1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include "lint.h" 30 #include "thr_uberdata.h" 31 #include "asyncio.h" 32 #include <signal.h> 33 #include <siginfo.h> 34 #include <ucontext.h> 35 #include <sys/systm.h> 36 37 const sigset_t maskset = {MASKSET0, MASKSET1, 0, 0}; /* maskable signals */ 38 39 /* 40 * Return true if the valid signal bits in both sets are the same. 41 */ 42 int 43 sigequalset(const sigset_t *s1, const sigset_t *s2) 44 { 45 /* 46 * We only test valid signal bits, not rubbish following MAXSIG 47 * (for speed). Algorithm: 48 * if (s1 & fillset) == (s2 & fillset) then (s1 ^ s2) & fillset == 0 49 */ 50 return (!((s1->__sigbits[0] ^ s2->__sigbits[0]) | 51 ((s1->__sigbits[1] ^ s2->__sigbits[1]) & FILLSET1))); 52 } 53 54 /* 55 * Common code for calling the user-specified signal handler. 56 */ 57 void 58 call_user_handler(int sig, siginfo_t *sip, ucontext_t *ucp) 59 { 60 ulwp_t *self = curthread; 61 uberdata_t *udp = self->ul_uberdata; 62 struct sigaction uact; 63 volatile struct sigaction *sap; 64 65 /* 66 * If we are taking a signal while parked or about to be parked 67 * on __lwp_park() then remove ourself from the sleep queue so 68 * that we can grab locks. The code in mutex_lock_queue() and 69 * cond_wait_common() will detect this and deal with it when 70 * __lwp_park() returns. 71 */ 72 unsleep_self(); 73 set_parking_flag(self, 0); 74 75 if (__td_event_report(self, TD_CATCHSIG, udp)) { 76 self->ul_td_evbuf.eventnum = TD_CATCHSIG; 77 self->ul_td_evbuf.eventdata = (void *)(intptr_t)sig; 78 tdb_event(TD_CATCHSIG, udp); 79 } 80 81 /* 82 * Get a self-consistent set of flags, handler, and mask 83 * while holding the sig's sig_lock for the least possible time. 84 * We must acquire the sig's sig_lock because some thread running 85 * in sigaction() might be establishing a new signal handler. 86 * The code in sigaction() acquires the writer lock; here 87 * we acquire the readers lock to ehance concurrency in the 88 * face of heavy signal traffic, such as generated by java. 89 * 90 * Locking exceptions: 91 * No locking for a child of vfork(). 92 * If the signal is SIGPROF with an si_code of PROF_SIG, 93 * then we assume that this signal was generated by 94 * setitimer(ITIMER_REALPROF) set up by the dbx collector. 95 * If the signal is SIGEMT with an si_code of EMT_CPCOVF, 96 * then we assume that the signal was generated by 97 * a hardware performance counter overflow. 98 * In these cases, assume that we need no locking. It is the 99 * monitoring program's responsibility to ensure correctness. 100 */ 101 sap = &udp->siguaction[sig].sig_uaction; 102 if (self->ul_vfork || 103 (sip != NULL && 104 ((sig == SIGPROF && sip->si_code == PROF_SIG) || 105 (sig == SIGEMT && sip->si_code == EMT_CPCOVF)))) { 106 /* we wish this assignment could be atomic */ 107 (void) _private_memcpy(&uact, (void *)sap, sizeof (uact)); 108 } else { 109 rwlock_t *rwlp = &udp->siguaction[sig].sig_lock; 110 lrw_rdlock(rwlp); 111 (void) _private_memcpy(&uact, (void *)sap, sizeof (uact)); 112 if (sig == SIGCANCEL && (sap->sa_flags & SA_RESETHAND)) 113 sap->sa_sigaction = SIG_DFL; 114 lrw_unlock(rwlp); 115 } 116 117 /* 118 * Set the proper signal mask and call the user's signal handler. 119 * (We overrode the user-requested signal mask with maskset 120 * so we currently have all blockable signals blocked.) 121 * 122 * We would like to ASSERT() that the signal is not a member of the 123 * signal mask at the previous level (ucp->uc_sigmask) or the specified 124 * signal mask for sigsuspend() or pollsys() (self->ul_tmpmask) but 125 * /proc can override this via PCSSIG, so we don't bother. 