xref: /titanic_50/usr/src/lib/libc/port/gen/localtime.c (revision 8461248208fabd3a8230615f8615e5bf1b4dcdcb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*	Copyright (c) 1988 AT&T	*/
30 /*	  All Rights Reserved  	*/
31 
32 
33 /*
34  * A part of this file comes from public domain source, so
35  * clarified as of June 5, 1996 by Arthur David Olson
36  * (arthur_david_olson@nih.gov).
37  */
38 
39 /*
40  * localtime.c
41  *
42  * This file contains routines to convert struct tm to time_t and
43  * back as well as adjust time values based on their timezone, which
44  * is a local offset from GMT (Greenwich Mean Time).
45  *
46  * Many timezones actually consist of more than one offset from GMT.
47  * The GMT offset that is considered the normal offset is referred
48  * to as standard time.  The other offset is referred to as alternate
49  * time, but is better known as daylight savings time or summer time.
50  *
51  * The current timezone for an application is derived from the TZ
52  * environment variable either as defined in the environment or in
53  * /etc/default/init.  As defined by IEEE 1003.1-1990 (POSIX), the
54  * TZ variable can either be:
55  *    :<characters>
56  * or
57  *    <std><offset1>[<dst>[<offset2>]][,<start>[/<time>],<end>[/<time>]
58  *
59  * <characters> is an implementation-defined string that somehow describes
60  * a timezone.  The implementation-defined description of a timezone used
61  * in Solaris is based on the public domain zoneinfo code available from
62  * elsie.nci.nih.gov and a timezone that is specified in this way is
63  * referred to as a zoneinfo timezone.  An example of this is ":US/Pacific".
64  *
65  * The precise definition of the second format can be found in POSIX,
66  * but, basically, <std> is the abbreviation for the timezone in standard
67  * (not daylight savings time), <offset1> is the standard offset from GMT,
68  * <dst> is the abbreviation for the timezone in daylight savings time and
69  * <offset2> is the daylight savings time offset from GMT.  The remainder
70  * specifies when daylight savings time begins and ends.  A timezone
71  * specified in this way is referred to as a POSIX timezone.  An example
72  * of this is "PST7PDT".
73  *
74  * In Solaris, there is an extension to this.  If the timezone is not
75  * preceded by a ":" and it does not parse as a POSIX timezone, then it
76  * will be treated as a zoneinfo timezone.  Much usage of zoneinfo
77  * timezones in Solaris is done without the leading ":".
78  *
79  * A zoneinfo timezone is a reference to a file that contains a set of
80  * rules that describe the timezone.  In Solaris, the file is in
81  * /usr/share/lib/zoneinfo.  The file is generated by zic(1M), based
82  * on zoneinfo rules "source" files.  This is all described on the zic(1M)
83  * man page.
84  */
85 
86 /*
87  * Functions that are common to ctime(3C) and cftime(3C)
88  */
89 
90 #pragma weak tzset = _tzset
91 #pragma weak localtime_r = _localtime_r
92 #pragma weak gmtime_r = _gmtime_r
93 
94 #include "synonyms.h"
95 #include "libc.h"
96 #include "tsd.h"
97 #include <stdarg.h>
98 #include <mtlib.h>
99 #include <sys/types.h>
100 #include <ctype.h>
101 #include <stdio.h>
102 #include <limits.h>
103 #include <sys/param.h>
104 #include <time.h>
105 #include <unistd.h>
106 #include <stdlib.h>
107 #include <string.h>
108 #include <tzfile.h>
109 #include <thread.h>
110 #include <synch.h>
111 #include <fcntl.h>
112 #include <errno.h>
113 #include <sys/stat.h>
114 
115 #define	JAN_01_1902		(long long)0x8017E880
116 #define	LEN_TZDIR		(sizeof (TZDIR) - 1)
117 #define	TIMEZONE		"/etc/default/init"
118 #define	TZSTRING		"TZ="
119 #define	HASHTABLE		109
120 
121 #define	LEAPS_THRU_END_OF(y)	((y) / 4 - (y) / 100 + (y) / 400)
122 
123 /* Days since 1/1/70 to 12/31/(1900 + Y - 1) */
124 #define	DAYS_SINCE_70(Y) (YR((Y)-1L) - YR(70-1))
125 #define	YR(X) /* Calc # days since 0 A.D. X = curr. yr - 1900 */ \
126 	((1900L + (X)) * 365L + (1900L + (X)) / 4L - \
127 	(1900L + (X)) / 100L + ((1900L + (X)) - 1600L) / 400L)
128 
129 
130 /*
131  * The following macros are replacements for detzcode(), which has
132  * been in the public domain versions of the localtime.c code for
133  * a long time. The primatives supporting the CVTZCODE macro are
134  * implemented differently for different endianness (ie. little
135  * vs. big endian) out of necessity, to account for the different
136  * byte ordering of the quantities being fetched.  Both versions
137  * are substantially faster than the detzcode() macro.  The big
138  * endian version is approx. 6.8x faster than detzcode(), the
139  * little endian version is approximately 3x faster, due to the
140  * extra shifting requiring to change byte order.  The micro
141  * benchmarks used to compare were based on the SUNWSpro SC6.1
142  * (and later) compilers.
143  */
144 
145 #if defined(__sparc) || defined(__sparcv9)  /* big endian */
146 
147 #define	GET_LONG(p) \
148 	    *(uint_t *)(p)
149 
150 #define	GET_SHORTS(p) \
151 	    *(ushort_t *)(p) << 16 |\
152 	    *(ushort_t *)((p) + 2)
153 
154 #define	GET_CHARS(p) \
155 	    *(uchar_t *)(p) << 24 |\
156 	    *(uchar_t *)((p) + 1) << 16 |\
157 	    *(uchar_t *)((p) + 2) << 8  |\
158 	    *(uchar_t *)((p) + 3)
159 
160 #else /* little endian */
161 
162 #define	GET_BYTE(x) \
163 	    ((x) & 0xff)
164 
165 #define	SWAP_BYTES(x) ((\
166 	    GET_BYTE(x) << 8) |\
167 	    GET_BYTE((x) >> 8))
168 
169 #define	SWAP_WORDS(x) ((\
170 	    SWAP_BYTES(x) << 16) |\
171 	    SWAP_BYTES((x) >> 16))
172 
173 #define	GET_LONG(p) \
174 	    SWAP_WORDS(*(uint_t *)(p))
175 
176 #define	GET_SHORTS(p) \
177 	    SWAP_BYTES(*(ushort_t *)(p)) << 16 |\
178 	    SWAP_BYTES(*(ushort_t *)((p) + 2))
179 
180 #define	GET_CHARS(p) \
181 	    GET_BYTE(*(uchar_t *)(p)) << 24 |\
182 	    GET_BYTE(*(uchar_t *)((p) + 1)) << 16 |\
183 	    GET_BYTE(*(uchar_t *)((p) + 2)) << 8 |\
184 	    GET_BYTE(*(uchar_t *)((p) + 3))
185 
186 #endif
187 
188 
189 #define	IF_ALIGNED(ptr, byte_alignment) \
190 			!((uintptr_t)(ptr) & (byte_alignment - 1))
191 
192 #define	CVTZCODE(p) (int)(\
193 	    IF_ALIGNED(p, 4) ? GET_LONG(p) :\
194 	    IF_ALIGNED(p, 2) ? GET_SHORTS(p) : GET_CHARS(p));\
195 	    p += 4;
196 
197 #ifndef	FALSE
198 #define	FALSE	(0)
199 #endif
200 
201 #ifndef	TRUE
202 #define	TRUE	(1)
203 #endif
204 
205 extern	mutex_t		_time_lock;
206 
207 extern const int	__lyday_to_month[];
208 extern const int	__yday_to_month[];
209 extern const int	__mon_lengths[2][MONS_PER_YEAR];
210 extern const int	__year_lengths[2];
211 
212 const char	_tz_gmt[4] = "GMT";	/* "GMT"  */
213 const char	_tz_spaces[4] = "   ";	/* "   "  */
214 static const char	_posix_gmt0[5] = "GMT0";	/* "GMT0" */
215 
216 typedef struct ttinfo {			/* Time type information */
217 	long		tt_gmtoff;	/* GMT offset in seconds */
218 	int		tt_isdst;	/* used to set tm_isdst */
219 	int		tt_abbrind;	/* abbreviation list index */
220 	int		tt_ttisstd;	/* TRUE if trans is std time */
221 	int		tt_ttisgmt;	/* TRUE if transition is GMT */
222 } ttinfo_t;
223 
224 typedef struct lsinfo {			/* Leap second information */
225 	time_t		ls_trans;	/* transition time */
226 	long		ls_corr;	/* correction to apply */
227 } lsinfo_t;
228 
229 typedef struct previnfo {		/* Info about *prev* trans */
230 	ttinfo_t	*std;		/* Most recent std type */
231 	ttinfo_t	*alt;		/* Most recent alt type */
232 } prev_t;
233 
234 typedef enum {
235 	MON_WEEK_DOW,		/* Mm.n.d - month, week, day of week */
236 	JULIAN_DAY,		/* Jn - Julian day */
237 	DAY_OF_YEAR		/* n - day of year */
238 } posrule_type_t;
239 
240 typedef struct {
241 	posrule_type_t	r_type;		/* type of rule */
242 	int		r_day;		/* day number of rule */
243 	int		r_week;		/* week number of rule */
244 	int		r_mon;		/* month number of rule */
245 	long		r_time;		/* transition time of rule */
246 } rule_t;
247 
248 typedef struct {
249 	rule_t		*rules[2];
250 	long		offset[2];
251 	long long	rtime[2];
252 } posix_daylight_t;
253 
254 /*
255  * Note: ZONERULES_INVALID used for global curr_zonerules variable, but not
256  * for zonerules field of state_t.
