xref: /titanic_50/usr/src/common/crypto/skein/skein_block.c (revision 510e1dfa571885fb77ed3b53c30c28cbff59ef08)
1 /*
2  * Implementation of the Skein block functions.
3  * Source code author: Doug Whiting, 2008.
4  * This algorithm and source code is released to the public domain.
5  * Compile-time switches:
6  *  SKEIN_USE_ASM  -- set bits (256/512/1024) to select which
7  *                    versions use ASM code for block processing
8  *                    [default: use C for all block sizes]
9  */
10 /* Copyright 2013 Doug Whiting. This code is released to the public domain. */
11 
12 #include <sys/skein.h>
13 #include "skein_impl.h"
14 
15 #ifndef	SKEIN_USE_ASM
16 #define	SKEIN_USE_ASM	(0)	/* default is all C code (no ASM) */
17 #endif
18 
19 #ifndef	SKEIN_LOOP
20 #define	SKEIN_LOOP 001		/* default: unroll 256 and 512, but not 1024 */
21 #endif
22 
23 /* some useful definitions for code here */
24 #define	BLK_BITS	(WCNT*64)
25 #define	KW_TWK_BASE	(0)
26 #define	KW_KEY_BASE	(3)
27 #define	ks		(kw + KW_KEY_BASE)
28 #define	ts		(kw + KW_TWK_BASE)
29 
30 /* no debugging in Illumos version */
31 #define	DebugSaveTweak(ctx)
32 
33 /* Skein_256 */
34 #if	!(SKEIN_USE_ASM & 256)
35 void
36 Skein_256_Process_Block(Skein_256_Ctxt_t *ctx, const uint8_t *blkPtr,
37     size_t blkCnt, size_t byteCntAdd)
38 {				/* do it in C */
39 	enum {
40 		WCNT = SKEIN_256_STATE_WORDS
41 	};
42 #undef  RCNT
43 #define	RCNT  (SKEIN_256_ROUNDS_TOTAL / 8)
44 
45 #ifdef	SKEIN_LOOP		/* configure how much to unroll the loop */
46 #define	SKEIN_UNROLL_256 (((SKEIN_LOOP) / 100) % 10)
47 #else
48 #define	SKEIN_UNROLL_256 (0)
49 #endif
50 
51 #if	SKEIN_UNROLL_256
52 #if	(RCNT % SKEIN_UNROLL_256)
53 #error "Invalid SKEIN_UNROLL_256"	/* sanity check on unroll count */
54 #endif
55 	size_t r;
56 	/* key schedule words : chaining vars + tweak + "rotation" */
57 	uint64_t kw[WCNT + 4 + RCNT * 2];
58 #else
59 	uint64_t kw[WCNT + 4];	/* key schedule words : chaining vars + tweak */
60 #endif
61 	/* local copy of context vars, for speed */
62 	uint64_t X0, X1, X2, X3;
63 	uint64_t w[WCNT];		/* local copy of input block */
64 #ifdef	SKEIN_DEBUG
65 	/* use for debugging (help compiler put Xn in registers) */
66 	const uint64_t *Xptr[4];
67 	Xptr[0] = &X0;
68 	Xptr[1] = &X1;
69 	Xptr[2] = &X2;
70 	Xptr[3] = &X3;
71 #endif
72 	Skein_assert(blkCnt != 0);	/* never call with blkCnt == 0! */
73 	ts[0] = ctx->h.T[0];
74 	ts[1] = ctx->h.T[1];
75 	do {
76 		/*
77 		 * this implementation only supports 2**64 input bytes
78 		 * (no carry out here)
79 		 */
80 		ts[0] += byteCntAdd;	/* update processed length */
81 
82 		/* precompute the key schedule for this block */
83 		ks[0] = ctx->X[0];
84 		ks[1] = ctx->X[1];
85 		ks[2] = ctx->X[2];
86 		ks[3] = ctx->X[3];
87 		ks[4] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^ SKEIN_KS_PARITY;
88 
89 		ts[2] = ts[0] ^ ts[1];
90 
91 		/* get input block in little-endian format */
92 		Skein_Get64_LSB_First(w, blkPtr, WCNT);
93 		DebugSaveTweak(ctx);
94 		Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blkPtr, w, ks, ts);
95 
