xref: /titanic_50/usr/src/lib/libast/common/uwin/random.c (revision 62a24de03df1f2399ceda704cb3874dabc98bbbd)
1 #include "FEATURE/uwin"
2 
3 #if !_UWIN || _lib_random
4 
5 void _STUB_random(){}
6 
7 #else
8 
9 /*
10  * Copyright (c) 1983
11  *	The Regents of the University of California.  All rights reserved.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  */
37 
38 /*
39  * This is derived from the Berkeley source:
40  *	@(#)random.c	5.5 (Berkeley) 7/6/88
41  * It was reworked for the GNU C Library by Roland McGrath.
42  */
43 
44 #define initstate	______initstate
45 #define random		______random
46 #define setstate	______setstate
47 #define srandom		______srandom
48 
49 #include <errno.h>
50 #include <limits.h>
51 #include <stddef.h>
52 #include <stdlib.h>
53 
54 #undef	initstate
55 #undef	random
56 #undef	setstate
57 #undef	srandom
58 
59 #if defined(__EXPORT__)
60 #define extern		__EXPORT__
61 #endif
62 
63 extern long int	random();
64 
65 #define PTR	char*
66 
67 /* An improved random number generation package.  In addition to the standard
68    rand()/srand() like interface, this package also has a special state info
69    interface.  The initstate() routine is called with a seed, an array of
70    bytes, and a count of how many bytes are being passed in; this array is
71    then initialized to contain information for random number generation with
72    that much state information.  Good sizes for the amount of state
73    information are 32, 64, 128, and 256 bytes.  The state can be switched by
74    calling the setstate() function with the same array as was initiallized
75    with initstate().  By default, the package runs with 128 bytes of state
76    information and generates far better random numbers than a linear
77    congruential generator.  If the amount of state information is less than
78    32 bytes, a simple linear congruential R.N.G. is used.  Internally, the
79    state information is treated as an array of longs; the zeroeth element of
80    the array is the type of R.N.G. being used (small integer); the remainder
81    of the array is the state information for the R.N.G.  Thus, 32 bytes of
82    state information will give 7 longs worth of state information, which will
83    allow a degree seven polynomial.  (Note: The zeroeth word of state
84    information also has some other information stored in it; see setstate
85    for details).  The random number generation technique is a linear feedback
86    shift register approach, employing trinomials (since there are fewer terms
87    to sum up that way).  In this approach, the least significant bit of all
88    the numbers in the state table will act as a linear feedback shift register,
89    and will have period 2^deg - 1 (where deg is the degree of the polynomial
90    being used, assuming that the polynomial is irreducible and primitive).
91    The higher order bits will have longer periods, since their values are
92    also influenced by pseudo-random carries out of the lower bits.  The
93    total period of the generator is approximately deg*(2**deg - 1); thus
94    doubling the amount of state information has a vast influence on the
95    period of the generator.  Note: The deg*(2**deg - 1) is an approximation
96    only good for large deg, when the period of the shift register is the
97    dominant factor.  With deg equal to seven, the period is actually much
98    longer than the 7*(2**7 - 1) predicted by this formula.  */
99 
100 
101 
102 /* For each of the currently supported random number generators, we have a
103    break value on the amount of state information (you need at least thi
104    bytes of state info to support this random number generator), a degree for
105    the polynomial (actually a trinomial) that the R.N.G. is based on, and
106    separation between the two lower order coefficients of the trinomial.  */
107 
108 /* Linear congruential.  */
109 #define	TYPE_0		0
110 #define	BREAK_0		8
111 #define	DEG_0		0
112 #define	SEP_0		0
113 
114 /* x**7 + x**3 + 1.  */
115 #define	TYPE_1		1
116 #define	BREAK_1		32
117 #define	DEG_1		7
118 #define	SEP_1		3
119 
120 /* x**15 + x + 1.  */
121 #define	TYPE_2		2
122 #define	BREAK_2		64
123 #define	DEG_2		15
124 #define	SEP_2		1
125 
126 /* x**31 + x**3 + 1.  */
127 #define	TYPE_3		3
128 #define	BREAK_3		128
129 #define	DEG_3		31
130 #define	SEP_3		3
131 
132 /* x**63 + x + 1.  */
133 #define	TYPE_4		4
134 #define	BREAK_4		256
135 #define	DEG_4		63
136 #define	SEP_4		1
137 
138 
139 /* Array versions of the above information to make code run faster.
