1*f9fbec18Smcpowers /*
2*f9fbec18Smcpowers * ***** BEGIN LICENSE BLOCK *****
3*f9fbec18Smcpowers * Version: MPL 1.1/GPL 2.0/LGPL 2.1
4*f9fbec18Smcpowers *
5*f9fbec18Smcpowers * The contents of this file are subject to the Mozilla Public License Version
6*f9fbec18Smcpowers * 1.1 (the "License"); you may not use this file except in compliance with
7*f9fbec18Smcpowers * the License. You may obtain a copy of the License at
8*f9fbec18Smcpowers * http://www.mozilla.org/MPL/
9*f9fbec18Smcpowers *
10*f9fbec18Smcpowers * Software distributed under the License is distributed on an "AS IS" basis,
11*f9fbec18Smcpowers * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
12*f9fbec18Smcpowers * for the specific language governing rights and limitations under the
13*f9fbec18Smcpowers * License.
14*f9fbec18Smcpowers *
15*f9fbec18Smcpowers * The Original Code is the elliptic curve math library for prime field curves.
16*f9fbec18Smcpowers *
17*f9fbec18Smcpowers * The Initial Developer of the Original Code is
18*f9fbec18Smcpowers * Sun Microsystems, Inc.
19*f9fbec18Smcpowers * Portions created by the Initial Developer are Copyright (C) 2003
20*f9fbec18Smcpowers * the Initial Developer. All Rights Reserved.
21*f9fbec18Smcpowers *
22*f9fbec18Smcpowers * Contributor(s):
23*f9fbec18Smcpowers * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
24*f9fbec18Smcpowers *
25*f9fbec18Smcpowers * Alternatively, the contents of this file may be used under the terms of
26*f9fbec18Smcpowers * either the GNU General Public License Version 2 or later (the "GPL"), or
27*f9fbec18Smcpowers * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
28*f9fbec18Smcpowers * in which case the provisions of the GPL or the LGPL are applicable instead
29*f9fbec18Smcpowers * of those above. If you wish to allow use of your version of this file only
30*f9fbec18Smcpowers * under the terms of either the GPL or the LGPL, and not to allow others to
31*f9fbec18Smcpowers * use your version of this file under the terms of the MPL, indicate your
32*f9fbec18Smcpowers * decision by deleting the provisions above and replace them with the notice
33*f9fbec18Smcpowers * and other provisions required by the GPL or the LGPL. If you do not delete
34*f9fbec18Smcpowers * the provisions above, a recipient may use your version of this file under
35*f9fbec18Smcpowers * the terms of any one of the MPL, the GPL or the LGPL.
36*f9fbec18Smcpowers *
37*f9fbec18Smcpowers * ***** END LICENSE BLOCK ***** */
38*f9fbec18Smcpowers /*
39*f9fbec18Smcpowers * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
40*f9fbec18Smcpowers * Use is subject to license terms.
41*f9fbec18Smcpowers *
42*f9fbec18Smcpowers * Sun elects to use this software under the MPL license.
