xref: /titanic_50/usr/src/common/avl/avl.c (revision 4201a95e0468170d576f82c3aa63afecf718497a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * AVL - generic AVL tree implementation for kernel use
28  *
29  * A complete description of AVL trees can be found in many CS textbooks.
30  *
31  * Here is a very brief overview. An AVL tree is a binary search tree that is
32  * almost perfectly balanced. By "almost" perfectly balanced, we mean that at
33  * any given node, the left and right subtrees are allowed to differ in height
34  * by at most 1 level.
35  *
36  * This relaxation from a perfectly balanced binary tree allows doing
37  * insertion and deletion relatively efficiently. Searching the tree is
38  * still a fast operation, roughly O(log(N)).
39  *
40  * The key to insertion and deletion is a set of tree maniuplations called
41  * rotations, which bring unbalanced subtrees back into the semi-balanced state.
42  *
43  * This implementation of AVL trees has the following peculiarities:
44  *
45  *	- The AVL specific data structures are physically embedded as fields
46  *	  in the "using" data structures.  To maintain generality the code
47  *	  must constantly translate between "avl_node_t *" and containing
48  *	  data structure "void *"s by adding/subracting the avl_offset.
49  *
50  *	- Since the AVL data is always embedded in other structures, there is
51  *	  no locking or memory allocation in the AVL routines. This must be
52  *	  provided for by the enclosing data structure's semantics. Typically,
53  *	  avl_insert()/_add()/_remove()/avl_insert_here() require some kind of
54  *	  exclusive write lock. Other operations require a read lock.
55  *
56  *      - The implementation uses iteration instead of explicit recursion,
57  *	  since it is intended to run on limited size kernel stacks. Since
58  *	  there is no recursion stack present to move "up" in the tree,
59  *	  there is an explicit "parent" link in the avl_node_t.
60  *
61  *      - The left/right children pointers of a node are in an array.
62  *	  In the code, variables (instead of constants) are used to represent
63  *	  left and right indices.  The implementation is written as if it only
64  *	  dealt with left handed manipulations.  By changing the value assigned
65  *	  to "left", the code also works for right handed trees.  The
66  *	  following variables/terms are frequently used:
67  *
68  *		int left;	// 0 when dealing with left children,
69  *				// 1 for dealing with right children
70  *
71  *		int left_heavy;	// -1 when left subtree is taller at some node,
72  *				// +1 when right subtree is taller
73  *
74  *		int right;	// will be the opposite of left (0 or 1)
75  *		int right_heavy;// will be the opposite of left_heavy (-1 or 1)
76  *
77  *		int direction;  // 0 for "<" (ie. left child); 1 for ">" (right)
78  *
79  *	  Though it is a little more confusing to read the code, the approach
80  *	  allows using half as much code (and hence cache footprint) for tree
81  *	  manipulations and eliminates many conditional branches.
82  *
83  *	- The avl_index_t is an opaque "cookie" used to find nodes at or
84  *	  adjacent to where a new value would be inserted in the tree. The value
85  *	  is a modified "avl_node_t *".  The bottom bit (normally 0 for a
86  *	  pointer) is set to indicate if that the new node has a value greater
87  *	  than the value of the indicated "avl_node_t *".
88  */
89 
90 #include <sys/types.h>
91 #include <sys/param.h>
92 #include <sys/debug.h>
93 #include <sys/avl.h>
94 #include <sys/cmn_err.h>
95 
96 /*
97  * Small arrays to translate between balance (or diff) values and child indeces.
98  *
99  * Code that deals with binary tree data structures will randomly use
100  * left and right children when examining a tree.  C "if()" statements
101  * which evaluate randomly suffer from very poor hardware branch prediction.
102  * In this code we avoid some of the branch mispredictions by using the
103  * following translation arrays. They replace random branches with an
104  * additional memory reference. Since the translation arrays are both very
105  * small the data should remain efficiently in cache.