126 * 127 * We would also like to ASSERT() that the signal mask at the previous 128 * level equals self->ul_sigmask (maskset for sigsuspend() / pollsys()), 129 * but /proc can change the thread's signal mask via PCSHOLD, so we 130 * don't bother with that either. 131 */ 132 ASSERT(ucp->uc_flags & UC_SIGMASK); 133 if (self->ul_sigsuspend) { 134 ucp->uc_sigmask = self->ul_sigmask; 135 self->ul_sigsuspend = 0; 136 /* the sigsuspend() or pollsys() signal mask */ 137 sigorset(&uact.sa_mask, &self->ul_tmpmask); 138 } else { 139 /* the signal mask at the previous level */ 140 sigorset(&uact.sa_mask, &ucp->uc_sigmask); 141 } 142 if (!(uact.sa_flags & SA_NODEFER)) /* add current signal */ 143 (void) _private_sigaddset(&uact.sa_mask, sig); 144 self->ul_sigmask = uact.sa_mask; 145 self->ul_siglink = ucp; 146 (void) __lwp_sigmask(SIG_SETMASK, &uact.sa_mask, NULL); 147 148 /* 149 * If this thread has been sent SIGCANCEL from the kernel 150 * or from pthread_cancel(), it is being asked to exit. 151 * The kernel may send SIGCANCEL without a siginfo struct. 152 * If the SIGCANCEL is process-directed (from kill() or 153 * sigqueue()), treat it as an ordinary signal. 154 */ 155 if (sig == SIGCANCEL) { 156 if (sip == NULL || SI_FROMKERNEL(sip) || 157 sip->si_code == SI_LWP) { 158 do_sigcancel(); 159 goto out; 160 } 161 /* SIGCANCEL is ignored by default */ 162 if (uact.sa_sigaction == SIG_DFL || 163 uact.sa_sigaction == SIG_IGN) 164 goto out; 165 } 166 167 /* 168 * If this thread has been sent SIGAIOCANCEL (SIGLWP) and 169 * we are an aio worker thread, cancel the aio request. 170 */ 171 if (sig == SIGAIOCANCEL) { 172 aio_worker_t *aiowp = _pthread_getspecific(_aio_key); 173 174 if (sip != NULL && sip->si_code == SI_LWP && aiowp != NULL) 175 _siglongjmp(aiowp->work_jmp_buf, 1); 176 /* SIGLWP is ignored by default */ 177 if (uact.sa_sigaction == SIG_DFL || 178 uact.sa_sigaction == SIG_IGN) 179 goto out; 180 } 181 182 if (!(uact.sa_flags & SA_SIGINFO)) 183 sip = NULL; 184 __sighndlr(sig, sip, ucp, uact.sa_sigaction); 185 186 #if defined(sparc) || defined(__sparc) 187 /* 188 * If this is a floating point exception and the queue 189 * is non-empty, pop the top entry from the queue. This 190 * is to maintain expected behavior. 191 */ 192 if (sig == SIGFPE && ucp->uc_mcontext.fpregs.fpu_qcnt) { 193 fpregset_t *fp = &ucp->uc_mcontext.fpregs; 194 195 if (--fp->fpu_qcnt > 0) { 196 unsigned char i; 197 struct fq *fqp; 198 199 fqp = fp->fpu_q; 200 for (i = 0; i < fp->fpu_qcnt; i++) 201 fqp[i] = fqp[i+1]; 202 } 203 } 204 #endif /* sparc */ 205 206 out: 207 (void) _private_setcontext(ucp); 208 thr_panic("call_user_handler(): _setcontext() returned"); 209 } 210 211 /* 212 * take_deferred_signal() is called when ul_critical and ul_sigdefer become 213 * zero and a deferred signal has been recorded on the current thread. 214 * We are out of the critical region and are ready to take a signal. 215 * The kernel has all signals blocked on this lwp, but our value of 216 * ul_sigmask is the correct signal mask for the previous context. 217 * 218 * We call __sigresend() to atomically restore the signal mask and 219 * cause the signal to be sent again with the remembered siginfo. 220 * We will not return successfully from __sigresend() until the 221 * application's signal handler has been run via sigacthandler(). 