xref: /titanic_50/usr/src/lib/libc/port/threads/scalls.c (revision 1e67f0f0096be223aa7f51802953bebd95866ddc)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include "lint.h"
28 #include "thr_uberdata.h"
29 #include <stdarg.h>
30 #include <poll.h>
31 #include <stropts.h>
32 #include <dlfcn.h>
33 #include <wait.h>
34 #include <sys/socket.h>
35 #include <sys/uio.h>
36 #include <sys/file.h>
37 #include <sys/door.h>
38 
39 /*
40  * These leading-underbar symbols exist because mistakes were made
41  * in the past that put them into non-SUNWprivate versions of
42  * the libc mapfiles.  They should be eliminated, but oh well...
43  */
44 #pragma weak _fork = fork
45 #pragma weak _read = read
46 #pragma weak _write = write
47 #pragma weak _getmsg = getmsg
48 #pragma weak _getpmsg = getpmsg
49 #pragma weak _putmsg = putmsg
50 #pragma weak _putpmsg = putpmsg
51 #pragma weak _sleep = sleep
52 #pragma weak _close = close
53 #pragma weak _creat = creat
54 #pragma weak _fcntl = fcntl
55 #pragma weak _fsync = fsync
56 #pragma weak _lockf = lockf
57 #pragma weak _msgrcv = msgrcv
58 #pragma weak _msgsnd = msgsnd
59 #pragma weak _msync = msync
60 #pragma weak _open = open
61 #pragma weak _openat = openat
62 #pragma weak _pause = pause
63 #pragma weak _readv = readv
64 #pragma weak _sigpause = sigpause
65 #pragma weak _sigsuspend = sigsuspend
66 #pragma weak _tcdrain = tcdrain
67 #pragma weak _waitid = waitid
68 #pragma weak _writev = writev
69 
70 #if !defined(_LP64)
71 #pragma weak _creat64 = creat64
72 #pragma weak _lockf64 = lockf64
73 #pragma weak _open64 = open64
74 #pragma weak _openat64 = openat64
75 #pragma weak _pread64 = pread64
76 #pragma weak _pwrite64 = pwrite64
77 #endif
78 
79 /*
80  * These are SUNWprivate, but they are being used by Sun Studio libcollector.
81  */
82 #pragma weak _fork1 = fork1
83 #pragma weak _forkall = forkall
84 
85 /*
86  * atfork_lock protects the pthread_atfork() data structures.
87  *
88  * fork_lock does double-duty.  Not only does it (and atfork_lock)
89  * serialize calls to fork() and forkall(), but it also serializes calls
90  * to thr_suspend() and thr_continue() (because fork() and forkall() also
91  * suspend and continue other threads and they want no competition).
92  *
93  * Functions called in dlopen()ed L10N objects can do anything, including
94  * call malloc() and free().  Such calls are not fork-safe when protected
95  * by an ordinary mutex that is acquired in libc's prefork processing
96  * because, with an interposed malloc library present, there would be a
97  * lock ordering violation due to the pthread_atfork() prefork function
98  * in the interposition library acquiring its malloc lock(s) before the
99  * ordinary mutex in libc being acquired by libc's prefork functions.
100  *
101  * Within libc, calls to malloc() and free() are fork-safe if the calls
102  * are made while holding no other libc locks.  This covers almost all
103  * of libc's malloc() and free() calls.  For those libc code paths, such
104  * as the above-mentioned L10N calls, that require serialization and that
105  * may call malloc() or free(), libc uses callout_lock_enter() to perform
106  * the serialization.  This works because callout_lock is not acquired as
107  * part of running the pthread_atfork() prefork handlers (to avoid the
108  * lock ordering violation described above).  Rather, it is simply
109  * reinitialized in postfork1_child() to cover the case that some
110  * now-defunct thread might have been suspended while holding it.
111  */
112 
113 void
114 fork_lock_enter(void)
115 {
116 	ASSERT(curthread->ul_critical == 0);
117 	(void) mutex_lock(&curthread->ul_uberdata->fork_lock);
118 }
119 
120 void
121 fork_lock_exit(void)
122 {
123 	ASSERT(curthread->ul_critical == 0);
124 	(void) mutex_unlock(&curthread->ul_uberdata->fork_lock);
125 }
126 
127 /*
128  * Use cancel_safe_mutex_lock() to protect against being cancelled while
129  * holding callout_lock and calling outside of libc (via L10N plugins).
130  * We will honor a pending cancellation request when callout_lock_exit()
131  * is called, by calling cancel_safe_mutex_unlock().