43*f9fbec18Smcpowers */
44*f9fbec18Smcpowers
45*f9fbec18Smcpowers #pragma ident "%Z%%M% %I% %E% SMI"
46*f9fbec18Smcpowers
47*f9fbec18Smcpowers #include "ecp.h"
48*f9fbec18Smcpowers #include "mpi.h"
49*f9fbec18Smcpowers #include "mplogic.h"
50*f9fbec18Smcpowers #include "mpi-priv.h"
51*f9fbec18Smcpowers #ifndef _KERNEL
52*f9fbec18Smcpowers #include <stdlib.h>
53*f9fbec18Smcpowers #endif
54*f9fbec18Smcpowers
55*f9fbec18Smcpowers #define ECP224_DIGITS ECL_CURVE_DIGITS(224)
56*f9fbec18Smcpowers
57*f9fbec18Smcpowers /* Fast modular reduction for p224 = 2^224 - 2^96 + 1. a can be r. Uses
58*f9fbec18Smcpowers * algorithm 7 from Brown, Hankerson, Lopez, Menezes. Software
59*f9fbec18Smcpowers * Implementation of the NIST Elliptic Curves over Prime Fields. */
60*f9fbec18Smcpowers mp_err
ec_GFp_nistp224_mod(const mp_int * a,mp_int * r,const GFMethod * meth)61*f9fbec18Smcpowers ec_GFp_nistp224_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
62*f9fbec18Smcpowers {
63*f9fbec18Smcpowers mp_err res = MP_OKAY;
64*f9fbec18Smcpowers mp_size a_used = MP_USED(a);
65*f9fbec18Smcpowers
66*f9fbec18Smcpowers int r3b;
67*f9fbec18Smcpowers mp_digit carry;
68*f9fbec18Smcpowers #ifdef ECL_THIRTY_TWO_BIT
69*f9fbec18Smcpowers mp_digit a6a = 0, a6b = 0,
70*f9fbec18Smcpowers a5a = 0, a5b = 0, a4a = 0, a4b = 0, a3a = 0, a3b = 0;
71*f9fbec18Smcpowers mp_digit r0a, r0b, r1a, r1b, r2a, r2b, r3a;
72*f9fbec18Smcpowers #else
73*f9fbec18Smcpowers mp_digit a6 = 0, a5 = 0, a4 = 0, a3b = 0, a5a = 0;
74*f9fbec18Smcpowers mp_digit a6b = 0, a6a_a5b = 0, a5b = 0, a5a_a4b = 0, a4a_a3b = 0;
75*f9fbec18Smcpowers mp_digit r0, r1, r2, r3;
76*f9fbec18Smcpowers #endif
77*f9fbec18Smcpowers
78*f9fbec18Smcpowers /* reduction not needed if a is not larger than field size */
79*f9fbec18Smcpowers if (a_used < ECP224_DIGITS) {
80*f9fbec18Smcpowers if (a == r) return MP_OKAY;
81*f9fbec18Smcpowers return mp_copy(a, r);
82*f9fbec18Smcpowers }
83*f9fbec18Smcpowers /* for polynomials larger than twice the field size, use regular
84*f9fbec18Smcpowers * reduction */
85*f9fbec18Smcpowers if (a_used > ECL_CURVE_DIGITS(224*2)) {
86*f9fbec18Smcpowers MP_CHECKOK(mp_mod(a, &meth->irr, r));
87*f9fbec18Smcpowers } else {
88*f9fbec18Smcpowers #ifdef ECL_THIRTY_TWO_BIT
89*f9fbec18Smcpowers /* copy out upper words of a */
90*f9fbec18Smcpowers switch (a_used) {
91*f9fbec18Smcpowers case 14:
92*f9fbec18Smcpowers a6b = MP_DIGIT(a, 13);
93*f9fbec18Smcpowers case 13:
94*f9fbec18Smcpowers a6a = MP_DIGIT(a, 12);
95*f9fbec18Smcpowers case 12:
96*f9fbec18Smcpowers a5b = MP_DIGIT(a, 11);
97*f9fbec18Smcpowers case 11:
98*f9fbec18Smcpowers a5a = MP_DIGIT(a, 10);
99*f9fbec18Smcpowers case 10:
100*f9fbec18Smcpowers a4b = MP_DIGIT(a, 9);
101*f9fbec18Smcpowers case 9:
