xref: /titanic_50/usr/src/common/net/patricia/radix.c (revision ccfce1d8e7219e7616d8df1e8cfca8f97febf5b8)
1 /*
2  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  *
5  * Copyright (c) 1988, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)radix.c	8.5 (Berkeley) 5/19/95
33  * $FreeBSD: /repoman/r/ncvs/src/sys/net/radix.c,v 1.36.2.1 2005/01/31 23:26:23
34  * imp Exp $
35  */
36 
37 #pragma ident	"%Z%%M%	%I%	%E% SMI"
38 
39 /*
40  * Routines to build and maintain radix trees for routing lookups.
41  */
42 #include <sys/types.h>
43 
44 #ifndef _RADIX_H_
45 #include <sys/param.h>
46 #ifdef	_KERNEL
47 #include <sys/lock.h>
48 #include <sys/mutex.h>
49 #include <sys/systm.h>
50 #include <sys/cmn_err.h>
51 #else
52 #include <assert.h>
53 #define	ASSERT assert
54 #include <stdio.h>
55 #include <stdlib.h>
56 #include <syslog.h>
57 #include <strings.h>
58 #endif	/* _KERNEL */
59 #include <net/radix.h>
60 #include <inet/ip_ftable.h>
61 #endif
62 
63 #ifndef	_KERNEL
64 void
65 panic(const char *str)
66 {
67 	fprintf(stderr, "Panic - %s\n", str);
68 	abort();
69 }
70 #endif	/* _KERNEL */
71 
72 static int	rn_walktree(struct radix_node_head *, walktree_f_t *, void *);
73 static struct radix_node
74 	*rn_insert(void *, struct radix_node_head *, int *,
75 	    struct radix_node [2]),
76 	*rn_newpair(void *, int, struct radix_node[2]),
77 	*rn_search(void *, struct radix_node *),
78 	*rn_search_m(void *, struct radix_node *, void *),
79 	*rn_lookup(void *, void *, struct radix_node_head *),
80 	*rn_match(void *, struct radix_node_head *),
81 	*rn_match_args(void *, struct radix_node_head *, match_leaf_t *,
82 	    void *),
83 	*rn_addmask(void *, int, int),
84 	*rn_addroute(void *, void *, struct radix_node_head *,
85 	    struct radix_node [2]),
86 	*rn_delete(void *, void *, struct radix_node_head *);
87 static	boolean_t rn_refines(void *, void *);
88 
89 #define	MAX_KEYLEN	16
90 static int	max_keylen = MAX_KEYLEN;
91 
92 #ifdef	_KERNEL
93 static struct kmem_cache *radix_mask_cache; /* for rn_mkfreelist */
94 static struct kmem_cache *radix_node_cache;
95 #else
96 static char *radix_mask_cache, *radix_node_cache; /* dummy vars. never inited */
97 #endif	/* _KERNEL */
98 
99 static struct radix_mask *rn_mkfreelist;
100 static struct radix_node_head *mask_rnhead;
101 /*
102  * Work area -- the following point to 2 buffers of size max_keylen,
103  * allocated in this order in a block of memory malloc'ed by rn_init.
104  * A third buffer of size MAX_KEYLEN is allocated from the stack.
105  */
106 static char *rn_zeros, *rn_ones;
107 
108 #define	MKGet(m)  R_Malloc(m, radix_mask_cache, sizeof (struct radix_mask))
109 #define	MKFree(m) Free(m, radix_mask_cache)
110 #define	rn_masktop (mask_rnhead->rnh_treetop)
111 
112 static boolean_t	rn_lexobetter(void *m_arg, void *n_arg);
113 static struct radix_mask *
114 		rn_new_radix_mask(struct radix_node *tt,
115 		    struct radix_mask *next);
116 static boolean_t
117 		rn_satisfies_leaf(char *trial, struct radix_node *leaf,
118 		    int skip, match_leaf_t *rn_leaf_fn, void *rn_leaf_arg);
119 
120 #define	RN_MATCHF(rn, f, arg)	(f == NULL || (*f)((rn), arg))
121 
122 /*
123  * The data structure for the keys is a radix tree with one way
124  * branching removed.  The index rn_bit at an internal node n represents a bit
125  * position to be tested.  The tree is arranged so that all descendants
126  * of a node n have keys whose bits all agree up to position rn_bit - 1.
127  * (We say the index of n is rn_bit.)
128  *
129  * There is at least one descendant which has a one bit at position rn_bit,
130  * and at least one with a zero there.
131  *
132  * A route is determined by a pair of key and mask.  We require that the
133  * bit-wise logical and of the key and mask to be the key.
134  * We define the index of a route associated with the mask to be
135  * the first bit number in the mask where 0 occurs (with bit number 0
136  * representing the highest order bit).
137  *
138  * We say a mask is normal if every bit is 0, past the index of the mask.
139  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
140  * and m is a normal mask, then the route applies to every descendant of n.
141  * If the index(m) < rn_bit, this implies the trailing last few bits of k
142  * before bit b are all 0, (and hence consequently true of every descendant
143  * of n), so the route applies to all descendants of the node as well.
144  *
145  * Similar logic shows that a non-normal mask m such that
146  * index(m) <= index(n) could potentially apply to many children of n.
147  * Thus, for each non-host route, we attach its mask to a list at an internal
148  * node as high in the tree as we can go.
149  *
150  * The present version of the code makes use of normal routes in short-
151  * circuiting an explict mask and compare operation when testing whether
152  * a key satisfies a normal route, and also in remembering the unique leaf
153  * that governs a subtree.