222 */ 223 void 224 take_deferred_signal(int sig) 225 { 226 extern int __sigresend(int, siginfo_t *, sigset_t *); 227 ulwp_t *self = curthread; 228 siginfo_t *sip; 229 int error; 230 231 ASSERT((self->ul_critical | self->ul_sigdefer | self->ul_cursig) == 0); 232 233 if (self->ul_siginfo.si_signo == 0) 234 sip = NULL; 235 else 236 sip = &self->ul_siginfo; 237 238 /* EAGAIN can happen only for a pending SIGSTOP signal */ 239 while ((error = __sigresend(sig, sip, &self->ul_sigmask)) == EAGAIN) 240 continue; 241 if (error) 242 thr_panic("take_deferred_signal(): __sigresend() failed"); 243 } 244 245 void 246 sigacthandler(int sig, siginfo_t *sip, void *uvp) 247 { 248 ucontext_t *ucp = uvp; 249 ulwp_t *self = curthread; 250 251 /* 252 * Do this in case we took a signal while in a cancelable system call. 253 * It does no harm if we were not in such a system call. 254 */ 255 self->ul_sp = 0; 256 if (sig != SIGCANCEL) 257 self->ul_cancel_async = self->ul_save_async; 258 259 /* 260 * If we are not in a critical region and are 261 * not deferring signals, take the signal now. 262 */ 263 if ((self->ul_critical + self->ul_sigdefer) == 0) { 264 call_user_handler(sig, sip, ucp); 265 return; /* call_user_handler() cannot return */ 266 } 267 268 /* 269 * We are in a critical region or we are deferring signals. When 270 * we emerge from the region we will call take_deferred_signal(). 271 */ 272 ASSERT(self->ul_cursig == 0); 273 self->ul_cursig = (char)sig; 274 if (sip != NULL) 275 (void) _private_memcpy(&self->ul_siginfo, 276 sip, sizeof (siginfo_t)); 277 else 278 self->ul_siginfo.si_signo = 0; 279 280 /* 281 * Make sure that if we return to a call to __lwp_park() 282 * or ___lwp_cond_wait() that it returns right away 283 * (giving us a spurious wakeup but not a deadlock). 284 */ 285 set_parking_flag(self, 0); 286 287 /* 288 * Return to the previous context with all signals blocked. 289 * We will restore the signal mask in take_deferred_signal(). 290 * Note that we are calling the system call trap here, not 291 * the _setcontext() wrapper. We don't want to change the 292 * thread's ul_sigmask by this operation. 293 */ 294 ucp->uc_sigmask = maskset; 295 (void) __setcontext_syscall(ucp); 296 thr_panic("sigacthandler(): __setcontext() returned"); 297 } 298 299 #pragma weak sigaction = _libc_sigaction 300 #pragma weak _sigaction = _libc_sigaction 301 int 302 _libc_sigaction(int sig, const struct sigaction *nact, struct sigaction *oact) 303 { 304 ulwp_t *self = curthread; 305 uberdata_t *udp = self->ul_uberdata; 306 struct sigaction oaction; 307 struct sigaction tact; 308 struct sigaction *tactp = NULL; 309 int rv; 310 311 if (sig <= 0 || sig >= NSIG) { 312 errno = EINVAL; 313 return (-1); 314 } 315 316 if (!self->ul_vfork) 317 lrw_wrlock(&udp->siguaction[sig].sig_lock); 318 319 oaction = udp->siguaction[sig].sig_uaction; 320 321 if (nact != NULL) { 322 tact = *nact; /* make a copy so we can modify it */ 323 tactp = &tact; 324 delete_reserved_signals(&tact.sa_mask); 325 326 #if !defined(_LP64) 327 tact.sa_resv[0] = tact.sa_resv[1] = 0; /* cleanliness */ 328 #endif 329 /* 330 * To be compatible with the behavior of SunOS 4.x: 331 * If the new signal handler is SIG_IGN or SIG_DFL, do 332 * not change the signal's entry in the siguaction array. 333 * This allows a child of vfork(2) to set signal handlers 334 * to SIG_IGN or SIG_DFL without affecting the parent. 335 * 336 * This also covers a race condition with some thread 337 * setting the signal action to SIG_DFL or SIG_IGN 338 * when the thread has also received and deferred 339 * that signal. When the thread takes the deferred 340 * signal, even though it has set the action to SIG_DFL 341 * or SIG_IGN, it will execute the old signal handler 342 * anyway. This is an inherent signaling race condition 343 * and is not a bug. 344 * 345 * A child of vfork() is not allowed to change signal 346 * handlers to anything other than SIG_DFL or SIG_IGN. 347 */ 348 if (self->ul_vfork) { 349 if (tact.sa_sigaction != SIG_IGN) 350 tact.sa_sigaction = SIG_DFL; 351 } else if (sig == SIGCANCEL || sig == SIGAIOCANCEL) { 352 /* 353 * Always catch these signals. 