102*f9fbec18Smcpowers a4a = MP_DIGIT(a, 8);
103*f9fbec18Smcpowers case 8:
104*f9fbec18Smcpowers a3b = MP_DIGIT(a, 7);
105*f9fbec18Smcpowers }
106*f9fbec18Smcpowers r3a = MP_DIGIT(a, 6);
107*f9fbec18Smcpowers r2b= MP_DIGIT(a, 5);
108*f9fbec18Smcpowers r2a= MP_DIGIT(a, 4);
109*f9fbec18Smcpowers r1b = MP_DIGIT(a, 3);
110*f9fbec18Smcpowers r1a = MP_DIGIT(a, 2);
111*f9fbec18Smcpowers r0b = MP_DIGIT(a, 1);
112*f9fbec18Smcpowers r0a = MP_DIGIT(a, 0);
113*f9fbec18Smcpowers
114*f9fbec18Smcpowers
115*f9fbec18Smcpowers /* implement r = (a3a,a2,a1,a0)
116*f9fbec18Smcpowers +(a5a, a4,a3b, 0)
117*f9fbec18Smcpowers +( 0, a6,a5b, 0)
118*f9fbec18Smcpowers -( 0 0, 0|a6b, a6a|a5b )
119*f9fbec18Smcpowers -( a6b, a6a|a5b, a5a|a4b, a4a|a3b ) */
120*f9fbec18Smcpowers MP_ADD_CARRY (r1b, a3b, r1b, 0, carry);
121*f9fbec18Smcpowers MP_ADD_CARRY (r2a, a4a, r2a, carry, carry);
122*f9fbec18Smcpowers MP_ADD_CARRY (r2b, a4b, r2b, carry, carry);
123*f9fbec18Smcpowers MP_ADD_CARRY (r3a, a5a, r3a, carry, carry);
124*f9fbec18Smcpowers r3b = carry;
125*f9fbec18Smcpowers MP_ADD_CARRY (r1b, a5b, r1b, 0, carry);
126*f9fbec18Smcpowers MP_ADD_CARRY (r2a, a6a, r2a, carry, carry);
127*f9fbec18Smcpowers MP_ADD_CARRY (r2b, a6b, r2b, carry, carry);
128*f9fbec18Smcpowers MP_ADD_CARRY (r3a, 0, r3a, carry, carry);
129*f9fbec18Smcpowers r3b += carry;
130*f9fbec18Smcpowers MP_SUB_BORROW(r0a, a3b, r0a, 0, carry);
131*f9fbec18Smcpowers MP_SUB_BORROW(r0b, a4a, r0b, carry, carry);
132*f9fbec18Smcpowers MP_SUB_BORROW(r1a, a4b, r1a, carry, carry);
133*f9fbec18Smcpowers MP_SUB_BORROW(r1b, a5a, r1b, carry, carry);
134*f9fbec18Smcpowers MP_SUB_BORROW(r2a, a5b, r2a, carry, carry);
135*f9fbec18Smcpowers MP_SUB_BORROW(r2b, a6a, r2b, carry, carry);
136*f9fbec18Smcpowers MP_SUB_BORROW(r3a, a6b, r3a, carry, carry);
137*f9fbec18Smcpowers r3b -= carry;
138*f9fbec18Smcpowers MP_SUB_BORROW(r0a, a5b, r0a, 0, carry);
139*f9fbec18Smcpowers MP_SUB_BORROW(r0b, a6a, r0b, carry, carry);
140*f9fbec18Smcpowers MP_SUB_BORROW(r1a, a6b, r1a, carry, carry);
141*f9fbec18Smcpowers if (carry) {
142*f9fbec18Smcpowers MP_SUB_BORROW(r1b, 0, r1b, carry, carry);
143*f9fbec18Smcpowers MP_SUB_BORROW(r2a, 0, r2a, carry, carry);
144*f9fbec18Smcpowers MP_SUB_BORROW(r2b, 0, r2b, carry, carry);
145*f9fbec18Smcpowers MP_SUB_BORROW(r3a, 0, r3a, carry, carry);
146*f9fbec18Smcpowers r3b -= carry;
147*f9fbec18Smcpowers }
148*f9fbec18Smcpowers
149*f9fbec18Smcpowers while (r3b > 0) {
150*f9fbec18Smcpowers int tmp;
151*f9fbec18Smcpowers MP_ADD_CARRY(r1b, r3b, r1b, 0, carry);
152*f9fbec18Smcpowers if (carry) {
153*f9fbec18Smcpowers MP_ADD_CARRY(r2a, 0, r2a, carry, carry);
154*f9fbec18Smcpowers MP_ADD_CARRY(r2b, 0, r2b, carry, carry);
155*f9fbec18Smcpowers MP_ADD_CARRY(r3a, 0, r3a, carry, carry);
156*f9fbec18Smcpowers }