106  */
107 static const int  avl_child2balance[2]	= {-1, 1};
108 static const int  avl_balance2child[]	= {0, 0, 1};
109 
110 
111 /*
112  * Walk from one node to the previous valued node (ie. an infix walk
113  * towards the left). At any given node we do one of 2 things:
114  *
115  * - If there is a left child, go to it, then to it's rightmost descendant.
116  *
117  * - otherwise we return thru parent nodes until we've come from a right child.
118  *
119  * Return Value:
120  * NULL - if at the end of the nodes
121  * otherwise next node
122  */
123 void *
124 avl_walk(avl_tree_t *tree, void	*oldnode, int left)
125 {
126 	size_t off = tree->avl_offset;
127 	avl_node_t *node = AVL_DATA2NODE(oldnode, off);
128 	int right = 1 - left;
129 	int was_child;
130 
131 
132 	/*
133 	 * nowhere to walk to if tree is empty
134 	 */
135 	if (node == NULL)
136 		return (NULL);
137 
138 	/*
139 	 * Visit the previous valued node. There are two possibilities:
140 	 *
141 	 * If this node has a left child, go down one left, then all
142 	 * the way right.
143 	 */
144 	if (node->avl_child[left] != NULL) {
145 		for (node = node->avl_child[left];
146 		    node->avl_child[right] != NULL;
147 		    node = node->avl_child[right])
148 			;
149 	/*
150 	 * Otherwise, return thru left children as far as we can.
151 	 */
152 	} else {
153 		for (;;) {
154 			was_child = AVL_XCHILD(node);
155 			node = AVL_XPARENT(node);
156 			if (node == NULL)
157 				return (NULL);
158 			if (was_child == right)
159 				break;
160 		}
161 	}
162 
163 	return (AVL_NODE2DATA(node, off));
164 }
165 
166 /*
167  * Return the lowest valued node in a tree or NULL.
168  * (leftmost child from root of tree)
169  */
170 void *
171 avl_first(avl_tree_t *tree)
172 {
173 	avl_node_t *node;
174 	avl_node_t *prev = NULL;
175 	size_t off = tree->avl_offset;
176 
177 	for (node = tree->avl_root; node != NULL; node = node->avl_child[0])
178 		prev = node;
179 
180 	if (prev != NULL)
181 		return (AVL_NODE2DATA(prev, off));
182 	return (NULL);
183 }
184 
185 /*
186  * Return the highest valued node in a tree or NULL.
187  * (rightmost child from root of tree)
188  */
189 void *
190 avl_last(avl_tree_t *tree)
191 {
192 	avl_node_t *node;
193 	avl_node_t *prev = NULL;
194 	size_t off = tree->avl_offset;
195 
196 	for (node = tree->avl_root; node != NULL; node = node->avl_child[1])
197 		prev = node;
198 
199 	if (prev != NULL)
200 		return (AVL_NODE2DATA(prev, off));
201 	return (NULL);
202 }
203 
204 /*
205  * Access the node immediately before or after an insertion point.
206  *
207  * "avl_index_t" is a (avl_node_t *) with the bottom bit indicating a child
208  *
209  * Return value:
210  *	NULL: no node in the given direction
211  *	"void *"  of the found tree node
212  */
213 void *
214 avl_nearest(avl_tree_t *tree, avl_index_t where, int direction)
215 {
216 	int child = AVL_INDEX2CHILD(where);
217 	avl_node_t *node = AVL_INDEX2NODE(where);
218 	void *data;
219 	size_t off = tree->avl_offset;
220 
221 	if (node == NULL) {
222 		ASSERT(tree->avl_root == NULL);
223 		return (NULL);
224 	}
225 	data = AVL_NODE2DATA(node, off);
226 	if (child != direction)
227 		return (data);
228 
229 	return (avl_walk(tree, data, direction));
230 }
231 
232 
233 /*
234  * Search for the node which contains "value".  The algorithm is a
235  * simple binary tree search.