354 * We need SIGCANCEL for pthread_cancel() to work. 355 * We need SIGAIOCANCEL for aio_cancel() to work. 356 */ 357 udp->siguaction[sig].sig_uaction = tact; 358 if (tact.sa_sigaction == SIG_DFL || 359 tact.sa_sigaction == SIG_IGN) 360 tact.sa_flags = SA_SIGINFO; 361 else { 362 tact.sa_flags |= SA_SIGINFO; 363 tact.sa_flags &= ~(SA_NODEFER | SA_RESETHAND); 364 } 365 tact.sa_sigaction = udp->sigacthandler; 366 tact.sa_mask = maskset; 367 } else if (tact.sa_sigaction != SIG_DFL && 368 tact.sa_sigaction != SIG_IGN) { 369 udp->siguaction[sig].sig_uaction = tact; 370 tact.sa_flags &= ~SA_NODEFER; 371 tact.sa_sigaction = udp->sigacthandler; 372 tact.sa_mask = maskset; 373 } 374 } 375 376 if ((rv = __sigaction(sig, tactp, oact)) != 0) 377 udp->siguaction[sig].sig_uaction = oaction; 378 else if (oact != NULL && 379 oact->sa_sigaction != SIG_DFL && 380 oact->sa_sigaction != SIG_IGN) 381 *oact = oaction; 382 383 /* 384 * We detect setting the disposition of SIGIO just to set the 385 * _sigio_enabled flag for the asynchronous i/o (aio) code. 386 */ 387 if (sig == SIGIO && rv == 0 && tactp != NULL) { 388 _sigio_enabled = 389 (tactp->sa_handler != SIG_DFL && 390 tactp->sa_handler != SIG_IGN); 391 } 392 393 if (!self->ul_vfork) 394 lrw_unlock(&udp->siguaction[sig].sig_lock); 395 return (rv); 396 } 397 398 void 399 setsigacthandler(void (*nsigacthandler)(int, siginfo_t *, void *), 400 void (**osigacthandler)(int, siginfo_t *, void *)) 401 { 402 ulwp_t *self = curthread; 403 uberdata_t *udp = self->ul_uberdata; 404 405 if (osigacthandler != NULL) 406 *osigacthandler = udp->sigacthandler; 407 408 udp->sigacthandler = nsigacthandler; 409 } 410 411 /* 412 * Calling set_parking_flag(curthread, 1) informs the kernel that we are 413 * calling __lwp_park or ___lwp_cond_wait(). If we take a signal in 414 * the unprotected (from signals) interval before reaching the kernel, 415 * sigacthandler() will call set_parking_flag(curthread, 0) to inform 416 * the kernel to return immediately from these system calls, giving us 417 * a spurious wakeup but not a deadlock. 418 */ 419 void 420 set_parking_flag(ulwp_t *self, int park) 421 { 422 volatile sc_shared_t *scp; 423 424 enter_critical(self); 425 if ((scp = self->ul_schedctl) != NULL || 426 (scp = setup_schedctl()) != NULL) 427 scp->sc_park = park; 428 else if (park == 0) /* schedctl failed, do it the long way */ 429 __lwp_unpark(self->ul_lwpid); 430 exit_critical(self); 431 } 432 433 /* 434 * Tell the kernel to block all signals. 435 * Use the schedctl interface, or failing that, use __lwp_sigmask(). 436 * This action can be rescinded only by making a system call that 437 * sets the signal mask: 438 * __lwp_sigmask(), __sigprocmask(), __setcontext(), 439 * __sigsuspend() or __pollsys(). 440 * In particular, this action cannot be reversed by assigning 441 * scp->sc_sigblock = 0. That would be a way to lose signals. 442 * See the definition of restore_signals(self). 443 */ 444 void 445 block_all_signals(ulwp_t *self) 446 { 447 volatile sc_shared_t *scp; 448 449 enter_critical(self); 450 if ((scp = self->ul_schedctl) != NULL || 451 (scp = setup_schedctl()) != NULL) 452 scp->sc_sigblock = 1; 453 else 454 (void) __lwp_sigmask(SIG_SETMASK, &maskset, NULL); 455 exit_critical(self); 456 } 457 458 /* 459 * _private_setcontext has code that forcibly restores the curthread 460 * pointer in a context passed to the setcontext(2) syscall. 