154  */
155 
156 /*
157  * Most of the functions in this code assume that the key/mask arguments
158  * are sockaddr-like structures, where the first byte is an uchar_t
159  * indicating the size of the entire structure.
160  *
161  * To make the assumption more explicit, we use the LEN() macro to access
162  * this field. It is safe to pass an expression with side effects
163  * to LEN() as the argument is evaluated only once.
164  */
165 #define	LEN(x) (*(const uchar_t *)(x))
166 
167 
168 /*
169  * Search a node in the tree matching the key.
170  */
171 static struct radix_node *
172 rn_search(v_arg, head)
173 	void *v_arg;
174 	struct radix_node *head;
175 {
176 	struct radix_node *x;
177 	caddr_t v;
178 
179 	for (x = head, v = v_arg; x->rn_bit >= 0; ) {
180 		if (x->rn_bmask & v[x->rn_offset])
181 			x = x->rn_right;
182 		else
183 			x = x->rn_left;
184 	}
185 	return (x);
186 }
187 
188 /*
189  * Same as above, but with an additional mask.
190  */
191 static struct radix_node *
192 rn_search_m(v_arg, head, m_arg)
193 	struct radix_node *head;
194 	void *v_arg, *m_arg;
195 {
196 	struct radix_node *x;
197 	caddr_t v = v_arg, m = m_arg;
198 
199 	for (x = head; x->rn_bit >= 0; ) {
200 		if ((x->rn_bmask & m[x->rn_offset]) &&
201 		    (x->rn_bmask & v[x->rn_offset]))
202 			x = x->rn_right;
203 		else
204 			x = x->rn_left;
205 	}
206 	return (x);
207 }
208 
209 /*
210  * Returns true if there are no bits set in n_arg that are zero in
211  * m_arg and the masks aren't equal.  In other words, it returns true
212  * when m_arg is a finer-granularity netmask -- it represents a subset
213  * of the destinations implied by n_arg.
214  */
215 static boolean_t
216 rn_refines(m_arg, n_arg)
217 	void *m_arg, *n_arg;
218 {
219 	caddr_t m = m_arg, n = n_arg;
220 	caddr_t lim = n + LEN(n), lim2 = lim;
221 	int longer = LEN(n++) - (int)LEN(m++);
222 	boolean_t masks_are_equal = B_TRUE;
223 
224 	if (longer > 0)
225 		lim -= longer;
226 	while (n < lim) {
227 		if (*n & ~(*m))
228 			return (0);
229 		if (*n++ != *m++)
230 			masks_are_equal = B_FALSE;
231 	}
232 	while (n < lim2)
233 		if (*n++)
234 			return (B_FALSE);
235 	if (masks_are_equal && (longer < 0))
236 		for (lim2 = m - longer; m < lim2; )
237 			if (*m++)
238 				return (B_TRUE);
239 	return (!masks_are_equal);
240 }
241 
242 static struct radix_node *
243 rn_lookup(v_arg, m_arg, head)
244 	void *v_arg, *m_arg;
245 	struct radix_node_head *head;
246 {
247 	struct radix_node *x;
248 	caddr_t netmask = NULL;
249 
250 	if (m_arg) {
251 		x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_offset);
252 		if (x == NULL)
253 			return (NULL);
254 		netmask = x->rn_key;
255 	}
256 	x = rn_match(v_arg, head);
257 	if (x && netmask) {
258 		while (x && x->rn_mask != netmask)
259 			x = x->rn_dupedkey;
260 	}
261 	return (x);
262 }
263 
264 /*
265  * Returns true if address 'trial' has no bits differing from the
266  * leaf's key when compared under the leaf's mask.  In other words,
267  * returns true when 'trial' matches leaf.
268  * In addition, if a rn_leaf_fn is passed in, that is used to find
269  * a match on conditions defined by the caller of rn_match.  This is
270  * used by the kernel ftable to match on IRE_MATCH_* conditions.
271  */
272 static boolean_t
273 rn_satisfies_leaf(trial, leaf, skip, rn_leaf_fn, rn_leaf_arg)
274 	caddr_t trial;
275 	struct radix_node *leaf;
276 	int skip;
277 	match_leaf_t *rn_leaf_fn;
278 	void *rn_leaf_arg;
279 {
280 	char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
281 	char *cplim;
282 	int length = min(LEN(cp), LEN(cp2));
283 
284 	if (cp3 == 0)
285 		cp3 = rn_ones;
286 	else
287 		length = min(length, LEN(cp3));
288 	cplim = cp + length;
289 	cp3 += skip;
290 	cp2 += skip;
291 
292 	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
293 		if ((*cp ^ *cp2) & *cp3)
294 			return (B_FALSE);
295 
296 	return (RN_MATCHF(leaf, rn_leaf_fn, rn_leaf_arg));
297 }
298 
299 static struct radix_node *
300 rn_match(v_arg, head)
301 	void *v_arg;
302 	struct radix_node_head *head;
303 {
304 	return (rn_match_args(v_arg, head, NULL, NULL));
305 }
306 
307 static struct radix_node *
308 rn_match_args(v_arg, head, rn_leaf_fn, rn_leaf_arg)
309 	void *v_arg;
310 	struct radix_node_head *head;
311 	match_leaf_t *rn_leaf_fn;
312 	void *rn_leaf_arg;
313 {
314 	caddr_t v = v_arg;
315 	struct radix_node *t = head->rnh_treetop, *x;
316 	caddr_t cp = v, cp2;
317 	caddr_t cplim;
318 	struct radix_node *saved_t, *top = t;
319 	int off = t->rn_offset, vlen = LEN(cp), matched_off;
320 	int test, b, rn_bit;
321 
322 	/*
323 	 * Open code rn_search(v, top) to avoid overhead of extra
324 	 * subroutine call.