132  */
133 void
134 callout_lock_enter(void)
135 {
136 	ASSERT(curthread->ul_critical == 0);
137 	cancel_safe_mutex_lock(&curthread->ul_uberdata->callout_lock);
138 }
139 
140 void
141 callout_lock_exit(void)
142 {
143 	ASSERT(curthread->ul_critical == 0);
144 	cancel_safe_mutex_unlock(&curthread->ul_uberdata->callout_lock);
145 }
146 
147 pid_t
148 forkx(int flags)
149 {
150 	ulwp_t *self = curthread;
151 	uberdata_t *udp = self->ul_uberdata;
152 	pid_t pid;
153 
154 	if (self->ul_vfork) {
155 		/*
156 		 * We are a child of vfork(); omit all of the fork
157 		 * logic and go straight to the system call trap.
158 		 * A vfork() child of a multithreaded parent
159 		 * must never call fork().
160 		 */
161 		if (udp->uberflags.uf_mt) {
162 			errno = ENOTSUP;
163 			return (-1);
164 		}
165 		pid = __forkx(flags);
166 		if (pid == 0) {		/* child */
167 			udp->pid = getpid();
168 			self->ul_vfork = 0;
169 		}
170 		return (pid);
171 	}
172 
173 	sigoff(self);
174 	if (self->ul_fork) {
175 		/*
176 		 * Cannot call fork() from a fork handler.
177 		 */
178 		sigon(self);
179 		errno = EDEADLK;
180 		return (-1);
181 	}
182 	self->ul_fork = 1;
183 
184 	/*
185 	 * The functions registered by pthread_atfork() are defined by
186 	 * the application and its libraries and we must not hold any
187 	 * internal lmutex_lock()-acquired locks while invoking them.
188 	 * We hold only udp->atfork_lock to protect the atfork linkages.
189 	 * If one of these pthread_atfork() functions attempts to fork
190 	 * or to call pthread_atfork(), libc will detect the error and
191 	 * fail the call with EDEADLK.  Otherwise, the pthread_atfork()
192 	 * functions are free to do anything they please (except they
193 	 * will not receive any signals).
194 	 */
195 	(void) mutex_lock(&udp->atfork_lock);
196 
197 	/*
198 	 * Posix (SUSv3) requires fork() to be async-signal-safe.
199 	 * This cannot be made to happen with fork handlers in place
200 	 * (they grab locks).  To be in nominal compliance, don't run
201 	 * any fork handlers if we are called within a signal context.
202 	 * This leaves the child process in a questionable state with
203 	 * respect to its locks, but at least the parent process does
204 	 * not become deadlocked due to the calling thread attempting
205 	 * to acquire a lock that it already owns.
206 	 */
207 	if (self->ul_siglink == NULL)
208 		_prefork_handler();
209 
210 	/*
211 	 * Block every other thread attempting thr_suspend() or thr_continue().
212 	 */
213 	(void) mutex_lock(&udp->fork_lock);
214 
215 	/*
216 	 * Block all signals.
217 	 * Just deferring them via sigoff() is not enough.
218 	 * We have to avoid taking a deferred signal in the child
219 	 * that was actually sent to the parent before __forkx().
220 	 */
221 	block_all_signals(self);
222 
223 	/*
224 	 * This suspends all threads but this one, leaving them
225 	 * suspended outside of any critical regions in the library.
226 	 * Thus, we are assured that no lmutex_lock()-acquired library
227 	 * locks are held while we invoke fork() from the current thread.
228 	 */
229 	suspend_fork();
230 
231 	pid = __forkx(flags);
232 
233 	if (pid == 0) {		/* child */
234 		/*
235 		 * Clear our schedctl pointer.
236 		 * Discard any deferred signal that was sent to the parent.
237 		 * Because we blocked all signals before __forkx(), a
238 		 * deferred signal cannot have been taken by the child.
239 		 */
240 		self->ul_schedctl_called = NULL;
241 		self->ul_schedctl = NULL;
242 		self->ul_cursig = 0;
243 		self->ul_siginfo.si_signo = 0;
244 		udp->pid = getpid();
245 		/* reset the library's data structures to reflect one thread */
246 		unregister_locks();
247 		postfork1_child();
248 		restore_signals(self);
249 		(void) mutex_unlock(&udp->fork_lock);
250 		if (self->ul_siglink == NULL)
251 			_postfork_child_handler();
252 	} else {
253 		/* restart all threads that were suspended for fork() */
254 		continue_fork(0);
255 		restore_signals(self);
256 		(void) mutex_unlock(&udp->fork_lock);
257 		if (self->ul_siglink == NULL)
258 			_postfork_parent_handler();
259 	}
260 
261 	(void) mutex_unlock(&udp->atfork_lock);
262 	self->ul_fork = 0;
263 	sigon(self);
264 
265 	return (pid);
266 }
267 
268 /*
269  * fork() is fork1() for both Posix threads and Solaris threads.
