xref: /titanic_50/usr/src/lib/libast/common/uwin/erf.c (revision da2e3ebdc1edfbc5028edf1354e7dd2fa69a7968)
1*da2e3ebdSchin #include "FEATURE/uwin"
2*da2e3ebdSchin 
3*da2e3ebdSchin #if !_UWIN || _lib_erf
4*da2e3ebdSchin 
_STUB_erf()5*da2e3ebdSchin void _STUB_erf(){}
6*da2e3ebdSchin 
7*da2e3ebdSchin #else
8*da2e3ebdSchin 
9*da2e3ebdSchin /*-
10*da2e3ebdSchin  * Copyright (c) 1992, 1993
11*da2e3ebdSchin  *	The Regents of the University of California.  All rights reserved.
12*da2e3ebdSchin  *
13*da2e3ebdSchin  * Redistribution and use in source and binary forms, with or without
14*da2e3ebdSchin  * modification, are permitted provided that the following conditions
15*da2e3ebdSchin  * are met:
16*da2e3ebdSchin  * 1. Redistributions of source code must retain the above copyright
17*da2e3ebdSchin  *    notice, this list of conditions and the following disclaimer.
18*da2e3ebdSchin  * 2. Redistributions in binary form must reproduce the above copyright
19*da2e3ebdSchin  *    notice, this list of conditions and the following disclaimer in the
20*da2e3ebdSchin  *    documentation and/or other materials provided with the distribution.
21*da2e3ebdSchin  * 3. Neither the name of the University nor the names of its contributors
22*da2e3ebdSchin  *    may be used to endorse or promote products derived from this software
23*da2e3ebdSchin  *    without specific prior written permission.
24*da2e3ebdSchin  *
25*da2e3ebdSchin  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26*da2e3ebdSchin  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27*da2e3ebdSchin  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28*da2e3ebdSchin  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29*da2e3ebdSchin  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30*da2e3ebdSchin  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31*da2e3ebdSchin  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32*da2e3ebdSchin  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33*da2e3ebdSchin  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34*da2e3ebdSchin  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35*da2e3ebdSchin  * SUCH DAMAGE.
36*da2e3ebdSchin  */
37*da2e3ebdSchin 
38*da2e3ebdSchin #ifndef lint
39*da2e3ebdSchin static char sccsid[] = "@(#)erf.c	8.1 (Berkeley) 6/4/93";
40*da2e3ebdSchin #endif /* not lint */
41*da2e3ebdSchin 
42*da2e3ebdSchin /* Modified Nov 30, 1992 P. McILROY:
43*da2e3ebdSchin  *	Replaced expansions for x >= 1.25 (error 1.7ulp vs ~6ulp)
44*da2e3ebdSchin  * Replaced even+odd with direct calculation for x < .84375,
45*da2e3ebdSchin  * to avoid destructive cancellation.
46*da2e3ebdSchin  *
47*da2e3ebdSchin  * Performance of erfc(x):
48*da2e3ebdSchin  * In 300000 trials in the range [.83, .84375] the
49*da2e3ebdSchin  * maximum observed error was 3.6ulp.
50*da2e3ebdSchin  *
51*da2e3ebdSchin  * In [.84735,1.25] the maximum observed error was <2.5ulp in
52*da2e3ebdSchin  * 100000 runs in the range [1.2, 1.25].
53*da2e3ebdSchin  *
54*da2e3ebdSchin  * In [1.25,26] (Not including subnormal results)
55*da2e3ebdSchin  * the error is < 1.7ulp.
