xref: /titanic_50/usr/src/common/util/qsort.c (revision cf170fc06cee7b670cc5ccf1fe83dce33fb2592b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #if !defined(_KERNEL) && !defined(_KMDB)
30 #include "lint.h"
31 #endif /* !_KERNEL && !_KMDB */
32 
33 #include <sys/types.h>
34 
35 #if !defined(_KERNEL) && !defined(_KMDB)
36 #include <stdlib.h>
37 #include <synch.h>
38 #endif /* !_KERNEL && !_KMDB */
39 
40 #include "qsort.h"
41 
42 static void swapp32(uint32_t *r1, uint32_t *r2, size_t cnt);
43 static void swapp64(uint64_t *r1, uint64_t *r2, size_t cnt);
44 static void swapi(uint32_t *r1, uint32_t *r2, size_t cnt);
45 static void swapb(char *r1, char *r2, size_t cnt);
46 
47 /*
48  * choose a median of 3 values
49  *
50  * note: cstyle specifically prohibits nested conditional operators
51  * but this is the only way to do the median of 3 function in-line
52  */
53 #define	med3(a, b, c) (cmp((a), (b)) < 0) \
54 	? ((cmp((b), (c)) < 0) ? (b) : (cmp((a), (c)) < 0) ? (c) : (a)) \
55 	: ((cmp((b), (c)) > 0) ? (b) : (cmp((a), (c)) > 0) ? (c) : (a))
56 
57 #define	THRESH_L	5	/* threshold for insertion sort */
58 #define	THRESH_M3	20	/* threshold for median of 3 */
59 #define	THRESH_M9	50	/* threshold for median of 9 */
60 
61 typedef struct {
62 	char	*b_lim;
63 	size_t	nrec;
64 } stk_t;
65 
66 /*
67  * qsort() is a general purpose, in-place sorting routine using a
68  * user provided call back function for comparisons.  This implementation
69  * utilizes a ternary quicksort algorithm, and cuts over to an
70  * insertion sort for partitions involving fewer than THRESH_L records.
71  *
72  * Potential User Errors
73  *   There is no return value from qsort, this function has no method
74  *   of alerting the user that a sort did not work or could not work.
75  *   We do not print an error message or exit the process or thread,
76  *   Even if we can detect an error, We CANNOT silently return without
77  *   sorting the data, if we did so the user could never be sure the
78  *   sort completed successfully.
79  *   It is possible we could change the return value of sort from void
80  *   to int and return success or some error codes, but this gets into
81  *   standards  and compatibility issues.
82  *
83  *   Examples of qsort parameter errors might be
84  *   1) record size (rsiz) equal to 0
85  *      qsort will loop and never return.
86  *   2) record size (rsiz) less than 0
87  *      rsiz is unsigned, so a negative value is insanely large
88  *   3) number of records (nrec) is 0
89  *      This is legal - qsort will return without examining any records
90  *   4) number of records (nrec) is less than 0
91  *      nrec is unsigned, so a negative value is insanely large.
92  *   5) nrec * rsiz > memory allocation for sort array
93  *      a segment violation may occur
94  *      corruption of other memory may occur
95  *   6) The base address of the sort array is invalid
96  *      a segment violation may occur
97  *      corruption of other memory may occur
98  *   7) The user call back function is invalid
99  *      we may get alignment errors or segment violations
100  *      we may jump into never-never land
101  *
102  *   Some less obvious errors might be
103  *   8) The user compare function is not comparing correctly
104  *   9) The user compare function modifies the data records
105  */
106 
107 void
108 qsort(
109 	void		*basep,
110 	size_t		nrec,
111 	size_t		rsiz,
112 	int		(*cmp)(const void *, const void *))
113 {
114 	size_t		i;		/* temporary variable */
115 
116 	/* variables used by swap */
117 	void		(*swapf)(char *, char *, size_t);
118 	size_t		loops;
119 
120 	/* variables used by sort */
121 	stk_t		stack[8 * sizeof (nrec) + 1];
122 	stk_t		*sp;
123 	char		*b_lim;		/* bottom limit */
124 	char		*b_dup;		/* bottom duplicate */
125 	char		*b_par;		/* bottom partition */
126 	char		*t_lim;		/* top limit */
127 	char		*t_dup;		/* top duplicate */
128 	char		*t_par;		/* top partition */
129 	char		*m1, *m2, *m3;	/* median pointers */
130 	uintptr_t	d_bytelength;	/* byte length of duplicate records */
131 	int		b_nrec;
132 	int		t_nrec;
133 	int		cv;		/* results of compare (bottom / top) */
134 
135 	/*
136 	 * choose a swap function based on alignment and size
137 	 *
138 	 * The qsort function sorts an array of fixed length records.