270  * The forkall() interface exists for applications that require
271  * the semantics of replicating all threads.
272  */
273 #pragma weak fork1 = fork
274 pid_t
275 fork(void)
276 {
277 	return (forkx(0));
278 }
279 
280 /*
281  * Much of the logic here is the same as in forkx().
282  * See the comments in forkx(), above.
283  */
284 pid_t
285 forkallx(int flags)
286 {
287 	ulwp_t *self = curthread;
288 	uberdata_t *udp = self->ul_uberdata;
289 	pid_t pid;
290 
291 	if (self->ul_vfork) {
292 		if (udp->uberflags.uf_mt) {
293 			errno = ENOTSUP;
294 			return (-1);
295 		}
296 		pid = __forkallx(flags);
297 		if (pid == 0) {		/* child */
298 			udp->pid = getpid();
299 			self->ul_vfork = 0;
300 		}
301 		return (pid);
302 	}
303 
304 	sigoff(self);
305 	if (self->ul_fork) {
306 		sigon(self);
307 		errno = EDEADLK;
308 		return (-1);
309 	}
310 	self->ul_fork = 1;
311 	(void) mutex_lock(&udp->atfork_lock);
312 	(void) mutex_lock(&udp->fork_lock);
313 	block_all_signals(self);
314 	suspend_fork();
315 
316 	pid = __forkallx(flags);
317 
318 	if (pid == 0) {
319 		self->ul_schedctl_called = NULL;
320 		self->ul_schedctl = NULL;
321 		self->ul_cursig = 0;
322 		self->ul_siginfo.si_signo = 0;
323 		udp->pid = getpid();
324 		unregister_locks();
325 		continue_fork(1);
326 	} else {
327 		continue_fork(0);
328 	}
329 	restore_signals(self);
330 	(void) mutex_unlock(&udp->fork_lock);
331 	(void) mutex_unlock(&udp->atfork_lock);
332 	self->ul_fork = 0;
333 	sigon(self);
334 
335 	return (pid);
336 }
337 
338 pid_t
339 forkall(void)
340 {
341 	return (forkallx(0));
342 }
343 
344 /*
345  * For the implementation of cancellation at cancellation points.
346  */
347 #define	PROLOGUE							\
348 {									\
349 	ulwp_t *self = curthread;					\
350 	int nocancel =							\
351 	    (self->ul_vfork | self->ul_nocancel | self->ul_libc_locks |	\
352 	    self->ul_critical | self->ul_sigdefer);			\
353 	int abort = 0;							\
354 	if (nocancel == 0) {						\
355 		self->ul_save_async = self->ul_cancel_async;		\
356 		if (!self->ul_cancel_disabled) {			\
357 			self->ul_cancel_async = 1;			\
358 			if (self->ul_cancel_pending)			\
359 				pthread_exit(PTHREAD_CANCELED);		\
360 		}							\
361 		self->ul_sp = stkptr();					\
362 	} else if (self->ul_cancel_pending &&				\
363 	    !self->ul_cancel_disabled) {				\
364 		set_cancel_eintr_flag(self);				\
365 		abort = 1;						\
366 	}
367 
368 #define	EPILOGUE							\
369 	if (nocancel == 0) {						\
370 		self->ul_sp = 0;					\
371 		self->ul_cancel_async = self->ul_save_async;		\
372 	}								\
373 }
374 
375 /*
376  * Perform the body of the action required by most of the cancelable
377  * function calls.  The return(function_call) part is to allow the
378  * compiler to make the call be executed with tail recursion, which
379  * saves a register window on sparc and slightly (not much) improves
380  * the code for x86/x64 compilations.
381  */
382 #define	PERFORM(function_call)						\
383 	PROLOGUE							\
384 	if (abort) {							\
385 		*self->ul_errnop = EINTR;				\
386 		return (-1);						\
387 	}								\
388 	if (nocancel)							\
389 		return (function_call);					\
390 	rv = function_call;						\
391 	EPILOGUE							\
392 	return (rv);
393 
394 /*
395  * Specialized prologue for sigsuspend() and pollsys().
396  * These system calls pass a signal mask to the kernel.
397  * The kernel replaces the thread's signal mask with the
398  * temporary mask before the thread goes to sleep.  If
399  * a signal is received, the signal handler will execute
400  * with the temporary mask, as modified by the sigaction
401  * for the particular signal.
402  *
403  * We block all signals until we reach the kernel with the
404  * temporary mask.  This eliminates race conditions with
405  * setting the signal mask while signals are being posted.