325 	 */
326 	for (; t->rn_bit >= 0; ) {
327 		if (t->rn_bmask & cp[t->rn_offset])
328 			t = t->rn_right;
329 		else
330 			t = t->rn_left;
331 	}
332 	/*
333 	 * See if we match exactly as a host destination
334 	 * or at least learn how many bits match, for normal mask finesse.
335 	 *
336 	 * It doesn't hurt us to limit how many bytes to check
337 	 * to the length of the mask, since if it matches we had a genuine
338 	 * match and the leaf we have is the most specific one anyway;
339 	 * if it didn't match with a shorter length it would fail
340 	 * with a long one.  This wins big for class B&C netmasks which
341 	 * are probably the most common case...
342 	 */
343 	if (t->rn_mask)
344 		vlen = LEN(t->rn_mask);
345 	cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
346 	for (; cp < cplim; cp++, cp2++)
347 		if (*cp != *cp2)
348 			goto keydiff;
349 	/*
350 	 * This extra grot is in case we are explicitly asked
351 	 * to look up the default.  Ugh!
352 	 *
353 	 * Never return the root node itself, it seems to cause a
354 	 * lot of confusion.
355 	 */
356 	if (t->rn_flags & RNF_ROOT)
357 		t = t->rn_dupedkey;
358 	if (t == NULL || RN_MATCHF(t, rn_leaf_fn, rn_leaf_arg)) {
359 		return (t);
360 	} else {
361 		/*
362 		 * Although we found an exact match on the key, rn_leaf_fn
363 		 * is looking for some other criteria as well. Continue
364 		 * looking as if the exact match failed.
365 		 */
366 		if (t->rn_parent->rn_flags & RNF_ROOT) {
367 			/* hit the top. have to give up */
368 			return (NULL);
369 		}
370 		b = 0;
371 		goto keeplooking;
372 
373 	}
374 keydiff:
375 	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
376 	for (b = 7; (test >>= 1) > 0; )
377 		b--;
378 keeplooking:
379 	matched_off = cp - v;
380 	b += matched_off << 3;
381 	rn_bit = -1 - b;
382 
383 	/*
384 	 * If there is a host route in a duped-key chain, it will be first.
385 	 */
386 	if ((saved_t = t)->rn_mask == 0)
387 		t = t->rn_dupedkey;
388 	for (; t != NULL; t = t->rn_dupedkey) {
389 		/*
390 		 * Even if we don't match exactly as a host,
391 		 * we may match if the leaf we wound up at is
392 		 * a route to a net.
393 		 */
394 
395 		if (t->rn_flags & RNF_NORMAL) {
396 			if ((rn_bit <= t->rn_bit) &&
397 			    RN_MATCHF(t, rn_leaf_fn, rn_leaf_arg)) {
398 				return (t);
399 			}
400 		} else if (rn_satisfies_leaf(v, t, matched_off, rn_leaf_fn,
401 		    rn_leaf_arg)) {
402 			return (t);
403 		}
404 	}
405 	t = saved_t;
406 	/* start searching up the tree */
407 	do {
408 		struct radix_mask *m;
409 
410 		t = t->rn_parent;
411 		m = t->rn_mklist;
412 		/*
413 		 * If non-contiguous masks ever become important
414 		 * we can restore the masking and open coding of
415 		 * the search and satisfaction test and put the
416 		 * calculation of "off" back before the "do".
417 		 */
418 		while (m) {
419 			if (m->rm_flags & RNF_NORMAL) {
420 				if ((rn_bit <= m->rm_bit) &&
421 				    RN_MATCHF(m->rm_leaf, rn_leaf_fn,
422 				    rn_leaf_arg)) {
423 					return (m->rm_leaf);
424 				}
425 			} else {
426 				off = min(t->rn_offset, matched_off);
427 				x = rn_search_m(v, t, m->rm_mask);
428 				while (x != NULL && x->rn_mask != m->rm_mask)
429 					x = x->rn_dupedkey;
430 				if (x && rn_satisfies_leaf(v, x, off,
431 				    rn_leaf_fn, rn_leaf_arg)) {
432 					return (x);
433 				}
434 			}
435 			m = m->rm_mklist;
436 		}
437 	} while (t != top);
438 	return (0);
439 }
440 
441 /*
442  * Whenever we add a new leaf to the tree, we also add a parent node,
443  * so we allocate them as an array of two elements: the first one must be
444  * the leaf (see RNTORT() in route.c), the second one is the parent.
445  * This routine initializes the relevant fields of the nodes, so that
446  * the leaf is the left child of the parent node, and both nodes have
447  * (almost) all all fields filled as appropriate.
448  * The function returns a pointer to the parent node.
449  */
450 
451 static struct radix_node *
452 rn_newpair(v, b, nodes)
453 	void *v;
454 	int b;
455 	struct radix_node nodes[2];
456 {
457 	struct radix_node *tt = nodes, *t = tt + 1;
458 
459 	t->rn_bit = b;
460 	t->rn_bmask = 0x80 >> (b & 7);
461 	t->rn_left = tt;
462 	t->rn_offset = b >> 3;
463 
464 	/*
465 	 * t->rn_parent, r->rn_right, tt->rn_mask, tt->rn_dupedkey
466 	 * and tt->rn_bmask must have been zeroed by caller.