139 	 * We have very limited knowledge about the data record itself.
140 	 * It may be that the data record is in the array we are sorting
141 	 * or it may be that the array contains pointers or indexes to
142 	 * the actual data record and all that we are sorting is the indexes.
143 	 *
144 	 * The following decision will choose an optimal swap function
145 	 * based on the size and alignment of the data records
146 	 *   swapp64	will swap 64 bit pointers
147 	 *   swapp32	will swap 32 bit pointers
148 	 *   swapi	will swap an array of 32 bit integers
149 	 *   swapb	will swap an array of 8 bit characters
150 	 *
151 	 * swapi and swapb will also require the variable loops to be set
152 	 * to control the length of the array being swapped
153 	 */
154 	if ((((uintptr_t)basep & (sizeof (uint64_t) - 1)) == 0) &&
155 	    (rsiz == sizeof (uint64_t))) {
156 		loops = 1;
157 		swapf = (void (*)(char *, char *, size_t))swapp64;
158 	} else if ((((uintptr_t)basep & (sizeof (uint32_t) - 1)) == 0) &&
159 	    (rsiz == sizeof (uint32_t))) {
160 		loops = 1;
161 		swapf = (void (*)(char *, char *, size_t))swapp32;
162 	} else if ((((uintptr_t)basep & (sizeof (uint32_t) - 1)) == 0) &&
163 	    ((rsiz & (sizeof (uint32_t) - 1)) == 0)) {
164 		loops = rsiz / sizeof (int);
165 		swapf = (void (*)(char *, char *, size_t))swapi;
166 	} else {
167 		loops = rsiz;
168 		swapf = swapb;
169 	}
170 
171 	/*
172 	 * qsort is a partitioning sort
173 	 *
174 	 * the stack is the bookkeeping mechanism to keep track of all
175 	 * the partitions.
176 	 *
177 	 * each sort pass takes one partition and sorts it into two partitions.
178 	 * at the top of the loop we simply take the partition on the top
179 	 * of the stack and sort it. See the comments at the bottom
180 	 * of the loop regarding which partitions to add in what order.
181 	 *
182 	 * initially put the whole partition on the stack
183 	 */
184 	sp = stack;
185 	sp->b_lim = (char *)basep;
186 	sp->nrec = nrec;
187 	sp++;
188 	while (sp > stack) {
189 		sp--;
190 		b_lim = sp->b_lim;
191 		nrec = sp->nrec;
192 
193 		/*
194 		 * a linear insertion sort i faster than a qsort for
195 		 * very small number of records (THRESH_L)
196 		 *
197 		 * if number records < threshold use linear insertion sort
198 		 *
199 		 * this also handles the special case where the partition
200 		 * 0 or 1 records length.
201 		 */
202 		if (nrec < THRESH_L) {
203 			/*
204 			 * Linear insertion sort
205 			 */
206 			t_par = b_lim;
207 			for (i = 1; i < nrec; i++) {
208 				t_par += rsiz;
209 				b_par = t_par;
210 				while (b_par > b_lim) {
211 					b_par -= rsiz;
212 					if ((*cmp)(b_par, b_par + rsiz) <= 0) {
213 						break;
214 					}
215 					(*swapf)(b_par, b_par + rsiz, loops);
216 				}
217 			}
218 
219 			/*
220 			 * a linear insertion sort will put all records
221 			 * in their final position and will not create
222 			 * subpartitions.
223 			 *
224 			 * therefore when the insertion sort is complete
225 			 * just go to the top of the loop and get the
226 			 * next partition to sort.
227 			 */
228 			continue;
229 		}
230 
231 		/* quicksort */
232 
233 		/*
234 		 * choose a pivot record
235 		 *
236 		 * Ideally the pivot record will divide the partition
237 		 * into two equal parts. however we have to balance the
238 		 * work involved in selecting the pivot record with the
239 		 * expected benefit.
240 		 *
241 		 * The choice of pivot record depends on the number of
242 		 * records in the partition
243 		 *
244 		 * for small partitions (nrec < THRESH_M3)
245 		 *   we just select the record in the middle of the partition
246 		 *
247 		 * if (nrec >= THRESH_M3 && nrec < THRESH_M9)
248 		 *   we select three values and choose the median of 3
249 		 *
250 		 * if (nrec >= THRESH_M9)
251 		 *   then we use an approximate median of 9
252 		 *   9 records are selected and grouped in 3 groups of 3
253 		 *   the median of each of these 3 groups is fed into another
254 		 *   median of 3 decision.
255 		 *
256 		 * Each median of 3 decision is 2 or 3 compares,
257 		 * so median of 9 costs between 8 and 12 compares.