157*f9fbec18Smcpowers tmp = carry;
158*f9fbec18Smcpowers MP_SUB_BORROW(r0a, r3b, r0a, 0, carry);
159*f9fbec18Smcpowers if (carry) {
160*f9fbec18Smcpowers MP_SUB_BORROW(r0b, 0, r0b, carry, carry);
161*f9fbec18Smcpowers MP_SUB_BORROW(r1a, 0, r1a, carry, carry);
162*f9fbec18Smcpowers MP_SUB_BORROW(r1b, 0, r1b, carry, carry);
163*f9fbec18Smcpowers MP_SUB_BORROW(r2a, 0, r2a, carry, carry);
164*f9fbec18Smcpowers MP_SUB_BORROW(r2b, 0, r2b, carry, carry);
165*f9fbec18Smcpowers MP_SUB_BORROW(r3a, 0, r3a, carry, carry);
166*f9fbec18Smcpowers tmp -= carry;
167*f9fbec18Smcpowers }
168*f9fbec18Smcpowers r3b = tmp;
169*f9fbec18Smcpowers }
170*f9fbec18Smcpowers
171*f9fbec18Smcpowers while (r3b < 0) {
172*f9fbec18Smcpowers mp_digit maxInt = MP_DIGIT_MAX;
173*f9fbec18Smcpowers MP_ADD_CARRY (r0a, 1, r0a, 0, carry);
174*f9fbec18Smcpowers MP_ADD_CARRY (r0b, 0, r0b, carry, carry);
175*f9fbec18Smcpowers MP_ADD_CARRY (r1a, 0, r1a, carry, carry);
176*f9fbec18Smcpowers MP_ADD_CARRY (r1b, maxInt, r1b, carry, carry);
177*f9fbec18Smcpowers MP_ADD_CARRY (r2a, maxInt, r2a, carry, carry);
178*f9fbec18Smcpowers MP_ADD_CARRY (r2b, maxInt, r2b, carry, carry);
179*f9fbec18Smcpowers MP_ADD_CARRY (r3a, maxInt, r3a, carry, carry);
180*f9fbec18Smcpowers r3b += carry;
181*f9fbec18Smcpowers }
182*f9fbec18Smcpowers /* check for final reduction */
183*f9fbec18Smcpowers /* now the only way we are over is if the top 4 words are all ones */
184*f9fbec18Smcpowers if ((r3a == MP_DIGIT_MAX) && (r2b == MP_DIGIT_MAX)
185*f9fbec18Smcpowers && (r2a == MP_DIGIT_MAX) && (r1b == MP_DIGIT_MAX) &&
186*f9fbec18Smcpowers ((r1a != 0) || (r0b != 0) || (r0a != 0)) ) {
187*f9fbec18Smcpowers /* one last subraction */
188*f9fbec18Smcpowers MP_SUB_BORROW(r0a, 1, r0a, 0, carry);
189*f9fbec18Smcpowers MP_SUB_BORROW(r0b, 0, r0b, carry, carry);
190*f9fbec18Smcpowers MP_SUB_BORROW(r1a, 0, r1a, carry, carry);
191*f9fbec18Smcpowers r1b = r2a = r2b = r3a = 0;
192*f9fbec18Smcpowers }
193*f9fbec18Smcpowers
194*f9fbec18Smcpowers
195*f9fbec18Smcpowers if (a != r) {
196*f9fbec18Smcpowers MP_CHECKOK(s_mp_pad(r, 7));
197*f9fbec18Smcpowers }
198*f9fbec18Smcpowers /* set the lower words of r */
199*f9fbec18Smcpowers MP_SIGN(r) = MP_ZPOS;
200*f9fbec18Smcpowers MP_USED(r) = 7;
201*f9fbec18Smcpowers MP_DIGIT(r, 6) = r3a;
202*f9fbec18Smcpowers MP_DIGIT(r, 5) = r2b;
203*f9fbec18Smcpowers MP_DIGIT(r, 4) = r2a;
204*f9fbec18Smcpowers MP_DIGIT(r, 3) = r1b;
205*f9fbec18Smcpowers MP_DIGIT(r, 2) = r1a;
206*f9fbec18Smcpowers MP_DIGIT(r, 1) = r0b;
207*f9fbec18Smcpowers MP_DIGIT(r, 0) = r0a;
208*f9fbec18Smcpowers #else
209*f9fbec18Smcpowers /* copy out upper words of a */
210*f9fbec18Smcpowers switch (a_used) {
211*f9fbec18Smcpowers case 7:
212*f9fbec18Smcpowers a6 = MP_DIGIT(a, 6);
213*f9fbec18Smcpowers a6b = a6 >> 32;