56*da2e3ebdSchin  */
57*da2e3ebdSchin 
58*da2e3ebdSchin /* double erf(double x)
59*da2e3ebdSchin  * double erfc(double x)
60*da2e3ebdSchin  *			     x
61*da2e3ebdSchin  *		      2      |\
62*da2e3ebdSchin  *     erf(x)  =  ---------  | exp(-t*t)dt
63*da2e3ebdSchin  *		   sqrt(pi) \|
64*da2e3ebdSchin  *			     0
65*da2e3ebdSchin  *
66*da2e3ebdSchin  *     erfc(x) =  1-erf(x)
67*da2e3ebdSchin  *
68*da2e3ebdSchin  * Method:
69*da2e3ebdSchin  *      1. Reduce x to |x| by erf(-x) = -erf(x)
70*da2e3ebdSchin  *	2. For x in [0, 0.84375]
71*da2e3ebdSchin  *	    erf(x)  = x + x*P(x^2)
72*da2e3ebdSchin  *          erfc(x) = 1 - erf(x)           if x<=0.25
73*da2e3ebdSchin  *                  = 0.5 + ((0.5-x)-x*P)  if x in [0.25,0.84375]
74*da2e3ebdSchin  *	   where
75*da2e3ebdSchin  *			2		 2	  4		  20
76*da2e3ebdSchin  *              P =  P(x ) = (p0 + p1 * x + p2 * x + ... + p10 * x  )
77*da2e3ebdSchin  * 	   is an approximation to (erf(x)-x)/x with precision
78*da2e3ebdSchin  *
79*da2e3ebdSchin  *						 -56.45
80*da2e3ebdSchin  *			| P - (erf(x)-x)/x | <= 2
81*da2e3ebdSchin  *
82*da2e3ebdSchin  *
83*da2e3ebdSchin  *	   Remark. The formula is derived by noting
84*da2e3ebdSchin  *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
85*da2e3ebdSchin  *	   and that
86*da2e3ebdSchin  *          2/sqrt(pi) = 1.128379167095512573896158903121545171688
87*da2e3ebdSchin  *	   is close to one. The interval is chosen because the fixed
88*da2e3ebdSchin  *	   point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
89*da2e3ebdSchin  *	   near 0.6174), and by some experiment, 0.84375 is chosen to
90*da2e3ebdSchin  * 	   guarantee the error is less than one ulp for erf.
91*da2e3ebdSchin  *
92*da2e3ebdSchin  *      3. For x in [0.84375,1.25], let s = x - 1, and
93*da2e3ebdSchin  *         c = 0.84506291151 rounded to single (24 bits)
94*da2e3ebdSchin  *         	erf(x)  = c  + P1(s)/Q1(s)
95*da2e3ebdSchin  *         	erfc(x) = (1-c)  - P1(s)/Q1(s)
96*da2e3ebdSchin  *         	|P1/Q1 - (erf(x)-c)| <= 2**-59.06
97*da2e3ebdSchin  *	   Remark: here we use the taylor series expansion at x=1.
98*da2e3ebdSchin  *		erf(1+s) = erf(1) + s*Poly(s)
99*da2e3ebdSchin  *			 = 0.845.. + P1(s)/Q1(s)
100*da2e3ebdSchin  *	   That is, we use rational approximation to approximate
101*da2e3ebdSchin  *			erf(1+s) - (c = (single)0.84506291151)
102*da2e3ebdSchin  *	   Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
103*da2e3ebdSchin  *	   where
104*da2e3ebdSchin  *		P1(s) = degree 6 poly in s
105*da2e3ebdSchin  *		Q1(s) = degree 6 poly in s
106*da2e3ebdSchin  *
107*da2e3ebdSchin  *	4. For x in [1.25, 2]; [2, 4]
108*da2e3ebdSchin  *         	erf(x)  = 1.0 - tiny
109*da2e3ebdSchin  *		erfc(x)	= (1/x)exp(-x*x-(.5*log(pi) -.5z + R(z)/S(z))
110*da2e3ebdSchin  *
111*da2e3ebdSchin  *	Where z = 1/(x*x), R is degree 9, and S is degree 3;
112*da2e3ebdSchin  *
113*da2e3ebdSchin  *      5. For x in [4,28]
114*da2e3ebdSchin  *         	erf(x)  = 1.0 - tiny
115*da2e3ebdSchin  *		erfc(x)	= (1/x)exp(-x*x-(.5*log(pi)+eps + zP(z))
116*da2e3ebdSchin  *
117*da2e3ebdSchin  *	Where P is degree 14 polynomial in 1/(x*x).