236  *
237  * return value:
238  *	NULL: the value is not in the AVL tree
239  *		*where (if not NULL)  is set to indicate the insertion point
240  *	"void *"  of the found tree node
241  */
242 void *
243 avl_find(avl_tree_t *tree, const void *value, avl_index_t *where)
244 {
245 	avl_node_t *node;
246 	avl_node_t *prev = NULL;
247 	int child = 0;
248 	int diff;
249 	size_t off = tree->avl_offset;
250 
251 	for (node = tree->avl_root; node != NULL;
252 	    node = node->avl_child[child]) {
253 
254 		prev = node;
255 
256 		diff = tree->avl_compar(value, AVL_NODE2DATA(node, off));
257 		ASSERT(-1 <= diff && diff <= 1);
258 		if (diff == 0) {
259 #ifdef DEBUG
260 			if (where != NULL)
261 				*where = 0;
262 #endif
263 			return (AVL_NODE2DATA(node, off));
264 		}
265 		child = avl_balance2child[1 + diff];
266 
267 	}
268 
269 	if (where != NULL)
270 		*where = AVL_MKINDEX(prev, child);
271 
272 	return (NULL);
273 }
274 
275 
276 /*
277  * Perform a rotation to restore balance at the subtree given by depth.
278  *
279  * This routine is used by both insertion and deletion. The return value
280  * indicates:
281  *	 0 : subtree did not change height
282  *	!0 : subtree was reduced in height
283  *
284  * The code is written as if handling left rotations, right rotations are
285  * symmetric and handled by swapping values of variables right/left[_heavy]
286  *
287  * On input balance is the "new" balance at "node". This value is either
288  * -2 or +2.
289  */
290 static int
291 avl_rotation(avl_tree_t *tree, avl_node_t *node, int balance)
292 {
293 	int left = !(balance < 0);	/* when balance = -2, left will be 0 */
294 	int right = 1 - left;
295 	int left_heavy = balance >> 1;
296 	int right_heavy = -left_heavy;
297 	avl_node_t *parent = AVL_XPARENT(node);
298 	avl_node_t *child = node->avl_child[left];
299 	avl_node_t *cright;
300 	avl_node_t *gchild;
301 	avl_node_t *gright;
302 	avl_node_t *gleft;
303 	int which_child = AVL_XCHILD(node);
304 	int child_bal = AVL_XBALANCE(child);
305 
306 	/* BEGIN CSTYLED */
307 	/*
308 	 * case 1 : node is overly left heavy, the left child is balanced or
309 	 * also left heavy. This requires the following rotation.
310 	 *
311 	 *                   (node bal:-2)
312 	 *                    /           \
313 	 *                   /             \
314 	 *              (child bal:0 or -1)
315 	 *              /    \
316 	 *             /      \
317 	 *                     cright
318 	 *
319 	 * becomes:
320 	 *
321 	 *              (child bal:1 or 0)
322 	 *              /        \
323 	 *             /          \
324 	 *                        (node bal:-1 or 0)
325 	 *                         /     \
326 	 *                        /       \
327 	 *                     cright
328 	 *
329 	 * we detect this situation by noting that child's balance is not
330 	 * right_heavy.
331 	 */
332 	/* END CSTYLED */
333 	if (child_bal != right_heavy) {
334 
335 		/*
336 		 * compute new balance of nodes
337 		 *
338 		 * If child used to be left heavy (now balanced) we reduced
339 		 * the height of this sub-tree -- used in "return...;" below
340 		 */
341 		child_bal += right_heavy; /* adjust towards right */
342 
343 		/*
344 		 * move "cright" to be node's left child
345 		 */
346 		cright = child->avl_child[right];
347 		node->avl_child[left] = cright;
348 		if (cright != NULL) {
349 			AVL_SETPARENT(cright, node);
350 			AVL_SETCHILD(cright, left);
351 		}
352 
353 		/*
354 		 * move node to be child's right child
355 		 */
356 		child->avl_child[right] = node;
357 		AVL_SETBALANCE(node, -child_bal);
358 		AVL_SETCHILD(node, right);
359 		AVL_SETPARENT(node, child);
360 
361 		/*
362 		 * update the pointer into this subtree
363 		 */
364 		AVL_SETBALANCE(child, child_bal);
365 		AVL_SETCHILD(child, which_child);
366 		AVL_SETPARENT(child, parent);
367 		if (parent != NULL)
368 			parent->avl_child[which_child] = child;
369 		else
370 			tree->avl_root = child;
371 
372 		return (child_bal == 0);
373 	}
374 
375 	/* BEGIN CSTYLED */
376 	/*
377 	 * case 2 : When node is left heavy, but child is right heavy we use
378 	 * a different rotation.