257  */
258 typedef enum {
259 	ZONERULES_INVALID, POSIX, POSIX_USA, ZONEINFO
260 } zone_rules_t;
261 
262 /*
263  * The following members are allocated from the libc-internal malloc:
264  *
265  *	zonename
266  *	chars
267  */
268 typedef struct state {
269 	const char	*zonename;		/* Timezone */
270 	struct state	*next;			/* next state */
271 	zone_rules_t	zonerules;		/* Type of zone */
272 	int		daylight;		/* daylight global */
273 	long		default_timezone;	/* Def. timezone val */
274 	long		default_altzone;	/* Def. altzone val */
275 	const char	*default_tzname0;	/* Def tz..[0] val */
276 	const char	*default_tzname1;	/* Def tz..[1] val  */
277 	int		leapcnt;		/* # leap sec trans */
278 	int		timecnt;		/* # transitions */
279 	int		typecnt;		/* # zone types */
280 	int		charcnt;		/* # zone abbv. chars */
281 	char		*chars;			/* Zone abbv. chars */
282 	size_t		charsbuf_size;		/* malloc'ed buflen */
283 	prev_t		prev[TZ_MAX_TIMES];	/* Pv. trans info */
284 	time_t		ats[TZ_MAX_TIMES];	/* Trans.  times */
285 	uchar_t		types[TZ_MAX_TIMES];	/* Type indices */
286 	ttinfo_t	ttis[TZ_MAX_TYPES];	/* Zone types */
287 	lsinfo_t	lsis[TZ_MAX_LEAPS];	/* Leap sec trans */
288 	rule_t		start_rule;		/* For POSIX w/rules */
289 	rule_t		end_rule;		/* For POSIX w/rules */
290 } state_t;
291 
292 typedef struct systemtz {
293 	const char	*tz;
294 	state_t		*entry;
295 	int		flag;
296 } systemtz_t;
297 
298 static const char	*namecache;
299 
300 static state_t	*tzcache[HASHTABLE];
301 
302 static state_t	*lclzonep;
303 
304 static struct tm	tm;		/* For non-reentrant use */
305 static int		is_in_dst;	/* Set if t is in DST */
306 static zone_rules_t	curr_zonerules = ZONERULES_INVALID;
307 static int		cached_year;	/* mktime() perf. enhancement */
308 static long long	cached_secs_since_1970;	/* mktime() perf. */
309 static int		year_is_cached = FALSE;	/* mktime() perf. */
310 
311 
312 #define	_2AM		(2 * SECS_PER_HOUR)
313 #define	FIRSTWEEK	1
314 #define	LASTWEEK	5
315 
316 enum wks {
317 	_1st_week = 1,
318 	_2nd_week,
319 	_3rd_week,
320 	_4th_week,
321 	_Last_week
322 };
323 
324 enum dwk {
325 	Sun,
326 	Mon,
327 	Tue,
328 	Wed,
329 	Thu,
330 	Fri,
331 	Sat
332 };
333 
334 enum mth {
335 	Jan = 1,
336 	Feb,
337 	Mar,
338 	Apr,
339 	May,
340 	Jun,
341 	Jul,
342 	Aug,
343 	Sep,
344 	Oct,
345 	Nov,
346 	Dec
347 };
348 
349 /*
350  * The following table defines standard USA DST transitions
351  * as they have been declared throughout history, disregarding
352  * the legally sanctioned local variants.
353  *
354  * Note:  At some point, this table may be supplanted by
355  * more popular 'posixrules' logic.
356  */
357 typedef struct {
358 	int	s_year;
359 	int	e_year;
360 	rule_t	start;
361 	rule_t	end;
362 } __usa_rules_t;
363 
364 static const __usa_rules_t	__usa_rules[] = {
365 	{
366 		1987, 2037,
367 		{ MON_WEEK_DOW, Sun, _1st_week,  Apr, _2AM },
368 		{ MON_WEEK_DOW, Sun, _Last_week, Oct, _2AM },
369 	},
370 	{
371 		1976, 1986,
372 		{ MON_WEEK_DOW, Sun, _Last_week, Apr, _2AM },
373 		{ MON_WEEK_DOW, Sun, _Last_week, Oct, _2AM },
374 	},
375 	{
376 		1975, 1975,
377 		{ MON_WEEK_DOW, Sun, _Last_week, Feb, _2AM },
378 		{ MON_WEEK_DOW, Sun, _Last_week, Oct, _2AM },
379 	},
380 
381 	{
382 		1974, 1974,
383 		{ MON_WEEK_DOW, Sun, _1st_week,  Jan, _2AM },
384 		{ MON_WEEK_DOW, Sun, _Last_week, Nov, _2AM },
385 	},
386 	/*
387 	 * The entry below combines two previously separate entries for
388 	 * 1969-1973 and 1902-1968
389 	 */
390 	{
391 		1902, 1973,
392 		{ MON_WEEK_DOW, Sun, _Last_week, Apr, _2AM },
393 		{ MON_WEEK_DOW, Sun, _Last_week, Oct, _2AM },
394 	}
395 };
396 #define	MAX_RULE_TABLE	(sizeof (__usa_rules) / sizeof (__usa_rules_t) - 1)
397 
398 /*
399  * Prototypes for static functions.
400  */
401 static systemtz_t *getsystemTZ(systemtz_t *);
402 static const char *getzname(const char *, int);
403 static const char *getnum(const char *, int *, int, int);
404 static const char *getsecs(const char *, long *);
405 static const char *getoffset(const char *, long *);
406 static const char *getrule(const char *, rule_t *, int);
407 static int	load_posixinfo(const char *, state_t *);
408 static int	load_zoneinfo(const char *, state_t *);
409 static void	ltzset_u(time_t, systemtz_t *);
410 static struct tm *offtime_u(time_t, long, struct tm *);
411 static int	posix_check_dst(long long, state_t *);
412 static int	posix_daylight(long long *, int, posix_daylight_t *);
413 static void	set_zone_context(time_t);
414 
415 /*
416  * definition of difftime
417  *
418  * This code assumes time_t is type long.  Note the difference of two
419  * longs in absolute value is representable as an unsigned long.  So,
420  * compute the absolute value of the difference, cast the result to
421  * double and attach the sign back on.
422  *
423  * Note this code assumes 2's complement arithmetic.  The subtraction
424  * operation may overflow when using signed operands, but when the
425  * result is cast to unsigned long, it yields the desired value
426  * (ie, the absolute value of the difference).  The cast to unsigned
427  * long is done using pointers to avoid undefined behavior if casting
428  * a negative value to unsigned.
429  */
430 double
431 difftime(time_t time1, time_t time0)
432 {
433 	if (time1 < time0) {
434 		time0 -= time1;
435 		return (-(double)*(unsigned long *) &time0);
436 	} else {
437 		time1 -= time0;
438 		return ((double)*(unsigned long *) &time1);
439 	}
440 }
441 
442 /*
443  * Accepts a time_t, returns a tm struct based on it, with
444  * no local timezone adjustment.
445  *
446  * This routine is the thread-safe variant of gmtime(), and
447  * requires that the call provide the address of their own tm
448  * struct.
449  *
450  * Locking is not done here because set_zone_context()
451  * is not called, thus timezone, altzone, and tzname[] are not
452  * accessed, no memory is allocated, and no common dynamic
453  * data is accessed.
454  *
455  * See ctime(3C)
456  */
457 struct tm *
458 _gmtime_r(const time_t *timep, struct tm *p_tm)
459 {
460 	return (offtime_u((time_t)*timep, 0L, p_tm));
461 }
462 
463 /*
464  * Accepts a time_t, returns a tm struct based on it, with
465  * no local timezone adjustment.
466  *
467  * This function is explicitly NOT THREAD-SAFE.  The standards
468  * indicate it should provide its results in its own statically
469  * allocated tm struct that gets overwritten. The thread-safe
470  * variant is gmtime_r().  We make it mostly thread-safe by
471  * allocating its buffer in thread-specific data.
472  *
473  * See ctime(3C)
474  */
475 struct tm *
476 gmtime(const time_t *timep)
477 {
478 	struct tm *p_tm = tsdalloc(_T_STRUCT_TM, sizeof (struct tm), NULL);
479 
480 	if (p_tm == NULL)	/* memory allocation failure */
481 		p_tm = &tm;	/* use static buffer and hope for the best */
482 	return (_gmtime_r(timep, p_tm));
483 }
484 
485 /*
486  * This is the hashing function, based on the input timezone name.
487  */
488 static int
489 get_hashid(const char *id)
490 {
491 	const unsigned char	*s = (const unsigned char *)id;
492 	unsigned char	c;
493 	unsigned int	h;
494 
495 	h = *s++;
496 	while ((c = *s++) != '\0') {
497 		h = (h << 5) - h + c;
498 	}
499 	return ((int)(h % HASHTABLE));
500 }
501 
502 /*
503  * find_zone() gets the hashid for zonename, then uses the hashid
504  * to search the hash table for the appropriate timezone entry.  If
505  * the entry for zonename is found in the hash table, return a pointer
506  * to the entry.  Otherwise, update the input link_prev and link_next
507  * to the addresses of pointers for the caller to update to add the new
508  * entry to the hash table.
509  */
510 static state_t *
511 find_zone(const char *zonename, state_t ***link_prev, state_t **link_next)
512 {
513 	int	hashid;
514 	state_t	*cur, *prv;
515 
516 	hashid = get_hashid(zonename);
517 	cur = tzcache[hashid];
518 	prv = NULL;
519 	while (cur) {
520 		int	res;
521 		res = strcmp(cur->zonename, zonename);
522 		if (res == 0) {
523 			return (cur);
524 		} else if (res > 0) {
525 			break;
526 		}
527 		prv = cur;
528 		cur = cur->next;
529 	}
530 	if (prv) {
531 		*link_prev = &prv->next;
532 		*link_next = cur;
533 	} else {
534 		*link_prev = &tzcache[hashid];
535 		*link_next = NULL;
536 	}
537 	return (NULL);
538 }
539 
540 
541 /*
542  * Returns tm struct based on input time_t argument, correcting
543  * for the local timezone, producing documented side-effects
544  * to extern global state, timezone, altzone, daylight and tzname[].
545  *
546  * localtime_r() is the thread-safe variant of localtime().
547  *
548  * IMPLEMENTATION NOTE:
549  *
550  *	Locking slows multithreaded access and is probably ultimately
551  *	unnecessary here. The POSIX specification is a bit vague
552  *	as to whether the extern variables set by tzset() need to
553  *	set as a result of a call to localtime_r()
554  *
555  *	Currently, the spec only mentions that tzname[] doesn't
556  *	need to be set.  As soon as it becomes unequivocal
557  *	that the external zone state doesn't need to be asserted
558  *	for this call, and it really doesn't make much sense
559  *	to set common state from multi-threaded calls made to this
560  *	function, locking can be dispensed with here.