214*f9fbec18Smcpowers a6a_a5b = a6 << 32;
215*f9fbec18Smcpowers case 6:
216*f9fbec18Smcpowers a5 = MP_DIGIT(a, 5);
217*f9fbec18Smcpowers a5b = a5 >> 32;
218*f9fbec18Smcpowers a6a_a5b |= a5b;
219*f9fbec18Smcpowers a5b = a5b << 32;
220*f9fbec18Smcpowers a5a_a4b = a5 << 32;
221*f9fbec18Smcpowers a5a = a5 & 0xffffffff;
222*f9fbec18Smcpowers case 5:
223*f9fbec18Smcpowers a4 = MP_DIGIT(a, 4);
224*f9fbec18Smcpowers a5a_a4b |= a4 >> 32;
225*f9fbec18Smcpowers a4a_a3b = a4 << 32;
226*f9fbec18Smcpowers case 4:
227*f9fbec18Smcpowers a3b = MP_DIGIT(a, 3) >> 32;
228*f9fbec18Smcpowers a4a_a3b |= a3b;
229*f9fbec18Smcpowers a3b = a3b << 32;
230*f9fbec18Smcpowers }
231*f9fbec18Smcpowers
232*f9fbec18Smcpowers r3 = MP_DIGIT(a, 3) & 0xffffffff;
233*f9fbec18Smcpowers r2 = MP_DIGIT(a, 2);
234*f9fbec18Smcpowers r1 = MP_DIGIT(a, 1);
235*f9fbec18Smcpowers r0 = MP_DIGIT(a, 0);
236*f9fbec18Smcpowers
237*f9fbec18Smcpowers /* implement r = (a3a,a2,a1,a0)
238*f9fbec18Smcpowers +(a5a, a4,a3b, 0)
239*f9fbec18Smcpowers +( 0, a6,a5b, 0)
240*f9fbec18Smcpowers -( 0 0, 0|a6b, a6a|a5b )
241*f9fbec18Smcpowers -( a6b, a6a|a5b, a5a|a4b, a4a|a3b ) */
242*f9fbec18Smcpowers MP_ADD_CARRY (r1, a3b, r1, 0, carry);
243*f9fbec18Smcpowers MP_ADD_CARRY (r2, a4 , r2, carry, carry);
244*f9fbec18Smcpowers MP_ADD_CARRY (r3, a5a, r3, carry, carry);
245*f9fbec18Smcpowers MP_ADD_CARRY (r1, a5b, r1, 0, carry);
246*f9fbec18Smcpowers MP_ADD_CARRY (r2, a6 , r2, carry, carry);
247*f9fbec18Smcpowers MP_ADD_CARRY (r3, 0, r3, carry, carry);
248*f9fbec18Smcpowers
249*f9fbec18Smcpowers MP_SUB_BORROW(r0, a4a_a3b, r0, 0, carry);
250*f9fbec18Smcpowers MP_SUB_BORROW(r1, a5a_a4b, r1, carry, carry);
251*f9fbec18Smcpowers MP_SUB_BORROW(r2, a6a_a5b, r2, carry, carry);
252*f9fbec18Smcpowers MP_SUB_BORROW(r3, a6b , r3, carry, carry);
253*f9fbec18Smcpowers MP_SUB_BORROW(r0, a6a_a5b, r0, 0, carry);
254*f9fbec18Smcpowers MP_SUB_BORROW(r1, a6b , r1, carry, carry);
255*f9fbec18Smcpowers if (carry) {
256*f9fbec18Smcpowers MP_SUB_BORROW(r2, 0, r2, carry, carry);
257*f9fbec18Smcpowers MP_SUB_BORROW(r3, 0, r3, carry, carry);
258*f9fbec18Smcpowers }
259*f9fbec18Smcpowers
260*f9fbec18Smcpowers
261*f9fbec18Smcpowers /* if the value is negative, r3 has a 2's complement
262*f9fbec18Smcpowers * high value */
263*f9fbec18Smcpowers r3b = (int)(r3 >>32);
264*f9fbec18Smcpowers while (r3b > 0) {
265*f9fbec18Smcpowers r3 &= 0xffffffff;
266*f9fbec18Smcpowers MP_ADD_CARRY(r1,((mp_digit)r3b) << 32, r1, 0, carry);
267*f9fbec18Smcpowers if (carry) {
268*f9fbec18Smcpowers MP_ADD_CARRY(r2, 0, r2, carry, carry);
269*f9fbec18Smcpowers MP_ADD_CARRY(r3, 0, r3, carry, carry);
270*f9fbec18Smcpowers }
271*f9fbec18Smcpowers MP_SUB_BORROW(r0, r3b, r0, 0, carry);
272*f9fbec18Smcpowers if (carry) {