118*da2e3ebdSchin  *
119*da2e3ebdSchin  *      Notes:
120*da2e3ebdSchin  *	   Here 4 and 5 make use of the asymptotic series
121*da2e3ebdSchin  *			  exp(-x*x)
122*da2e3ebdSchin  *		erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) );
123*da2e3ebdSchin  *			  x*sqrt(pi)
124*da2e3ebdSchin  *
125*da2e3ebdSchin  *		where for z = 1/(x*x)
126*da2e3ebdSchin  *		P(z) ~ z/2*(-1 + z*3/2*(1 + z*5/2*(-1 + z*7/2*(1 +...))))
127*da2e3ebdSchin  *
128*da2e3ebdSchin  *	   Thus we use rational approximation to approximate
129*da2e3ebdSchin  *              erfc*x*exp(x*x) ~ 1/sqrt(pi);
130*da2e3ebdSchin  *
131*da2e3ebdSchin  *		The error bound for the target function, G(z) for
132*da2e3ebdSchin  *		the interval
133*da2e3ebdSchin  *		[4, 28]:
134*da2e3ebdSchin  * 		|eps + 1/(z)P(z) - G(z)| < 2**(-56.61)
135*da2e3ebdSchin  *		for [2, 4]:
136*da2e3ebdSchin  *      	|R(z)/S(z) - G(z)|	 < 2**(-58.24)
137*da2e3ebdSchin  *		for [1.25, 2]:
138*da2e3ebdSchin  *		|R(z)/S(z) - G(z)|	 < 2**(-58.12)
139*da2e3ebdSchin  *
140*da2e3ebdSchin  *      6. For inf > x >= 28
141*da2e3ebdSchin  *         	erf(x)  = 1 - tiny  (raise inexact)
142*da2e3ebdSchin  *         	erfc(x) = tiny*tiny (raise underflow)
143*da2e3ebdSchin  *
144*da2e3ebdSchin  *      7. Special cases:
145*da2e3ebdSchin  *         	erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
146*da2e3ebdSchin  *         	erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
147*da2e3ebdSchin  *	   	erfc/erf(NaN) is NaN
148*da2e3ebdSchin  */
149*da2e3ebdSchin 
150*da2e3ebdSchin #if defined(vax) || defined(tahoe)
151*da2e3ebdSchin #define _IEEE	0
152*da2e3ebdSchin #define TRUNC(x) (double) (float) (x)
153*da2e3ebdSchin #else
154*da2e3ebdSchin #define _IEEE	1
155*da2e3ebdSchin #define TRUNC(x) *(((int *) &x) + 1) &= 0xf8000000
156*da2e3ebdSchin #define infnan(x) 0.0
157*da2e3ebdSchin #endif
158*da2e3ebdSchin 
159*da2e3ebdSchin #ifdef _IEEE_LIBM
160*da2e3ebdSchin /*
161*da2e3ebdSchin  * redefining "___function" to "function" in _IEEE_LIBM mode
162*da2e3ebdSchin  */
163*da2e3ebdSchin #include "ieee_libm.h"
164*da2e3ebdSchin #endif
165*da2e3ebdSchin #include "mathimpl.h"
166*da2e3ebdSchin 
167*da2e3ebdSchin static double
168*da2e3ebdSchin tiny	    = 1e-300,
169*da2e3ebdSchin half	    = 0.5,
170*da2e3ebdSchin one	    = 1.0,
171*da2e3ebdSchin two	    = 2.0,
172*da2e3ebdSchin c 	    = 8.45062911510467529297e-01, /* (float)0.84506291151 */
173*da2e3ebdSchin /*
174*da2e3ebdSchin  * Coefficients for approximation to erf in [0,0.84375]
175*da2e3ebdSchin  */
176*da2e3ebdSchin p0t8 = 1.02703333676410051049867154944018394163280,
177*da2e3ebdSchin p0 =   1.283791670955125638123339436800229927041e-0001,
178*da2e3ebdSchin p1 =  -3.761263890318340796574473028946097022260e-0001,