561  *
562  *	local zone state would still need to be aquired for the
563  *	time in question in order for calculations elicited here
564  *	to be correct, but that state wouldn't need to be shared,
565  *	thus no multi-threaded synchronization would be required.
566  *
567  *	It would be nice if POSIX would approve an ltzset_r()
568  *	function, but if not, it wouldn't stop us from making one
569  *	privately.
570  *
571  *	localtime_r() can now return NULL if overflow is detected.
572  *	offtime_u() is the function that detects overflow, and sets
573  *	errno appropriately.  We unlock before the call to offtime_u(),
574  *	so that lmutex_unlock() does not reassign errno.  The function
575  *	offtime_u() is MT-safe and does not have to be locked.  Use
576  *	my_is_in_dst to reference local copy of is_in_dst outside locks.
577  *
578  * See ctime(3C)
579  */
580 struct tm *
581 _localtime_r(const time_t *timep, struct tm *p_tm)
582 {
583 	long	offset;
584 	struct tm *rt;
585 	int	my_is_in_dst;
586 	systemtz_t	stz;
587 	systemtz_t	*tzp;
588 
589 	tzp = getsystemTZ(&stz);
590 
591 	lmutex_lock(&_time_lock);
592 	ltzset_u(*timep, tzp);
593 	if (lclzonep == NULL) {
594 		lmutex_unlock(&_time_lock);
595 		if (tzp->flag)
596 			free(tzp->entry);
597 		return (offtime_u(*timep, 0L, p_tm));
598 	}
599 	my_is_in_dst = is_in_dst;
600 	offset = (my_is_in_dst) ? -altzone : -timezone;
601 	lmutex_unlock(&_time_lock);
602 	rt = offtime_u(*timep, offset, p_tm);
603 	p_tm->tm_isdst = my_is_in_dst;
604 	if (tzp->flag)
605 		free(tzp->entry);
606 	return (rt);
607 }
608 
609 /*
610  * Accepts a time_t, returns a tm struct based on it, correcting
611  * for the local timezone.  Produces documented side-effects to
612  * extern global timezone state data.
613  *
614  * This function is explicitly NOT THREAD-SAFE.  The standards
615  * indicate it should provide its results in its own statically
616  * allocated tm struct that gets overwritten. The thread-safe
617  * variant is localtime_r().  We make it mostly thread-safe by
618  * allocating its buffer in thread-specific data.
619  *
620  * localtime() can now return NULL if overflow is detected.
621  * offtime_u() is the function that detects overflow, and sets
622  * errno appropriately.
623  *
624  * See ctime(3C)
625  */
626 struct tm *
627 localtime(const time_t *timep)
628 {
629 	struct tm *p_tm = tsdalloc(_T_STRUCT_TM, sizeof (struct tm), NULL);
630 
631 	if (p_tm == NULL)	/* memory allocation failure */
632 		p_tm = &tm;	/* use static buffer and hope for the best */
633 	return (_localtime_r(timep, p_tm));
634 }
635 
636 /*
637  * This function takes a pointer to a tm struct and returns a
638  * normalized time_t, also inducing documented side-effects in
639  * extern global zone state variables.  (See mktime(3C)).
640  */
641 time_t
642 mktime(struct tm *tmptr)
643 {
644 	struct tm _tm;
645 	long long t;		/* must hold more than 32-bit time_t */
646 	int	temp;
647 	int	mketimerrno;
648 	int	overflow;
649 	systemtz_t	stz;
650 	systemtz_t	*tzp;
651 
652 	mketimerrno = errno;
653 
654 	tzp = getsystemTZ(&stz);
655 
656 	/* mktime leaves errno unchanged if no error is encountered */
657 
658 	lmutex_lock(&_time_lock);
659 
660 	/* Calculate time_t from tm arg.  tm may need to be normalized. */
661 	t = tmptr->tm_sec + SECSPERMIN * tmptr->tm_min +
662 	    SECSPERHOUR * tmptr->tm_hour +
663 	    SECSPERDAY * (tmptr->tm_mday - 1);
664 
665 	if (tmptr->tm_mon >= 12) {
666 		tmptr->tm_year += tmptr->tm_mon / 12;
667 		tmptr->tm_mon %= 12;
668 	} else if (tmptr->tm_mon < 0) {
669 		temp = -tmptr->tm_mon;
670 		tmptr->tm_mon = 0;	/* If tm_mon divides by 12. */
671 		tmptr->tm_year -= (temp / 12);
672 		if (temp %= 12) {	/* Remainder... */
673 			tmptr->tm_year--;
674 			tmptr->tm_mon = 12 - temp;
675 		}
676 	}
677 
678 	/* Avoid numerous calculations embedded in macro if possible */
679 	if (!year_is_cached || (cached_year != tmptr->tm_year))	 {
680 		cached_year = tmptr->tm_year;
681 		year_is_cached = TRUE;
682 		/* For boundry values of tm_year, typecasting required */
683 		cached_secs_since_1970 =
684 		    (long long)SECSPERDAY * DAYS_SINCE_70(cached_year);
685 	}
686 	t += cached_secs_since_1970;
687 
688 	if (isleap(tmptr->tm_year + TM_YEAR_BASE))
689 		t += SECSPERDAY * __lyday_to_month[tmptr->tm_mon];
690 	else
691 		t += SECSPERDAY * __yday_to_month[tmptr->tm_mon];
692 
693 	ltzset_u((time_t)t, tzp);
694 	/* Attempt to convert time to GMT based on tm_isdst setting */
695 	t += (tmptr->tm_isdst > 0) ? altzone : timezone;
696 
697 #ifdef _ILP32
698 	overflow = t > LONG_MAX || t < LONG_MIN ||
699 			tmptr->tm_year < 1 || tmptr->tm_year > 138;
700 #else
701 	overflow = t > LONG_MAX || t < LONG_MIN;
702 #endif
703 	set_zone_context((time_t)t);
704 	if (tmptr->tm_isdst < 0) {
705 		long dst_delta = timezone - altzone;
706 		switch (curr_zonerules) {
707 		case ZONEINFO:
708 			if (is_in_dst) {
709 				t -= dst_delta;
710 				set_zone_context((time_t)t);
711 				if (is_in_dst) {
712 					(void) offtime_u((time_t)t,
713 						    -altzone, &_tm);
714 					_tm.tm_isdst = 1;
715 				} else {
716 					(void) offtime_u((time_t)t,
717 						    -timezone, &_tm);
718 				}
719 			} else {
720 				(void) offtime_u((time_t)t, -timezone, &_tm);
721 			}
722 			break;
723 		case POSIX_USA:
724 		case POSIX:
725 			if (is_in_dst) {
726 				t -= dst_delta;
727 				set_zone_context((time_t)t);
728 				if (is_in_dst) {
729 					(void) offtime_u((time_t)t,
730 						    -altzone, &_tm);
731 					_tm.tm_isdst = 1;
732 				} else {
733 					(void) offtime_u((time_t)t,
734 						    -timezone, &_tm);
735 				}
736 			} else { /* check for ambiguous 'fallback' transition */
737 				set_zone_context((time_t)t - dst_delta);
738 				if (is_in_dst) {  /* In fallback, force DST */
739 					t -= dst_delta;
740 					(void) offtime_u((time_t)t,
741 						    -altzone, &_tm);
742 					_tm.tm_isdst = 1;
743 				} else {
744 					(void) offtime_u((time_t)t,
745 						    -timezone, &_tm);
746 				}
747 			}
748 			break;
749 
750 		case ZONERULES_INVALID:
751 			(void) offtime_u((time_t)t, 0L, &_tm);
752 			break;
753 
754 		}
755 	} else if (is_in_dst) {
756 		(void) offtime_u((time_t)t, -altzone, &_tm);
757 		_tm.tm_isdst = 1;
758 	} else {
759 		(void) offtime_u((time_t)t, -timezone, &_tm);
760 	}
761 
762 	if (overflow || t > LONG_MAX || t < LONG_MIN) {
763 		mketimerrno = EOVERFLOW;
764 		t = -1;
765 	} else {
766 		*tmptr = _tm;
767 	}
768 
769 	lmutex_unlock(&_time_lock);
770 
771 	if (tzp->flag)
772 		free(tzp->entry);
773 	errno = mketimerrno;
774 	return ((time_t)t);
775 }
776 
777 /*
778  * Sets extern global zone state variables based on the current
779  * time.  Specifically, tzname[], timezone, altzone, and daylight
780  * are updated.  See ctime(3C) manpage.
781  */
782 void
783 _tzset(void)
784 {
785 	systemtz_t	stz;
786 	systemtz_t	*tzp;
787 
788 	tzp = getsystemTZ(&stz);
789 
790 	lmutex_lock(&_time_lock);
791 	ltzset_u(time(NULL), tzp);
792 	lmutex_unlock(&_time_lock);
793 	if (tzp->flag)
794 		free(tzp->entry);
795 }
796 
797 void
798 _ltzset(time_t tim)
799 {
800 	systemtz_t	stz;
801 	systemtz_t	*tzp;
802 
803 	tzp = getsystemTZ(&stz);
804 
805 	lmutex_lock(&_time_lock);
806 	ltzset_u(tim, tzp);
807 	lmutex_unlock(&_time_lock);
808 	if (tzp->flag)
809 		free(tzp->entry);
810 }
811 
812 /*
813  * Loads local zone information if TZ changed since last time zone
814  * information was loaded, or if this is the first time thru.
815  * We already hold _time_lock; no further locking is required.
816  */
817 static void
818 ltzset_u(time_t t, systemtz_t *tzp)
819 {
820 	const char	*zonename = tzp->tz;
821 	state_t	*entry, **p, *q;
822 
823 	if (zonename == NULL || *zonename == '\0')
824 		zonename = _posix_gmt0;
825 
826 	if (curr_zonerules != ZONERULES_INVALID &&
827 	    strcmp(namecache, zonename) == 0) {
828 		set_zone_context(t);
829 		return;
830 	}
831 
832 	entry = find_zone(zonename, &p, &q);
833 	if (entry == NULL) {
834 		/*
835 		 * No timezone entry found in hash table, so load it,
836 		 * and create a new timezone entry.