140    Relies on fact that TYPE_i == i.  */
141 
142 #define	MAX_TYPES	5	/* Max number of types above.  */
143 
144 static int degrees[MAX_TYPES] = { DEG_0, DEG_1, DEG_2, DEG_3, DEG_4 };
145 static int seps[MAX_TYPES] = { SEP_0, SEP_1, SEP_2, SEP_3, SEP_4 };
146 
147 
148 
149 /* Initially, everything is set up as if from:
150 	initstate(1, randtbl, 128);
151    Note that this initialization takes advantage of the fact that srandom
152    advances the front and rear pointers 10*rand_deg times, and hence the
153    rear pointer which starts at 0 will also end up at zero; thus the zeroeth
154    element of the state information, which contains info about the current
155    position of the rear pointer is just
156 	(MAX_TYPES * (rptr - state)) + TYPE_3 == TYPE_3.  */
157 
158 static long int randtbl[DEG_3 + 1] =
159   {
160     TYPE_3,
161     -851904987, -43806228, -2029755270, 1390239686, -1912102820,
162     -485608943, 1969813258, -1590463333, -1944053249, 455935928, 508023712,
163     -1714531963, 1800685987, -2015299881, 654595283, -1149023258,
164     -1470005550, -1143256056, -1325577603, -1568001885, 1275120390,
165     -607508183, -205999574, -1696891592, 1492211999, -1528267240,
166     -952028296, -189082757, 362343714, 1424981831, 2039449641,
167   };
168 
169 /* FPTR and RPTR are two pointers into the state info, a front and a rear
170    pointer.  These two pointers are always rand_sep places aparts, as they
171    cycle through the state information.  (Yes, this does mean we could get
172    away with just one pointer, but the code for random is more efficient
173    this way).  The pointers are left positioned as they would be from the call:
174 	initstate(1, randtbl, 128);
175    (The position of the rear pointer, rptr, is really 0 (as explained above
176    in the initialization of randtbl) because the state table pointer is set
177    to point to randtbl[1] (as explained below).)  */
178 
179 static long int *fptr = &randtbl[SEP_3 + 1];
180 static long int *rptr = &randtbl[1];
181 
182 
183 
184 /* The following things are the pointer to the state information table,
185    the type of the current generator, the degree of the current polynomial
186    being used, and the separation between the two pointers.
187    Note that for efficiency of random, we remember the first location of
188    the state information, not the zeroeth.  Hence it is valid to access
189    state[-1], which is used to store the type of the R.N.G.
190    Also, we remember the last location, since this is more efficient than
191    indexing every time to find the address of the last element to see if
192    the front and rear pointers have wrapped.  */
193 
194 static long int *state = &randtbl[1];
195 
196 static int rand_type = TYPE_3;
197 static int rand_deg = DEG_3;
198 static int rand_sep = SEP_3;
199 
200 static long int *end_ptr = &randtbl[sizeof(randtbl) / sizeof(randtbl[0])];
201 
202 /* Initialize the random number generator based on the given seed.  If the
203    type is the trivial no-state-information type, just remember the seed.
204    Otherwise, initializes state[] based on the given "seed" via a linear
205    congruential generator.  Then, the pointers are set to known locations
206    that are exactly rand_sep places apart.  Lastly, it cycles the state
207    information a given number of times to get rid of any initial dependencies
208    introduced by the L.C.R.N.G.  Note that the initialization of randtbl[]
209    for default usage relies on values produced by this routine.  */
210 extern void srandom(unsigned int x)
211 {
212   state[0] = x;
213   if (rand_type != TYPE_0)
214     {
215       register long int i;
216       for (i = 1; i < rand_deg; ++i)
217 	state[i] = (1103515145 * state[i - 1]) + 12345;
218       fptr = &state[rand_sep];
219       rptr = &state[0];
220       for (i = 0; i < 10 * rand_deg; ++i)
221 	(void) random();
222     }
223 }
224 
225 /* Initialize the state information in the given array of N bytes for
226    future random number generation.  Based on the number of bytes we
227    are given, and the break values for the different R.N.G.'s, we choose
228    the best (largest) one we can and set things up for it.  srandom is
229    then called to initialize the state information.  Note that on return
230    from srandom, we set state[-1] to be the type multiplexed with the current
231    value of the rear pointer; this is so successive calls to initstate won't
232    lose this information and will be able to restart with setstate.
233    Note: The first thing we do is save the current state, if any, just like
234    setstate so that it doesn't matter when initstate is called.