179*da2e3ebdSchin p2 =   1.128379167093567004871858633779992337238e-0001,
180*da2e3ebdSchin p3 =  -2.686617064084433642889526516177508374437e-0002,
181*da2e3ebdSchin p4 =   5.223977576966219409445780927846432273191e-0003,
182*da2e3ebdSchin p5 =  -8.548323822001639515038738961618255438422e-0004,
183*da2e3ebdSchin p6 =   1.205520092530505090384383082516403772317e-0004,
184*da2e3ebdSchin p7 =  -1.492214100762529635365672665955239554276e-0005,
185*da2e3ebdSchin p8 =   1.640186161764254363152286358441771740838e-0006,
186*da2e3ebdSchin p9 =  -1.571599331700515057841960987689515895479e-0007,
187*da2e3ebdSchin p10=   1.073087585213621540635426191486561494058e-0008;
188*da2e3ebdSchin /*
189*da2e3ebdSchin  * Coefficients for approximation to erf in [0.84375,1.25]
190*da2e3ebdSchin  */
191*da2e3ebdSchin static double
192*da2e3ebdSchin pa0 =  -2.362118560752659485957248365514511540287e-0003,
193*da2e3ebdSchin pa1 =   4.148561186837483359654781492060070469522e-0001,
194*da2e3ebdSchin pa2 =  -3.722078760357013107593507594535478633044e-0001,
195*da2e3ebdSchin pa3 =   3.183466199011617316853636418691420262160e-0001,
196*da2e3ebdSchin pa4 =  -1.108946942823966771253985510891237782544e-0001,
197*da2e3ebdSchin pa5 =   3.547830432561823343969797140537411825179e-0002,
198*da2e3ebdSchin pa6 =  -2.166375594868790886906539848893221184820e-0003,
199*da2e3ebdSchin qa1 =   1.064208804008442270765369280952419863524e-0001,
200*da2e3ebdSchin qa2 =   5.403979177021710663441167681878575087235e-0001,
201*da2e3ebdSchin qa3 =   7.182865441419627066207655332170665812023e-0002,
202*da2e3ebdSchin qa4 =   1.261712198087616469108438860983447773726e-0001,
203*da2e3ebdSchin qa5 =   1.363708391202905087876983523620537833157e-0002,
204*da2e3ebdSchin qa6 =   1.198449984679910764099772682882189711364e-0002;
205*da2e3ebdSchin /*
206*da2e3ebdSchin  * log(sqrt(pi)) for large x expansions.
207*da2e3ebdSchin  * The tail (lsqrtPI_lo) is included in the rational
208*da2e3ebdSchin  * approximations.
209*da2e3ebdSchin */
210*da2e3ebdSchin static double
211*da2e3ebdSchin    lsqrtPI_hi = .5723649429247000819387380943226;
212*da2e3ebdSchin /*
213*da2e3ebdSchin  * lsqrtPI_lo = .000000000000000005132975581353913;
214*da2e3ebdSchin  *
215*da2e3ebdSchin  * Coefficients for approximation to erfc in [2, 4]
216*da2e3ebdSchin */
217*da2e3ebdSchin static double
218*da2e3ebdSchin rb0  =	-1.5306508387410807582e-010,	/* includes lsqrtPI_lo */
219*da2e3ebdSchin rb1  =	 2.15592846101742183841910806188e-008,
220*da2e3ebdSchin rb2  =	 6.24998557732436510470108714799e-001,
221*da2e3ebdSchin rb3  =	 8.24849222231141787631258921465e+000,
222*da2e3ebdSchin rb4  =	 2.63974967372233173534823436057e+001,
223*da2e3ebdSchin rb5  =	 9.86383092541570505318304640241e+000,