96 		X0 = w[0] + ks[0];	/* do the first full key injection */
97 		X1 = w[1] + ks[1] + ts[0];
98 		X2 = w[2] + ks[2] + ts[1];
99 		X3 = w[3] + ks[3];
100 
101 		Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL,
102 		    Xptr);	/* show starting state values */
103 
104 		blkPtr += SKEIN_256_BLOCK_BYTES;
105 
106 		/* run the rounds */
107 
108 #define	Round256(p0, p1, p2, p3, ROT, rNum)                          \
109     X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0; \
110     X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2; \
111 
112 #if	SKEIN_UNROLL_256 == 0
113 #define	R256(p0, p1, p2, p3, ROT, rNum)		/* fully unrolled */	\
114     Round256(p0, p1, p2, p3, ROT, rNum)					\
115     Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rNum, Xptr);
116 
117 #define	I256(R)								\
118     X0 += ks[((R) + 1) % 5];	/* inject the key schedule value */	\
119     X1 += ks[((R) + 2) % 5] + ts[((R) + 1) % 3];			\
120     X2 += ks[((R) + 3) % 5] + ts[((R) + 2) % 3];			\
121     X3 += ks[((R) + 4) % 5] + (R) + 1;					\
122     Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
123 #else				/* looping version */
124 #define	R256(p0, p1, p2, p3, ROT, rNum)                             \
125     Round256(p0, p1, p2, p3, ROT, rNum)                             \
126     Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rNum, Xptr);
127 
128 #define	I256(R)								\
129 	X0 += ks[r + (R) + 0];	/* inject the key schedule value */	\
130 	X1 += ks[r + (R) + 1] + ts[r + (R) + 0];			\
131 	X2 += ks[r + (R) + 2] + ts[r + (R) + 1];			\
132 	X3 += ks[r + (R) + 3] + r + (R);				\
133 	ks[r + (R) + 4] = ks[r + (R) - 1];   /* rotate key schedule */	\
134     ts[r + (R) + 2] = ts[r + (R) - 1];					\
135     Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
136 
137 		/* loop thru it */
138 		for (r = 1; r < 2 * RCNT; r += 2 * SKEIN_UNROLL_256)
139 #endif
140 		{
141 #define	R256_8_rounds(R)                         \
142 	R256(0, 1, 2, 3, R_256_0, 8 * (R) + 1);  \
143 	R256(0, 3, 2, 1, R_256_1, 8 * (R) + 2);  \
144 	R256(0, 1, 2, 3, R_256_2, 8 * (R) + 3);  \
145 	R256(0, 3, 2, 1, R_256_3, 8 * (R) + 4);  \
146 	I256(2 * (R));                           \
147 	R256(0, 1, 2, 3, R_256_4, 8 * (R) + 5);  \
148 	R256(0, 3, 2, 1, R_256_5, 8 * (R) + 6);  \
149 	R256(0, 1, 2, 3, R_256_6, 8 * (R) + 7);  \
150 	R256(0, 3, 2, 1, R_256_7, 8 * (R) + 8);  \
151 	I256(2 * (R) + 1);
152 
153 			R256_8_rounds(0);
154 
155 #define	R256_Unroll_R(NN) \
156 	((SKEIN_UNROLL_256 == 0 && SKEIN_256_ROUNDS_TOTAL / 8 > (NN)) || \
157 	(SKEIN_UNROLL_256 > (NN)))
158 
159 #if	R256_Unroll_R(1)
160 			R256_8_rounds(1);
161 #endif
162 #if	R256_Unroll_R(2)
163 			R256_8_rounds(2);
164 #endif
165 #if	R256_Unroll_R(3)
166 			R256_8_rounds(3);
167 #endif
168 #if	R256_Unroll_R(4)
169 			R256_8_rounds(4);
170 #endif
171 #if	R256_Unroll_R(5)
172 			R256_8_rounds(5);
173 #endif
174 #if	R256_Unroll_R(6)
175 			R256_8_rounds(6);
176 #endif
177 #if	R256_Unroll_R(7)
178 			R256_8_rounds(7);
179 #endif
180 #if	R256_Unroll_R(8)
181 			R256_8_rounds(8);
182 #endif
183 #if	R256_Unroll_R(9)
