xref: /titanic_50/usr/src/common/crypto/arcfour/amd64/arcfour-x86_64.pl (revision 7ddc9b1afd18f260b9fb78ec7732facd91769131)
1#!/usr/bin/env perl
2#
3# ====================================================================
4# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9#
10# 2.22x RC4 tune-up:-) It should be noted though that my hand [as in
11# "hand-coded assembler"] doesn't stand for the whole improvement
12# coefficient. It turned out that eliminating RC4_CHAR from config
13# line results in ~40% improvement (yes, even for C implementation).
14# Presumably it has everything to do with AMD cache architecture and
15# RAW or whatever penalties. Once again! The module *requires* config
16# line *without* RC4_CHAR! As for coding "secret," I bet on partial
17# register arithmetics. For example instead of 'inc %r8; and $255,%r8'
18# I simply 'inc %r8b'. Even though optimization manual discourages
19# to operate on partial registers, it turned out to be the best bet.
20# At least for AMD... How IA32E would perform remains to be seen...
21
22# As was shown by Marc Bevand reordering of couple of load operations
23# results in even higher performance gain of 3.3x:-) At least on
24# Opteron... For reference, 1x in this case is RC4_CHAR C-code
25# compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock.
26# Latter means that if you want to *estimate* what to expect from
27# *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz.
28
29# Intel P4 EM64T core was found to run the AMD64 code really slow...
30# The only way to achieve comparable performance on P4 was to keep
31# RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to
32# compose blended code, which would perform even within 30% marginal
33# on either AMD and Intel platforms, I implement both cases. See
34# rc4_skey.c for further details...
35
36# P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing
37# those with add/sub results in 50% performance improvement of folded
38# loop...
39
40# As was shown by Zou Nanhai loop unrolling can improve Intel EM64T
41# performance by >30% [unlike P4 32-bit case that is]. But this is
42# provided that loads are reordered even more aggressively! Both code
43# pathes, AMD64 and EM64T, reorder loads in essentially same manner
44# as my IA-64 implementation. On Opteron this resulted in modest 5%
45# improvement [I had to test it], while final Intel P4 performance
46# achieves respectful 432MBps on 2.8GHz processor now. For reference.
47# If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than
48# RC4_INT code-path. While if executed on Opteron, it's only 25%
49# slower than the RC4_INT one [meaning that if CPU �-arch detection
50# is not implemented, then this final RC4_CHAR code-path should be
51# preferred, as it provides better *all-round* performance].
52
53# Intel Core2 was observed to perform poorly on both code paths:-( It
54# apparently suffers from some kind of partial register stall, which
55# occurs in 64-bit mode only [as virtually identical 32-bit loop was
56# observed to outperform 64-bit one by almost 50%]. Adding two movzb to
57# cloop1 boosts its performance by 80%! This loop appears to be optimal
58# fit for Core2 and therefore the code was modified to skip cloop8 on
59# this CPU.
60
61#
62# OpenSolaris OS modifications
63#
64# Sun elects to use this software under the BSD license.
65#
66# This source originates from OpenSSL file rc4-x86_64.pl at
67# ftp://ftp.openssl.org/snapshot/openssl-0.9.8-stable-SNAP-20080131.tar.gz
68# (presumably for future OpenSSL release 0.9.8h), with these changes:
69#
70# 1. Added some comments, "use strict", and declared all variables.
71#
72# 2. Added OpenSolaris ENTRY_NP/SET_SIZE macros from
73# /usr/include/sys/asm_linkage.h, .ident keywords, and lint(1B) guards.
74#
75# 3. Changed function name from RC4() to arcfour_crypt() and RC4_set_key()
76# to arcfour_key_init(), and changed the parameter order for both to that
77# used by OpenSolaris.
78#
79# 4. The current method of using cpuid feature bits 20 (NX) or 28 (HTT) from
80# function OPENSSL_ia32_cpuid() to distinguish Intel/AMD does not work for
81# some newer AMD64 processors, as these bits are set on both Intel EM64T
82# processors and newer AMD64 processors.  I replaced this with code to use CPUID
83# instruction subfunction EAX=0 to determine if we're running on "GenuineIntel"
84# or not. The result decides whether to use a
85#	* 1-byte key array (label .LRC4_CHAR, optimal on Intel EM64T) or a
86#	* 4-byte key array (Labels .Lloop1 and .Lloop8, optimal on AMD64).
87#
88# 5. Removed x86_64-xlate.pl script (not needed for as(1) or gas(1) assemblers).
89#
90# 6. Removed Lcloop8 code (slower than Lcloop1 on EM64T and not used on AMD64).