224*da2e3ebdSchin rb6  =	-7.28024154841991322228977878694e+000,
225*da2e3ebdSchin rb7  =	 5.96303287280680116566600190708e+000,
226*da2e3ebdSchin rb8  =	-4.40070358507372993983608466806e+000,
227*da2e3ebdSchin rb9  =	 2.39923700182518073731330332521e+000,
228*da2e3ebdSchin rb10 =	-6.89257464785841156285073338950e-001,
229*da2e3ebdSchin sb1  =	 1.56641558965626774835300238919e+001,
230*da2e3ebdSchin sb2  =	 7.20522741000949622502957936376e+001,
231*da2e3ebdSchin sb3  =	 9.60121069770492994166488642804e+001;
232*da2e3ebdSchin /*
233*da2e3ebdSchin  * Coefficients for approximation to erfc in [1.25, 2]
234*da2e3ebdSchin */
235*da2e3ebdSchin static double
236*da2e3ebdSchin rc0  =	-2.47925334685189288817e-007,	/* includes lsqrtPI_lo */
237*da2e3ebdSchin rc1  =	 1.28735722546372485255126993930e-005,
238*da2e3ebdSchin rc2  =	 6.24664954087883916855616917019e-001,
239*da2e3ebdSchin rc3  =	 4.69798884785807402408863708843e+000,
240*da2e3ebdSchin rc4  =	 7.61618295853929705430118701770e+000,
241*da2e3ebdSchin rc5  =	 9.15640208659364240872946538730e-001,
242*da2e3ebdSchin rc6  =	-3.59753040425048631334448145935e-001,
243*da2e3ebdSchin rc7  =	 1.42862267989304403403849619281e-001,
244*da2e3ebdSchin rc8  =	-4.74392758811439801958087514322e-002,
245*da2e3ebdSchin rc9  =	 1.09964787987580810135757047874e-002,
246*da2e3ebdSchin rc10 =	-1.28856240494889325194638463046e-003,
247*da2e3ebdSchin sc1  =	 9.97395106984001955652274773456e+000,
248*da2e3ebdSchin sc2  =	 2.80952153365721279953959310660e+001,
249*da2e3ebdSchin sc3  =	 2.19826478142545234106819407316e+001;
250*da2e3ebdSchin /*
251*da2e3ebdSchin  * Coefficients for approximation to  erfc in [4,28]
252*da2e3ebdSchin  */
253*da2e3ebdSchin static double
254*da2e3ebdSchin rd0  =	-2.1491361969012978677e-016,	/* includes lsqrtPI_lo */
255*da2e3ebdSchin rd1  =	-4.99999999999640086151350330820e-001,
256*da2e3ebdSchin rd2  =	 6.24999999772906433825880867516e-001,
257*da2e3ebdSchin rd3  =	-1.54166659428052432723177389562e+000,
258*da2e3ebdSchin rd4  =	 5.51561147405411844601985649206e+000,
259*da2e3ebdSchin rd5  =	-2.55046307982949826964613748714e+001,
260*da2e3ebdSchin rd6  =	 1.43631424382843846387913799845e+002,
261*da2e3ebdSchin rd7  =	-9.45789244999420134263345971704e+002,
262*da2e3ebdSchin rd8  =	 6.94834146607051206956384703517e+003,
263*da2e3ebdSchin rd9  =	-5.27176414235983393155038356781e+004,
264*da2e3ebdSchin rd10 =	 3.68530281128672766499221324921e+005,
265*da2e3ebdSchin rd11 =	-2.06466642800404317677021026611e+006,
266*da2e3ebdSchin rd12 =	 7.78293889471135381609201431274e+006,
267*da2e3ebdSchin rd13 =	-1.42821001129434127360582351685e+007;
268*da2e3ebdSchin 
269*da2e3ebdSchin extern double erf(x)
270*da2e3ebdSchin 	double x;
271*da2e3ebdSchin {