837 		 */
838 		char	*newzonename, *charsbuf;
839 
840 		/* Invalidate the current timezone */
841 		curr_zonerules = ZONERULES_INVALID;
842 
843 		newzonename = libc_strdup(zonename);
844 		daylight = 0;
845 		entry = tzp->entry;
846 
847 		if (entry == NULL || newzonename == NULL) {
848 			/* something wrong happened. */
849 			if (newzonename != NULL)
850 				libc_free(newzonename);
851 			timezone = altzone = 0;
852 			is_in_dst = 0;
853 			tzname[0] = (char *)_tz_gmt;
854 			tzname[1] = (char *)_tz_spaces;
855 			return;
856 		}
857 
858 		/*
859 		 * Builds transition cache and sets up zone state data for zone
860 		 * specified in TZ, which can be specified as a POSIX zone or an
861 		 * Olson zoneinfo file reference.
862 		 *
863 		 * If local data cannot be parsed or loaded, the local zone
864 		 * tables are set up for GMT.
865 		 *
866 		 * Unless a leading ':' is prepended to TZ, TZ is initially
867 		 * parsed as a POSIX zone;  failing that, it reverts to
868 		 * a zoneinfo check.
869 		 * However, if a ':' is prepended, the zone will *only* be
870 		 * parsed as zoneinfo.  If any failure occurs parsing or
871 		 * loading a zoneinfo TZ, GMT data is loaded for the local zone.
872 		 *
873 		 * Example:  There is a zoneinfo file in the standard
874 		 * distribution called 'PST8PDT'.  The only way the user can
875 		 * specify that file under Solaris is to set TZ to ":PST8PDT".
876 		 * Otherwise the initial parse of PST8PDT as a POSIX zone will
877 		 * succeed and be used.
878 		 */
879 		if ((charsbuf = libc_malloc(TZ_MAX_CHARS)) == NULL) {
880 			libc_free(newzonename);
881 
882 			timezone = altzone = 0;
883 			is_in_dst = 0;
884 			tzname[0] = (char *)_tz_gmt;
885 			tzname[1] = (char *)_tz_spaces;
886 			return;
887 		}
888 		entry->charsbuf_size = TZ_MAX_CHARS;
889 		entry->chars = charsbuf;
890 		entry->default_tzname0 = _tz_gmt;
891 		entry->default_tzname1 = _tz_spaces;
892 		entry->zonename = newzonename;
893 
894 		if (*zonename == ':') {
895 			if (load_zoneinfo(zonename + 1, entry) != 0) {
896 				(void) load_posixinfo(_posix_gmt0, entry);
897 			}
898 		} else if (load_posixinfo(zonename, entry) != 0) {
899 			if (load_zoneinfo(zonename, entry) != 0) {
900 				(void) load_posixinfo(_posix_gmt0, entry);
901 			}
902 		}
903 		/*
904 		 * The pre-allocated buffer is used; reset the free flag
905 		 * so the buffer won't be freed.
906 		 */
907 		tzp->flag = 0;
908 		entry->next = q;
909 		*p = entry;
910 	}
911 
912 	curr_zonerules = entry->zonerules;
913 	namecache = entry->zonename;
914 	daylight = entry->daylight;
915 	lclzonep = entry;
916 
917 	set_zone_context(t);
918 }
919 
920 /*
921  * Sets timezone, altzone, tzname[], extern globals, to represent
922  * disposition of t with respect to TZ; See ctime(3C). is_in_dst,
923  * internal global is also set.  daylight is set at zone load time.
924  *
925  * Issues:
926  *
927  *	In this function, any time_t not located in the cache is handled
928  *	as a miss.  To build/update transition cache, load_zoneinfo()
929  *	must be called prior to this routine.
930  *
931  *	If POSIX zone, cache miss penalty is slightly degraded
932  *	performance.  For zoneinfo, penalty is decreased is_in_dst
933  *	accuracy.
934  *
935  *	POSIX, despite its chicken/egg problem, ie. not knowing DST
936  *	until time known, and not knowing time until DST known, at
937  *	least uses the same algorithm for 64-bit time as 32-bit.
938  *
939  *	The fact that zoneinfo files only contain transistions for 32-bit
940  *	time space is a well known problem, as yet unresolved.
941  *	Without an official standard for coping with out-of-range
942  *	zoneinfo times,  assumptions must be made.  For now
943  *	the assumption is:   If t exceeds 32-bit boundries and local zone
944  *	is zoneinfo type, is_in_dst is set to to 0 for negative values
945  *	of t, and set to the same DST state as the highest ordered
946  * 	transition in cache for positive values of t.
947  */
948 static void
949 set_zone_context(time_t t)
950 {
951 	prev_t		*prevp;
952 	int    		lo, hi, tidx;
953 	ttinfo_t	*ttisp, *std, *alt;
954 
955 	/* If state data not loaded or TZ busted, just use GMT */
956 	if (lclzonep == NULL || curr_zonerules == ZONERULES_INVALID) {
957 		timezone = altzone = 0;
958 		daylight = is_in_dst = 0;
959 		tzname[0] = (char *)_tz_gmt;
960 		tzname[1] = (char *)_tz_spaces;
961 		return;
962 	}
963 
964 	/* Retrieve suitable defaults for this zone */
965 	altzone = lclzonep->default_altzone;
966 	timezone = lclzonep->default_timezone;
967 	tzname[0] = (char *)lclzonep->default_tzname0;
968 	tzname[1] = (char *)lclzonep->default_tzname1;
969 	is_in_dst = 0;
970 
971 	if (lclzonep->timecnt <= 0 || lclzonep->typecnt < 2)
972 		/* Loaded zone incapable of transitioning. */
973 		return;
974 
975 	/*
976 	 * At least one alt. zone and one transistion exist. Locate
977 	 * state for 't' quickly as possible.  Use defaults as necessary.
978 	 */
979 	lo = 0;
980 	hi = lclzonep->timecnt - 1;
981 
982 	if (t < lclzonep->ats[0] || t >= lclzonep->ats[hi]) {
983 
984 		/*  CACHE MISS.  Calculate DST as best as possible */
985 		if (lclzonep->zonerules == POSIX_USA ||
986 		    lclzonep->zonerules == POSIX) {
987 			/* Must nvoke calculations to determine DST */
988 			is_in_dst = (daylight) ?
989 			    posix_check_dst(t, lclzonep) : 0;
990 			return;
991 		} else if (t < lclzonep->ats[0]) {   /* zoneinfo... */
992 			/* t precedes 1st transition.  Use defaults */
993 			return;
994 		} else	{    /* zoneinfo */
995 			/* t follows final transistion.  Use final */
996 			tidx = hi;
997 		}
998 
999 	} else {
1000 
1001 		/*  CACHE HIT.  Locate transition using binary search. */
1002 
1003 		while (lo <= hi) {
1004 			tidx = (lo + hi) / 2;
1005 			if (t == lclzonep->ats[tidx])
1006 				break;
1007 			else if (t < lclzonep->ats[tidx])
1008 				hi = tidx - 1;
1009 			else
1010 				lo = tidx + 1;
1011 		}
1012 		if (lo > hi)
1013 			tidx = hi;
1014 	}
1015 
1016 	/*
1017 	 * Set extern globals based on located transition and summary of
1018 	 * its previous state, which were cached when zone was loaded
1019 	 */
1020 	ttisp = &lclzonep->ttis[lclzonep->types[tidx]];
1021 	prevp = &lclzonep->prev[tidx];
1022 
1023 	if ((is_in_dst = ttisp->tt_isdst) == 0) { /* std. time */
1024 		timezone = -ttisp->tt_gmtoff;
1025 		tzname[0] = &lclzonep->chars[ttisp->tt_abbrind];
1026 		if ((alt = prevp->alt) != NULL) {
1027 			altzone = -alt->tt_gmtoff;
1028 			tzname[1] = &lclzonep->chars[alt->tt_abbrind];
1029 		}
1030 	} else { /* alt. time */
1031 		altzone = -ttisp->tt_gmtoff;
1032 		tzname[1] = &lclzonep->chars[ttisp->tt_abbrind];
1033 		if ((std = prevp->std) != NULL) {
1034 			timezone = -std->tt_gmtoff;
1035 			tzname[0] = &lclzonep->chars[std->tt_abbrind];
1036 		}
1037 	}
1038 }
1039 
1040 /*
1041  * This function takes a time_t and gmt offset and produces a
1042  * tm struct based on specified time.
1043  *
1044  * The the following fields are calculated, based entirely
1045  * on the offset-adjusted value of t:
1046  *
1047  * tm_year, tm_mon, tm_mday, tm_hour, tm_min, tm_sec
1048  * tm_yday. tm_wday.  (tm_isdst is ALWAYS set to 0).
1049  */
1050 
1051 static struct tm *
1052 offtime_u(time_t t, long offset, struct tm *tmptr)
1053 {
1054 	long		days;
1055 	long		rem;
1056 	long		y;
1057 	int		yleap;
1058 	const int	*ip;
1059 
1060 	days = t / SECSPERDAY;
1061 	rem = t % SECSPERDAY;
1062 	rem += offset;
1063 	while (rem < 0) {
1064 		rem += SECSPERDAY;
1065 		--days;
1066 	}
1067 	while (rem >= SECSPERDAY) {
1068 		rem -= SECSPERDAY;
1069 		++days;
1070 	}
1071 	tmptr->tm_hour = (int)(rem / SECSPERHOUR);
1072 	rem = rem % SECSPERHOUR;
1073 	tmptr->tm_min = (int)(rem / SECSPERMIN);
1074 	tmptr->tm_sec = (int)(rem % SECSPERMIN);
1075 
1076 	tmptr->tm_wday = (int)((EPOCH_WDAY + days) % DAYSPERWEEK);
1077 	if (tmptr->tm_wday < 0)
1078 		tmptr->tm_wday += DAYSPERWEEK;
1079 	y = EPOCH_YEAR;
1080 	while (days < 0 || days >= (long)__year_lengths[yleap = isleap(y)]) {
1081 		long newy;
1082 
1083 		newy = y + days / DAYSPERNYEAR;
1084 		if (days < 0)
1085 			--newy;
1086 		days -= ((long)newy - (long)y) * DAYSPERNYEAR +
1087 			LEAPS_THRU_END_OF(newy > 0 ? newy - 1L : newy) -
1088 			LEAPS_THRU_END_OF(y > 0 ? y - 1L : y);
1089 		y = newy;
1090 	}
1091 	tmptr->tm_year = (int)(y - TM_YEAR_BASE);
1092 	tmptr->tm_yday = (int)days;
1093 	ip = __mon_lengths[yleap];
1094 	for (tmptr->tm_mon = 0; days >=
1095 		(long)ip[tmptr->tm_mon]; ++(tmptr->tm_mon))
1096 			days = days - (long)ip[tmptr->tm_mon];
1097 	tmptr->tm_mday = (int)(days + 1);
1098 	tmptr->tm_isdst = 0;
1099 
1100 #ifdef _LP64
1101 	/* do as much as possible before checking for error. */
1102 	if ((y > (long)INT_MAX + TM_YEAR_BASE) ||
1103 	    (y < (long)INT_MIN + TM_YEAR_BASE)) {
1104 		errno = EOVERFLOW;
1105 		return (NULL);
1106 	}
1107 #endif
1108 	return (tmptr);
1109 }
1110 
1111 /*
1112  * Check whether DST is set for time in question.  Only applies to
1113  * POSIX timezones.  If explicit POSIX transition rules were provided
1114  * for the current zone, use those, otherwise use default USA POSIX
1115  * transitions.