184 			R256_8_rounds(9);
185 #endif
186 #if	R256_Unroll_R(10)
187 			R256_8_rounds(10);
188 #endif
189 #if	R256_Unroll_R(11)
190 			R256_8_rounds(11);
191 #endif
192 #if	R256_Unroll_R(12)
193 			R256_8_rounds(12);
194 #endif
195 #if	R256_Unroll_R(13)
196 			R256_8_rounds(13);
197 #endif
198 #if	R256_Unroll_R(14)
199 			R256_8_rounds(14);
200 #endif
201 #if	(SKEIN_UNROLL_256 > 14)
202 #error  "need more unrolling in Skein_256_Process_Block"
203 #endif
204 		}
205 		/*
206 		 * do the final "feedforward" xor, update context chaining vars
207 		 */
208 		ctx->X[0] = X0 ^ w[0];
209 		ctx->X[1] = X1 ^ w[1];
210 		ctx->X[2] = X2 ^ w[2];
211 		ctx->X[3] = X3 ^ w[3];
212 
213 		Skein_Show_Round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X);
214 
215 		ts[1] &= ~SKEIN_T1_FLAG_FIRST;
216 	}
217 	while (--blkCnt);
218 	ctx->h.T[0] = ts[0];
219 	ctx->h.T[1] = ts[1];
220 }
221 
222 #if	defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
223 size_t
224 Skein_256_Process_Block_CodeSize(void)
225 {
226 	return ((uint8_t *)Skein_256_Process_Block_CodeSize) -
227 	    ((uint8_t *)Skein_256_Process_Block);
228 }
229 
230 uint_t
231 Skein_256_Unroll_Cnt(void)
232 {
233 	return (SKEIN_UNROLL_256);
234 }
235 #endif
236 #endif
237 
238 /* Skein_512 */
239 #if	!(SKEIN_USE_ASM & 512)
240 void
241 Skein_512_Process_Block(Skein_512_Ctxt_t *ctx, const uint8_t *blkPtr,
242     size_t blkCnt, size_t byteCntAdd)
243 {				/* do it in C */
244 	enum {
245 		WCNT = SKEIN_512_STATE_WORDS
246 	};
247 #undef  RCNT
248 #define	RCNT  (SKEIN_512_ROUNDS_TOTAL / 8)
249 
250 #ifdef	SKEIN_LOOP		/* configure how much to unroll the loop */
251 #define	SKEIN_UNROLL_512 (((SKEIN_LOOP) / 10) % 10)
252 #else
253 #define	SKEIN_UNROLL_512 (0)
254 #endif
255 
256 #if	SKEIN_UNROLL_512
257 #if	(RCNT % SKEIN_UNROLL_512)
258 #error "Invalid SKEIN_UNROLL_512"	/* sanity check on unroll count */
259 #endif
260 	size_t r;
261 	/* key schedule words : chaining vars + tweak + "rotation" */
262 	uint64_t kw[WCNT + 4 + RCNT * 2];
263 #else
264 	uint64_t kw[WCNT + 4];	/* key schedule words : chaining vars + tweak */
265 #endif
266 	/* local copy of vars, for speed */
267 	uint64_t X0, X1, X2, X3, X4, X5, X6, X7;
268 	uint64_t w[WCNT];		/* local copy of input block */
269 #ifdef	SKEIN_DEBUG
270 	/* use for debugging (help compiler put Xn in registers) */
271 	const uint64_t *Xptr[8];
272 	Xptr[0] = &X0;
273 	Xptr[1] = &X1;
274 	Xptr[2] = &X2;
275 	Xptr[3] = &X3;
276 	Xptr[4] = &X4;
277 	Xptr[5] = &X5;
278 	Xptr[6] = &X6;
279 	Xptr[7] = &X7;
280 #endif
281 
282 	Skein_assert(blkCnt != 0);	/* never call with blkCnt == 0! */
283 	ts[0] = ctx->h.T[0];
284 	ts[1] = ctx->h.T[1];
285 	do {
286 		/*
287 		 * this implementation only supports 2**64 input bytes
288 		 * (no carry out here)
289 		 */
290 		ts[0] += byteCntAdd;	/* update processed length */
291 
292 		/* precompute the key schedule for this block */
293 		ks[0] = ctx->X[0];
294 		ks[1] = ctx->X[1];
295 		ks[2] = ctx->X[2];
296 		ks[3] = ctx->X[3];
297 		ks[4] = ctx->X[4];
298 		ks[5] = ctx->X[5];
299 		ks[6] = ctx->X[6];