91#
92
93use strict;
94my ($code, $dat, $inp, $out, $len, $idx, $ido, $i, @XX, @TX, $YY, $TY);
95my $output = shift;
96open STDOUT,">$output";
97
98#
99# Parameters
100#
101
102# OpenSSL:
103# void RC4(RC4_KEY *key, unsigned long len, const unsigned char *indata,
104#	unsigned char *outdata);
105#$dat="%rdi";	    # arg1
106#$len="%rsi";	    # arg2
107#$inp="%rdx";	    # arg3
108#$out="%rcx";	    # arg4
109
110# OpenSolaris:
111# void arcfour_crypt(ARCFour_key *key, uchar_t *in, uchar_t *out, size_t len);
112$dat="%rdi";	    # arg1
113$inp="%rsi";	    # arg2
114$out="%rdx";	    # arg3
115$len="%rcx";	    # arg4
116
117#
118# Register variables
119#
120# $XX[0] is key->i (aka key->x), $XX[1] is a temporary.
121# $TX[0] and $TX[1] are temporaries.
122# $YY is key->j (aka key->y).
123# $TY is a temporary.
124#
125@XX=("%r8","%r10");
126@TX=("%r9","%r11");
127$YY="%r12";
128$TY="%r13";
129
130$code=<<___;
131#if !defined(lint) && !defined(__lint)
132
133	.ident	"%Z%%M%	%I%	%E% SMI"
134
135#include <sys/asm_linkage.h>
136
137
138ENTRY_NP(arcfour_crypt)
139	/* EXPORT DELETE START */
140
141	or	$len,$len # If (len == 0) return
142	jne	.Lentry
143	ret
144.Lentry:
145	push	%r12
146	push	%r13
147
148	/ Set $dat to beginning of array, key->arr[0]
149	add	\$8,$dat
150	/ Get key->j
151	movl	-8($dat),$XX[0]#d
152	/ Get key->i
153	movl	-4($dat),$YY#d
154
155	/
156	/ Use a 1-byte data array, on Intel P4 EM64T,
157	/ which is more efficient there,
158	/ or a 4-byte data array (for AMD AMD64).
159	/
160
161	/ If RC4_CHAR flag set (Intel EM64T), then use 1-byte array
162	cmpl	\$-1,256($dat)
163	je	.LRC4_CHAR
164	/ otherwise use 4-byte integer array (AMD64)
165	inc	$XX[0]#b
166	movl	($dat,$XX[0],4),$TX[0]#d
167	test	\$-8,$len
168	jz	.Lloop1
169	jmp	.Lloop8
170
171.align	16
172.Lloop8:
173	/
174	/ This code is for use with a 4-byte integer data array, which is
175	/ more efficient on AMD64 Athlon and Opteron-class processors.
176	/
177___
178for ($i=0;$i<8;$i++) {
179$code.=<<___;
180	add	$TX[0]#b,$YY#b
181	mov	$XX[0],$XX[1]
182	movl	($dat,$YY,4),$TY#d
183	ror	\$8,%rax			# ror is redundant when $i=0
184	inc	$XX[1]#b
185	movl	($dat,$XX[1],4),$TX[1]#d
186	cmp	$XX[1],$YY
187	movl	$TX[0]#d,($dat,$YY,4)
188	cmove	$TX[0],$TX[1]
189	movl	$TY#d,($dat,$XX[0],4)
190	add	$TX[0]#b,$TY#b
191	movb	($dat,$TY,4),%al
192___
193push(@TX,shift(@TX)); push(@XX,shift(@XX));	# "rotate" registers
194}
195$code.=<<___;
196	ror	\$8,%rax
197	sub	\$8,$len
198
199	xor	($inp),%rax
200	add	\$8,$inp
201	mov	%rax,($out)
202	add	\$8,$out
203
204	test	\$-8,$len
205	jnz	.Lloop8
206	cmp	\$0,$len
207	jne	.Lloop1
208___
209$code.=<<___;
210.Lexit:
211	/
212	/ Cleanup and exit code
213	/
214	/ --i to undo ++i done at entry
215	sub	\$1,$XX[0]#b
216	/ set key->i
217	movl	$XX[0]#d,-8($dat)
218	/ set key->j
219	movl	$YY#d,-4($dat)
220
221	pop	%r13
222	pop	%r12
223	ret
224.align	16
225.Lloop1:
226	add	$TX[0]#b,$YY#b
227	movl	($dat,$YY,4),$TY#d
228	movl	$TX[0]#d,($dat,$YY,4)
229	movl	$TY#d,($dat,$XX[0],4)
230	add	$TY#b,$TX[0]#b
231	inc	$XX[0]#b
232	movl	($dat,$TX[0],4),$TY#d
233	movl	($dat,$XX[0],4),$TX[0]#d
234	xorb	($inp),$TY#b
235	inc	$inp
236	movb	$TY#b,($out)
237	inc	$out
238	dec	$len
239	jnz	.Lloop1
240	jmp	.Lexit
241
242
243.align	16
244.LRC4_CHAR:
245	/
246	/ This code is for use with a 1-byte integer data array, which is
247	/ more efficient on Intel P4 EM64T-class processors.