406  */
407 #define	PROLOGUE_MASK(sigmask)						\
408 {									\
409 	ulwp_t *self = curthread;					\
410 	int nocancel =							\
411 	    (self->ul_vfork | self->ul_nocancel | self->ul_libc_locks |	\
412 	    self->ul_critical | self->ul_sigdefer);			\
413 	if (!self->ul_vfork) {						\
414 		if (sigmask) {						\
415 			block_all_signals(self);			\
416 			self->ul_tmpmask = *sigmask;			\
417 			delete_reserved_signals(&self->ul_tmpmask);	\
418 			self->ul_sigsuspend = 1;			\
419 		}							\
420 		if (nocancel == 0) {					\
421 			self->ul_save_async = self->ul_cancel_async;	\
422 			if (!self->ul_cancel_disabled) {		\
423 				self->ul_cancel_async = 1;		\
424 				if (self->ul_cancel_pending) {		\
425 					if (self->ul_sigsuspend) {	\
426 						self->ul_sigsuspend = 0;\
427 						restore_signals(self);	\
428 					}				\
429 					pthread_exit(PTHREAD_CANCELED);	\
430 				}					\
431 			}						\
432 			self->ul_sp = stkptr();				\
433 		}							\
434 	}
435 
436 /*
437  * If a signal is taken, we return from the system call wrapper with
438  * our original signal mask restored (see code in call_user_handler()).
439  * If not (self->ul_sigsuspend is still non-zero), we must restore our
440  * original signal mask ourself.
441  */
442 #define	EPILOGUE_MASK							\
443 	if (nocancel == 0) {						\
444 		self->ul_sp = 0;					\
445 		self->ul_cancel_async = self->ul_save_async;		\
446 	}								\
447 	if (self->ul_sigsuspend) {					\
448 		self->ul_sigsuspend = 0;				\
449 		restore_signals(self);					\
450 	}								\
451 }
452 
453 /*
454  * Cancellation prologue and epilogue functions,
455  * for cancellation points too complex to include here.
456  */
457 void
458 _cancel_prologue(void)
459 {
460 	ulwp_t *self = curthread;
461 
462 	self->ul_cancel_prologue =
463 	    (self->ul_vfork | self->ul_nocancel | self->ul_libc_locks |
464 	    self->ul_critical | self->ul_sigdefer) != 0;
465 	if (self->ul_cancel_prologue == 0) {
466 		self->ul_save_async = self->ul_cancel_async;
467 		if (!self->ul_cancel_disabled) {
468 			self->ul_cancel_async = 1;
469 			if (self->ul_cancel_pending)
470 				pthread_exit(PTHREAD_CANCELED);
471 		}
472 		self->ul_sp = stkptr();
473 	} else if (self->ul_cancel_pending &&
474 	    !self->ul_cancel_disabled) {
475 		set_cancel_eintr_flag(self);
476 	}
477 }
478 
479 void
480 _cancel_epilogue(void)
481 {
482 	ulwp_t *self = curthread;
483 
484 	if (self->ul_cancel_prologue == 0) {
485 		self->ul_sp = 0;
486 		self->ul_cancel_async = self->ul_save_async;
487 	}
488 }
489 
490 /*
491  * Called from _thrp_join() (thr_join() is a cancellation point)
492  */
493 int
494 lwp_wait(thread_t tid, thread_t *found)
495 {
496 	int error;
497 
498 	PROLOGUE
499 	if (abort)
500 		return (EINTR);
501 	while ((error = __lwp_wait(tid, found)) == EINTR && !cancel_active())
502 		continue;
503 	EPILOGUE
504 	return (error);
505 }
506 
507 ssize_t
508 read(int fd, void *buf, size_t size)
509 {
510 	extern ssize_t __read(int, void *, size_t);
511 	ssize_t rv;
512 
513 	PERFORM(__read(fd, buf, size))
514 }
515 
516 ssize_t
517 write(int fd, const void *buf, size_t size)
518 {
519 	extern ssize_t __write(int, const void *, size_t);
520 	ssize_t rv;
521 
522 	PERFORM(__write(fd, buf, size))
523 }
524 
525 int
526 getmsg(int fd, struct strbuf *ctlptr, struct strbuf *dataptr,
527 	int *flagsp)
528 {
529 	extern int __getmsg(int, struct strbuf *, struct strbuf *, int *);
530 	int rv;
531 
532 	PERFORM(__getmsg(fd, ctlptr, dataptr, flagsp))
533 }
534 
535 int
536 getpmsg(int fd, struct strbuf *ctlptr, struct strbuf *dataptr,
537 	int *bandp, int *flagsp)
538 {