1116  */
1117 static int
1118 posix_check_dst(long long t, state_t *sp)
1119 {
1120 	struct tm	gmttm;
1121 	long long	jan01;
1122 	int		year, i, idx, ridx;
1123 	posix_daylight_t	pdaylight;
1124 
1125 	(void) offtime_u(t, 0L, &gmttm);
1126 
1127 	year = gmttm.tm_year + 1900;
1128 	jan01 = t - ((gmttm.tm_yday * SECSPERDAY) +
1129 			(gmttm.tm_hour * SECSPERHOUR) +
1130 			(gmttm.tm_min * SECSPERMIN) + gmttm.tm_sec);
1131 	/*
1132 	 * If transition rules were provided for this zone,
1133 	 * use them, otherwise, default to USA daylight rules,
1134 	 * which are historically correct for the continental USA,
1135 	 * excluding local provisions.  (This logic may be replaced
1136 	 * at some point in the future with "posixrules" to offer
1137 	 * more flexibility to the system administrator).
1138 	 */
1139 	if (sp->zonerules == POSIX)	 {	/* POSIX rules */
1140 		pdaylight.rules[0] = &sp->start_rule;
1141 		pdaylight.rules[1] = &sp->end_rule;
1142 	} else { 			/* POSIX_USA: USA */
1143 		i = 0;
1144 		while (year < __usa_rules[i].s_year && i < MAX_RULE_TABLE) {
1145 			i++;
1146 		}
1147 		pdaylight.rules[0] = (rule_t *)&__usa_rules[i].start;
1148 		pdaylight.rules[1] = (rule_t *)&__usa_rules[i].end;
1149 	}
1150 	pdaylight.offset[0] = timezone;
1151 	pdaylight.offset[1] = altzone;
1152 
1153 	idx = posix_daylight(&jan01, year, &pdaylight);
1154 	ridx = !idx;
1155 
1156 	/*
1157 	 * Note:  t, rtime[0], and rtime[1] are all bounded within 'year'
1158 	 * beginning on 'jan01'
1159 	 */
1160 	if (t >= pdaylight.rtime[idx] && t < pdaylight.rtime[ridx]) {
1161 		return (ridx);
1162 	} else {
1163 		return (idx);
1164 	}
1165 }
1166 
1167 /*
1168  * Given January 1, 00:00:00 GMT for a year as an Epoch-relative time,
1169  * along with the integer year #, a posix_daylight_t that is composed
1170  * of two rules, and two GMT offsets (timezone and altzone), calculate
1171  * the two Epoch-relative times the two rules take effect, and return
1172  * them in the two rtime fields of the posix_daylight_t structure.
1173  * Also update janfirst by a year, by adding the appropriate number of
1174  * seconds depending on whether the year is a leap year or not.  (We take
1175  * advantage that this routine knows the leap year status.)
1176  */
1177 static int
1178 posix_daylight(long long *janfirst, int year, posix_daylight_t *pdaylightp)
1179 {
1180 	rule_t	*rulep;
1181 	long	offset;
1182 	int	idx;
1183 	int	i, d, m1, yy0, yy1, yy2, dow;
1184 	long	leapyear;
1185 	long long	value;
1186 
1187 	static const int	__secs_year_lengths[2] = {
1188 		DAYS_PER_NYEAR * SECSPERDAY,
1189 		DAYS_PER_LYEAR * SECSPERDAY
1190 	};
1191 
1192 	leapyear = isleap(year);
1193 
1194 	for (idx = 0; idx < 2; idx++) {
1195 		rulep = pdaylightp->rules[idx];
1196 		offset = pdaylightp->offset[idx];
1197 
1198 		switch (rulep->r_type) {
1199 
1200 		case MON_WEEK_DOW:
1201 			/*
1202 			 * Mm.n.d - nth "dth day" of month m.
1203 			 */
1204 			value = *janfirst;
1205 			for (i = 0; i < rulep->r_mon - 1; ++i)
1206 				value += __mon_lengths[leapyear][i] *
1207 				    SECSPERDAY;
1208 
1209 			/*
1210 			 * Use Zeller's Congruence to get day-of-week of first
1211 			 * day of month.
1212 			 */
1213 			m1 = (rulep->r_mon + 9) % 12 + 1;
1214 			yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
1215 			yy1 = yy0 / 100;
1216 			yy2 = yy0 % 100;
1217 			dow = ((26 * m1 - 2) / 10 +
1218 			    1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
1219 
1220 			if (dow < 0)
1221 				dow += DAYSPERWEEK;
1222 
1223 			/*
1224 			 * Following heuristic increases accuracy of USA rules
1225 			 * for negative years.
1226 			 */
1227 			if (year < 1 && leapyear)
1228 				++dow;
1229 			/*
1230 			 * "dow" is the day-of-week of the first day of the
1231 			 * month.  Get the day-of-month, zero-origin, of the
1232 			 * first "dow" day of the month.
1233 			 */
1234 			d = rulep->r_day - dow;
1235 			if (d < 0)
1236 				d += DAYSPERWEEK;
1237 			for (i = 1; i < rulep->r_week; ++i) {
1238 				if (d + DAYSPERWEEK >=
1239 				    __mon_lengths[leapyear][rulep->r_mon - 1])
1240 					break;
1241 				d += DAYSPERWEEK;
1242 			}
1243 			/*
1244 			 * "d" is the day-of-month, zero-origin, of the day
1245 			 * we want.
1246 			 */
1247 			value += d * SECSPERDAY;
1248 			break;
1249 
1250 		case JULIAN_DAY:
1251 			/*
1252 			 * Jn - Julian day, 1 == Jan 1, 60 == March 1 even
1253 			 * in leap yrs.
1254 			 */
1255 			value = *janfirst + (rulep->r_day - 1) * SECSPERDAY;
1256 			if (leapyear && rulep->r_day >= 60)
1257 				value += SECSPERDAY;
1258 			break;
1259 
1260 		case DAY_OF_YEAR:
1261 			/*
1262 			 * n - day of year.
1263 			 */
1264 			value = *janfirst + rulep->r_day * SECSPERDAY;
1265 			break;
1266 		}
1267 		pdaylightp->rtime[idx] = value + rulep->r_time + offset;
1268 	}
1269 	*janfirst += __secs_year_lengths[leapyear];
1270 
1271 	return ((pdaylightp->rtime[0] > pdaylightp->rtime[1]) ? 1 : 0);
1272 }
1273 
1274 /*
1275  * Try to load zoneinfo file into internal transition tables using name
1276  * indicated in TZ, and do validity checks.  The format of zic(1M)
1277  * compiled zoneinfo files isdescribed in tzfile.h
1278  */
1279 static int
1280 load_zoneinfo(const char *name, state_t *sp)
1281 {
1282 	char	*cp;
1283 	char	*cp2;
1284 	int	i;
1285 	long	cnt;
1286 	int	fid;
1287 	int	ttisstdcnt;
1288 	int	ttisgmtcnt;
1289 	char	*fullname;
1290 	size_t	namelen;
1291 	char	*bufp;
1292 	size_t	flen;
1293 	prev_t	*prevp;
1294 /* LINTED */
1295 	struct	tzhead *tzhp;
1296 	struct	stat64	stbuf;
1297 	ttinfo_t	*most_recent_alt = NULL;
1298 	ttinfo_t	*most_recent_std = NULL;
1299 	ttinfo_t	*ttisp;
1300 
1301 
1302 	if (name == NULL && (name = TZDEFAULT) == NULL)
1303 		return (-1);
1304 
1305 	if ((name[0] == '/') || strstr(name, "../"))
1306 		return (-1);
1307 
1308 	/*
1309 	 * We allocate fullname this way to avoid having
1310 	 * a PATH_MAX size buffer in our stack frame.
1311 	 */
1312 	namelen = LEN_TZDIR + 1 + strlen(name) + 1;
1313 	if ((fullname = lmalloc(namelen)) == NULL)
1314 		return (-1);
1315 	(void) strcpy(fullname, TZDIR "/");
1316 	(void) strcpy(fullname + LEN_TZDIR + 1, name);
1317 	if ((fid = open(fullname, O_RDONLY)) == -1) {
1318 		lfree(fullname, namelen);
1319 		return (-1);
1320 	}
1321 	lfree(fullname, namelen);
1322 
1323 	if (fstat64(fid, &stbuf) == -1) {
1324 		(void) close(fid);
1325 		return (-1);
1326 	}
1327 
1328 	flen = (size_t)stbuf.st_size;
1329 	if (flen < sizeof (struct tzhead)) {
1330 		(void) close(fid);
1331 		return (-1);
1332 	}
1333 
1334 	/*
1335 	 * It would be nice to use alloca() to allocate bufp but,
1336 	 * as above, we wish to avoid allocating a big buffer in
1337 	 * our stack frame, and also because alloca() gives us no
1338 	 * opportunity to fail gracefully on allocation failure.