467 	 */
468 	tt->rn_bit = -1;
469 	tt->rn_key = v;
470 	tt->rn_parent = t;
471 	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
472 	tt->rn_mklist = t->rn_mklist = 0;
473 	return (t);
474 }
475 
476 static struct radix_node *
477 rn_insert(v_arg, head, dupentry, nodes)
478 	void *v_arg;
479 	struct radix_node_head *head;
480 	int *dupentry;
481 	struct radix_node nodes[2];
482 {
483 	caddr_t v = v_arg;
484 	struct radix_node *top = head->rnh_treetop;
485 	int head_off = top->rn_offset, vlen = (int)LEN(v);
486 	struct radix_node *t = rn_search(v_arg, top);
487 	caddr_t cp = v + head_off;
488 	int b;
489 	struct radix_node *tt;
490 
491 	/*
492 	 * Find first bit at which v and t->rn_key differ
493 	 */
494 	{
495 		caddr_t cp2 = t->rn_key + head_off;
496 		int cmp_res;
497 		caddr_t cplim = v + vlen;
498 
499 		while (cp < cplim)
500 			if (*cp2++ != *cp++)
501 				goto on1;
502 		*dupentry = 1;
503 		return (t);
504 on1:
505 		*dupentry = 0;
506 		cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
507 		for (b = (cp - v) << 3; cmp_res; b--)
508 			cmp_res >>= 1;
509 	}
510 	{
511 		struct radix_node *p, *x = top;
512 		cp = v;
513 		do {
514 			p = x;
515 			if (cp[x->rn_offset] & x->rn_bmask)
516 				x = x->rn_right;
517 			else
518 				x = x->rn_left;
519 		} while (b > (unsigned)x->rn_bit);
520 				/* x->rn_bit < b && x->rn_bit >= 0 */
521 		t = rn_newpair(v_arg, b, nodes);
522 		tt = t->rn_left;
523 		if ((cp[p->rn_offset] & p->rn_bmask) == 0)
524 			p->rn_left = t;
525 		else
526 			p->rn_right = t;
527 		x->rn_parent = t;
528 		t->rn_parent = p;
529 		if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
530 			t->rn_right = x;
531 		} else {
532 			t->rn_right = tt;
533 			t->rn_left = x;
534 		}
535 	}
536 	return (tt);
537 }
538 
539 static struct radix_node *
540 rn_addmask(n_arg, search, skip)
541 	int search, skip;
542 	void *n_arg;
543 {
544 	caddr_t netmask = (caddr_t)n_arg;
545 	struct radix_node *x;
546 	caddr_t cp, cplim;
547 	int b = 0, mlen, j;
548 	int maskduplicated, m0, isnormal;
549 	struct radix_node *saved_x;
550 	int last_zeroed = 0;
551 	char addmask_key[MAX_KEYLEN];
552 
553 	if ((mlen = LEN(netmask)) > max_keylen)
554 		mlen = max_keylen;
555 	if (skip == 0)
556 		skip = 1;
557 	if (mlen <= skip)
558 		return (mask_rnhead->rnh_nodes);
559 	if (skip > 1)
560 		bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
561 	if ((m0 = mlen) > skip)
562 		bcopy(netmask + skip, addmask_key + skip, mlen - skip);
563 	/*
564 	 * Trim trailing zeroes.
565 	 */
566 	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0; )
567 		cp--;
568 	mlen = cp - addmask_key;
569 	if (mlen <= skip) {
570 		if (m0 >= last_zeroed)
571 			last_zeroed = mlen;
572 		return (mask_rnhead->rnh_nodes);
573 	}
574 	if (m0 < last_zeroed)
575 		bzero(addmask_key + m0, last_zeroed - m0);
576 	*addmask_key = last_zeroed = mlen;
577 	x = rn_search(addmask_key, rn_masktop);
578 	if (bcmp(addmask_key, x->rn_key, mlen) != 0)
579 		x = 0;
580 	if (x || search)
581 		return (x);
582 	R_Zalloc(x, radix_node_cache, max_keylen + 2 * sizeof (*x));
583 
584 	if ((saved_x = x) == 0)
585 		return (0);
586 	netmask = cp = (caddr_t)(x + 2);
587 	bcopy(addmask_key, cp, mlen);
588 	x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
589 	if (maskduplicated) {
590 #ifdef	_KERNEL
591 		cmn_err(CE_WARN, "rn_addmask: mask impossibly already in tree");
592 #else
593 		syslog(LOG_ERR, "rn_addmask: mask impossibly already in tree");
594 #endif	/* _KERNEL */
595 		Free(saved_x, radix_node_cache);
596 		return (x);
597 	}
598 	/*
599 	 * Calculate index of mask, and check for normalcy.
600 	 * First find the first byte with a 0 bit, then if there are
601 	 * more bits left (remember we already trimmed the trailing 0's),
602 	 * the pattern must be one of those in normal_chars[], or we have
603 	 * a non-contiguous mask.