539 	extern int __getpmsg(int, struct strbuf *, struct strbuf *,
540 	    int *, int *);
541 	int rv;
542 
543 	PERFORM(__getpmsg(fd, ctlptr, dataptr, bandp, flagsp))
544 }
545 
546 int
547 putmsg(int fd, const struct strbuf *ctlptr,
548 	const struct strbuf *dataptr, int flags)
549 {
550 	extern int __putmsg(int, const struct strbuf *,
551 	    const struct strbuf *, int);
552 	int rv;
553 
554 	PERFORM(__putmsg(fd, ctlptr, dataptr, flags))
555 }
556 
557 int
558 __xpg4_putmsg(int fd, const struct strbuf *ctlptr,
559 	const struct strbuf *dataptr, int flags)
560 {
561 	extern int __putmsg(int, const struct strbuf *,
562 	    const struct strbuf *, int);
563 	int rv;
564 
565 	PERFORM(__putmsg(fd, ctlptr, dataptr, flags|MSG_XPG4))
566 }
567 
568 int
569 putpmsg(int fd, const struct strbuf *ctlptr,
570 	const struct strbuf *dataptr, int band, int flags)
571 {
572 	extern int __putpmsg(int, const struct strbuf *,
573 	    const struct strbuf *, int, int);
574 	int rv;
575 
576 	PERFORM(__putpmsg(fd, ctlptr, dataptr, band, flags))
577 }
578 
579 int
580 __xpg4_putpmsg(int fd, const struct strbuf *ctlptr,
581 	const struct strbuf *dataptr, int band, int flags)
582 {
583 	extern int __putpmsg(int, const struct strbuf *,
584 	    const struct strbuf *, int, int);
585 	int rv;
586 
587 	PERFORM(__putpmsg(fd, ctlptr, dataptr, band, flags|MSG_XPG4))
588 }
589 
590 int
591 nanosleep(const timespec_t *rqtp, timespec_t *rmtp)
592 {
593 	int error;
594 
595 	PROLOGUE
596 	error = abort? EINTR : __nanosleep(rqtp, rmtp);
597 	EPILOGUE
598 	if (error) {
599 		errno = error;
600 		return (-1);
601 	}
602 	return (0);
603 }
604 
605 int
606 clock_nanosleep(clockid_t clock_id, int flags,
607 	const timespec_t *rqtp, timespec_t *rmtp)
608 {
609 	timespec_t reltime;
610 	hrtime_t start;
611 	hrtime_t rqlapse;
612 	hrtime_t lapse;
613 	int error;
614 
615 	switch (clock_id) {
616 	case CLOCK_VIRTUAL:
617 	case CLOCK_PROCESS_CPUTIME_ID:
618 	case CLOCK_THREAD_CPUTIME_ID:
619 		return (ENOTSUP);
620 	case CLOCK_REALTIME:
621 	case CLOCK_HIGHRES:
622 		break;
623 	default:
624 		return (EINVAL);
625 	}
626 	if (flags & TIMER_ABSTIME) {
627 		abstime_to_reltime(clock_id, rqtp, &reltime);
628 		rmtp = NULL;
629 	} else {
630 		reltime = *rqtp;
631 		if (clock_id == CLOCK_HIGHRES)
632 			start = gethrtime();
633 	}
634 restart:
635 	PROLOGUE
636 	error = abort? EINTR : __nanosleep(&reltime, rmtp);
637 	EPILOGUE
638 	if (error == 0 && clock_id == CLOCK_HIGHRES) {
639 		/*
640 		 * Don't return yet if we didn't really get a timeout.
641 		 * This can happen if we return because someone resets
642 		 * the system clock.
643 		 */
644 		if (flags & TIMER_ABSTIME) {
645 			if ((hrtime_t)(uint32_t)rqtp->tv_sec * NANOSEC +
646 			    rqtp->tv_nsec > gethrtime()) {
647 				abstime_to_reltime(clock_id, rqtp, &reltime);
648 				goto restart;
649 			}
650 		} else {
651 			rqlapse = (hrtime_t)(uint32_t)rqtp->tv_sec * NANOSEC +
652 			    rqtp->tv_nsec;
653 			lapse = gethrtime() - start;
654 			if (rqlapse > lapse) {
655 				hrt2ts(rqlapse - lapse, &reltime);
656 				goto restart;
657 			}
658 		}
659 	}
660 	if (error == 0 && clock_id == CLOCK_REALTIME &&
661 	    (flags & TIMER_ABSTIME)) {
662 		/*
663 		 * Don't return yet just because someone reset the
664 		 * system clock.  Recompute the new relative time
665 		 * and reissue the nanosleep() call if necessary.
666 		 *
667 		 * Resetting the system clock causes all sorts of
668 		 * problems and the SUSV3 standards body should
669 		 * have made the behavior of clock_nanosleep() be
670 		 * implementation-defined in such a case rather than
671 		 * being specific about honoring the new system time.