300 		ks[7] = ctx->X[7];
301 		ks[8] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^
302 		    ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^ SKEIN_KS_PARITY;
303 
304 		ts[2] = ts[0] ^ ts[1];
305 
306 		/* get input block in little-endian format */
307 		Skein_Get64_LSB_First(w, blkPtr, WCNT);
308 		DebugSaveTweak(ctx);
309 		Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blkPtr, w, ks, ts);
310 
311 		X0 = w[0] + ks[0];	/* do the first full key injection */
312 		X1 = w[1] + ks[1];
313 		X2 = w[2] + ks[2];
314 		X3 = w[3] + ks[3];
315 		X4 = w[4] + ks[4];
316 		X5 = w[5] + ks[5] + ts[0];
317 		X6 = w[6] + ks[6] + ts[1];
318 		X7 = w[7] + ks[7];
319 
320 		blkPtr += SKEIN_512_BLOCK_BYTES;
321 
322 		Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL,
323 		    Xptr);
324 		/* run the rounds */
325 #define	Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum)		\
326 	X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0;\
327 	X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2;\
328 	X##p4 += X##p5; X##p5 = RotL_64(X##p5, ROT##_2); X##p5 ^= X##p4;\
329 	X##p6 += X##p7; X##p7 = RotL_64(X##p7, ROT##_3); X##p7 ^= X##p6;
330 
331 #if	SKEIN_UNROLL_512 == 0
332 #define	R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum)	/* unrolled */	\
333 	Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum)		\
334 	Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rNum, Xptr);
335 
336 #define	I512(R)								\
337 	X0 += ks[((R) + 1) % 9];	/* inject the key schedule value */\
338 	X1 += ks[((R) + 2) % 9];					\
339 	X2 += ks[((R) + 3) % 9];					\
340 	X3 += ks[((R) + 4) % 9];					\
341 	X4 += ks[((R) + 5) % 9];					\
342 	X5 += ks[((R) + 6) % 9] + ts[((R) + 1) % 3];			\
343 	X6 += ks[((R) + 7) % 9] + ts[((R) + 2) % 3];			\
344 	X7 += ks[((R) + 8) % 9] + (R) + 1;				\
345 	Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
346 #else				/* looping version */
347 #define	R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum)			\
348 	Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum)		\
349 	Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rNum, Xptr);
350 
351 #define	I512(R)								\
352 	X0 += ks[r + (R) + 0];	/* inject the key schedule value */	\
353 	X1 += ks[r + (R) + 1];						\
354 	X2 += ks[r + (R) + 2];						\
355 	X3 += ks[r + (R) + 3];						\
356 	X4 += ks[r + (R) + 4];						\
357 	X5 += ks[r + (R) + 5] + ts[r + (R) + 0];			\
358 	X6 += ks[r + (R) + 6] + ts[r + (R) + 1];			\
359 	X7 += ks[r + (R) + 7] + r + (R);				\
360 	ks[r + (R)+8] = ks[r + (R) - 1];	/* rotate key schedule */\
361 	ts[r + (R)+2] = ts[r + (R) - 1];				\
362 	Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
363 
364 		/* loop thru it */
365 		for (r = 1; r < 2 * RCNT; r += 2 * SKEIN_UNROLL_512)
366 #endif				/* end of looped code definitions */
367 		{
368 #define	R512_8_rounds(R)	/* do 8 full rounds */			\
369 	R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_0, 8 * (R) + 1);		\
370 	R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_1, 8 * (R) + 2);		\
371 	R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_2, 8 * (R) + 3);		\
