xref: /titanic_50/usr/src/lib/libast/common/uwin/gamma.c (revision 29e83d4b25fd82feb8e0e0fbe89f7e2a8438533d)
1 #include "FEATURE/uwin"
2 
3 #if !_UWIN || _lib_gamma
4 
5 void _STUB_gamma(){}
6 
7 #else
8 
9 /*-
10  * Copyright (c) 1992, 1993
11  *	The Regents of the University of California.  All rights reserved.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  */
37 
38 #ifndef lint
39 static char sccsid[] = "@(#)gamma.c	8.1 (Berkeley) 6/4/93";
40 #endif /* not lint */
41 
42 /*
43  * This code by P. McIlroy, Oct 1992;
44  *
45  * The financial support of UUNET Communications Services is greatfully
46  * acknowledged.
47  */
48 
49 #define gamma	______gamma
50 
51 #include <math.h>
52 #include <errno.h>
53 #include "mathimpl.h"
54 
55 #undef	gamma
56 
57 /* METHOD:
58  * x < 0: Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x))
59  * 	At negative integers, return +Inf, and set errno.
60  *
61  * x < 6.5:
62  *	Use argument reduction G(x+1) = xG(x) to reach the
63  *	range [1.066124,2.066124].  Use a rational
64  *	approximation centered at the minimum (x0+1) to
65  *	ensure monotonicity.
66  *
67  * x >= 6.5: Use the asymptotic approximation (Stirling's formula)
68  *	adjusted for equal-ripples:
69  *
70  *	log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + 1/x*P(1/(x*x))
71  *
72  *	Keep extra precision in multiplying (x-.5)(log(x)-1), to
73  *	avoid premature round-off.
74  *
75  * Special values:
76  *	non-positive integer:	Set overflow trap; return +Inf;
77  *	x > 171.63:		Set overflow trap; return +Inf;
78  *	NaN: 			Set invalid trap;  return NaN
79  *
80  * Accuracy: Gamma(x) is accurate to within
81  *	x > 0:  error provably < 0.9ulp.
82  *	Maximum observed in 1,000,000 trials was .87ulp.
83  *	x < 0:
84  *	Maximum observed error < 4ulp in 1,000,000 trials.
85  */
86 
87 static double neg_gam __P((double));
88 static double small_gam __P((double));
89 static double smaller_gam __P((double));
90 static struct Double large_gam __P((double));
91 static struct Double ratfun_gam __P((double, double));
92 
93 /*
94  * Rational approximation, A0 + x*x*P(x)/Q(x), on the interval
95  * [1.066.., 2.066..] accurate to 4.25e-19.
96  */
97 #define LEFT -.3955078125	/* left boundary for rat. approx */
98 #define x0 .461632144968362356785	/* xmin - 1 */
99 
100 #define a0_hi 0.88560319441088874992
101 #define a0_lo -.00000000000000004996427036469019695
102 #define P0	 6.21389571821820863029017800727e-01
103 #define P1	 2.65757198651533466104979197553e-01
104 #define P2	 5.53859446429917461063308081748e-03
105 #define P3	 1.38456698304096573887145282811e-03
106 #define P4	 2.40659950032711365819348969808e-03
107 #define Q0	 1.45019531250000000000000000000e+00
108 #define Q1	 1.06258521948016171343454061571e+00
109 #define Q2	-2.07474561943859936441469926649e-01
110 #define Q3	-1.46734131782005422506287573015e-01
111 #define Q4	 3.07878176156175520361557573779e-02
112 #define Q5	 5.12449347980666221336054633184e-03
113 #define Q6	-1.76012741431666995019222898833e-03
114 #define Q7	 9.35021023573788935372153030556e-05
115 #define Q8	 6.13275507472443958924745652239e-06
116 /*
117  * Constants for large x approximation (x in [6, Inf])
118  * (Accurate to 2.8*10^-19 absolute)
119  */
120 #define lns2pi_hi 0.418945312500000
121 #define lns2pi_lo -.000006779295327258219670263595
122 #define Pa0	 8.33333333333333148296162562474e-02
123 #define Pa1	-2.77777777774548123579378966497e-03
124 #define Pa2	 7.93650778754435631476282786423e-04
125 #define Pa3	-5.95235082566672847950717262222e-04
126 #define Pa4	 8.41428560346653702135821806252e-04
127 #define Pa5	-1.89773526463879200348872089421e-03
128 #define Pa6	 5.69394463439411649408050664078e-03
129 #define Pa7	-1.44705562421428915453880392761e-02
130 
131 static const double zero = 0., one = 1.0, tiny = 1e-300;
132 static int endian;
133 /*
134  * TRUNC sets trailing bits in a floating-point number to zero.