273*f9fbec18Smcpowers MP_SUB_BORROW(r1, 0, r1, carry, carry);
274*f9fbec18Smcpowers MP_SUB_BORROW(r2, 0, r2, carry, carry);
275*f9fbec18Smcpowers MP_SUB_BORROW(r3, 0, r3, carry, carry);
276*f9fbec18Smcpowers }
277*f9fbec18Smcpowers r3b = (int)(r3 >>32);
278*f9fbec18Smcpowers }
279*f9fbec18Smcpowers
280*f9fbec18Smcpowers while (r3b < 0) {
281*f9fbec18Smcpowers MP_ADD_CARRY (r0, 1, r0, 0, carry);
282*f9fbec18Smcpowers MP_ADD_CARRY (r1, MP_DIGIT_MAX <<32, r1, carry, carry);
283*f9fbec18Smcpowers MP_ADD_CARRY (r2, MP_DIGIT_MAX, r2, carry, carry);
284*f9fbec18Smcpowers MP_ADD_CARRY (r3, MP_DIGIT_MAX >> 32, r3, carry, carry);
285*f9fbec18Smcpowers r3b = (int)(r3 >>32);
286*f9fbec18Smcpowers }
287*f9fbec18Smcpowers /* check for final reduction */
288*f9fbec18Smcpowers /* now the only way we are over is if the top 4 words are all ones */
289*f9fbec18Smcpowers if ((r3 == (MP_DIGIT_MAX >> 32)) && (r2 == MP_DIGIT_MAX)
290*f9fbec18Smcpowers && ((r1 & MP_DIGIT_MAX << 32)== MP_DIGIT_MAX << 32) &&
291*f9fbec18Smcpowers ((r1 != MP_DIGIT_MAX << 32 ) || (r0 != 0)) ) {
292*f9fbec18Smcpowers /* one last subraction */
293*f9fbec18Smcpowers MP_SUB_BORROW(r0, 1, r0, 0, carry);
294*f9fbec18Smcpowers MP_SUB_BORROW(r1, 0, r1, carry, carry);
295*f9fbec18Smcpowers r2 = r3 = 0;
296*f9fbec18Smcpowers }
297*f9fbec18Smcpowers
298*f9fbec18Smcpowers
299*f9fbec18Smcpowers if (a != r) {
300*f9fbec18Smcpowers MP_CHECKOK(s_mp_pad(r, 4));
301*f9fbec18Smcpowers }
302*f9fbec18Smcpowers /* set the lower words of r */
303*f9fbec18Smcpowers MP_SIGN(r) = MP_ZPOS;
304*f9fbec18Smcpowers MP_USED(r) = 4;
305*f9fbec18Smcpowers MP_DIGIT(r, 3) = r3;
306*f9fbec18Smcpowers MP_DIGIT(r, 2) = r2;
307*f9fbec18Smcpowers MP_DIGIT(r, 1) = r1;
308*f9fbec18Smcpowers MP_DIGIT(r, 0) = r0;
309*f9fbec18Smcpowers #endif
310*f9fbec18Smcpowers }
311*f9fbec18Smcpowers
312*f9fbec18Smcpowers CLEANUP:
313*f9fbec18Smcpowers return res;
314*f9fbec18Smcpowers }
315*f9fbec18Smcpowers
316*f9fbec18Smcpowers /* Compute the square of polynomial a, reduce modulo p224. Store the
317*f9fbec18Smcpowers * result in r. r could be a. Uses optimized modular reduction for p224.
318*f9fbec18Smcpowers */
319*f9fbec18Smcpowers mp_err
ec_GFp_nistp224_sqr(const mp_int * a,mp_int * r,const GFMethod * meth)320*f9fbec18Smcpowers ec_GFp_nistp224_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
321*f9fbec18Smcpowers {
322*f9fbec18Smcpowers mp_err res = MP_OKAY;
323*f9fbec18Smcpowers
324*f9fbec18Smcpowers MP_CHECKOK(mp_sqr(a, r));
325*f9fbec18Smcpowers MP_CHECKOK(ec_GFp_nistp224_mod(r, r, meth));
326*f9fbec18Smcpowers CLEANUP:
327*f9fbec18Smcpowers return res;
328*f9fbec18Smcpowers }
329*f9fbec18Smcpowers
330*f9fbec18Smcpowers /* Compute the product of two polynomials a and b, reduce modulo p224.