372 	R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_3, 8 * (R) + 4);		\
373 	I512(2 * (R));							\
374 	R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_4, 8 * (R) + 5);		\
375 	R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_5, 8 * (R) + 6);		\
376 	R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_6, 8 * (R) + 7);		\
377 	R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_7, 8 * (R) + 8);		\
378 	I512(2*(R) + 1);		/* and key injection */
379 
380 			R512_8_rounds(0);
381 
382 #define	R512_Unroll_R(NN) \
383 	((SKEIN_UNROLL_512 == 0 && SKEIN_512_ROUNDS_TOTAL / 8 > (NN)) || \
384 	(SKEIN_UNROLL_512 > (NN)))
385 
386 #if	R512_Unroll_R(1)
387 			R512_8_rounds(1);
388 #endif
389 #if	R512_Unroll_R(2)
390 			R512_8_rounds(2);
391 #endif
392 #if	R512_Unroll_R(3)
393 			R512_8_rounds(3);
394 #endif
395 #if	R512_Unroll_R(4)
396 			R512_8_rounds(4);
397 #endif
398 #if	R512_Unroll_R(5)
399 			R512_8_rounds(5);
400 #endif
401 #if	R512_Unroll_R(6)
402 			R512_8_rounds(6);
403 #endif
404 #if	R512_Unroll_R(7)
405 			R512_8_rounds(7);
406 #endif
407 #if	R512_Unroll_R(8)
408 			R512_8_rounds(8);
409 #endif
410 #if	R512_Unroll_R(9)
411 			R512_8_rounds(9);
412 #endif
413 #if	R512_Unroll_R(10)
414 			R512_8_rounds(10);
415 #endif
416 #if	R512_Unroll_R(11)
417 			R512_8_rounds(11);
418 #endif
419 #if	R512_Unroll_R(12)
420 			R512_8_rounds(12);
421 #endif
422 #if	R512_Unroll_R(13)
423 			R512_8_rounds(13);
424 #endif
425 #if	R512_Unroll_R(14)
426 			R512_8_rounds(14);
427 #endif
428 #if	(SKEIN_UNROLL_512 > 14)
429 #error "need more unrolling in Skein_512_Process_Block"
430 #endif
431 		}
432 
433 		/*
434 		 * do the final "feedforward" xor, update context chaining vars
435 		 */
436 		ctx->X[0] = X0 ^ w[0];
437 		ctx->X[1] = X1 ^ w[1];
438 		ctx->X[2] = X2 ^ w[2];
439 		ctx->X[3] = X3 ^ w[3];
440 		ctx->X[4] = X4 ^ w[4];
441 		ctx->X[5] = X5 ^ w[5];
442 		ctx->X[6] = X6 ^ w[6];
443 		ctx->X[7] = X7 ^ w[7];
444 		Skein_Show_Round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X);
445 
446 		ts[1] &= ~SKEIN_T1_FLAG_FIRST;
447 	}
448 	while (--blkCnt);
449 	ctx->h.T[0] = ts[0];
450 	ctx->h.T[1] = ts[1];
451 }
452 
453 #if	defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
454 size_t
455 Skein_512_Process_Block_CodeSize(void)
456 {
457 	return ((uint8_t *)Skein_512_Process_Block_CodeSize) -
458 	    ((uint8_t *)Skein_512_Process_Block);
459 }
460 
461 uint_t
462 Skein_512_Unroll_Cnt(void)
463 {
464 	return (SKEIN_UNROLL_512);
465 }
466 #endif
467 #endif
468 
469 /*  Skein1024 */
470 #if	!(SKEIN_USE_ASM & 1024)
471 void
472 Skein1024_Process_Block(Skein1024_Ctxt_t *ctx, const uint8_t *blkPtr,
473     size_t blkCnt, size_t byteCntAdd)
474 {
475 	/* do it in C, always looping (unrolled is bigger AND slower!) */
476 	enum {
477 		WCNT = SKEIN1024_STATE_WORDS
478 	};
479 #undef  RCNT
480 #define	RCNT  (SKEIN1024_ROUNDS_TOTAL/8)
481 
482 #ifdef	SKEIN_LOOP		/* configure how much to unroll the loop */
483 #define	SKEIN_UNROLL_1024 ((SKEIN_LOOP)%10)
484 #else
485 #define	SKEIN_UNROLL_1024 (0)
486 #endif