135  * is a temporary variable.
136  */
137 #if defined(vax) || defined(tahoe)
138 #define _IEEE		0
139 #define TRUNC(x)	x = (double) (float) (x)
140 #else
141 #define _IEEE		1
142 #define TRUNC(x)	*(((int *) &x) + endian) &= 0xf8000000
143 #define infnan(x)	0.0
144 #endif
145 
146 extern double gamma(x)
147 	double x;
148 {
149 	struct Double u;
150 	endian = (*(int *) &one) ? 1 : 0;
151 
152 	if (x >= 6) {
153 		if(x > 171.63)
154 			return(one/zero);
155 		u = large_gam(x);
156 		return(__exp__D(u.a, u.b));
157 	} else if (x >= 1.0 + LEFT + x0)
158 		return (small_gam(x));
159 	else if (x > 1.e-17)
160 		return (smaller_gam(x));
161 	else if (x > -1.e-17) {
162 		if (x == 0.0)
163 			if (!_IEEE) return (infnan(ERANGE));
164 			else return (one/x);
165 		one+1e-20;		/* Raise inexact flag. */
166 		return (one/x);
167 	} else if (!finite(x)) {
168 		if (_IEEE)		/* x = NaN, -Inf */
169 			return (x*x);
170 		else
171 			return (infnan(EDOM));
172 	 } else
173 		return (neg_gam(x));
174 }
175 /*
176  * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error.
177  */
178 static struct Double
179 large_gam(x)
180 	double x;
181 {
182 	double z, p;
183 	struct Double t, u, v;
184 
185 	z = one/(x*x);
186 	p = Pa0+z*(Pa1+z*(Pa2+z*(Pa3+z*(Pa4+z*(Pa5+z*(Pa6+z*Pa7))))));
187 	p = p/x;
188 
189 	u = __log__D(x);
190 	u.a -= one;
191 	v.a = (x -= .5);
192 	TRUNC(v.a);
193 	v.b = x - v.a;
194 	t.a = v.a*u.a;			/* t = (x-.5)*(log(x)-1) */
195 	t.b = v.b*u.a + x*u.b;
196 	/* return t.a + t.b + lns2pi_hi + lns2pi_lo + p */
197 	t.b += lns2pi_lo; t.b += p;
198 	u.a = lns2pi_hi + t.b; u.a += t.a;
199 	u.b = t.a - u.a;
200 	u.b += lns2pi_hi; u.b += t.b;
201 	return (u);
202 }
203 /*
204  * Good to < 1 ulp.  (provably .90 ulp; .87 ulp on 1,000,000 runs.)
205  * It also has correct monotonicity.
206  */
207 static double
208 small_gam(x)
209 	double x;
210 {
211 	double y, ym1, t;
212 	struct Double yy, r;
213 	y = x - one;
214 	ym1 = y - one;
215 	if (y <= 1.0 + (LEFT + x0)) {
216 		yy = ratfun_gam(y - x0, 0);
217 		return (yy.a + yy.b);
218 	}
219 	r.a = y;
220 	TRUNC(r.a);
221 	yy.a = r.a - one;
222 	y = ym1;
223 	yy.b = r.b = y - yy.a;
224 	/* Argument reduction: G(x+1) = x*G(x) */
225 	for (ym1 = y-one; ym1 > LEFT + x0; y = ym1--, yy.a--) {
226 		t = r.a*yy.a;
227 		r.b = r.a*yy.b + y*r.b;
228 		r.a = t;
229 		TRUNC(r.a);
230 		r.b += (t - r.a);
231 	}
232 	/* Return r*gamma(y). */
233 	yy = ratfun_gam(y - x0, 0);
234 	y = r.b*(yy.a + yy.b) + r.a*yy.b;
235 	y += yy.a*r.a;
236 	return (y);
237 }
238 /*
239  * Good on (0, 1+x0+LEFT].  Accurate to 1ulp.