672 		 * Standards bodies are filled with fools and idiots.
673 		 */
674 		abstime_to_reltime(clock_id, rqtp, &reltime);
675 		if (reltime.tv_sec != 0 || reltime.tv_nsec != 0)
676 			goto restart;
677 	}
678 	return (error);
679 }
680 
681 unsigned int
682 sleep(unsigned int sec)
683 {
684 	unsigned int rem = 0;
685 	timespec_t ts;
686 	timespec_t tsr;
687 
688 	ts.tv_sec = (time_t)sec;
689 	ts.tv_nsec = 0;
690 	if (nanosleep(&ts, &tsr) == -1 && errno == EINTR) {
691 		rem = (unsigned int)tsr.tv_sec;
692 		if (tsr.tv_nsec >= NANOSEC / 2)
693 			rem++;
694 	}
695 	return (rem);
696 }
697 
698 int
699 usleep(useconds_t usec)
700 {
701 	timespec_t ts;
702 
703 	ts.tv_sec = usec / MICROSEC;
704 	ts.tv_nsec = (long)(usec % MICROSEC) * 1000;
705 	(void) nanosleep(&ts, NULL);
706 	return (0);
707 }
708 
709 int
710 close(int fildes)
711 {
712 	extern void _aio_close(int);
713 	extern int __close(int);
714 	int rv;
715 
716 	/*
717 	 * If we call _aio_close() while in a critical region,
718 	 * we will draw an ASSERT() failure, so don't do it.
719 	 * No calls to close() from within libc need _aio_close();
720 	 * only the application's calls to close() need this,
721 	 * and such calls are never from a libc critical region.
722 	 */
723 	if (curthread->ul_critical == 0)
724 		_aio_close(fildes);
725 	PERFORM(__close(fildes))
726 }
727 
728 int
729 door_call(int d, door_arg_t *params)
730 {
731 	extern int __door_call(int, door_arg_t *);
732 	int rv;
733 
734 	PERFORM(__door_call(d, params))
735 }
736 
737 int
738 fcntl(int fildes, int cmd, ...)
739 {
740 	extern int __fcntl(int, int, ...);
741 	intptr_t arg;
742 	int rv;
743 	va_list ap;
744 
745 	va_start(ap, cmd);
746 	arg = va_arg(ap, intptr_t);
747 	va_end(ap);
748 	if (cmd != F_SETLKW)
749 		return (__fcntl(fildes, cmd, arg));
750 	PERFORM(__fcntl(fildes, cmd, arg))
751 }
752 
753 int
754 fdatasync(int fildes)
755 {
756 	extern int __fdsync(int, int);
757 	int rv;
758 
759 	PERFORM(__fdsync(fildes, FDSYNC))
760 }
761 
762 int
763 fsync(int fildes)
764 {
765 	extern int __fdsync(int, int);
766 	int rv;
767 
768 	PERFORM(__fdsync(fildes, FSYNC))
769 }
770 
771 int
772 lockf(int fildes, int function, off_t size)
773 {
774 	extern int __lockf(int, int, off_t);
775 	int rv;
776 
777 	PERFORM(__lockf(fildes, function, size))
778 }
779 
780 #if !defined(_LP64)
781 int
782 lockf64(int fildes, int function, off64_t size)
783 {
784 	extern int __lockf64(int, int, off64_t);
785 	int rv;
786 
787 	PERFORM(__lockf64(fildes, function, size))
788 }
789 #endif	/* !_LP64 */
790 
791 ssize_t
792 msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp, int msgflg)
793 {
794 	extern ssize_t __msgrcv(int, void *, size_t, long, int);
795 	ssize_t rv;
796 
797 	PERFORM(__msgrcv(msqid, msgp, msgsz, msgtyp, msgflg))
798 }
799 
800 int
801 msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg)
802 {
803 	extern int __msgsnd(int, const void *, size_t, int);
804 	int rv;
805 
806 	PERFORM(__msgsnd(msqid, msgp, msgsz, msgflg))
807 }
808 
809 int
810 msync(caddr_t addr, size_t len, int flags)
811 {
812 	extern int __msync(caddr_t, size_t, int);
813 	int rv;
814 
815 	PERFORM(__msync(addr, len, flags))
816 }
817 
818 int
819 openat(int fd, const char *path, int oflag, ...)
820 {
821 	mode_t mode;
822 	int rv;
823 	va_list ap;
824 
825 	va_start(ap, oflag);
826 	mode = va_arg(ap, mode_t);
827 	va_end(ap);
828 	PERFORM(__openat(fd, path, oflag, mode))
829 }
830 
831 int
832 open(const char *path, int oflag, ...)