604 	 */
605 	cplim = netmask + mlen;
606 	isnormal = 1;
607 	for (cp = netmask + skip; (cp < cplim) && *(uchar_t *)cp == 0xff; )
608 		cp++;
609 	if (cp != cplim) {
610 		static uint8_t normal_chars[] = {
611 			0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
612 
613 		for (j = 0x80; (j & *cp) != 0; j >>= 1)
614 			b++;
615 		if (*cp != normal_chars[b] || cp != (cplim - 1))
616 			isnormal = 0;
617 	}
618 	b += (cp - netmask) << 3;
619 	x->rn_bit = -1 - b;
620 	if (isnormal)
621 		x->rn_flags |= RNF_NORMAL;
622 	return (x);
623 }
624 
625 /* arbitrary ordering for non-contiguous masks */
626 static boolean_t
627 rn_lexobetter(m_arg, n_arg)
628 	void *m_arg, *n_arg;
629 {
630 	uchar_t *mp = m_arg, *np = n_arg, *lim;
631 
632 	if (LEN(mp) > LEN(np))
633 		/* not really, but need to check longer one first */
634 		return (B_TRUE);
635 	if (LEN(mp) == LEN(np))
636 		for (lim = mp + LEN(mp); mp < lim; )
637 			if (*mp++ > *np++)
638 				return (B_TRUE);
639 	return (B_FALSE);
640 }
641 
642 static struct radix_mask *
643 rn_new_radix_mask(tt, next)
644 	struct radix_node *tt;
645 	struct radix_mask *next;
646 {
647 	struct radix_mask *m;
648 
649 	MKGet(m);
650 	if (m == 0) {
651 #ifndef	_KERNEL
652 		syslog(LOG_ERR, "Mask for route not entered\n");
653 #endif	/* _KERNEL */
654 		return (0);
655 	}
656 	bzero(m, sizeof (*m));
657 	m->rm_bit = tt->rn_bit;
658 	m->rm_flags = tt->rn_flags;
659 	if (tt->rn_flags & RNF_NORMAL)
660 		m->rm_leaf = tt;
661 	else
662 		m->rm_mask = tt->rn_mask;
663 	m->rm_mklist = next;
664 	tt->rn_mklist = m;
665 	return (m);
666 }
667 
668 static struct radix_node *
669 rn_addroute(v_arg, n_arg, head, treenodes)
670 	void *v_arg, *n_arg;
671 	struct radix_node_head *head;
672 	struct radix_node treenodes[2];
673 {
674 	caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
675 	struct radix_node *t, *x = 0, *tt;
676 	struct radix_node *saved_tt, *top = head->rnh_treetop;
677 	short b = 0, b_leaf = 0;
678 	int keyduplicated;
679 	caddr_t mmask;
680 	struct radix_mask *m, **mp;
681 
682 	/*
683 	 * In dealing with non-contiguous masks, there may be
684 	 * many different routes which have the same mask.
685 	 * We will find it useful to have a unique pointer to
686 	 * the mask to speed avoiding duplicate references at
687 	 * nodes and possibly save time in calculating indices.
688 	 */
689 	if (netmask)  {
690 		if ((x = rn_addmask(netmask, 0, top->rn_offset)) == 0)
691 			return (0);
692 		b_leaf = x->rn_bit;
693 		b = -1 - x->rn_bit;
694 		netmask = x->rn_key;
695 	}
696 	/*
697 	 * Deal with duplicated keys: attach node to previous instance
698 	 */
699 	saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
700 	if (keyduplicated) {
701 		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
702 			if (tt->rn_mask == netmask)
703 				return (0);
704 			if (netmask == 0 ||
705 			    (tt->rn_mask &&
706 			    /* index (netmask) > node */
707 			    ((b_leaf < tt->rn_bit) ||
708 			    rn_refines(netmask, tt->rn_mask) ||
709 			    rn_lexobetter(netmask, tt->rn_mask))))
710 				break;
711 		}
712 		/*
713 		 * If the mask is not duplicated, we wouldn't
714 		 * find it among possible duplicate key entries
715 		 * anyway, so the above test doesn't hurt.
716 		 *
717 		 * We sort the masks for a duplicated key the same way as
718 		 * in a masklist -- most specific to least specific.
719 		 * This may require the unfortunate nuisance of relocating
720 		 * the head of the list.
721 		 *
722 		 * We also reverse, or doubly link the list through the
723 		 * parent pointer.
724 		 */
725 		if (tt == saved_tt) {
726 			struct	radix_node *xx = x;
727 			/* link in at head of list */
728 			(tt = treenodes)->rn_dupedkey = t;
729 			tt->rn_flags = t->rn_flags;
730 			tt->rn_parent = x = t->rn_parent;
731 			t->rn_parent = tt; /* parent */
732 			if (x->rn_left == t)
733 				x->rn_left = tt;
734 			else
735 				x->rn_right = tt;
736 			saved_tt = tt; x = xx;
737 		} else {
738 			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
739 			t->rn_dupedkey = tt;
740 			/* Set rn_parent value for tt and tt->rn_dupedkey */
741 			tt->rn_parent = t;
742 			if (tt->rn_dupedkey)
743 				tt->rn_dupedkey->rn_parent = tt;
744 		}
745 		tt->rn_key = v;
746 		tt->rn_bit = -1;
747 		tt->rn_flags = RNF_ACTIVE;
748 	}
749 	/*
750 	 * Put mask in tree.
751 	 */
752 	if (netmask) {
753 		tt->rn_mask = netmask;
754 		tt->rn_bit = x->rn_bit;
755 		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
756 	}
757 	t = saved_tt->rn_parent;
758 	if (keyduplicated)
759 		goto key_exists;
760 	b_leaf = -1 - t->rn_bit;
761 	if (t->rn_right == saved_tt)
762 		x = t->rn_left;
763 	else
764 		x = t->rn_right;
765 	/* Promote general routes from below */
766 	if (x->rn_bit < 0) {
767 	    for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
768 		if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) {
769 			*mp = m = rn_new_radix_mask(x, 0);
770 			if (m)
771 				mp = &m->rm_mklist;
772 		}
773 	} else if (x->rn_mklist) {
774 		/*
775 		 * Skip over masks whose index is > that of new node
776 		 */
777 		for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
778 			if (m->rm_bit >= b_leaf)
779 				break;
780 		t->rn_mklist = m; *mp = 0;
781 	}
782 key_exists:
783 	/* Add new route to highest possible ancestor's list */
784 	if ((netmask == 0) || (b > t->rn_bit))
785 		return (tt); /* can't lift at all */
786 	b_leaf = tt->rn_bit;
787 	do {
788 		x = t;
789 		t = t->rn_parent;
790 	} while (b <= t->rn_bit && x != top);
791 	/*
792 	 * Search through routes associated with node to
793 	 * insert new route according to index.