379 	 *
380 	 *                   (node b:-2)
381 	 *                    /   \
382 	 *                   /     \
383 	 *                  /       \
384 	 *             (child b:+1)
385 	 *              /     \
386 	 *             /       \
387 	 *                   (gchild b: != 0)
388 	 *                     /  \
389 	 *                    /    \
390 	 *                 gleft   gright
391 	 *
392 	 * becomes:
393 	 *
394 	 *              (gchild b:0)
395 	 *              /       \
396 	 *             /         \
397 	 *            /           \
398 	 *        (child b:?)   (node b:?)
399 	 *         /  \          /   \
400 	 *        /    \        /     \
401 	 *            gleft   gright
402 	 *
403 	 * computing the new balances is more complicated. As an example:
404 	 *	 if gchild was right_heavy, then child is now left heavy
405 	 *		else it is balanced
406 	 */
407 	/* END CSTYLED */
408 	gchild = child->avl_child[right];
409 	gleft = gchild->avl_child[left];
410 	gright = gchild->avl_child[right];
411 
412 	/*
413 	 * move gright to left child of node and
414 	 *
415 	 * move gleft to right child of node
416 	 */
417 	node->avl_child[left] = gright;
418 	if (gright != NULL) {
419 		AVL_SETPARENT(gright, node);
420 		AVL_SETCHILD(gright, left);
421 	}
422 
423 	child->avl_child[right] = gleft;
424 	if (gleft != NULL) {
425 		AVL_SETPARENT(gleft, child);
426 		AVL_SETCHILD(gleft, right);
427 	}
428 
429 	/*
430 	 * move child to left child of gchild and
431 	 *
432 	 * move node to right child of gchild and
433 	 *
434 	 * fixup parent of all this to point to gchild
435 	 */
436 	balance = AVL_XBALANCE(gchild);
437 	gchild->avl_child[left] = child;
438 	AVL_SETBALANCE(child, (balance == right_heavy ? left_heavy : 0));
439 	AVL_SETPARENT(child, gchild);
440 	AVL_SETCHILD(child, left);
441 
442 	gchild->avl_child[right] = node;
443 	AVL_SETBALANCE(node, (balance == left_heavy ? right_heavy : 0));
444 	AVL_SETPARENT(node, gchild);
445 	AVL_SETCHILD(node, right);
446 
447 	AVL_SETBALANCE(gchild, 0);
448 	AVL_SETPARENT(gchild, parent);
449 	AVL_SETCHILD(gchild, which_child);
450 	if (parent != NULL)
451 		parent->avl_child[which_child] = gchild;
452 	else
453 		tree->avl_root = gchild;
454 
455 	return (1);	/* the new tree is always shorter */
456 }
457 
458 
459 /*
460  * Insert a new node into an AVL tree at the specified (from avl_find()) place.
461  *
462  * Newly inserted nodes are always leaf nodes in the tree, since avl_find()
463  * searches out to the leaf positions.  The avl_index_t indicates the node
464  * which will be the parent of the new node.
465  *
466  * After the node is inserted, a single rotation further up the tree may
467  * be necessary to maintain an acceptable AVL balance.
468  */
469 void
470 avl_insert(avl_tree_t *tree, void *new_data, avl_index_t where)
471 {
472 	avl_node_t *node;
473 	avl_node_t *parent = AVL_INDEX2NODE(where);
474 	int old_balance;
475 	int new_balance;
476 	int which_child = AVL_INDEX2CHILD(where);
477 	size_t off = tree->avl_offset;
478 
479 	ASSERT(tree);
480 #ifdef _LP64
481 	ASSERT(((uintptr_t)new_data & 0x7) == 0);
482 #endif
483 
484 	node = AVL_DATA2NODE(new_data, off);
485 
486 	/*
487 	 * First, add the node to the tree at the indicated position.