833 {
834 	mode_t mode;
835 	int rv;
836 	va_list ap;
837 
838 	va_start(ap, oflag);
839 	mode = va_arg(ap, mode_t);
840 	va_end(ap);
841 	PERFORM(__open(path, oflag, mode))
842 }
843 
844 int
845 creat(const char *path, mode_t mode)
846 {
847 	return (open(path, O_WRONLY | O_CREAT | O_TRUNC, mode));
848 }
849 
850 #if !defined(_LP64)
851 int
852 openat64(int fd, const char *path, int oflag, ...)
853 {
854 	mode_t mode;
855 	int rv;
856 	va_list ap;
857 
858 	va_start(ap, oflag);
859 	mode = va_arg(ap, mode_t);
860 	va_end(ap);
861 	PERFORM(__openat64(fd, path, oflag, mode))
862 }
863 
864 int
865 open64(const char *path, int oflag, ...)
866 {
867 	mode_t mode;
868 	int rv;
869 	va_list ap;
870 
871 	va_start(ap, oflag);
872 	mode = va_arg(ap, mode_t);
873 	va_end(ap);
874 	PERFORM(__open64(path, oflag, mode))
875 }
876 
877 int
878 creat64(const char *path, mode_t mode)
879 {
880 	return (open64(path, O_WRONLY | O_CREAT | O_TRUNC, mode));
881 }
882 #endif	/* !_LP64 */
883 
884 int
885 pause(void)
886 {
887 	extern int __pause(void);
888 	int rv;
889 
890 	PERFORM(__pause())
891 }
892 
893 ssize_t
894 pread(int fildes, void *buf, size_t nbyte, off_t offset)
895 {
896 	extern ssize_t __pread(int, void *, size_t, off_t);
897 	ssize_t rv;
898 
899 	PERFORM(__pread(fildes, buf, nbyte, offset))
900 }
901 
902 #if !defined(_LP64)
903 ssize_t
904 pread64(int fildes, void *buf, size_t nbyte, off64_t offset)
905 {
906 	extern ssize_t __pread64(int, void *, size_t, off64_t);
907 	ssize_t rv;
908 
909 	PERFORM(__pread64(fildes, buf, nbyte, offset))
910 }
911 #endif	/* !_LP64 */
912 
913 ssize_t
914 pwrite(int fildes, const void *buf, size_t nbyte, off_t offset)
915 {
916 	extern ssize_t __pwrite(int, const void *, size_t, off_t);
917 	ssize_t rv;
918 
919 	PERFORM(__pwrite(fildes, buf, nbyte, offset))
920 }
921 
922 #if !defined(_LP64)
923 ssize_t
924 pwrite64(int fildes, const void *buf, size_t nbyte, off64_t offset)
925 {
926 	extern ssize_t __pwrite64(int, const void *, size_t, off64_t);
927 	ssize_t rv;
928 
929 	PERFORM(__pwrite64(fildes, buf, nbyte, offset))
930 }
931 #endif	/* !_LP64 */
932 
933 ssize_t
934 readv(int fildes, const struct iovec *iov, int iovcnt)
935 {
936 	extern ssize_t __readv(int, const struct iovec *, int);
937 	ssize_t rv;
938 
939 	PERFORM(__readv(fildes, iov, iovcnt))
940 }
941 
942 int
943 sigpause(int sig)
944 {
945 	extern int __sigpause(int);
946 	int rv;
947 
948 	PERFORM(__sigpause(sig))
949 }
950 
951 int
952 sigsuspend(const sigset_t *set)
953 {
954 	extern int __sigsuspend(const sigset_t *);
955 	int rv;
956 
957 	PROLOGUE_MASK(set)
958 	rv = __sigsuspend(set);
959 	EPILOGUE_MASK
960 	return (rv);
961 }
962 
963 int
964 _pollsys(struct pollfd *fds, nfds_t nfd, const timespec_t *timeout,
965 	const sigset_t *sigmask)
966 {
967 	extern int __pollsys(struct pollfd *, nfds_t, const timespec_t *,
968 	    const sigset_t *);
969 	int rv;
970 
971 	PROLOGUE_MASK(sigmask)
972 	rv = __pollsys(fds, nfd, timeout, sigmask);
973 	EPILOGUE_MASK
974 	return (rv);
975 }
976 
977 int
978 sigtimedwait(const sigset_t *set, siginfo_t *infop, const timespec_t *timeout)
979 {
980 	extern int __sigtimedwait(const sigset_t *, siginfo_t *,
981 	    const timespec_t *);
982 	siginfo_t info;
983 	int sig;
984 
985 	PROLOGUE
986 	if (abort) {
987 		*self->ul_errnop = EINTR;
988 		sig = -1;
989 	} else {
990 		sig = __sigtimedwait(set, &info, timeout);
991 		if (sig == SIGCANCEL &&