272*da2e3ebdSchin 	double R,S,P,Q,ax,s,y,z,r,fabs(),exp();
273*da2e3ebdSchin 	if(!finite(x)) {		/* erf(nan)=nan */
274*da2e3ebdSchin 	    if (isnan(x))
275*da2e3ebdSchin 		return(x);
276*da2e3ebdSchin 	    return (x > 0 ? one : -one); /* erf(+/-inf)= +/-1 */
277*da2e3ebdSchin 	}
278*da2e3ebdSchin 	if ((ax = x) < 0)
279*da2e3ebdSchin 		ax = - ax;
280*da2e3ebdSchin 	if (ax < .84375) {
281*da2e3ebdSchin 	    if (ax < 3.7e-09) {
282*da2e3ebdSchin 		if (ax < 1.0e-308)
283*da2e3ebdSchin 		    return 0.125*(8.0*x+p0t8*x);  /*avoid underflow */
284*da2e3ebdSchin 		return x + p0*x;
285*da2e3ebdSchin 	    }
286*da2e3ebdSchin 	    y = x*x;
287*da2e3ebdSchin 	    r = y*(p1+y*(p2+y*(p3+y*(p4+y*(p5+
288*da2e3ebdSchin 			y*(p6+y*(p7+y*(p8+y*(p9+y*p10)))))))));
289*da2e3ebdSchin 	    return x + x*(p0+r);
290*da2e3ebdSchin 	}
291*da2e3ebdSchin 	if (ax < 1.25) {		/* 0.84375 <= |x| < 1.25 */
292*da2e3ebdSchin 	    s = fabs(x)-one;
293*da2e3ebdSchin 	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
294*da2e3ebdSchin 	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
295*da2e3ebdSchin 	    if (x>=0)
296*da2e3ebdSchin 		return (c + P/Q);
297*da2e3ebdSchin 	    else
298*da2e3ebdSchin 		return (-c - P/Q);
299*da2e3ebdSchin 	}
300*da2e3ebdSchin 	if (ax >= 6.0) {		/* inf>|x|>=6 */
301*da2e3ebdSchin 	    if (x >= 0.0)
302*da2e3ebdSchin 		return (one-tiny);
303*da2e3ebdSchin 	    else
304*da2e3ebdSchin 		return (tiny-one);
305*da2e3ebdSchin 	}
306*da2e3ebdSchin     /* 1.25 <= |x| < 6 */
307*da2e3ebdSchin 	z = -ax*ax;
308*da2e3ebdSchin 	s = -one/z;
309*da2e3ebdSchin 	if (ax < 2.0) {
310*da2e3ebdSchin 		R = rc0+s*(rc1+s*(rc2+s*(rc3+s*(rc4+s*(rc5+
311*da2e3ebdSchin 			s*(rc6+s*(rc7+s*(rc8+s*(rc9+s*rc10)))))))));
312*da2e3ebdSchin 		S = one+s*(sc1+s*(sc2+s*sc3));
313*da2e3ebdSchin 	} else {
314*da2e3ebdSchin 		R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+
315*da2e3ebdSchin 			s*(rb6+s*(rb7+s*(rb8+s*(rb9+s*rb10)))))))));
316*da2e3ebdSchin 		S = one+s*(sb1+s*(sb2+s*sb3));
317*da2e3ebdSchin 	}
318*da2e3ebdSchin 	y = (R/S -.5*s) - lsqrtPI_hi;
319*da2e3ebdSchin 	z += y;
320*da2e3ebdSchin 	z = exp(z)/ax;
321*da2e3ebdSchin 	if (x >= 0)
322*da2e3ebdSchin 		return (one-z);
323*da2e3ebdSchin 	else
324*da2e3ebdSchin 		return (z-one);
325*da2e3ebdSchin }
326*da2e3ebdSchin 
327*da2e3ebdSchin extern double erfc(x)
328*da2e3ebdSchin 	double x;
329*da2e3ebdSchin {
330*da2e3ebdSchin 	double R,S,P,Q,s,ax,y,z,r,fabs(),__exp__D();
331*da2e3ebdSchin 	if (!finite(x)) {
332*da2e3ebdSchin 		if (isnan(x))		/* erfc(NaN) = NaN */
333*da2e3ebdSchin 			return(x);
334*da2e3ebdSchin 		else if (x > 0)		/* erfc(+-inf)=0,2 */
335*da2e3ebdSchin 			return 0.0;
336*da2e3ebdSchin 		else
337*da2e3ebdSchin 			return 2.0;
338*da2e3ebdSchin 	}
339*da2e3ebdSchin 	if ((ax = x) < 0)