1339 	 */
1340 	cp = bufp = lmalloc(flen);
1341 	if (bufp == NULL) {
1342 		(void) close(fid);
1343 		return (-1);
1344 	}
1345 
1346 	if ((cnt = read(fid, bufp, flen)) != flen) {
1347 		lfree(bufp, flen);
1348 		(void) close(fid);
1349 		return (-1);
1350 	}
1351 
1352 	if (close(fid) != 0) {
1353 		lfree(bufp, flen);
1354 		return (-1);
1355 	}
1356 
1357 	cp += (sizeof (tzhp->tzh_magic)) + (sizeof (tzhp->tzh_reserved));
1358 
1359 /* LINTED: alignment */
1360 	ttisstdcnt = CVTZCODE(cp);
1361 /* LINTED: alignment */
1362 	ttisgmtcnt = CVTZCODE(cp);
1363 /* LINTED: alignment */
1364 	sp->leapcnt = CVTZCODE(cp);
1365 /* LINTED: alignment */
1366 	sp->timecnt = CVTZCODE(cp);
1367 /* LINTED: alignment */
1368 	sp->typecnt = CVTZCODE(cp);
1369 /* LINTED: alignment */
1370 	sp->charcnt = CVTZCODE(cp);
1371 
1372 	if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
1373 	    sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
1374 	    sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
1375 	    sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
1376 	    (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
1377 	    (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0)) {
1378 		lfree(bufp, flen);
1379 		return (-1);
1380 	}
1381 
1382 	if (cnt - (cp - bufp) < (long)(sp->timecnt * 4 +	/* ats */
1383 	    sp->timecnt +			/* types */
1384 	    sp->typecnt * (4 + 2) +		/* ttinfos */
1385 	    sp->charcnt +			/* chars */
1386 	    sp->leapcnt * (4 + 4) +		/* lsinfos */
1387 	    ttisstdcnt +			/* ttisstds */
1388 	    ttisgmtcnt)) {			/* ttisgmts */
1389 		lfree(bufp, flen);
1390 		return (-1);
1391 	}
1392 
1393 
1394 	for (i = 0; i < sp->timecnt; ++i) {
1395 /* LINTED: alignment */
1396 		sp->ats[i] = CVTZCODE(cp);
1397 	}
1398 
1399 	/*
1400 	 * Skip over types[] for now and load ttis[] so that when
1401 	 * types[] are loaded we can check for transitions to STD & DST.
1402 	 * This allows us to shave cycles in ltzset_u(), including
1403 	 * eliminating the need to check set 'daylight' later.
1404 	 */
1405 
1406 	cp2 = (char *)((uintptr_t)cp + sp->timecnt);
1407 
1408 	for (i = 0; i < sp->typecnt; ++i) {
1409 		ttisp = &sp->ttis[i];
1410 /* LINTED: alignment */
1411 		ttisp->tt_gmtoff = CVTZCODE(cp2);
1412 		ttisp->tt_isdst = (uchar_t)*cp2++;
1413 
1414 		if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1) {
1415 			lfree(bufp, flen);
1416 			return (-1);
1417 		}
1418 
1419 		ttisp->tt_abbrind = (uchar_t)*cp2++;
1420 		if (ttisp->tt_abbrind < 0 ||
1421 		    ttisp->tt_abbrind > sp->charcnt) {
1422 			lfree(bufp, flen);
1423 			return (-1);
1424 		}
1425 	}
1426 
1427 	/*
1428 	 * Since ttis were loaded ahead of types, it is possible to
1429 	 * detect whether daylight is ever set for this zone now, and
1430 	 * also preload other information to avoid repeated lookups later.
1431 	 * This logic facilitates keeping a running tab on the state of
1432 	 * std zone and alternate zone transitions such that timezone,
1433 	 * altzone and tzname[] can be determined quickly via an
1434 	 * index to any transition.
1435 	 *
1436 	 * For transition #0 there are no previous transitions,
1437 	 * so prev->std and prev->alt will be null, but that's OK,
1438 	 * because null prev->std/prev->alt effectively
1439 	 * indicates none existed prior.
1440 	 */
1441 
1442 	prevp = &sp->prev[0];
1443 
1444 	for (i = 0; i < sp->timecnt; ++i) {
1445 
1446 		sp->types[i] = (uchar_t)*cp++;
1447 		ttisp = &sp->ttis[sp->types[i]];
1448 
1449 		prevp->std = most_recent_std;
1450 		prevp->alt = most_recent_alt;
1451 
1452 		if (ttisp->tt_isdst == 1) {
1453 			most_recent_alt = ttisp;
1454 		} else {
1455 			most_recent_std = ttisp;
1456 		}
1457 
1458 		if ((int)sp->types[i] >= sp->typecnt) {
1459 			lfree(bufp, flen);
1460 			return (-1);
1461 		}
1462 
1463 		++prevp;
1464 	}
1465 	if (most_recent_alt == NULL)
1466 		sp->daylight = 0;
1467 	else
1468 		sp->daylight = 1;
1469 
1470 	/*
1471 	 * Set pointer ahead to where it would have been if we
1472 	 * had read types[] and ttis[] in the same order they
1473 	 * occurred in the file.
1474 	 */
1475 	cp = cp2;
1476 	for (i = 0; i < sp->charcnt; ++i)
1477 		sp->chars[i] = *cp++;
1478 
1479 	sp->chars[i] = '\0';	/* ensure '\0' at end */
1480 
1481 	for (i = 0; i < sp->leapcnt; ++i) {
1482 		struct lsinfo *lsisp;
1483 
1484 		lsisp = &sp->lsis[i];
1485 /* LINTED: alignment */
1486 		lsisp->ls_trans = CVTZCODE(cp);
1487 /* LINTED: alignment */
1488 		lsisp->ls_corr = CVTZCODE(cp);
1489 	}
1490 
1491 	for (i = 0; i < sp->typecnt; ++i) {
1492 		ttisp = &sp->ttis[i];
1493 		if (ttisstdcnt == 0) {
1494 			ttisp->tt_ttisstd = FALSE;
1495 		} else {
1496 			ttisp->tt_ttisstd = *cp++;
1497 			if (ttisp->tt_ttisstd != TRUE &&
1498 			    ttisp->tt_ttisstd != FALSE) {
1499 				lfree(bufp, flen);
1500 				return (-1);
1501 			}
1502 		}
1503 	}
1504 
1505 	for (i = 0; i < sp->typecnt; ++i) {
1506 		ttisp = &sp->ttis[i];
1507 		if (ttisgmtcnt == 0) {
1508 			ttisp->tt_ttisgmt = FALSE;
1509 		} else {
1510 			ttisp->tt_ttisgmt = *cp++;
1511 			if (ttisp->tt_ttisgmt != TRUE &&
1512 			    ttisp->tt_ttisgmt != FALSE) {
1513 				lfree(bufp, flen);
1514 				return (-1);
1515 			}
1516 		}
1517 	}
1518 
1519 	/*
1520 	 * Other defaults set at beginning of this routine
1521 	 * to cover case where zoneinfo file cannot be loaded
1522 	 */
1523 	sp->default_timezone = -sp->ttis[0].tt_gmtoff;
1524 	sp->default_altzone  = 0;
1525 	sp->default_tzname0  = &sp->chars[0];
1526 	sp->default_tzname1  = _tz_spaces;
1527 
1528 	lfree(bufp, flen);
1529 
1530 	sp->zonerules = ZONEINFO;
1531 
1532 	return (0);
1533 }
1534 
1535 /*
1536  * Given a POSIX section 8-style TZ string, fill in transition tables.
1537  *
1538  * Examples:
1539  *
1540  * TZ = PST8 or GMT0
1541  *	Timecnt set to 0 and typecnt set to 1, reflecting std time only.
1542  *
1543  * TZ = PST8PDT or PST8PDT7
1544  *	Create transition times by applying USA transitions from
1545  *	Jan 1 of each year covering 1902-2038.  POSIX offsets
1546  *	as specified in the TZ are used to calculate the tt_gmtoff
1547  *	for each of the two zones.  If ommitted, DST defaults to
1548  *	std. time minus one hour.
1549  *
1550  * TZ = <PST8>8PDT  or <PST8>8<PDT9>
1551  *      Quoted transition.  The values in angled brackets are treated
1552  *      as zone name text, not parsed as offsets.  The offsets
1553  *      occuring following the zonename section.  In this way,
1554  *      instead of PST being displayed for standard time, it could
1555  *      be displayed as PST8 to give an indication of the offset
1556  *      of that zone to GMT.
1557  *
1558  * TZ = GMT0BST, M3.5.0/1, M10.5.0/2   or  GMT0BST, J23953, J23989
1559  *	Create transition times based on the application new-year
1560  *	relative POSIX transitions, parsed from TZ, from Jan 1
1561  *	for each year covering 1902-2038.  POSIX offsets specified
1562  *	in TZ are used to calculate tt_gmtoff for each of the two
1563  *	zones.
1564  *
1565  */
1566 static int
1567 load_posixinfo(const char *name, state_t *sp)
1568 {
1569 	const char	*stdname;
1570 	const char	*dstname = 0;
1571 	size_t		stdlen;
1572 	size_t		dstlen;
1573 	long		stdoff = 0;
1574 	long		dstoff = 0;
1575 	time_t		*tranp;
1576 	uchar_t		*typep;
1577 	prev_t		*prevp;
1578 	char		*cp;
1579 	int		year;
1580 	int		i;
1581 	long long	janfirst;
1582 	ttinfo_t	*dst;
1583 	ttinfo_t	*std;
1584 	int		quoted;
1585 	zone_rules_t	zonetype;
1586 	posix_daylight_t	pdaylight;
1587 
1588 	zonetype = POSIX_USA;
1589 	stdname = name;
1590 
1591 	if ((quoted = (*stdname == '<')) != 0)
1592 		++stdname;
1593 
1594 	/* Parse/extract STD zone name, len and GMT offset */
1595 	if (*name != '\0') {
1596 		if ((name = getzname(name, quoted)) == NULL)
1597 			return (-1);
1598 		stdlen = name - stdname;
1599 		if (*name == '>')
1600 			++name;
1601 		if (*name == '\0' || stdlen < 1) {
1602 			return (-1);
1603 		} else {
1604 			if ((name = getoffset(name, &stdoff)) == NULL)
1605 				return (-1);
1606 		}
1607 	}
1608 
1609 	/* If DST specified in TZ, extract DST zone details */
1610 	if (*name != '\0') {
1611 
1612 		dstname = name;
1613 		if ((quoted = (*dstname == '<')) != 0)
1614 			++dstname;
1615 		if ((name = getzname(name, quoted)) == NULL)
1616 			return (-1);
1617 		dstlen = name - dstname;
1618 		if (dstlen < 1)
1619 		    return (-1);
1620 		if (*name == '>')
1621 			++name;
1622 		if (*name != '\0' && *name != ',' && *name != ';') {
1623 			if ((name = getoffset(name, &dstoff)) == NULL)
1624 				return (-1);
1625 		} else {
1626 			dstoff = stdoff - SECSPERHOUR;
1627 		}
1628 
1629 		/* If any present, extract POSIX transitions from TZ */
1630 		if (*name == ',' || *name == ';') {
1631 			/* Backward compatibility using ';' separator */
1632 			int	compat_flag = (*name == ';');
1633 			++name;
1634 			if ((name = getrule(name, &sp->start_rule, compat_flag))
1635 			    == NULL)
1636 				return (-1);
1637 			if (*name++ != ',')
1638 				return (-1);
1639 			if ((name = getrule(name, &sp->end_rule, compat_flag))
1640 			    == NULL)
1641 				return (-1);
1642 			if (*name != '\0')
1643 				return (-1);
1644 			zonetype = POSIX;
1645 		}
1646 
1647 		/*
1648 		 * We know STD and DST zones are specified with this timezone
1649 		 * therefore the cache will be set up with 2 transitions per
1650 		 * year transitioning to their respective std and dst zones.
