1*da2e3ebdSchin #include "FEATURE/uwin"
2*da2e3ebdSchin
3*da2e3ebdSchin #if !_UWIN || _lib_expm1
4*da2e3ebdSchin
_STUB_expm1()5*da2e3ebdSchin void _STUB_expm1(){}
6*da2e3ebdSchin
7*da2e3ebdSchin #else
8*da2e3ebdSchin
9*da2e3ebdSchin /*
10*da2e3ebdSchin * Copyright (c) 1985, 1993
11*da2e3ebdSchin * The Regents of the University of California. All rights reserved.
12*da2e3ebdSchin *
13*da2e3ebdSchin * Redistribution and use in source and binary forms, with or without
14*da2e3ebdSchin * modification, are permitted provided that the following conditions
15*da2e3ebdSchin * are met:
16*da2e3ebdSchin * 1. Redistributions of source code must retain the above copyright
17*da2e3ebdSchin * notice, this list of conditions and the following disclaimer.
18*da2e3ebdSchin * 2. Redistributions in binary form must reproduce the above copyright
19*da2e3ebdSchin * notice, this list of conditions and the following disclaimer in the
20*da2e3ebdSchin * documentation and/or other materials provided with the distribution.
21*da2e3ebdSchin * 3. Neither the name of the University nor the names of its contributors
22*da2e3ebdSchin * may be used to endorse or promote products derived from this software
23*da2e3ebdSchin * without specific prior written permission.
24*da2e3ebdSchin *
25*da2e3ebdSchin * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26*da2e3ebdSchin * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27*da2e3ebdSchin * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28*da2e3ebdSchin * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29*da2e3ebdSchin * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30*da2e3ebdSchin * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31*da2e3ebdSchin * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32*da2e3ebdSchin * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33*da2e3ebdSchin * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34*da2e3ebdSchin * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35*da2e3ebdSchin * SUCH DAMAGE.
36*da2e3ebdSchin */
37*da2e3ebdSchin
38*da2e3ebdSchin #ifndef lint
39*da2e3ebdSchin static char sccsid[] = "@(#)expm1.c 8.1 (Berkeley) 6/4/93";
40*da2e3ebdSchin #endif /* not lint */
41*da2e3ebdSchin
42*da2e3ebdSchin /* EXPM1(X)
43*da2e3ebdSchin * RETURN THE EXPONENTIAL OF X MINUS ONE
44*da2e3ebdSchin * DOUBLE PRECISION (IEEE 53 BITS, VAX D FORMAT 56 BITS)
45*da2e3ebdSchin * CODED IN C BY K.C. NG, 1/19/85;
46*da2e3ebdSchin * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/21/85, 4/16/85.
47*da2e3ebdSchin *
48*da2e3ebdSchin * Required system supported functions:
49*da2e3ebdSchin * scalb(x,n)
50*da2e3ebdSchin * copysign(x,y)
51*da2e3ebdSchin * finite(x)
52*da2e3ebdSchin *
53*da2e3ebdSchin * Kernel function:
54*da2e3ebdSchin * exp__E(x,c)
55*da2e3ebdSchin *
56*da2e3ebdSchin * Method:
57*da2e3ebdSchin * 1. Argument Reduction: given the input x, find r and integer k such
58*da2e3ebdSchin * that
59*da2e3ebdSchin * x = k*ln2 + r, |r| <= 0.5*ln2 .
60*da2e3ebdSchin * r will be represented as r := z+c for better accuracy.
61*da2e3ebdSchin *
62*da2e3ebdSchin * 2. Compute EXPM1(r)=exp(r)-1 by
63*da2e3ebdSchin *
64*da2e3ebdSchin * EXPM1(r=z+c) := z + exp__E(z,c)
65*da2e3ebdSchin *
66*da2e3ebdSchin * 3. EXPM1(x) = 2^k * ( EXPM1(r) + 1-2^-k ).
67*da2e3ebdSchin *
68*da2e3ebdSchin * Remarks:
69*da2e3ebdSchin * 1. When k=1 and z < -0.25, we use the following formula for
70*da2e3ebdSchin * better accuracy:
71*da2e3ebdSchin * EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) )
72*da2e3ebdSchin * 2. To avoid rounding error in 1-2^-k where k is large, we use
73*da2e3ebdSchin * EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 }
74*da2e3ebdSchin * when k>56.
75*da2e3ebdSchin *
76*da2e3ebdSchin * Special cases:
77*da2e3ebdSchin * EXPM1(INF) is INF, EXPM1(NaN) is NaN;
78*da2e3ebdSchin * EXPM1(-INF)= -1;
79*da2e3ebdSchin * for finite argument, only EXPM1(0)=0 is exact.
80*da2e3ebdSchin *
81*da2e3ebdSchin * Accuracy:
82*da2e3ebdSchin * EXPM1(x) returns the exact (exp(x)-1) nearly rounded. In a test run with
83*da2e3ebdSchin * 1,166,000 random arguments on a VAX, the maximum observed error was
84*da2e3ebdSchin * .872 ulps (units of the last place).
85*da2e3ebdSchin *
86*da2e3ebdSchin * Constants:
87*da2e3ebdSchin * The hexadecimal values are the intended ones for the following constants.
88*da2e3ebdSchin * The decimal values may be used, provided that the compiler will convert
89*da2e3ebdSchin * from decimal to binary accurately enough to produce the hexadecimal values
90*da2e3ebdSchin * shown.