340*da2e3ebdSchin 		ax = -ax;
341*da2e3ebdSchin 	if (ax < .84375) {			/* |x|<0.84375 */
342*da2e3ebdSchin 	    if (ax < 1.38777878078144568e-17)  	/* |x|<2**-56 */
343*da2e3ebdSchin 		return one-x;
344*da2e3ebdSchin 	    y = x*x;
345*da2e3ebdSchin 	    r = y*(p1+y*(p2+y*(p3+y*(p4+y*(p5+
346*da2e3ebdSchin 			y*(p6+y*(p7+y*(p8+y*(p9+y*p10)))))))));
347*da2e3ebdSchin 	    if (ax < .0625) {  	/* |x|<2**-4 */
348*da2e3ebdSchin 		return (one-(x+x*(p0+r)));
349*da2e3ebdSchin 	    } else {
350*da2e3ebdSchin 		r = x*(p0+r);
351*da2e3ebdSchin 		r += (x-half);
352*da2e3ebdSchin 	        return (half - r);
353*da2e3ebdSchin 	    }
354*da2e3ebdSchin 	}
355*da2e3ebdSchin 	if (ax < 1.25) {		/* 0.84375 <= |x| < 1.25 */
356*da2e3ebdSchin 	    s = ax-one;
357*da2e3ebdSchin 	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
358*da2e3ebdSchin 	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
359*da2e3ebdSchin 	    if (x>=0) {
360*da2e3ebdSchin 	        z  = one-c; return z - P/Q;
361*da2e3ebdSchin 	    } else {
362*da2e3ebdSchin 		z = c+P/Q; return one+z;
363*da2e3ebdSchin 	    }
364*da2e3ebdSchin 	}
365*da2e3ebdSchin 	if (ax >= 28)	/* Out of range */
366*da2e3ebdSchin  		if (x>0)
367*da2e3ebdSchin 			return (tiny*tiny);
368*da2e3ebdSchin 		else
369*da2e3ebdSchin 			return (two-tiny);
370*da2e3ebdSchin 	z = ax;
371*da2e3ebdSchin 	TRUNC(z);
372*da2e3ebdSchin 	y = z - ax; y *= (ax+z);
373*da2e3ebdSchin 	z *= -z;			/* Here z + y = -x^2 */
374*da2e3ebdSchin 		s = one/(-z-y);		/* 1/(x*x) */
375*da2e3ebdSchin 	if (ax >= 4) {			/* 6 <= ax */
376*da2e3ebdSchin 		R = s*(rd1+s*(rd2+s*(rd3+s*(rd4+s*(rd5+
377*da2e3ebdSchin 			s*(rd6+s*(rd7+s*(rd8+s*(rd9+s*(rd10
378*da2e3ebdSchin 			+s*(rd11+s*(rd12+s*rd13))))))))))));
379*da2e3ebdSchin 		y += rd0;
380*da2e3ebdSchin 	} else if (ax >= 2) {
381*da2e3ebdSchin 		R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+
382*da2e3ebdSchin 			s*(rb6+s*(rb7+s*(rb8+s*(rb9+s*rb10)))))))));
383*da2e3ebdSchin 		S = one+s*(sb1+s*(sb2+s*sb3));
384*da2e3ebdSchin 		y += R/S;
385*da2e3ebdSchin 		R = -.5*s;
386*da2e3ebdSchin 	} else {
387*da2e3ebdSchin 		R = rc0+s*(rc1+s*(rc2+s*(rc3+s*(rc4+s*(rc5+
388*da2e3ebdSchin 			s*(rc6+s*(rc7+s*(rc8+s*(rc9+s*rc10)))))))));
389*da2e3ebdSchin 		S = one+s*(sc1+s*(sc2+s*sc3));
390*da2e3ebdSchin 		y += R/S;
391*da2e3ebdSchin 		R = -.5*s;
392*da2e3ebdSchin 	}
393*da2e3ebdSchin 	/* return exp(-x^2 - lsqrtPI_hi + R + y)/x;	*/
394*da2e3ebdSchin 	s = ((R + y) - lsqrtPI_hi) + z;
395*da2e3ebdSchin 	y = (((z-s) - lsqrtPI_hi) + R) + y;
396*da2e3ebdSchin 	r = __exp__D(s, y)/x;
397*da2e3ebdSchin 	if (x>0)
398*da2e3ebdSchin 		return r;
399*da2e3ebdSchin 	else
400*da2e3ebdSchin 		return two-r;
401*da2e3ebdSchin }
402*da2e3ebdSchin 
403*da2e3ebdSchin #endif
404