1651 		 */
1652 		sp->daylight = 1;
1653 		sp->typecnt = 2;
1654 		sp->timecnt = 272;
1655 
1656 		/*
1657 		 * Insert zone data from POSIX TZ into state table
1658 		 * The Olson public domain POSIX code sets up ttis[0] to be DST,
1659 		 * as we are doing here.  It seems to be the correct behavior.
1660 		 * The US/Pacific zoneinfo file also lists DST as first type.
1661 		 */
1662 		dst = &sp->ttis[0];
1663 		dst->tt_gmtoff = -dstoff;
1664 		dst->tt_isdst = 1;
1665 
1666 		std = &sp->ttis[1];
1667 		std->tt_gmtoff = -stdoff;
1668 		std->tt_isdst = 0;
1669 
1670 		sp->prev[0].std = NULL;
1671 		sp->prev[0].alt = NULL;
1672 
1673 		/* Create transition data based on POSIX TZ */
1674 		tranp = sp->ats;
1675 		prevp  = &sp->prev[1];
1676 		typep  = sp->types;
1677 
1678 		/*
1679 		 * We only cache from 1902 to 2037 to avoid transistions
1680 		 * that wrap at the 32-bit boundries, since 1901 and 2038
1681 		 * are not full years in 32-bit time.  The rough edges
1682 		 * will be handled as transition cache misses.
1683 		 */
1684 
1685 		janfirst = JAN_01_1902;
1686 
1687 		pdaylight.rules[0] = &sp->start_rule;
1688 		pdaylight.rules[1] = &sp->end_rule;
1689 		pdaylight.offset[0] = stdoff;
1690 		pdaylight.offset[1] = dstoff;
1691 
1692 		for (i = MAX_RULE_TABLE; i >= 0; i--) {
1693 			if (zonetype == POSIX_USA) {
1694 				pdaylight.rules[0] =
1695 				    (rule_t *)&__usa_rules[i].start;
1696 				pdaylight.rules[1] =
1697 				    (rule_t *)&__usa_rules[i].end;
1698 			}
1699 			for (year = __usa_rules[i].s_year;
1700 			    year <= __usa_rules[i].e_year;
1701 			    year++) {
1702 				int	idx, ridx;
1703 				idx =
1704 				    posix_daylight(&janfirst, year, &pdaylight);
1705 				ridx = !idx;
1706 
1707 				/*
1708 				 * Two transitions per year. Since there are
1709 				 * only two zone types for this POSIX zone,
1710 				 * previous std and alt are always set to
1711 				 * &ttis[0] and &ttis[1].
1712 				 */
1713 				*tranp++ = (time_t)pdaylight.rtime[idx];
1714 				*typep++ = idx;
1715 				prevp->std = std;
1716 				prevp->alt = dst;
1717 				++prevp;
1718 
1719 				*tranp++ = (time_t)pdaylight.rtime[ridx];
1720 				*typep++ = ridx;
1721 				prevp->std = std;
1722 				prevp->alt = dst;
1723 				++prevp;
1724 			}
1725 		}
1726 	} else {  /* DST wasn't specified in POSIX TZ */
1727 
1728 		/*  Since we only have STD time, there are no transitions */
1729 		dstlen = 0;
1730 		sp->daylight = 0;
1731 		sp->typecnt = 1;
1732 		sp->timecnt = 0;
1733 		std = &sp->ttis[0];
1734 		std->tt_gmtoff = -stdoff;
1735 		std->tt_isdst = 0;
1736 
1737 	}
1738 
1739 	/* Setup zone name character data for state table */
1740 	sp->charcnt = (int)(stdlen + 1);
1741 	if (dstlen != 0)
1742 		sp->charcnt += dstlen + 1;
1743 
1744 	/* If bigger than zone name abbv. buffer, grow it */
1745 	if ((size_t)sp->charcnt > sp->charsbuf_size) {
1746 		if ((cp = libc_realloc(sp->chars, sp->charcnt)) == NULL)
1747 			return (-1);
1748 		sp->chars = cp;
1749 		sp->charsbuf_size = sp->charcnt;
1750 	}
1751 
1752 	/*
1753 	 * Copy zone name text null-terminatedly into state table.
1754 	 * By doing the copy once during zone loading, setting
1755 	 * tzname[] subsequently merely involves setting pointer
1756 	 *
1757 	 * If either or both std. or alt. zone name < 3 chars,
1758 	 * space pad the deficient name(s) to right.
1759 	 */
1760 
1761 	std->tt_abbrind = 0;
1762 	cp = sp->chars;
1763 	(void) strncpy(cp, stdname, stdlen);
1764 	while (stdlen < 3)
1765 		cp[stdlen++] = ' ';
1766 	cp[stdlen] = '\0';
1767 
1768 	i = (int)(stdlen + 1);
1769 	if (dstlen != 0) {
1770 		dst->tt_abbrind = i;
1771 		cp += i;
1772 		(void) strncpy(cp, dstname, dstlen);
1773 		while (dstlen < 3)
1774 			cp[dstlen++] = ' ';
1775 		cp[dstlen] = '\0';
1776 	}
1777 
1778 	/* Save default values */
1779 	if (sp->typecnt == 1) {
1780 		sp->default_timezone = stdoff;
1781 		sp->default_altzone = stdoff;
1782 		sp->default_tzname0 = &sp->chars[0];
1783 		sp->default_tzname1 = _tz_spaces;
1784 	} else {
1785 		sp->default_timezone = -std->tt_gmtoff;
1786 		sp->default_altzone = -dst->tt_gmtoff;
1787 		sp->default_tzname0 = &sp->chars[std->tt_abbrind];
1788 		sp->default_tzname1 = &sp->chars[dst->tt_abbrind];
1789 	}
1790 
1791 	sp->zonerules = zonetype;
1792 
1793 	return (0);
1794 }
1795 
1796 
1797 /*
1798  * Given a pointer into a time zone string, scan until a character that is not
1799  * a valid character in a zone name is found.  Return ptr to that character.
1800  * Return NULL if error (ie. non-printable character located in name)
1801  */
1802 static const char *
1803 getzname(const char *strp, int quoted)
1804 {
1805 	char	c;
1806 
1807 	if (quoted) {
1808 		while ((c = *strp) != '\0' && c != '>' &&
1809 			isgraph((unsigned char)c))
1810 				++strp;
1811 	} else {
1812 		while ((c = *strp) != '\0' && isgraph((unsigned char)c) &&
1813 		    !isdigit((unsigned char)c) && c != ',' && c != '-' &&
1814 			    c != '+')
1815 				++strp;
1816 	}
1817 
1818 	/* Found an excessively invalid character.  Discredit whole name */
1819 	if (c != '\0' && !isgraph((unsigned char)c))
1820 		return (NULL);
1821 
1822 	return (strp);
1823 }
1824 
1825 /*
1826  * Given pointer into time zone string, extract first
1827  * number pointed to.  Validate number within range specified,
1828  * Return ptr to first char following valid numeric sequence.
1829  */
1830 static const char *
1831 getnum(const char *strp, int *nump, int min, int max)
1832 {
1833 	char	c;
1834 	int	num;
1835 
1836 	if (strp == NULL || !isdigit((unsigned char)(c = *strp)))
1837 		return (NULL);
1838 	num = 0;
1839 	do {
1840 		num = num * 10 + (c - '0');
1841 		if (num > max)
1842 			return (NULL);	/* illegal value */
1843 		c = *++strp;
1844 	} while (isdigit((unsigned char)c));
1845 	if (num < min)
1846 		return (NULL);		/* illegal value */
1847 	*nump = num;
1848 	return (strp);
1849 }
1850 
1851 /*
1852  * Given a pointer into a time zone string, extract a number of seconds,
1853  * in hh[:mm[:ss]] form, from the string.  If an error occurs, return NULL,
1854  * otherwise, return a pointer to the first character not part of the number
1855  * of seconds.
1856  */
1857 static const char *
1858 getsecs(const char *strp, long *secsp)
1859 {
1860 	int	num;
1861 
1862 	/*
1863 	 * `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
1864 	 * "M10.4.6/26", which does not conform to Posix,
1865 	 * but which specifies the equivalent of
1866 	 * ``02:00 on the first Sunday on or after 23 Oct''.
1867 	 */
1868 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
1869 	if (strp == NULL)
1870 		return (NULL);
1871 	*secsp = num * (long)SECSPERHOUR;
1872 	if (*strp == ':') {
1873 		++strp;
1874 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
1875 		if (strp == NULL)
1876 			return (NULL);
1877 		*secsp += num * SECSPERMIN;
1878 		if (*strp == ':') {
1879 			++strp;
1880 			/* `SECSPERMIN' allows for leap seconds.  */
1881 			strp = getnum(strp, &num, 0, SECSPERMIN);
1882 			if (strp == NULL)
1883 				return (NULL);
1884 			*secsp += num;
1885 		}
1886 	}
1887 	return (strp);
1888 }
1889 
1890 /*
1891  * Given a pointer into a time zone string, extract an offset, in
1892  * [+-]hh[:mm[:ss]] form, from the string.