248	/
249	add	\$1,$XX[0]#b
250	movzb	($dat,$XX[0]),$TX[0]#d
251	jmp	.Lcloop1
252
253.align	16
254.Lcloop1:
255	add	$TX[0]#b,$YY#b
256	movzb	($dat,$YY),$TY#d
257	movb	$TX[0]#b,($dat,$YY)
258	movb	$TY#b,($dat,$XX[0])
259	add	$TX[0]#b,$TY#b
260	add	\$1,$XX[0]#b
261	/ Intel Optimization (preload $TY and $XX[0]):
262	movzb	$TY#b,$TY#d
263	movzb	$XX[0]#b,$XX[0]#d
264	movzb	($dat,$TY),$TY#d
265	movzb	($dat,$XX[0]),$TX[0]#d
266	xorb	($inp),$TY#b
267	lea	1($inp),$inp
268	movb	$TY#b,($out)
269	lea	1($out),$out
270	sub	\$1,$len
271	jnz	.Lcloop1
272	jmp	.Lexit
273
274	/* EXPORT DELETE END */
275	ret
276SET_SIZE(arcfour_crypt)
277___
278
279
280#
281# Parameters
282#
283
284# OpenSSL:
285# void RC4_set_key(RC4_KEY *key, int len, const unsigned char *data);
286#$dat="%rdi";	    # arg1
287#$len="%rsi";	    # arg2
288#$inp="%rdx";	    # arg3
289
290# OpenSolaris:
291# void arcfour_key_init(ARCFour_key *key, uchar_t *keyval, int keyvallen);
292$dat="%rdi";	    # arg1
293$inp="%rsi";	    # arg2
294$len="%rdx";	    # arg3
295
296# Temporaries
297$idx="%r8";
298$ido="%r9";
299
300$code.=<<___;
301	/ int arcfour_crypt_on_intel(void);
302.extern	arcfour_crypt_on_intel
303
304ENTRY_NP(arcfour_key_init)
305	/* EXPORT DELETE START */
306
307	/ Find out if we're running on Intel or something else (e.g., AMD64).
308	/ This sets %eax to 1 for Intel, otherwise 0.
309	push	%rdi		/ Save arg1
310	push	%rsi		/ Save arg2
311	push	%rdx		/ Save arg3
312	call	arcfour_crypt_on_intel
313	pop	%rdx		/ Restore arg3
314	pop	%rsi		/ Restore arg2
315	pop	%rdi		/ Restore arg1
316
317	/ Set $dat to beginning of array, key->arr[0]
318	lea	8($dat),$dat
319	lea	($inp,$len),$inp
320	neg	$len
321	mov	$len,%rcx
322	/ Zeroed below, as %eax contains a flag from arcfour_crypt_on_intel():
323	/xor	%eax,%eax
324	xor	$ido,$ido
325	xor	%r10,%r10
326	xor	%r11,%r11
327
328	/
329	/ Use a 1-byte data array, on Intel P4 EM64T,
330	/ which is more efficient there,
331	/ or a 4-byte data array (for AMD AMD64).
332	/
333	cmp	\$1,%eax	/ Test if Intel
334	mov	\$0,%eax	/ Zero eax without modifying flags
335	je	.Lc1stloop	/ If Intel then use a 1-byte array,
336	jmp	.Lw1stloop	/ otherwise use a 4-byte array.
337
338.align	16
339.Lw1stloop:
340	/ AMD64 (4-byte array)
341	mov	%eax,($dat,%rax,4)
342	add	\$1,%al
343	jnc	.Lw1stloop
344
345	xor	$ido,$ido
346	xor	$idx,$idx
347.align	16
348.Lw2ndloop:
349	mov	($dat,$ido,4),%r10d
350	add	($inp,$len,1),$idx#b
351	add	%r10b,$idx#b
352	add	\$1,$len
353	mov	($dat,$idx,4),%r11d
354	cmovz	%rcx,$len
355	mov	%r10d,($dat,$idx,4)
356	mov	%r11d,($dat,$ido,4)
357	add	\$1,$ido#b
358	jnc	.Lw2ndloop
359	jmp	.Lexit_key
360
361.align	16
362.Lc1stloop:
363	/ Intel EM64T (1-byte array)
364	mov	%al,($dat,%rax)
365	add	\$1,%al
366	jnc	.Lc1stloop
367
368	xor	$ido,$ido
369	xor	$idx,$idx
370.align	16
371.Lc2ndloop:
372	mov	($dat,$ido),%r10b
373	add	($inp,$len),$idx#b
374	add	%r10b,$idx#b
375	add	\$1,$len
376	mov	($dat,$idx),%r11b
377	jnz	.Lcnowrap
378	mov	%rcx,$len
379.Lcnowrap:
380	mov	%r10b,($dat,$idx)
381	mov	%r11b,($dat,$ido)
382	add	\$1,$ido#b
383	jnc	.Lc2ndloop
384	movl	\$-1,256($dat)
385
386.align	16
387.Lexit_key:
388	xor	%eax,%eax
389	mov	%eax,-8($dat)
390	mov	%eax,-4($dat)
391
392	/* EXPORT DELETE END */
393	ret
394SET_SIZE(arcfour_key_init)
395.asciz	"RC4 for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
396
397#else
398	/* LINTED */
399	/* Nothing to be linted in this file--it's pure assembly source. */
400#endif /* !lint && !__lint */
401___
402
403$code =~ s/#([bwd])/$1/gm;
404
405print $code;
406
407close STDOUT;
408