461 * 462 * Certain processes may need to disable this feature, so these routines 463 * provide the mechanism to do so. 464 * 465 * (As an example, branded 32-bit x86 processes may use %gs for their own 466 * purposes, so they need to be able to specify a %gs value to be restored 467 * on return from a signal handler via the passed ucontext_t.) 468 */ 469 static int setcontext_enforcement = 1; 470 471 void 472 set_setcontext_enforcement(int on) 473 { 474 setcontext_enforcement = on; 475 } 476 477 #pragma weak setcontext = _private_setcontext 478 #pragma weak _setcontext = _private_setcontext 479 int 480 _private_setcontext(const ucontext_t *ucp) 481 { 482 ulwp_t *self = curthread; 483 int ret; 484 ucontext_t uc; 485 486 /* 487 * Returning from the main context (uc_link == NULL) causes 488 * the thread to exit. See setcontext(2) and makecontext(3C). 489 */ 490 if (ucp == NULL) 491 _thr_exit(NULL); 492 (void) _private_memcpy(&uc, ucp, sizeof (uc)); 493 494 /* 495 * Restore previous signal mask and context link. 496 */ 497 if (uc.uc_flags & UC_SIGMASK) { 498 block_all_signals(self); 499 delete_reserved_signals(&uc.uc_sigmask); 500 self->ul_sigmask = uc.uc_sigmask; 501 if (self->ul_cursig) { 502 /* 503 * We have a deferred signal present. 504 * The signal mask will be set when the 505 * signal is taken in take_deferred_signal(). 506 */ 507 ASSERT(self->ul_critical + self->ul_sigdefer != 0); 508 uc.uc_flags &= ~UC_SIGMASK; 509 } 510 } 511 self->ul_siglink = uc.uc_link; 512 513 /* 514 * We don't know where this context structure has been. 515 * Preserve the curthread pointer, at least. 516 * 517 * Allow this feature to be disabled if a particular process 518 * requests it. 519 */ 520 if (setcontext_enforcement) { 521 #if defined(__sparc) 522 uc.uc_mcontext.gregs[REG_G7] = (greg_t)self; 523 #elif defined(__amd64) 524 uc.uc_mcontext.gregs[REG_FS] = (greg_t)0; /* null for fsbase */ 525 #elif defined(__i386) 526 uc.uc_mcontext.gregs[GS] = (greg_t)LWPGS_SEL; 527 #else 528 #error "none of __sparc, __amd64, __i386 defined" 529 #endif 530 } 531 532 /* 533 * Make sure that if we return to a call to __lwp_park() 534 * or ___lwp_cond_wait() that it returns right away 535 * (giving us a spurious wakeup but not a deadlock). 536 */ 537 set_parking_flag(self, 0); 538 self->ul_sp = 0; 539 ret = __setcontext_syscall(&uc); 540 541 /* 542 * It is OK for setcontext() to return if the user has not specified 543 * UC_CPU. 544 */ 545 if (uc.uc_flags & UC_CPU) 546 thr_panic("setcontext(): __setcontext() returned"); 547 return (ret); 548 } 549 550 #pragma weak thr_sigsetmask = _thr_sigsetmask 551 #pragma weak pthread_sigmask = _thr_sigsetmask 552 #pragma weak _pthread_sigmask = _thr_sigsetmask 553 int 554 _thr_sigsetmask(int how, const sigset_t *set, sigset_t *oset) 555 { 556 ulwp_t *self = curthread; 557 sigset_t saveset; 558 559 if (set == NULL) { 560 enter_critical(self); 561 if (oset != NULL) 562 *oset = self->ul_sigmask; 563 exit_critical(self); 564 } else { 565 switch (how) { 566 case SIG_BLOCK: 567 case SIG_UNBLOCK: 568 case SIG_SETMASK: 569 break; 570 default: 571 return (EINVAL); 572 } 573 574 /* 575 * The assignments to self->ul_sigmask must be protected from 576 * signals. The nuances of this code are subtle. Be careful. 577 */ 578 block_all_signals(self); 579 if (oset != NULL) 580 saveset = self->ul_sigmask; 581 switch (how) { 582 case SIG_BLOCK: 583 self->ul_sigmask.