331*f9fbec18Smcpowers * Store the result in r. r could be a or b; a could be b. Uses
332*f9fbec18Smcpowers * optimized modular reduction for p224. */
333*f9fbec18Smcpowers mp_err
ec_GFp_nistp224_mul(const mp_int * a,const mp_int * b,mp_int * r,const GFMethod * meth)334*f9fbec18Smcpowers ec_GFp_nistp224_mul(const mp_int *a, const mp_int *b, mp_int *r,
335*f9fbec18Smcpowers const GFMethod *meth)
336*f9fbec18Smcpowers {
337*f9fbec18Smcpowers mp_err res = MP_OKAY;
338*f9fbec18Smcpowers
339*f9fbec18Smcpowers MP_CHECKOK(mp_mul(a, b, r));
340*f9fbec18Smcpowers MP_CHECKOK(ec_GFp_nistp224_mod(r, r, meth));
341*f9fbec18Smcpowers CLEANUP:
342*f9fbec18Smcpowers return res;
343*f9fbec18Smcpowers }
344*f9fbec18Smcpowers
345*f9fbec18Smcpowers /* Divides two field elements. If a is NULL, then returns the inverse of
346*f9fbec18Smcpowers * b. */
347*f9fbec18Smcpowers mp_err
ec_GFp_nistp224_div(const mp_int * a,const mp_int * b,mp_int * r,const GFMethod * meth)348*f9fbec18Smcpowers ec_GFp_nistp224_div(const mp_int *a, const mp_int *b, mp_int *r,
349*f9fbec18Smcpowers const GFMethod *meth)
350*f9fbec18Smcpowers {
351*f9fbec18Smcpowers mp_err res = MP_OKAY;
352*f9fbec18Smcpowers mp_int t;
353*f9fbec18Smcpowers
354*f9fbec18Smcpowers /* If a is NULL, then return the inverse of b, otherwise return a/b. */
355*f9fbec18Smcpowers if (a == NULL) {
356*f9fbec18Smcpowers return mp_invmod(b, &meth->irr, r);
357*f9fbec18Smcpowers } else {
358*f9fbec18Smcpowers /* MPI doesn't support divmod, so we implement it using invmod and
359*f9fbec18Smcpowers * mulmod. */
360*f9fbec18Smcpowers MP_CHECKOK(mp_init(&t, FLAG(b)));
361*f9fbec18Smcpowers MP_CHECKOK(mp_invmod(b, &meth->irr, &t));
362*f9fbec18Smcpowers MP_CHECKOK(mp_mul(a, &t, r));
363*f9fbec18Smcpowers MP_CHECKOK(ec_GFp_nistp224_mod(r, r, meth));
364*f9fbec18Smcpowers CLEANUP:
365*f9fbec18Smcpowers mp_clear(&t);
366*f9fbec18Smcpowers return res;
367*f9fbec18Smcpowers }
368*f9fbec18Smcpowers }
369*f9fbec18Smcpowers
370*f9fbec18Smcpowers /* Wire in fast field arithmetic and precomputation of base point for
371*f9fbec18Smcpowers * named curves. */
372*f9fbec18Smcpowers mp_err
ec_group_set_gfp224(ECGroup * group,ECCurveName name)373*f9fbec18Smcpowers ec_group_set_gfp224(ECGroup *group, ECCurveName name)
374*f9fbec18Smcpowers {
375*f9fbec18Smcpowers if (name == ECCurve_NIST_P224) {
376*f9fbec18Smcpowers group->meth->field_mod = &ec_GFp_nistp224_mod;
377*f9fbec18Smcpowers group->meth->field_mul = &ec_GFp_nistp224_mul;
378*f9fbec18Smcpowers group->meth->field_sqr = &ec_GFp_nistp224_sqr;
379*f9fbec18Smcpowers group->meth->field_div = &ec_GFp_nistp224_div;
380*f9fbec18Smcpowers }
381*f9fbec18Smcpowers return MP_OKAY;
382*f9fbec18Smcpowers }
383