488 	 */
489 	++tree->avl_numnodes;
490 
491 	node->avl_child[0] = NULL;
492 	node->avl_child[1] = NULL;
493 
494 	AVL_SETCHILD(node, which_child);
495 	AVL_SETBALANCE(node, 0);
496 	AVL_SETPARENT(node, parent);
497 	if (parent != NULL) {
498 		ASSERT(parent->avl_child[which_child] == NULL);
499 		parent->avl_child[which_child] = node;
500 	} else {
501 		ASSERT(tree->avl_root == NULL);
502 		tree->avl_root = node;
503 	}
504 	/*
505 	 * Now, back up the tree modifying the balance of all nodes above the
506 	 * insertion point. If we get to a highly unbalanced ancestor, we
507 	 * need to do a rotation.  If we back out of the tree we are done.
508 	 * If we brought any subtree into perfect balance (0), we are also done.
509 	 */
510 	for (;;) {
511 		node = parent;
512 		if (node == NULL)
513 			return;
514 
515 		/*
516 		 * Compute the new balance
517 		 */
518 		old_balance = AVL_XBALANCE(node);
519 		new_balance = old_balance + avl_child2balance[which_child];
520 
521 		/*
522 		 * If we introduced equal balance, then we are done immediately
523 		 */
524 		if (new_balance == 0) {
525 			AVL_SETBALANCE(node, 0);
526 			return;
527 		}
528 
529 		/*
530 		 * If both old and new are not zero we went
531 		 * from -1 to -2 balance, do a rotation.
532 		 */
533 		if (old_balance != 0)
534 			break;
535 
536 		AVL_SETBALANCE(node, new_balance);
537 		parent = AVL_XPARENT(node);
538 		which_child = AVL_XCHILD(node);
539 	}
540 
541 	/*
542 	 * perform a rotation to fix the tree and return
543 	 */
544 	(void) avl_rotation(tree, node, new_balance);
545 }
546 
547 /*
548  * Insert "new_data" in "tree" in the given "direction" either after or
549  * before (AVL_AFTER, AVL_BEFORE) the data "here".
550  *
551  * Insertions can only be done at empty leaf points in the tree, therefore
552  * if the given child of the node is already present we move to either
553  * the AVL_PREV or AVL_NEXT and reverse the insertion direction. Since
554  * every other node in the tree is a leaf, this always works.
555  *
556  * To help developers using this interface, we assert that the new node
557  * is correctly ordered at every step of the way in DEBUG kernels.
558  */
559 void
560 avl_insert_here(
561 	avl_tree_t *tree,
562 	void *new_data,
563 	void *here,
564 	int direction)
565 {
566 	avl_node_t *node;
567 	int child = direction;	/* rely on AVL_BEFORE == 0, AVL_AFTER == 1 */
568 #ifdef DEBUG
569 	int diff;
570 #endif
571 
572 	ASSERT(tree != NULL);
573 	ASSERT(new_data != NULL);
574 	ASSERT(here != NULL);
575 	ASSERT(direction == AVL_BEFORE || direction == AVL_AFTER);
576 
577 	/*
578 	 * If corresponding child of node is not NULL, go to the neighboring
579 	 * node and reverse the insertion direction.
580 	 */
581 	node = AVL_DATA2NODE(here, tree->avl_offset);
582 
583 #ifdef DEBUG
584 	diff = tree->avl_compar(new_data, here);
585 	ASSERT(-1 <= diff && diff <= 1);
586 	ASSERT(diff != 0);
587 	ASSERT(diff > 0 ? child == 1 : child == 0);
588 #endif
589 
590 	if (node->avl_child[child] != NULL) {
591 		node = node->avl_child[child];
592 		child = 1 - child;
593 		while (node->avl_child[child] != NULL) {
594 #ifdef DEBUG
595 			diff = tree->avl_compar(new_data,
596 			    AVL_NODE2DATA(node, tree->avl_offset));
597 			ASSERT(-1 <= diff && diff <= 1);
598 			ASSERT(diff != 0);
599 			ASSERT(diff > 0 ? child == 1 : child == 0);
600 #endif
601 			node = node->avl_child[child];
602 		}
603 #ifdef DEBUG
604 		diff = tree->avl_compar(new_data,
605 		    AVL_NODE2DATA(node, tree->avl_offset));
606 		ASSERT(-1 <= diff && diff <= 1);
607 		ASSERT(diff != 0);
608 		ASSERT(diff > 0 ? child == 1 : child == 0);
609 #endif
610 	}
611 	ASSERT(node->avl_child[child] == NULL);
612 
613 	avl_insert(tree, new_data, AVL_MKINDEX(node, child));
614 }
615 
616 /*
617  * Add a new node to an AVL tree.