__sigbits[0] |= set->__sigbits[0]; 584 self->ul_sigmask.__sigbits[1] |= set->__sigbits[1]; 585 break; 586 case SIG_UNBLOCK: 587 self->ul_sigmask.__sigbits[0] &= ~set->__sigbits[0]; 588 self->ul_sigmask.__sigbits[1] &= ~set->__sigbits[1]; 589 break; 590 case SIG_SETMASK: 591 self->ul_sigmask.__sigbits[0] = set->__sigbits[0]; 592 self->ul_sigmask.__sigbits[1] = set->__sigbits[1]; 593 break; 594 } 595 delete_reserved_signals(&self->ul_sigmask); 596 if (oset != NULL) 597 *oset = saveset; 598 restore_signals(self); 599 } 600 601 return (0); 602 } 603 604 #pragma weak sigprocmask = _sigprocmask 605 int 606 _sigprocmask(int how, const sigset_t *set, sigset_t *oset) 607 { 608 int error; 609 610 /* 611 * Guard against children of vfork(). 612 */ 613 if (curthread->ul_vfork) 614 return (__lwp_sigmask(how, set, oset)); 615 616 if ((error = _thr_sigsetmask(how, set, oset)) != 0) { 617 errno = error; 618 return (-1); 619 } 620 621 return (0); 622 } 623 624 /* 625 * Called at library initialization to set up signal handling. 626 * All we really do is initialize the sig_lock rwlocks. 627 * All signal handlers are either SIG_DFL or SIG_IGN on exec(). 628 * However, if any signal handlers were established on alternate 629 * link maps before the primary link map has been initialized, 630 * then inform the kernel of the new sigacthandler. 631 */ 632 void 633 signal_init() 634 { 635 uberdata_t *udp = curthread->ul_uberdata; 636 struct sigaction *sap; 637 struct sigaction act; 638 rwlock_t *rwlp; 639 int sig; 640 641 for (sig = 0; sig < NSIG; sig++) { 642 rwlp = &udp->siguaction[sig].sig_lock; 643 rwlp->rwlock_magic = RWL_MAGIC; 644 rwlp->mutex.mutex_flag = LOCK_INITED; 645 rwlp->mutex.mutex_magic = MUTEX_MAGIC; 646 sap = &udp->siguaction[sig].sig_uaction; 647 if (sap->sa_sigaction != SIG_DFL && 648 sap->sa_sigaction != SIG_IGN && 649 __sigaction(sig, NULL, &act) == 0 && 650 act.sa_sigaction != SIG_DFL && 651 act.sa_sigaction != SIG_IGN) { 652 act = *sap; 653 act.sa_flags &= ~SA_NODEFER; 654 act.sa_sigaction = udp->sigacthandler; 655 act.sa_mask = maskset; 656 (void) __sigaction(sig, &act, NULL); 657 } 658 } 659 } 660 661 /* 662 * Common code for cancelling self in _sigcancel() and pthread_cancel(). 663 * If the thread is at a cancellation point (ul_cancelable) then just 664 * return and let _canceloff() do the exit, else exit immediately if 665 * async mode is in effect. 666 */ 667 void 668 do_sigcancel() 669 { 670 ulwp_t *self = curthread; 671 672 ASSERT(self->ul_critical == 0); 673 ASSERT(self->ul_sigdefer == 0); 674 self->ul_cancel_pending = 1; 675 if (self->ul_cancel_async && 676 !self->ul_cancel_disabled && 677 !self->ul_cancelable) 678 _pthread_exit(PTHREAD_CANCELED); 679 } 680 681 /* 682 * Set up the SIGCANCEL handler for threads cancellation, 683 * needed only when we have more than one thread, 684 * or the SIGAIOCANCEL handler for aio cancellation, 685 * called when aio is initialized, in __uaio_init(). 686 */ 687 void 688 setup_cancelsig(int sig) 689 { 690 uberdata_t *udp = curthread->ul_uberdata; 691 rwlock_t *rwlp = &udp->siguaction[sig].sig_lock; 692 struct sigaction act; 693 694 ASSERT(sig == SIGCANCEL || sig == SIGAIOCANCEL); 695 lrw_rdlock(rwlp); 696 act = udp->siguaction[sig].sig_uaction; 697 lrw_unlock(rwlp); 698 if (act.sa_sigaction == SIG_DFL || 699 act.sa_sigaction == SIG_IGN) 700 act.sa_flags = SA_SIGINFO; 701 else { 702 act.sa_flags |= SA_SIGINFO; 703 act.sa_flags &= ~(SA_NODEFER | SA_RESETHAND); 704 } 705 act.sa_sigaction = udp->sigacthandler; 706 act.sa_mask = maskset; 707 (void) __sigaction(sig, &act, NULL); 708 } 709