258 		 *
259 		 * i is byte distance between two consecutive samples
260 		 * m2 will point to the pivot record
261 		 */
262 		if (nrec < THRESH_M3) {
263 			m2 = b_lim + (nrec / 2) * rsiz;
264 		} else if (nrec < THRESH_M9) {
265 			/* use median of 3 */
266 			i = ((nrec - 1) / 2) * rsiz;
267 			m2 = med3(b_lim, b_lim + i, b_lim + 2 * i);
268 		} else {
269 			/* approx median of 9 */
270 			i = ((nrec - 1) / 8) * rsiz;
271 			m1 = med3(b_lim, b_lim +  i, b_lim + 2 * i);
272 			m2 = med3(b_lim + 3 * i, b_lim + 4 * i, b_lim + 5 * i);
273 			m3 = med3(b_lim + 6 * i, b_lim + 7 * i, b_lim + 8 * i);
274 			m2 = med3(m1, m2, m3);
275 		}
276 
277 		/*
278 		 * quick sort partitioning
279 		 *
280 		 * The partition limits are defined by bottom and top pointers
281 		 * b_lim and t_lim.
282 		 *
283 		 * qsort uses a fairly standard method of moving the
284 		 * partitioning pointers, b_par and t_par, to the middle of
285 		 * the partition and exchanging records that are in the
286 		 * wrong part of the partition.
287 		 *
288 		 * Two enhancements have been made to the basic algorithm.
289 		 * One for handling duplicate records and one to minimize
290 		 * the number of swaps.
291 		 *
292 		 * Two duplicate records pointers are (b_dup and t_dup) are
293 		 * initially set to b_lim and t_lim.  Each time a record
294 		 * whose sort key value is equal to the pivot record is found
295 		 * it will be swapped with the record pointed to by
296 		 * b_dup or t_dup and the duplicate pointer will be
297 		 * incremented toward the center.
298 		 * When partitioning is complete, all the duplicate records
299 		 * will have been collected at the upper and lower limits of
300 		 * the partition and can easily be moved adjacent to the
301 		 * pivot record.
302 		 *
303 		 * The second optimization is to minimize the number of swaps.
304 		 * The pointer m2 points to the pivot record.
305 		 * During partitioning, if m2 is ever equal to the partitioning
306 		 * pointers, b_par or t_par, then b_par or t_par just moves
307 		 * onto the next record without doing a compare.
308 		 * If as a result of duplicate record detection,
309 		 * b_dup or t_dup is ever equal to m2,
310 		 * then m2 is changed to point to the duplicate record and
311 		 * b_dup or t_dup is incremented with out swapping records.
312 		 *
313 		 * When partitioning is done, we may not have the same pivot
314 		 * record that we started with, but we will have one with
315 		 * an equal sort key.
316 		 */
317 		b_dup = b_par		= b_lim;
318 		t_dup = t_par = t_lim	= b_lim + rsiz * (nrec - 1);
319 		for (;;) {
320 
321 			/* move bottom pointer up */
322 			for (; b_par <= t_par; b_par += rsiz) {
323 				if (b_par == m2) {
324 					continue;
325 				}
326 				cv = cmp(b_par, m2);
327 				if (cv > 0) {
328 					break;
329 				}
330 				if (cv == 0) {
331 					if (b_dup == m2) {
332 						m2 = b_par;
333 					} else if (b_dup != b_par) {
334 						(*swapf)(b_dup, b_par, loops);
335 					}
336 					b_dup += rsiz;
337 				}
338 			}
339 
340 			/* move top pointer down */
341 			for (; b_par < t_par; t_par -= rsiz) {
342 				if (t_par == m2) {
343 					continue;
344 				}
345 				cv = cmp(t_par, m2);
346 				if (cv < 0) {
347 					break;
348 				}
349 				if (cv == 0) {
350 					if (t_dup == m2) {
351 						m2 = t_par;
352 					} else if (t_dup != t_par) {
353 						(*swapf)(t_dup, t_par, loops);
354 					}
355 					t_dup -= rsiz;
356 				}
357 			}
358 
359 			/* break if we are done partitioning */
360 			if (b_par >= t_par) {
361 				break;
362 			}
363 
364 			/* exchange records at upper and lower break points */
365 			(*swapf)(b_par, t_par, loops);
366 			b_par += rsiz;
367 			t_par -= rsiz;
368 		}
369 
370 		/*
371 		 * partitioning is now complete
372 		 *
373 		 * there are two termination conditions from the partitioning
374 		 * loop above.  Either b_par or t_par have crossed or
375 		 * they are equal.