240  */
241 static double
242 smaller_gam(x)
243 	double x;
244 {
245 	double t, d;
246 	struct Double r, xx;
247 	if (x < x0 + LEFT) {
248 		t = x, TRUNC(t);
249 		d = (t+x)*(x-t);
250 		t *= t;
251 		xx.a = (t + x), TRUNC(xx.a);
252 		xx.b = x - xx.a; xx.b += t; xx.b += d;
253 		t = (one-x0); t += x;
254 		d = (one-x0); d -= t; d += x;
255 		x = xx.a + xx.b;
256 	} else {
257 		xx.a =  x, TRUNC(xx.a);
258 		xx.b = x - xx.a;
259 		t = x - x0;
260 		d = (-x0 -t); d += x;
261 	}
262 	r = ratfun_gam(t, d);
263 	d = r.a/x, TRUNC(d);
264 	r.a -= d*xx.a; r.a -= d*xx.b; r.a += r.b;
265 	return (d + r.a/x);
266 }
267 /*
268  * returns (z+c)^2 * P(z)/Q(z) + a0
269  */
270 static struct Double
271 ratfun_gam(z, c)
272 	double z, c;
273 {
274 	double p, q;
275 	struct Double r, t;
276 
277 	q = Q0 +z*(Q1+z*(Q2+z*(Q3+z*(Q4+z*(Q5+z*(Q6+z*(Q7+z*Q8)))))));
278 	p = P0 + z*(P1 + z*(P2 + z*(P3 + z*P4)));
279 
280 	/* return r.a + r.b = a0 + (z+c)^2*p/q, with r.a truncated to 26 bits. */
281 	p = p/q;
282 	t.a = z, TRUNC(t.a);		/* t ~= z + c */
283 	t.b = (z - t.a) + c;
284 	t.b *= (t.a + z);
285 	q = (t.a *= t.a);		/* t = (z+c)^2 */
286 	TRUNC(t.a);
287 	t.b += (q - t.a);
288 	r.a = p, TRUNC(r.a);		/* r = P/Q */
289 	r.b = p - r.a;
290 	t.b = t.b*p + t.a*r.b + a0_lo;
291 	t.a *= r.a;			/* t = (z+c)^2*(P/Q) */
292 	r.a = t.a + a0_hi, TRUNC(r.a);
293 	r.b = ((a0_hi-r.a) + t.a) + t.b;
294 	return (r);			/* r = a0 + t */
295 }
296 
297 static double
298 neg_gam(x)
299 	double x;
300 {
301 	int sgn = 1;
302 	struct Double lg, lsine;
303 	double y, z;
304 
305 	y = floor(x + .5);
306 	if (y == x)		/* Negative integer. */
307 		if(!_IEEE)
308 			return (infnan(ERANGE));
309 		else
310 			return (one/zero);
311 	z = fabs(x - y);
312 	y = .5*ceil(x);
313 	if (y == ceil(y))
314 		sgn = -1;
315 	if (z < .25)
316 		z = sin(M_PI*z);
317 	else
318 		z = cos(M_PI*(0.5-z));
319 	/* Special case: G(1-x) = Inf; G(x) may be nonzero. */
320 	if (x < -170) {
321 		if (x < -190)
322 			return ((double)sgn*tiny*tiny);
323 		y = one - x;		/* exact: 128 < |x| < 255 */
324 		lg = large_gam(y);
325 		lsine = __log__D(M_PI/z);	/* = TRUNC(log(u)) + small */
326 		lg.a -= lsine.a;		/* exact (opposite signs) */
327 		lg.b -= lsine.b;
328 		y = -(lg.a + lg.b);
329 		z = (y + lg.a) + lg.b;
330 		y = __exp__D(y, z);
331 		if (sgn < 0) y = -y;
332 		return (y);
333 	}
334 	y = one-x;
335 	if (one-y == x)
336 		y = gamma(y);
337 	else		/* 1-x is inexact */
338 		y = -x*gamma(-x);
339 	if (sgn < 0) y = -y;
340 	return (M_PI / (y*z));
341 }
342 
343 #endif
344