235    Returns a pointer to the old state.  */
236 extern char* initstate(unsigned int seed, char* arg_state, size_t n)
237 {
238   PTR ostate = (PTR) &state[-1];
239 
240   if (rand_type == TYPE_0)
241     state[-1] = rand_type;
242   else
243     state[-1] = (MAX_TYPES * (rptr - state)) + rand_type;
244   if (n < BREAK_1)
245     {
246       if (n < BREAK_0)
247 	{
248 	  errno = EINVAL;
249 	  return NULL;
250 	}
251       rand_type = TYPE_0;
252       rand_deg = DEG_0;
253       rand_sep = SEP_0;
254     }
255   else if (n < BREAK_2)
256     {
257       rand_type = TYPE_1;
258       rand_deg = DEG_1;
259       rand_sep = SEP_1;
260     }
261   else if (n < BREAK_3)
262     {
263       rand_type = TYPE_2;
264       rand_deg = DEG_2;
265       rand_sep = SEP_2;
266     }
267   else if (n < BREAK_4)
268     {
269       rand_type = TYPE_3;
270       rand_deg = DEG_3;
271       rand_sep = SEP_3;
272     }
273   else
274     {
275       rand_type = TYPE_4;
276       rand_deg = DEG_4;
277       rand_sep = SEP_4;
278     }
279 
280   state = &((long int *) arg_state)[1];	/* First location.  */
281   /* Must set END_PTR before srandom.  */
282   end_ptr = &state[rand_deg];
283   srandom(seed);
284   if (rand_type == TYPE_0)
285     state[-1] = rand_type;
286   else
287     state[-1] = (MAX_TYPES * (rptr - state)) + rand_type;
288 
289   return ostate;
290 }
291 
292 /* Restore the state from the given state array.
293    Note: It is important that we also remember the locations of the pointers
294    in the current state information, and restore the locations of the pointers
295    from the old state information.  This is done by multiplexing the pointer
296    location into the zeroeth word of the state information. Note that due
297    to the order in which things are done, it is OK to call setstate with the
298    same state as the current state
299    Returns a pointer to the old state information.  */
300 extern char *setstate(const char *arg_state)
301 {
302   register long int *new_state = (long int *) arg_state;
303   register int type = new_state[0] % MAX_TYPES;
304   register int rear = new_state[0] / MAX_TYPES;
305   PTR ostate = (PTR) &state[-1];
306 
307   if (rand_type == TYPE_0)
308     state[-1] = rand_type;
309   else
310     state[-1] = (MAX_TYPES * (rptr - state)) + rand_type;
311 
312   switch (type)
313     {
314     case TYPE_0:
315     case TYPE_1:
316     case TYPE_2:
317     case TYPE_3:
318     case TYPE_4:
319       rand_type = type;
320       rand_deg = degrees[type];
321       rand_sep = seps[type];
322       break;
323     default:
324       /* State info munged.  */
325       errno = EINVAL;
326       return NULL;
327     }
328 
329   state = &new_state[1];
330   if (rand_type != TYPE_0)
331     {
332       rptr = &state[rear];
333       fptr = &state[(rear + rand_sep) % rand_deg];
334     }
335   /* Set end_ptr too.  */
336   end_ptr = &state[rand_deg];
337 
338   return ostate;
339 }
340 
341 /* If we are using the trivial TYPE_0 R.N.G., just do the old linear
342    congruential bit.  Otherwise, we do our fancy trinomial stuff, which is the
343    same in all ther other cases due to all the global variables that have been
344    set up.  The basic operation is to add the number at the rear pointer into
345    the one at the front pointer.  Then both pointers are advanced to the next
346    location cyclically in the table.  The value returned is the sum generated,
347    reduced to 31 bits by throwing away the "least random" low bit.
348    Note: The code takes advantage of the fact that both the front and
349    rear pointers can't wrap on the same call by not testing the rear
350    pointer if the front one has wrapped.  Returns a 31-bit random number.  */
351 
352 extern long int random()
353 {
354   if (rand_type == TYPE_0)
355     {
356       state[0] = ((state[0] * 1103515245) + 12345) & LONG_MAX;
357       return state[0];
358     }
359   else
360     {
361       long int i;
362       *fptr += *rptr;
363       /* Chucking least random bit.  */
364       i = (*fptr >> 1) & LONG_MAX;
365       ++fptr;
366       if (fptr >= end_ptr)
367 	{
368 	  fptr = state;
369 	  ++rptr;
370 	}
371       else
372 	{
373 	  ++rptr;
374 	  if (rptr >= end_ptr)
375 	    rptr = state;
376 	}
377       return i;
378     }
379 }
380 
381 #endif
382