376 		 *
377 		 * we need to swap the pivot record to its final position
378 		 * m2 could be in either the upper or lower partitions
379 		 * or it could already be in its final position
380 		 */
381 		/*
382 		 * R[b_par] > R[m2]
383 		 * R[t_par] < R[m2]
384 		 */
385 		if (t_par < b_par) {
386 			if (m2 < t_par) {
387 				(*swapf)(m2, t_par, loops);
388 				m2 = b_par = t_par;
389 			} else if (m2 > b_par) {
390 				(*swapf)(m2, b_par, loops);
391 				m2 = t_par = b_par;
392 			} else {
393 				b_par = t_par = m2;
394 			}
395 		} else {
396 			if (m2 < t_par) {
397 				t_par = b_par = t_par - rsiz;
398 			}
399 			if (m2 != b_par) {
400 				(*swapf)(m2, b_par, loops);
401 			}
402 			m2 = t_par;
403 		}
404 
405 		/*
406 		 * move bottom duplicates next to pivot
407 		 * optimized to eliminate overlap
408 		 */
409 		d_bytelength = b_dup - b_lim;
410 		if (b_par - b_dup < d_bytelength) {
411 			b_dup = b_lim + (b_par - b_dup);
412 		}
413 		while (b_dup > b_lim) {
414 			b_dup -= rsiz;
415 			b_par -= rsiz;
416 			(*swapf)(b_dup, b_par, loops);
417 		}
418 		b_par = m2 - d_bytelength;
419 
420 		/*
421 		 * move top duplicates next to pivot
422 		 */
423 		d_bytelength = t_lim - t_dup;
424 		if (t_dup - t_par < d_bytelength) {
425 			t_dup = t_lim - (t_dup - t_par);
426 		}
427 		while (t_dup < t_lim) {
428 			t_dup += rsiz;
429 			t_par += rsiz;
430 			(*swapf)(t_dup, t_par, loops);
431 		}
432 		t_par = m2 + d_bytelength;
433 
434 		/*
435 		 * when a qsort pass completes there are three partitions
436 		 * 1) the lower contains all records less than pivot
437 		 * 2) the upper contains all records greater than pivot
438 		 * 3) the pivot partition contains all record equal to pivot
439 		 *
440 		 * all records in the pivot partition are in their final
441 		 * position and do not need to be accounted for by the stack
442 		 *
443 		 * when adding partitions to the stack
444 		 * it is important to add the largest partition first
445 		 * to prevent stack overflow.
446 		 *
447 		 * calculate number of unsorted records in top and bottom
448 		 * push resulting partitions on stack
449 		 */
450 		b_nrec = (b_par - b_lim) / rsiz;
451 		t_nrec = (t_lim - t_par) / rsiz;
452 		if (b_nrec < t_nrec) {
453 			sp->b_lim = t_par + rsiz;
454 			sp->nrec = t_nrec;
455 			sp++;
456 			sp->b_lim = b_lim;
457 			sp->nrec = b_nrec;
458 			sp++;
459 		} else {
460 			sp->b_lim = b_lim;
461 			sp->nrec = b_nrec;
462 			sp++;
463 			sp->b_lim = t_par + rsiz;
464 			sp->nrec = t_nrec;
465 			sp++;
466 		}
467 	}
468 }
469 
470 /*
471  * The following swap functions should not create a stack frame
472  * the SPARC call / return instruction will be executed
473  * but the a save / restore will not be executed
474  * which means we won't do a window turn with the spill / fill overhead
475  * verify this by examining the assembly code
476  */
477 
478 /* ARGSUSED */
479 static void
480 swapp32(uint32_t *r1, uint32_t *r2, size_t cnt)
481 {
482 	uint32_t temp;
483 
484 	temp = *r1;
485 	*r1++ = *r2;
486 	*r2++ = temp;
487 }
488 
489 /* ARGSUSED */
490 static void
491 swapp64(uint64_t *r1, uint64_t *r2, size_t cnt)
492 {
493 	uint64_t temp;
494 
495 	temp = *r1;
496 	*r1++ = *r2;
497 	*r2++ = temp;
498 }
499 
500 static void
501 swapi(uint32_t *r1, uint32_t *r2, size_t cnt)
502 {
503 	uint32_t temp;
504 
505 	/* character by character */
506 	while (cnt--) {
507 		temp = *r1;
508 		*r1++ = *r2;
509 		*r2++ = temp;
510 	}
511 }
512 
513 static void
514 swapb(char *r1, char *r2, size_t cnt)
515 {
516 	char	temp;
517 
518 	/* character by character */
519 	while (cnt--) {
520 		temp = *r1;
521 		*r1++ = *r2;
522 		*r2++ = temp;
523 	}
524 }
525