1893  * If any error occurs, return NULL.
1894  * Otherwise, return a pointer to the first character not part of the time.
1895  */
1896 static const char *
1897 getoffset(const char *strp, long *offsetp)
1898 {
1899 	int	neg = 0;
1900 
1901 	if (*strp == '-') {
1902 		neg = 1;
1903 		++strp;
1904 	} else if (*strp == '+') {
1905 		++strp;
1906 	}
1907 	strp = getsecs(strp, offsetp);
1908 	if (strp == NULL)
1909 		return (NULL);		/* illegal time */
1910 	if (neg)
1911 		*offsetp = -*offsetp;
1912 	return (strp);
1913 }
1914 
1915 /*
1916  * Given a pointer into a time zone string, extract a rule in the form
1917  * date[/time].  See POSIX section 8 for the format of "date" and "time".
1918  * If a valid rule is not found, return NULL.
1919  * Otherwise, return a pointer to the first character not part of the rule.
1920  *
1921  * If compat_flag is set, support old 1-based day of year values.
1922  */
1923 static const char *
1924 getrule(const char *strp, rule_t *rulep, int compat_flag)
1925 {
1926 	if (compat_flag == 0 && *strp == 'M') {
1927 		/*
1928 		 * Month, week, day.
1929 		 */
1930 		rulep->r_type = MON_WEEK_DOW;
1931 		++strp;
1932 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
1933 		if (strp == NULL)
1934 			return (NULL);
1935 		if (*strp++ != '.')
1936 			return (NULL);
1937 		strp = getnum(strp, &rulep->r_week, 1, 5);
1938 		if (strp == NULL)
1939 			return (NULL);
1940 		if (*strp++ != '.')
1941 			return (NULL);
1942 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
1943 	} else if (compat_flag == 0 && *strp == 'J') {
1944 		/*
1945 		 * Julian day.
1946 		 */
1947 		rulep->r_type = JULIAN_DAY;
1948 		++strp;
1949 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
1950 
1951 	} else if (isdigit((unsigned char)*strp)) {
1952 		/*
1953 		 * Day of year.
1954 		 */
1955 		rulep->r_type = DAY_OF_YEAR;
1956 		if (compat_flag == 0) {
1957 			/* zero-based day of year */
1958 			strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
1959 		} else {
1960 			/* one-based day of year */
1961 			strp = getnum(strp, &rulep->r_day, 1, DAYSPERLYEAR);
1962 			rulep->r_day--;
1963 		}
1964 	} else {
1965 		return (NULL);		/* ZONERULES_INVALID format */
1966 	}
1967 	if (strp == NULL)
1968 		return (NULL);
1969 	if (*strp == '/') {
1970 		/*
1971 		 * Time specified.
1972 		 */
1973 		++strp;
1974 		strp = getsecs(strp, &rulep->r_time);
1975 	} else	{
1976 		rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
1977 	}
1978 	return (strp);
1979 }
1980 
1981 /*
1982  * Returns default value for TZ as specified in /etc/default/init file, if
1983  * a default value for TZ is provided there.
1984  *
1985  * To strip quotes:  if a '"', or '\''is found, then transfer the following
1986  * bytes forward, and overwrite the double or single quote.  The tzS
1987  * pointer is used to keep track of the location in the buffer, to which bytes
1988  * pointed to by tzq, will be transferred.  Then, the <value> string
1989  * should be NULL terminated.  If no '"' or '\'' characters were encountered,
1990  * tzS will be NULL, so tzq should already be NULL-terminated.
1991  * However, if '"' or '\'' characters were encountered, then tzS will
1992  * be non-NULL, and *tzS should be set to the NULL character.
1993  */
1994 static char *
1995 get_default_tz(void)
1996 {
1997 	char	*tz;
1998 	int	in;
1999 
2000 	tz = NULL;
2001 	in = open(TIMEZONE, O_RDONLY);
2002 	if (in != -1) {
2003 		int	eof = 0;
2004 		char	tzFilebuf[BUFSIZ+1];
2005 		char	*p, *q;
2006 		size_t	bufsize;
2007 
2008 		p = q = tzFilebuf;
2009 		bufsize = BUFSIZ;
2010 		for (;;) {
2011 			char	*lineE, *nextp;
2012 			size_t	mlen;
2013 			int	r;
2014 
2015 			if (eof == 0) {
2016 				r = read(in, q, bufsize);
2017 				if (r <= 0)
2018 					break;
2019 				if (r < bufsize)
2020 					eof = 1;
2021 				*(q + r) = '\0';
2022 			}
2023 
2024 			if ((lineE = strchr(p, '\n')) == NULL) {
2025 				/* line too long */
2026 				break;
2027 			}
2028 			*lineE = '\0';
2029 
2030 			if (strncmp(TZSTRING, p, sizeof (TZSTRING) - 1) == 0) {
2031 				unsigned char	*tzp, *tzq, *tzS;
2032 
2033 				tzp = (unsigned char *)p +
2034 				    sizeof (TZSTRING) - 1;
2035 				while (isspace(*tzp))
2036 					tzp++;
2037 				tzq = tzp;
2038 				tzS = NULL;
2039 				while (isspace(*tzq) == 0 &&
2040 				    *tzq != ';' &&
2041 				    *tzq != '#' &&
2042 				    *tzq != '\0') {
2043 					if (*tzq == '"' ||
2044 					    *tzq == '\'') {
2045 						if (tzS == NULL) {
2046 							tzS = tzq;
2047 						}
2048 					} else {
2049 						if (tzS != NULL) {
2050 							*tzS = *tzq;
2051 							tzS++;
2052 						}
2053 					}
2054 					tzq++;
2055 				}
2056 				if (tzS != NULL)
2057 					*tzS = '\0';
2058 				else
2059 					*tzq = '\0';
2060 				tz = strdup((char *)tzp);
2061 				break;
2062 			}
2063 			nextp = lineE + 1;
2064 			if (eof == 0) {
2065 				mlen = (q + r) - nextp;
2066 				(void) memmove(p, nextp, mlen);
2067 				q = p + mlen;
2068 				bufsize = BUFSIZ - mlen;
2069 			} else {
2070 				p = nextp;
2071 			}
2072 		}
2073 		(void) close(in);
2074 	}
2075 	return (tz);
2076 }
2077 
2078 static state_t *
2079 get_zone(systemtz_t *tzp)
2080 {
2081 	int	hashid;
2082 	state_t	*m, *p;
2083 	const char *zonename = tzp->tz;
2084 
2085 	hashid = get_hashid(zonename);
2086 	m = tzcache[hashid];
2087 	while (m) {
2088 		int	r;
2089 		r = strcmp(m->zonename, zonename);
2090 		if (r == 0) {
2091 			/* matched */
2092 			return (NULL);
2093 		} else if (r > 0) {
2094 			break;
2095 		}
2096 		m = m->next;
2097 	}
2098 	/* malloc() return value is also checked for NULL in ltzset_u() */
2099 	p = malloc(sizeof (state_t));
2100 
2101 	/* ltzset_u() resets the free flag to 0 if it uses the p buffer */
2102 	if (p != NULL)
2103 		tzp->flag = 1;
2104 	return (p);
2105 }
2106 
2107 /*
2108  * getsystemTZ() returns the TZ value if it is set in the environment, or
2109  * it returns the system TZ;  if the systemTZ has not yet been set,
2110  * get_default_tz() is called to read the /etc/default/init file to get
2111  * the value.
2112  *
2113  * getsystemTZ() also calls get_zone() to do an initial check to see if the
2114  * timezone is the current timezone, or one that is already loaded in the
2115  * hash table.  If get_zone() determines the timezone has not yet been loaded,
2116  * it pre-allocates a buffer for a state_t struct, which ltzset_u() can use
2117  * later to load the timezone and add to the hash table.
2118  *
2119  * The large state_t buffer is allocated here to avoid calls to malloc()
2120  * within mutex_locks.
2121  */
2122 static systemtz_t *
2123 getsystemTZ(systemtz_t *stzp)
2124 {
2125 	static const char	*systemTZ = NULL;
2126 	char	*tz;
2127 
2128 	assert_no_libc_locks_held();
2129 
2130 	stzp->flag = 0;
2131 
2132 	tz = getenv("TZ");
2133 	if (tz != NULL && *tz != '\0') {
2134 		stzp->tz = (const char *)tz;
2135 		goto get_entry;
2136 	}
2137 
2138 	if (systemTZ != NULL) {
2139 		stzp->tz = systemTZ;
2140 		goto get_entry;
2141 	}
2142 
2143 	tz = get_default_tz();
2144 	lmutex_lock(&_time_lock);
2145 	if (systemTZ == NULL) {
2146 		if ((systemTZ = tz) != NULL)	/* found TZ entry in the file */
2147 			tz = NULL;
2148 		else
2149 			systemTZ = _posix_gmt0;	/* no TZ entry in the file */
2150 	}
2151 	lmutex_unlock(&_time_lock);
2152 
2153 	if (tz != NULL)		/* someone beat us to it; free our entry */
2154 		free(tz);
2155 
2156 	stzp->tz = systemTZ;
2157 
2158 get_entry:
2159 	/*
2160 	 * The object referred to by the 1st 'namecache'
2161 	 * may be different from the one by the 2nd 'namecache' below.
2162 	 * But, it does not matter.  The bottomline is at this point
2163 	 * 'namecache' points to non-NULL and whether the string pointed
2164 	 * to by 'namecache' is equivalent to stzp->tz or not.
2165 	 */
2166 	if (namecache != NULL && strcmp(namecache, stzp->tz) == 0) {
2167 		/*
2168 		 * At this point, we found the entry having the same
2169 		 * zonename as stzp->tz exists.  Later we will find
2170 		 * the exact one, so we don't need to allocate
2171 		 * the memory here.
2172 		 */
2173 		stzp->entry = NULL;
2174 	} else {
2175 		/*
2176 		 * At this point, we could not get the evidence that this
2177 		 * zonename had been cached.  We will look into the cache
2178 		 * further.
2179 		 */
2180 		stzp->entry = get_zone(stzp);
2181 	}
2182 	return (stzp);
2183 }
2184