91*da2e3ebdSchin */
92*da2e3ebdSchin
93*da2e3ebdSchin #include "mathimpl.h"
94*da2e3ebdSchin
95*da2e3ebdSchin vc(ln2hi, 6.9314718055829871446E-1 ,7217,4031,0000,f7d0, 0, .B17217F7D00000)
96*da2e3ebdSchin vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
97*da2e3ebdSchin vc(lnhuge, 9.4961163736712506989E1 ,ec1d,43bd,9010,a73e, 7, .BDEC1DA73E9010)
98*da2e3ebdSchin vc(invln2, 1.4426950408889634148E0 ,aa3b,40b8,17f1,295c, 1, .B8AA3B295C17F1)
99*da2e3ebdSchin
100*da2e3ebdSchin ic(ln2hi, 6.9314718036912381649E-1, -1, 1.62E42FEE00000)
101*da2e3ebdSchin ic(ln2lo, 1.9082149292705877000E-10, -33, 1.A39EF35793C76)
102*da2e3ebdSchin ic(lnhuge, 7.1602103751842355450E2, 9, 1.6602B15B7ECF2)
103*da2e3ebdSchin ic(invln2, 1.4426950408889633870E0, 0, 1.71547652B82FE)
104*da2e3ebdSchin
105*da2e3ebdSchin #ifdef vccast
106*da2e3ebdSchin #define ln2hi vccast(ln2hi)
107*da2e3ebdSchin #define ln2lo vccast(ln2lo)
108*da2e3ebdSchin #define lnhuge vccast(lnhuge)
109*da2e3ebdSchin #define invln2 vccast(invln2)
110*da2e3ebdSchin #endif
111*da2e3ebdSchin
112*da2e3ebdSchin extern double expm1(x)
113*da2e3ebdSchin double x;
114*da2e3ebdSchin {
115*da2e3ebdSchin const static double one=1.0, half=1.0/2.0;
116*da2e3ebdSchin double z,hi,lo,c;
117*da2e3ebdSchin int k;
118*da2e3ebdSchin #if defined(vax)||defined(tahoe)
119*da2e3ebdSchin static prec=56;
120*da2e3ebdSchin #else /* defined(vax)||defined(tahoe) */
121*da2e3ebdSchin static prec=53;
122*da2e3ebdSchin #endif /* defined(vax)||defined(tahoe) */
123*da2e3ebdSchin
124*da2e3ebdSchin #if !defined(vax)&&!defined(tahoe)
125*da2e3ebdSchin if(x!=x) return(x); /* x is NaN */
126*da2e3ebdSchin #endif /* !defined(vax)&&!defined(tahoe) */
127*da2e3ebdSchin
128*da2e3ebdSchin if( x <= lnhuge ) {
129*da2e3ebdSchin if( x >= -40.0 ) {
130*da2e3ebdSchin
131*da2e3ebdSchin /* argument reduction : x - k*ln2 */
132*da2e3ebdSchin k= (int)(invln2*x)+copysign(0.5,x); /* k=NINT(x/ln2) */
133*da2e3ebdSchin hi=x-k*ln2hi ;
134*da2e3ebdSchin z=hi-(lo=k*ln2lo);
135*da2e3ebdSchin c=(hi-z)-lo;
136*da2e3ebdSchin
137*da2e3ebdSchin if(k==0) return(z+__exp__E(z,c));
138*da2e3ebdSchin if(k==1)
139*da2e3ebdSchin if(z< -0.25)
140*da2e3ebdSchin {x=z+half;x +=__exp__E(z,c); return(x+x);}
141*da2e3ebdSchin else
142*da2e3ebdSchin {z+=__exp__E(z,c); x=half+z; return(x+x);}
143*da2e3ebdSchin /* end of k=1 */
144*da2e3ebdSchin
145*da2e3ebdSchin else {
146*da2e3ebdSchin if(k<=prec)
147*da2e3ebdSchin { x=one-scalb(one,-k); z += __exp__E(z,c);}
148*da2e3ebdSchin else if(k<100)
149*da2e3ebdSchin { x = __exp__E(z,c)-scalb(one,-k); x+=z; z=one;}
150*da2e3ebdSchin else
151*da2e3ebdSchin { x = __exp__E(z,c)+z; z=one;}
152*da2e3ebdSchin
153*da2e3ebdSchin return (scalb(x+z,k));
154*da2e3ebdSchin }
155*da2e3ebdSchin }
156*da2e3ebdSchin /* end of x > lnunfl */
157*da2e3ebdSchin
158*da2e3ebdSchin else
159*da2e3ebdSchin /* expm1(-big#) rounded to -1 (inexact) */
160*da2e3ebdSchin if(finite(x))
161*da2e3ebdSchin { ln2hi+ln2lo; return(-one);}
162*da2e3ebdSchin
163*da2e3ebdSchin /* expm1(-INF) is -1 */
164*da2e3ebdSchin else return(-one);
165*da2e3ebdSchin }
166*da2e3ebdSchin /* end of x < lnhuge */
167*da2e3ebdSchin
168*da2e3ebdSchin else
169*da2e3ebdSchin /* expm1(INF) is INF, expm1(+big#) overflows to INF */
170*da2e3ebdSchin return( finite(x) ? scalb(one,5000) : x);
171*da2e3ebdSchin }
172*da2e3ebdSchin
173*da2e3ebdSchin #endif
174