xref: /titanic_50/usr/src/common/crypto/ecc/ecp.h (revision f9fbec18f5b458b560ecf45d3db8e8bd56bf6942)
1*f9fbec18Smcpowers /*
2*f9fbec18Smcpowers  * ***** BEGIN LICENSE BLOCK *****
3*f9fbec18Smcpowers  * Version: MPL 1.1/GPL 2.0/LGPL 2.1
4*f9fbec18Smcpowers  *
5*f9fbec18Smcpowers  * The contents of this file are subject to the Mozilla Public License Version
6*f9fbec18Smcpowers  * 1.1 (the "License"); you may not use this file except in compliance with
7*f9fbec18Smcpowers  * the License. You may obtain a copy of the License at
8*f9fbec18Smcpowers  * http://www.mozilla.org/MPL/
9*f9fbec18Smcpowers  *
10*f9fbec18Smcpowers  * Software distributed under the License is distributed on an "AS IS" basis,
11*f9fbec18Smcpowers  * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
12*f9fbec18Smcpowers  * for the specific language governing rights and limitations under the
13*f9fbec18Smcpowers  * License.
14*f9fbec18Smcpowers  *
15*f9fbec18Smcpowers  * The Original Code is the elliptic curve math library for prime field curves.
16*f9fbec18Smcpowers  *
17*f9fbec18Smcpowers  * The Initial Developer of the Original Code is
18*f9fbec18Smcpowers  * Sun Microsystems, Inc.
19*f9fbec18Smcpowers  * Portions created by the Initial Developer are Copyright (C) 2003
20*f9fbec18Smcpowers  * the Initial Developer. All Rights Reserved.
21*f9fbec18Smcpowers  *
22*f9fbec18Smcpowers  * Contributor(s):
23*f9fbec18Smcpowers  *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
24*f9fbec18Smcpowers  *
25*f9fbec18Smcpowers  * Alternatively, the contents of this file may be used under the terms of
26*f9fbec18Smcpowers  * either the GNU General Public License Version 2 or later (the "GPL"), or
27*f9fbec18Smcpowers  * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
28*f9fbec18Smcpowers  * in which case the provisions of the GPL or the LGPL are applicable instead
29*f9fbec18Smcpowers  * of those above. If you wish to allow use of your version of this file only
30*f9fbec18Smcpowers  * under the terms of either the GPL or the LGPL, and not to allow others to
31*f9fbec18Smcpowers  * use your version of this file under the terms of the MPL, indicate your
32*f9fbec18Smcpowers  * decision by deleting the provisions above and replace them with the notice
33*f9fbec18Smcpowers  * and other provisions required by the GPL or the LGPL. If you do not delete
34*f9fbec18Smcpowers  * the provisions above, a recipient may use your version of this file under
35*f9fbec18Smcpowers  * the terms of any one of the MPL, the GPL or the LGPL.
36*f9fbec18Smcpowers  *
37*f9fbec18Smcpowers  * ***** END LICENSE BLOCK ***** */
38*f9fbec18Smcpowers /*
39*f9fbec18Smcpowers  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
40*f9fbec18Smcpowers  * Use is subject to license terms.
41*f9fbec18Smcpowers  *
42*f9fbec18Smcpowers  * Sun elects to use this software under the MPL license.
43*f9fbec18Smcpowers  */
44*f9fbec18Smcpowers 
45*f9fbec18Smcpowers #ifndef _ECP_H
46*f9fbec18Smcpowers #define _ECP_H
47*f9fbec18Smcpowers 
48*f9fbec18Smcpowers #pragma ident	"%Z%%M%	%I%	%E% SMI"
49*f9fbec18Smcpowers 
50*f9fbec18Smcpowers #include "ecl-priv.h"
51*f9fbec18Smcpowers 
52*f9fbec18Smcpowers /* Checks if point P(px, py) is at infinity.  Uses affine coordinates. */
53*f9fbec18Smcpowers mp_err ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py);
54*f9fbec18Smcpowers 
55*f9fbec18Smcpowers /* Sets P(px, py) to be the point at infinity.  Uses affine coordinates. */
56*f9fbec18Smcpowers mp_err ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py);
57*f9fbec18Smcpowers 
58*f9fbec18Smcpowers /* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx,
59*f9fbec18Smcpowers  * qy). Uses affine coordinates. */
60*f9fbec18Smcpowers mp_err ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py,
61*f9fbec18Smcpowers 						 const mp_int *qx, const mp_int *qy, mp_int *rx,
62*f9fbec18Smcpowers 						 mp_int *ry, const ECGroup *group);
63*f9fbec18Smcpowers 
64*f9fbec18Smcpowers /* Computes R = P - Q.  Uses affine coordinates. */
65*f9fbec18Smcpowers mp_err ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py,
66*f9fbec18Smcpowers 						 const mp_int *qx, const mp_int *qy, mp_int *rx,
67*f9fbec18Smcpowers 						 mp_int *ry, const ECGroup *group);
68*f9fbec18Smcpowers 
69*f9fbec18Smcpowers /* Computes R = 2P.  Uses affine coordinates. */
70*f9fbec18Smcpowers mp_err ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
71*f9fbec18Smcpowers 						 mp_int *ry, const ECGroup *group);
72*f9fbec18Smcpowers 
73*f9fbec18Smcpowers /* Validates a point on a GFp curve. */
74*f9fbec18Smcpowers mp_err ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group);
75*f9fbec18Smcpowers 
76*f9fbec18Smcpowers #ifdef ECL_ENABLE_GFP_PT_MUL_AFF