794 	 * Need same criteria as when sorting dupedkeys to avoid
795 	 * double loop on deletion.
796 	 */
797 	for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) {
798 		if (m->rm_bit < b_leaf)
799 			continue;
800 		if (m->rm_bit > b_leaf)
801 			break;
802 		if (m->rm_flags & RNF_NORMAL) {
803 			mmask = m->rm_leaf->rn_mask;
804 			if (tt->rn_flags & RNF_NORMAL) {
805 #ifdef	_KERNEL
806 				cmn_err(CE_WARN, "Non-unique normal route, "
807 				    "mask not entered\n");
808 #else
809 				syslog(LOG_ERR, "Non-unique normal route, "
810 				    "mask not entered\n");
811 #endif	/* _KERNEL */
812 				return (tt);
813 			}
814 		} else
815 			mmask = m->rm_mask;
816 		if (mmask == netmask) {
817 			m->rm_refs++;
818 			tt->rn_mklist = m;
819 			return (tt);
820 		}
821 		if (rn_refines(netmask, mmask) ||
822 		    rn_lexobetter(netmask, mmask))
823 			break;
824 	}
825 	*mp = rn_new_radix_mask(tt, *mp);
826 	return (tt);
827 }
828 
829 static struct radix_node *
830 rn_delete(v_arg, netmask_arg, head)
831 	void *v_arg, *netmask_arg;
832 	struct radix_node_head *head;
833 {
834 	struct radix_node *t, *p, *x, *tt;
835 	struct radix_mask *m, *saved_m, **mp;
836 	struct radix_node *dupedkey, *saved_tt, *top;
837 	caddr_t v, netmask;
838 	int b, head_off, vlen;
839 
840 	v = v_arg;
841 	netmask = netmask_arg;
842 	x = head->rnh_treetop;
843 	tt = rn_search(v, x);
844 	head_off = x->rn_offset;
845 	vlen =  LEN(v);
846 	saved_tt = tt;
847 	top = x;
848 	if (tt == 0 ||
849 	    bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
850 		return (0);
851 	/*
852 	 * Delete our route from mask lists.
853 	 */
854 	if (netmask) {
855 		if ((x = rn_addmask(netmask, 1, head_off)) == 0)
856 			return (0);
857 		netmask = x->rn_key;
858 		while (tt->rn_mask != netmask)
859 			if ((tt = tt->rn_dupedkey) == 0)
860 				return (0);
861 	}
862 	if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
863 		goto on1;
864 	if (tt->rn_flags & RNF_NORMAL) {
865 		if (m->rm_leaf != tt || m->rm_refs > 0) {
866 #ifdef	_KERNEL
867 			cmn_err(CE_WARN,
868 			    "rn_delete: inconsistent annotation\n");
869 #else
870 			syslog(LOG_ERR, "rn_delete: inconsistent annotation\n");
871 #endif	/* _KERNEL */
872 			return (0);  /* dangling ref could cause disaster */
873 		}
874 	} else {
875 		if (m->rm_mask != tt->rn_mask) {
876 #ifdef	_KERNEL
877 			cmn_err(CE_WARN,
878 			    "rn_delete: inconsistent annotation 2\n");
879 #else
880 			syslog(LOG_ERR,
881 			    "rn_delete: inconsistent annotation 2\n");
882 #endif	/* _KERNEL */
883 			goto on1;
884 		}
885 		if (--m->rm_refs >= 0)
886 			goto on1;
887 	}
888 	b = -1 - tt->rn_bit;
889 	t = saved_tt->rn_parent;
890 	if (b > t->rn_bit)
891 		goto on1; /* Wasn't lifted at all */
892 	do {
893 		x = t;
894 		t = t->rn_parent;
895 	} while (b <= t->rn_bit && x != top);
896 	for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
897 		if (m == saved_m) {
898 			*mp = m->rm_mklist;
899 			MKFree(m);
900 			break;
901 		}
902 	if (m == 0) {
903 #ifdef	_KERNEL
904 		cmn_err(CE_WARN, "rn_delete: couldn't find our annotation\n");
905 #else
906 		syslog(LOG_ERR, "rn_delete: couldn't find our annotation\n");
907 #endif	/* _KERNEL */
908 		if (tt->rn_flags & RNF_NORMAL)
909 			return (0); /* Dangling ref to us */
910 	}
911 on1:
912 	/*
913 	 * Eliminate us from tree
914 	 */
915 	if (tt->rn_flags & RNF_ROOT)
916 		return (0);
917 	t = tt->rn_parent;
918 	dupedkey = saved_tt->rn_dupedkey;
919 	if (dupedkey) {
920 		/*
921 		 * Here, tt is the deletion target and
922 		 * saved_tt is the head of the dupekey chain.