992 		    (SI_FROMKERNEL(&info) || info.si_code == SI_LWP)) {
993 			do_sigcancel();
994 			*self->ul_errnop = EINTR;
995 			sig = -1;
996 		}
997 	}
998 	EPILOGUE
999 	if (sig != -1 && infop)
1000 		(void) memcpy(infop, &info, sizeof (*infop));
1001 	return (sig);
1002 }
1003 
1004 int
1005 sigwait(sigset_t *set)
1006 {
1007 	return (sigtimedwait(set, NULL, NULL));
1008 }
1009 
1010 int
1011 sigwaitinfo(const sigset_t *set, siginfo_t *info)
1012 {
1013 	return (sigtimedwait(set, info, NULL));
1014 }
1015 
1016 int
1017 sigqueue(pid_t pid, int signo, const union sigval value)
1018 {
1019 	extern int __sigqueue(pid_t pid, int signo,
1020 	    /* const union sigval */ void *value, int si_code, int block);
1021 	return (__sigqueue(pid, signo, value.sival_ptr, SI_QUEUE, 0));
1022 }
1023 
1024 int
1025 _so_accept(int sock, struct sockaddr *addr, uint_t *addrlen, int version)
1026 {
1027 	extern int __so_accept(int, struct sockaddr *, uint_t *, int);
1028 	int rv;
1029 
1030 	PERFORM(__so_accept(sock, addr, addrlen, version))
1031 }
1032 
1033 int
1034 _so_connect(int sock, struct sockaddr *addr, uint_t addrlen, int version)
1035 {
1036 	extern int __so_connect(int, struct sockaddr *, uint_t, int);
1037 	int rv;
1038 
1039 	PERFORM(__so_connect(sock, addr, addrlen, version))
1040 }
1041 
1042 int
1043 _so_recv(int sock, void *buf, size_t len, int flags)
1044 {
1045 	extern int __so_recv(int, void *, size_t, int);
1046 	int rv;
1047 
1048 	PERFORM(__so_recv(sock, buf, len, flags))
1049 }
1050 
1051 int
1052 _so_recvfrom(int sock, void *buf, size_t len, int flags,
1053     struct sockaddr *addr, int *addrlen)
1054 {
1055 	extern int __so_recvfrom(int, void *, size_t, int,
1056 	    struct sockaddr *, int *);
1057 	int rv;
1058 
1059 	PERFORM(__so_recvfrom(sock, buf, len, flags, addr, addrlen))
1060 }
1061 
1062 int
1063 _so_recvmsg(int sock, struct msghdr *msg, int flags)
1064 {
1065 	extern int __so_recvmsg(int, struct msghdr *, int);
1066 	int rv;
1067 
1068 	PERFORM(__so_recvmsg(sock, msg, flags))
1069 }
1070 
1071 int
1072 _so_send(int sock, const void *buf, size_t len, int flags)
1073 {
1074 	extern int __so_send(int, const void *, size_t, int);
1075 	int rv;
1076 
1077 	PERFORM(__so_send(sock, buf, len, flags))
1078 }
1079 
1080 int
1081 _so_sendmsg(int sock, const struct msghdr *msg, int flags)
1082 {
1083 	extern int __so_sendmsg(int, const struct msghdr *, int);
1084 	int rv;
1085 
1086 	PERFORM(__so_sendmsg(sock, msg, flags))
1087 }
1088 
1089 int
1090 _so_sendto(int sock, const void *buf, size_t len, int flags,
1091     const struct sockaddr *addr, int *addrlen)
1092 {
1093 	extern int __so_sendto(int, const void *, size_t, int,
1094 	    const struct sockaddr *, int *);
1095 	int rv;
1096 
1097 	PERFORM(__so_sendto(sock, buf, len, flags, addr, addrlen))
1098 }
1099 
1100 int
1101 tcdrain(int fildes)
1102 {
1103 	extern int __tcdrain(int);
1104 	int rv;
1105 
1106 	PERFORM(__tcdrain(fildes))
1107 }
1108 
1109 int
1110 waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options)
1111 {
1112 	extern int __waitid(idtype_t, id_t, siginfo_t *, int);
1113 	int rv;
1114 
1115 	if (options & WNOHANG)
1116 		return (__waitid(idtype, id, infop, options));
1117 	PERFORM(__waitid(idtype, id, infop, options))
1118 }
1119 
1120 ssize_t
1121 writev(int fildes, const struct iovec *iov, int iovcnt)
1122 {
1123 	extern ssize_t __writev(int, const struct iovec *, int);
1124 	ssize_t rv;
1125 
1126 	PERFORM(__writev(fildes, iov, iovcnt))
1127 }
1128