487 
488 #if	(SKEIN_UNROLL_1024 != 0)
489 #if	(RCNT % SKEIN_UNROLL_1024)
490 #error "Invalid SKEIN_UNROLL_1024"	/* sanity check on unroll count */
491 #endif
492 	size_t r;
493 	/* key schedule words : chaining vars + tweak + "rotation" */
494 	uint64_t kw[WCNT + 4 + RCNT * 2];
495 #else
496 	uint64_t kw[WCNT + 4];	/* key schedule words : chaining vars + tweak */
497 #endif
498 
499 	/* local copy of vars, for speed */
500 	uint64_t X00, X01, X02, X03, X04, X05, X06, X07, X08, X09, X10, X11,
501 	    X12, X13, X14, X15;
502 	uint64_t w[WCNT];		/* local copy of input block */
503 #ifdef	SKEIN_DEBUG
504 	/* use for debugging (help compiler put Xn in registers) */
505 	const uint64_t *Xptr[16];
506 	Xptr[0] = &X00;
507 	Xptr[1] = &X01;
508 	Xptr[2] = &X02;
509 	Xptr[3] = &X03;
510 	Xptr[4] = &X04;
511 	Xptr[5] = &X05;
512 	Xptr[6] = &X06;
513 	Xptr[7] = &X07;
514 	Xptr[8] = &X08;
515 	Xptr[9] = &X09;
516 	Xptr[10] = &X10;
517 	Xptr[11] = &X11;
518 	Xptr[12] = &X12;
519 	Xptr[13] = &X13;
520 	Xptr[14] = &X14;
521 	Xptr[15] = &X15;
522 #endif
523 
524 	Skein_assert(blkCnt != 0);	/* never call with blkCnt == 0! */
525 	ts[0] = ctx->h.T[0];
526 	ts[1] = ctx->h.T[1];
527 	do {
528 		/*
529 		 * this implementation only supports 2**64 input bytes
530 		 * (no carry out here)
531 		 */
532 		ts[0] += byteCntAdd;	/* update processed length */
533 
534 		/* precompute the key schedule for this block */
535 		ks[0] = ctx->X[0];
536 		ks[1] = ctx->X[1];
537 		ks[2] = ctx->X[2];
538 		ks[3] = ctx->X[3];
539 		ks[4] = ctx->X[4];
540 		ks[5] = ctx->X[5];
541 		ks[6] = ctx->X[6];
542 		ks[7] = ctx->X[7];
543 		ks[8] = ctx->X[8];
544 		ks[9] = ctx->X[9];
545 		ks[10] = ctx->X[10];
546 		ks[11] = ctx->X[11];
547 		ks[12] = ctx->X[12];
548 		ks[13] = ctx->X[13];
549 		ks[14] = ctx->X[14];
550 		ks[15] = ctx->X[15];
551 		ks[16] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^
552 		    ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^
553 		    ks[8] ^ ks[9] ^ ks[10] ^ ks[11] ^
554 		    ks[12] ^ ks[13] ^ ks[14] ^ ks[15] ^ SKEIN_KS_PARITY;
555 
556 		ts[2] = ts[0] ^ ts[1];
557 
558 		/* get input block in little-endian format */
559 		Skein_Get64_LSB_First(w, blkPtr, WCNT);
560 		DebugSaveTweak(ctx);
561 		Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blkPtr, w, ks, ts);
562 
563 		X00 = w[0] + ks[0];	/* do the first full key injection */
564 		X01 = w[1] + ks[1];
565 		X02 = w[2] + ks[2];
566 		X03 = w[3] + ks[3];
567 		X04 = w[4] + ks[4];
568 		X05 = w[5] + ks[5];
569 		X06 = w[6] + ks[6];
570 		X07 = w[7] + ks[7];
571 		X08 = w[8] + ks[8];
572 		X09 = w[9] + ks[9];
573 		X10 = w[10] + ks[10];
574 		X11 = w[11] + ks[11];
575 		X12 = w[12] + ks[12];
576 		X13 = w[13] + ks[13] + ts[0];
577 		X14 = w[14] + ks[14] + ts[1];
578 		X15 = w[15] + ks[15];
579 
580 		Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL,
581 		    Xptr);
582 
583 #define	Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC,	\
584 	pD, pE, pF, ROT, rNum)						\
585 	X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0;\
586 	X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2;\