923 		 */
924 		if (tt == saved_tt) {
925 			/* remove from head of chain */
926 			x = dupedkey; x->rn_parent = t;
927 			if (t->rn_left == tt)
928 				t->rn_left = x;
929 			else
930 				t->rn_right = x;
931 		} else {
932 			/* find node in front of tt on the chain */
933 			for (x = p = saved_tt; p && p->rn_dupedkey != tt; )
934 				p = p->rn_dupedkey;
935 			if (p) {
936 				p->rn_dupedkey = tt->rn_dupedkey;
937 				if (tt->rn_dupedkey)		/* parent */
938 					tt->rn_dupedkey->rn_parent = p;
939 								/* parent */
940 			} else
941 #ifdef	_KERNEL
942 				cmn_err(CE_WARN,
943 				    "rn_delete: couldn't find us\n");
944 #else
945 				syslog(LOG_ERR,
946 				    "rn_delete: couldn't find us\n");
947 #endif	/* _KERNEL */
948 		}
949 		t = tt + 1;
950 		if (t->rn_flags & RNF_ACTIVE) {
951 			*++x = *t;
952 			p = t->rn_parent;
953 			if (p->rn_left == t)
954 				p->rn_left = x;
955 			else
956 				p->rn_right = x;
957 			x->rn_left->rn_parent = x;
958 			x->rn_right->rn_parent = x;
959 		}
960 		goto out;
961 	}
962 	if (t->rn_left == tt)
963 		x = t->rn_right;
964 	else
965 		x = t->rn_left;
966 	p = t->rn_parent;
967 	if (p->rn_right == t)
968 		p->rn_right = x;
969 	else
970 		p->rn_left = x;
971 	x->rn_parent = p;
972 	/*
973 	 * Demote routes attached to us.
974 	 */
975 	if (t->rn_mklist) {
976 		if (x->rn_bit >= 0) {
977 			for (mp = &x->rn_mklist; (m = *mp) != NULL; )
978 				mp = &m->rm_mklist;
979 			*mp = t->rn_mklist;
980 		} else {
981 			/*
982 			 * If there are any key,mask pairs in a sibling
983 			 * duped-key chain, some subset will appear sorted
984 			 * in the same order attached to our mklist
985 			 */
986 			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
987 				if (m == x->rn_mklist) {
988 					struct radix_mask *mm = m->rm_mklist;
989 					x->rn_mklist = 0;
990 					if (--(m->rm_refs) < 0)
991 						MKFree(m);
992 					m = mm;
993 				}
994 			if (m)
995 #ifdef	_KERNEL
996 				cmn_err(CE_WARN,
997 				    "rn_delete: Orphaned Mask %p at %p\n",
998 				    (void *)m, (void *)x);
999 #else
1000 				syslog(LOG_ERR,
1001 				    "rn_delete: Orphaned Mask %p at %p\n",
1002 				    (void *)m, (void *)x);
1003 #endif	/* _KERNEL */
1004 		}
1005 	}
1006 	/*
1007 	 * We may be holding an active internal node in the tree.
1008 	 */
1009 	x = tt + 1;
1010 	if (t != x) {
1011 		*t = *x;
1012 		t->rn_left->rn_parent = t;
1013 		t->rn_right->rn_parent = t;
1014 		p = x->rn_parent;
1015 		if (p->rn_left == x)
1016 			p->rn_left = t;
1017 		else
1018 			p->rn_right = t;
1019 	}
1020 out:
1021 	tt->rn_flags &= ~RNF_ACTIVE;
1022 	tt[1].rn_flags &= ~RNF_ACTIVE;
1023 	return (tt);
1024 }
1025 
1026 /*
1027  * Walk the radix tree; For the kernel routing table, we hold additional
1028  * refs on the ire_bucket to ensure that the walk function f() does not
1029  * run into trashed memory. The kernel routing table is identified by
1030  * a rnh_treetop that has RNF_SUNW_FT set in the rn_flags.
1031  * Note that all refs takein in rn_walktree are released before it returns,
1032  * so that f() will need to take any additional references on memory
1033  * to be passed back to the caller of rn_walktree.
1034  */
1035 static int
1036 rn_walktree(h, f, w)
1037 	struct radix_node_head *h;
1038 	walktree_f_t *f;
1039 	void *w;
1040 {
1041 	int error;
1042 	struct radix_node *base, *next;
1043 	struct radix_node *rn = h->rnh_treetop;
1044 	boolean_t is_ftable = B_FALSE;
1045 
1046 	if (h->rnh_treetop->rn_flags & RNF_SUNW_FT) {
1047 		/*
1048 		 * this is a kernel ip ftable with rt_t leaf structures.
1049 		 */
1050 		is_ftable = B_TRUE;
1051 	}
1052 	/*
1053 	 * This gets complicated because we may delete the node
1054 	 * while applying the function f to it, so we need to calculate
1055 	 * the successor node in advance.
1056 	 */
1057 	RADIX_NODE_HEAD_RLOCK(h);
1058 	/* First time through node, go left */
1059 	while (rn->rn_bit >= 0) {
1060 		rn = rn->rn_left;
1061 	}
1062 
1063 	if (is_ftable)
1064 		IRB_REFHOLD_RN(rn);
1065 
1066 	for (;;) {
1067 		base = rn;
1068 		/* If at right child go back up, otherwise, go right */
1069 		while (rn->rn_parent->rn_right == rn &&
1070 		    (rn->rn_flags & RNF_ROOT) == 0) {
1071 			rn = rn->rn_parent;
1072 		}
1073 		/* Find the next *leaf* since next node might vanish, too */
1074 		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0; ) {
1075 			rn = rn->rn_left;
1076 		}
1077 		next = rn;
1078 
1079 		if (is_ftable && next != NULL)
1080 			IRB_REFHOLD_RN(next);
1081 
1082 		/* Process leaves */
1083 		while ((rn = base) != NULL) {
1084 			base = rn->rn_dupedkey;
1085 
1086 			if (is_ftable && base != NULL)
1087 				IRB_REFHOLD_RN(base);
1088 
1089 			RADIX_NODE_HEAD_UNLOCK(h);
1090 			if (!(rn->rn_flags & RNF_ROOT) &&
1091 			    (error = (*f)(rn, w))) {
1092 				if (is_ftable) {
1093 					if (rn != NULL)
1094 						IRB_REFRELE_RN(rn);
1095 					if (base != NULL)
1096 						IRB_REFRELE_RN(base);
1097 					if (next != NULL)
1098 						IRB_REFRELE_RN(next);
1099 				}
1100 				return (error);
1101 			}
1102 			if (is_ftable && rn != NULL)
1103 				IRB_REFRELE_RN(rn);
1104 			RADIX_NODE_HEAD_RLOCK(h);
1105 		}
1106 		rn = next;
1107 		if (rn->rn_flags & RNF_ROOT) {
1108 			RADIX_NODE_HEAD_UNLOCK(h);
1109 			return (0);
1110 		}
1111 	}
1112 	/* NOTREACHED */
1113 }
1114 
1115 /*
1116  * Allocate and initialize an empty tree. This has 3 nodes, which are
1117  * part of the radix_node_head (in the order <left,root,right>) and are
1118  * marked RNF_ROOT so they cannot be freed.