77*f9fbec18Smcpowers /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
78*f9fbec18Smcpowers  * a, b and p are the elliptic curve coefficients and the prime that
79*f9fbec18Smcpowers  * determines the field GFp.  Uses affine coordinates. */
80*f9fbec18Smcpowers mp_err ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px,
81*f9fbec18Smcpowers 						 const mp_int *py, mp_int *rx, mp_int *ry,
82*f9fbec18Smcpowers 						 const ECGroup *group);
83*f9fbec18Smcpowers #endif
84*f9fbec18Smcpowers 
85*f9fbec18Smcpowers /* Converts a point P(px, py) from affine coordinates to Jacobian
86*f9fbec18Smcpowers  * projective coordinates R(rx, ry, rz). */
87*f9fbec18Smcpowers mp_err ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx,
88*f9fbec18Smcpowers 						 mp_int *ry, mp_int *rz, const ECGroup *group);
89*f9fbec18Smcpowers 
90*f9fbec18Smcpowers /* Converts a point P(px, py, pz) from Jacobian projective coordinates to
91*f9fbec18Smcpowers  * affine coordinates R(rx, ry). */
92*f9fbec18Smcpowers mp_err ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py,
93*f9fbec18Smcpowers 						 const mp_int *pz, mp_int *rx, mp_int *ry,
94*f9fbec18Smcpowers 						 const ECGroup *group);
95*f9fbec18Smcpowers 
96*f9fbec18Smcpowers /* Checks if point P(px, py, pz) is at infinity.  Uses Jacobian
97*f9fbec18Smcpowers  * coordinates. */
98*f9fbec18Smcpowers mp_err ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py,
99*f9fbec18Smcpowers 							const mp_int *pz);
100*f9fbec18Smcpowers 
101*f9fbec18Smcpowers /* Sets P(px, py, pz) to be the point at infinity.  Uses Jacobian
102*f9fbec18Smcpowers  * coordinates. */
103*f9fbec18Smcpowers mp_err ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz);
104*f9fbec18Smcpowers 
105*f9fbec18Smcpowers /* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
106*f9fbec18Smcpowers  * (qx, qy, qz).  Uses Jacobian coordinates. */
107*f9fbec18Smcpowers mp_err ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py,
108*f9fbec18Smcpowers 							 const mp_int *pz, const mp_int *qx,
109*f9fbec18Smcpowers 							 const mp_int *qy, mp_int *rx, mp_int *ry,
110*f9fbec18Smcpowers 							 mp_int *rz, const ECGroup *group);
111*f9fbec18Smcpowers 
112*f9fbec18Smcpowers /* Computes R = 2P.  Uses Jacobian coordinates. */
113*f9fbec18Smcpowers mp_err ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py,
114*f9fbec18Smcpowers 						 const mp_int *pz, mp_int *rx, mp_int *ry,
115*f9fbec18Smcpowers 						 mp_int *rz, const ECGroup *group);
116*f9fbec18Smcpowers 
117*f9fbec18Smcpowers #ifdef ECL_ENABLE_GFP_PT_MUL_JAC
118*f9fbec18Smcpowers /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
119*f9fbec18Smcpowers  * a, b and p are the elliptic curve coefficients and the prime that
120*f9fbec18Smcpowers  * determines the field GFp.  Uses Jacobian coordinates. */
121*f9fbec18Smcpowers mp_err ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px,
122*f9fbec18Smcpowers 						 const mp_int *py, mp_int *rx, mp_int *ry,
123*f9fbec18Smcpowers 						 const ECGroup *group);
124*f9fbec18Smcpowers #endif
125*f9fbec18Smcpowers 
126*f9fbec18Smcpowers /* Computes R(x, y) = k1 * G + k2 * P(x, y), where G is the generator
127*f9fbec18Smcpowers  * (base point) of the group of points on the elliptic curve. Allows k1 =
128*f9fbec18Smcpowers  * NULL or { k2, P } = NULL.  Implemented using mixed Jacobian-affine
129*f9fbec18Smcpowers  * coordinates. Input and output values are assumed to be NOT
130*f9fbec18Smcpowers  * field-encoded and are in affine form. */
131*f9fbec18Smcpowers mp_err
132*f9fbec18Smcpowers  ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px,
133*f9fbec18Smcpowers 					const mp_int *py, mp_int *rx, mp_int *ry,
134*f9fbec18Smcpowers 					const ECGroup *group);
135*f9fbec18Smcpowers 
136*f9fbec18Smcpowers /* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic
137*f9fbec18Smcpowers  * curve points P and R can be identical. Uses mixed Modified-Jacobian
138*f9fbec18Smcpowers  * co-ordinates for doubling and Chudnovsky Jacobian coordinates for
139*f9fbec18Smcpowers  * additions. Assumes input is already field-encoded using field_enc, and
140*f9fbec18Smcpowers  * returns output that is still field-encoded. Uses 5-bit window NAF
141*f9fbec18Smcpowers  * method (algorithm 11) for scalar-point multiplication from Brown,
142*f9fbec18Smcpowers  * Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic
143*f9fbec18Smcpowers  * Curves Over Prime Fields. */
144*f9fbec18Smcpowers mp_err
145*f9fbec18Smcpowers  ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py,
146*f9fbec18Smcpowers 					   mp_int *rx, mp_int *ry, const ECGroup *group);
147*f9fbec18Smcpowers 
148*f9fbec18Smcpowers #endif /* _ECP_H */
149