587 	X##p4 += X##p5; X##p5 = RotL_64(X##p5, ROT##_2); X##p5 ^= X##p4;\
588 	X##p6 += X##p7; X##p7 = RotL_64(X##p7, ROT##_3); X##p7 ^= X##p6;\
589 	X##p8 += X##p9; X##p9 = RotL_64(X##p9, ROT##_4); X##p9 ^= X##p8;\
590 	X##pA += X##pB; X##pB = RotL_64(X##pB, ROT##_5); X##pB ^= X##pA;\
591 	X##pC += X##pD; X##pD = RotL_64(X##pD, ROT##_6); X##pD ^= X##pC;\
592 	X##pE += X##pF; X##pF = RotL_64(X##pF, ROT##_7); X##pF ^= X##pE;
593 
594 #if	SKEIN_UNROLL_1024 == 0
595 #define	R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD,	\
596 	pE, pF, ROT, rn)						\
597 	Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC,	\
598 	pD, pE, pF, ROT, rn)						\
599 	Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rn, Xptr);
600 
601 #define	I1024(R)							\
602 	X00 += ks[((R) + 1) % 17];	/* inject the key schedule value */\
603 	X01 += ks[((R) + 2) % 17];					\
604 	X02 += ks[((R) + 3) % 17];					\
605 	X03 += ks[((R) + 4) % 17];					\
606 	X04 += ks[((R) + 5) % 17];					\
607 	X05 += ks[((R) + 6) % 17];					\
608 	X06 += ks[((R) + 7) % 17];					\
609 	X07 += ks[((R) + 8) % 17];					\
610 	X08 += ks[((R) + 9) % 17];					\
611 	X09 += ks[((R) + 10) % 17];					\
612 	X10 += ks[((R) + 11) % 17];					\
613 	X11 += ks[((R) + 12) % 17];					\
614 	X12 += ks[((R) + 13) % 17];					\
615 	X13 += ks[((R) + 14) % 17] + ts[((R) + 1) % 3];			\
616 	X14 += ks[((R) + 15) % 17] + ts[((R) + 2) % 3];			\
617 	X15 += ks[((R) + 16) % 17] + (R) +1;				\
618 	Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
619 #else				/* looping version */
620 #define	R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD,	\
621 	pE, pF, ROT, rn)						\
622 	Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC,	\
623 	pD, pE, pF, ROT, rn)						\
624 	Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rn, Xptr);
625 
626 #define	I1024(R)							\
627 	X00 += ks[r + (R) + 0];	/* inject the key schedule value */	\
628 	X01 += ks[r + (R) + 1];						\
629 	X02 += ks[r + (R) + 2];						\
630 	X03 += ks[r + (R) + 3];						\
631 	X04 += ks[r + (R) + 4];						\
632 	X05 += ks[r + (R) + 5];						\
633 	X06 += ks[r + (R) + 6];						\
634 	X07 += ks[r + (R) + 7];						\
635 	X08 += ks[r + (R) + 8];						\
636 	X09 += ks[r + (R) + 9];						\
637 	X10 += ks[r + (R) + 10];					\
638 	X11 += ks[r + (R) + 11];					\
639 	X12 += ks[r + (R) + 12];					\
640 	X13 += ks[r + (R) + 13] + ts[r + (R) + 0];			\
641 	X14 += ks[r + (R) + 14] + ts[r + (R) + 1];			\
642 	X15 += ks[r + (R) + 15] +  r + (R);				\
643 	ks[r + (R) + 16] = ks[r + (R) - 1];	/* rotate key schedule */\
644 	ts[r + (R) + 2] = ts[r + (R) - 1];				\
645 	Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
646 
647 		/* loop thru it */
648 		for (r = 1; r <= 2 * RCNT; r += 2 * SKEIN_UNROLL_1024)
649 #endif
650 		{
651 #define	R1024_8_rounds(R)	/* do 8 full rounds */			\
652 	R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13,	\
653 	    14, 15, R1024_0, 8 * (R) + 1);				\
654 	R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, 05,	\
655 	    08, 01, R1024_1, 8 * (R) + 2);				\