1119  * The leaves have all-zero and all-one keys, with significant
1120  * bits starting at 'off'.
1121  * Return 1 on success, 0 on error.
1122  */
1123 int
1124 rn_inithead(head, off)
1125 	void **head;
1126 	int off;
1127 {
1128 	struct radix_node_head *rnh;
1129 	struct radix_node *t, *tt, *ttt;
1130 	if (*head)
1131 		return (1);
1132 	R_ZallocSleep(rnh, struct radix_node_head *, sizeof (*rnh));
1133 	if (rnh == 0)
1134 		return (0);
1135 #ifdef _KERNEL
1136 	RADIX_NODE_HEAD_LOCK_INIT(rnh);
1137 #endif
1138 	*head = rnh;
1139 	t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1140 	ttt = rnh->rnh_nodes + 2;
1141 	t->rn_right = ttt;
1142 	t->rn_parent = t;
1143 	tt = t->rn_left;	/* ... which in turn is rnh->rnh_nodes */
1144 	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1145 	tt->rn_bit = -1 - off;
1146 	*ttt = *tt;
1147 	ttt->rn_key = rn_ones;
1148 	rnh->rnh_addaddr = rn_addroute;
1149 	rnh->rnh_deladdr = rn_delete;
1150 	rnh->rnh_matchaddr = rn_match;
1151 	rnh->rnh_matchaddr_args = rn_match_args;
1152 	rnh->rnh_lookup = rn_lookup;
1153 	rnh->rnh_walktree = rn_walktree;
1154 	rnh->rnh_walktree_from = NULL;  /* not implemented */
1155 	rnh->rnh_treetop = t;
1156 	return (1);
1157 }
1158 
1159 void
1160 rn_init()
1161 {
1162 	char *cp, *cplim;
1163 
1164 #ifdef	_KERNEL
1165 	radix_mask_cache = kmem_cache_create("radix_mask",
1166 	    sizeof (struct radix_mask), 0, NULL, NULL, NULL, NULL, NULL, 0);
1167 	radix_node_cache = kmem_cache_create("radix_node",
1168 	    max_keylen + 2 * sizeof (struct radix_node),
1169 	    0, NULL, NULL, NULL, NULL, NULL, 0);
1170 #endif /* _KERNEL */
1171 	R_ZallocSleep(rn_zeros, char *, 2 * max_keylen);
1172 
1173 	ASSERT(rn_zeros != NULL);
1174 	bzero(rn_zeros, 2 * max_keylen);
1175 	rn_ones = cp = rn_zeros + max_keylen;
1176 	cplim = rn_ones + max_keylen;
1177 	while (cp < cplim)
1178 		*cp++ = -1;
1179 	if (rn_inithead((void **)(void *)&mask_rnhead, 0) == 0)
1180 		panic("rn_init: could not init mask_rnhead ");
1181 }
1182 
1183 int
1184 rn_freenode(n, p)
1185 	struct radix_node *n;
1186 	void *p;
1187 {
1188 	struct	radix_node_head *rnh = p;
1189 	struct	radix_node *d;
1190 
1191 	d = rnh->rnh_deladdr(n->rn_key, NULL, rnh);
1192 	if (d != NULL) {
1193 		Free(d, radix_node_cache);
1194 	}
1195 	return (0);
1196 }
1197 
1198 
1199 void
1200 rn_freehead(rnh)
1201 	struct radix_node_head *rnh;
1202 {
1203 	(void) rn_walktree(rnh, rn_freenode, rnh);
1204 
1205 	rnh->rnh_addaddr = NULL;
1206 	rnh->rnh_deladdr = NULL;
1207 	rnh->rnh_matchaddr = NULL;
1208 	rnh->rnh_lookup = NULL;
1209 	rnh->rnh_walktree = NULL;
1210 
1211 #ifdef	_KERNEL
1212 	FreeHead(rnh, sizeof (*rnh));
1213 #else
1214 	Free(rnh, NULL);
1215 #endif	/* _KERNEL */
1216 }
1217 
1218 void
1219 rn_fini()
1220 {
1221 	struct radix_mask *m;
1222 
1223 	if (rn_zeros != NULL) {
1224 #ifdef _KERNEL
1225 		FreeHead(rn_zeros, 2 * max_keylen);
1226 #else
1227 		Free(rn_zeros, NULL);
1228 #endif
1229 		rn_zeros = NULL;
1230 	}
1231 
1232 
1233 	if (mask_rnhead != NULL) {
1234 		rn_freehead(mask_rnhead);
1235 		mask_rnhead = NULL;
1236 	}
1237 
1238 	while ((m = rn_mkfreelist) != NULL) {
1239 		rn_mkfreelist = m->rm_mklist;
1240 		Free(m, NULL);
1241 	}
1242 }
1243