d condvar queues:\n", QHASHSIZE) < 0 ||
3177 	    fprintf(stderr, "queue#   lockcount    max qlen\n") < 0)
3178 		return;
3179 	for (qn = 0; qn < QHASHSIZE; qn++, qp++) {
3180 		if (qp->qh_lockcount == 0)
3181 			continue;
3182 		spin_lock_total += qp->qh_lockcount;
3183 		if (fprintf(stderr, "%5d %12llu%12u\n", qn,
3184 			(u_longlong_t)qp->qh_lockcount, qp->qh_qmax) < 0)
3185 				return;
3186 	}
3187 
3188 	(void) fprintf(stderr, "\n  spin_lock_total  = %10llu\n",
3189 		(u_longlong_t)spin_lock_total);
3190 	(void) fprintf(stderr, "  spin_lock_spin   = %10llu\n",
3191 		(u_longlong_t)spin_lock_spin);
3192 	(void) fprintf(stderr, "  spin_lock_spin2  = %10llu\n",
3193 		(u_longlong_t)spin_lock_spin2);
3194 	(void) fprintf(stderr, "  spin_lock_sleep  = %10llu\n",
3195 		(u_longlong_t)spin_lock_sleep);
3196 	(void) fprintf(stderr, "  spin_lock_wakeup = %10llu\n",
3197 		(u_longlong_t)spin_lock_wakeup);
3198 }
3199