656 	R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, 11,	\
657 	    10, 09, R1024_2, 8 * (R) + 3);				\
658 	R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, 03,	\
659 	    12, 07, R1024_3, 8 * (R) + 4);				\
660 	I1024(2 * (R));							\
661 	R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13,	\
662 	    14, 15, R1024_4, 8 * (R) + 5);				\
663 	R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, 05,	\
664 	    08, 01, R1024_5, 8 * (R) + 6);				\
665 	R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, 11,	\
666 	    10, 09, R1024_6, 8 * (R) + 7);				\
667 	R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, 03,	\
668 	    12, 07, R1024_7, 8 * (R) + 8);				\
669 	I1024(2 * (R) + 1);
670 
671 			R1024_8_rounds(0);
672 
673 #define	R1024_Unroll_R(NN)						\
674 	((SKEIN_UNROLL_1024 == 0 && SKEIN1024_ROUNDS_TOTAL/8 > (NN)) ||	\
675 	(SKEIN_UNROLL_1024 > (NN)))
676 
677 #if	R1024_Unroll_R(1)
678 			R1024_8_rounds(1);
679 #endif
680 #if	R1024_Unroll_R(2)
681 			R1024_8_rounds(2);
682 #endif
683 #if	R1024_Unroll_R(3)
684 			R1024_8_rounds(3);
685 #endif
686 #if	R1024_Unroll_R(4)
687 			R1024_8_rounds(4);
688 #endif
689 #if	R1024_Unroll_R(5)
690 			R1024_8_rounds(5);
691 #endif
692 #if	R1024_Unroll_R(6)
693 			R1024_8_rounds(6);
694 #endif
695 #if	R1024_Unroll_R(7)
696 			R1024_8_rounds(7);
697 #endif
698 #if	R1024_Unroll_R(8)
699 			R1024_8_rounds(8);
700 #endif
701 #if	R1024_Unroll_R(9)
702 			R1024_8_rounds(9);
703 #endif
704 #if	R1024_Unroll_R(10)
705 			R1024_8_rounds(10);
706 #endif
707 #if	R1024_Unroll_R(11)
708 			R1024_8_rounds(11);
709 #endif
710 #if	R1024_Unroll_R(12)
711 			R1024_8_rounds(12);
712 #endif
713 #if	R1024_Unroll_R(13)
714 			R1024_8_rounds(13);
715 #endif
716 #if	R1024_Unroll_R(14)
717 			R1024_8_rounds(14);
718 #endif
719 #if	(SKEIN_UNROLL_1024 > 14)
720 #error  "need more unrolling in Skein_1024_Process_Block"
721 #endif
722 		}
723 		/*
724 		 * do the final "feedforward" xor, update context chaining vars
725 		 */
726 
727 		ctx->X[0] = X00 ^ w[0];
728 		ctx->X[1] = X01 ^ w[1];
729 		ctx->X[2] = X02 ^ w[2];
730 		ctx->X[3] = X03 ^ w[3];
731 		ctx->X[4] = X04 ^ w[4];
732 		ctx->X[5] = X05 ^ w[5];
733 		ctx->X[6] = X06 ^ w[6];
734 		ctx->X[7] = X07 ^ w[7];
735 		ctx->X[8] = X08 ^ w[8];
736 		ctx->X[9] = X09 ^ w[9];
737 		ctx->X[10] = X10 ^ w[10];
738 		ctx->X[11] = X11 ^ w[11];
739 		ctx->X[12] = X12 ^ w[12];
740 		ctx->X[13] = X13 ^ w[13];
741 		ctx->X[14] = X14 ^ w[14];
742 		ctx->X[15] = X15 ^ w[15];
743 
744 		Skein_Show_Round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X);
745 
746 		ts[1] &= ~SKEIN_T1_FLAG_FIRST;
747 		blkPtr += SKEIN1024_BLOCK_BYTES;
748 	} while (--blkCnt);
749 	ctx->h.T[0] = ts[0];
750 	ctx->h.T[1] = ts[1];
751 }
752 
753 #if	defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
754 size_t
755 Skein1024_Process_Block_CodeSize(void)
756 {
757 	return ((uint8_t *)Skein1024_Process_Block_CodeSize) -
758 	    ((uint8_t *)Skein1024_Process_Block);
759 }
760 
761 uint_t
762 Skein1024_Unroll_Cnt(void)
763 {
764 	return (SKEIN_UNROLL_1024);
765 }
766 #endif
767 #endif
768