618  */
619 void
620 avl_add(avl_tree_t *tree, void *new_node)
621 {
622 	avl_index_t where;
623 
624 	/*
625 	 * This is unfortunate.  We want to call panic() here, even for
626 	 * non-DEBUG kernels.  In userland, however, we can't depend on anything
627 	 * in libc or else the rtld build process gets confused.  So, all we can
628 	 * do in userland is resort to a normal ASSERT().
629 	 */
630 	if (avl_find(tree, new_node, &where) != NULL)
631 #ifdef _KERNEL
632 		panic("avl_find() succeeded inside avl_add()");
633 #else
634 		ASSERT(0);
635 #endif
636 	avl_insert(tree, new_node, where);
637 }
638 
639 /*
640  * Delete a node from the AVL tree.  Deletion is similar to insertion, but
641  * with 2 complications.
642  *
643  * First, we may be deleting an interior node. Consider the following subtree:
644  *
645  *     d           c            c
646  *    / \         / \          / \
647  *   b   e       b   e        b   e
648  *  / \	        / \          /
649  * a   c       a            a
650  *
651  * When we are deleting node (d), we find and bring up an adjacent valued leaf
652  * node, say (c), to take the interior node's place. In the code this is
653  * handled by temporarily swapping (d) and (c) in the tree and then using
654  * common code to delete (d) from the leaf position.
655  *
656  * Secondly, an interior deletion from a deep tree may require more than one
657  * rotation to fix the balance. This is handled by moving up the tree through
658  * parents and applying rotations as needed. The return value from
659  * avl_rotation() is used to detect when a subtree did not change overall
660  * height due to a rotation.
661  */
662 void
663 avl_remove(avl_tree_t *tree, void *data)
664 {
665 	avl_node_t *delete;
666 	avl_node_t *parent;
667 	avl_node_t *node;
668 	avl_node_t tmp;
669 	int old_balance;
670 	int new_balance;
671 	int left;
672 	int right;
673 	int which_child;
674 	size_t off = tree->avl_offset;
675 
676 	ASSERT(tree);
677 
678 	delete = AVL_DATA2NODE(data, off);
679 
680 	/*
681 	 * Deletion is easiest with a node that has at most 1 child.
682 	 * We swap a node with 2 children with a sequentially valued
683 	 * neighbor node. That node will have at most 1 child. Note this
684 	 * has no effect on the ordering of the remaining nodes.
685 	 *
686 	 * As an optimization, we choose the greater neighbor if the tree
687 	 * is right heavy, otherwise the left neighbor. This reduces the
688 	 * number of rotations needed.
689 	 */
690 	if (delete->avl_child[0] != NULL && delete->avl_child[1] != NULL) {
691 
692 		/*
693 		 * choose node to swap from whichever side is taller
694 		 */
695 		old_balance = AVL_XBALANCE(delete);
696 		left = avl_balance2child[old_balance + 1];
697 		right = 1 - left;
698 
699 		/*
700 		 * get to the previous value'd node
701 		 * (down 1 left, as far as possible right)
702 		 */
703 		for (node = delete->avl_child[left];
704 		    node->avl_child[right] != NULL;
705 		    node = node->avl_child[right])
706 			;
707 
708 		/*
709 		 * create a temp placeholder for 'node'
710 		 * move 'node' to delete's spot in the tree
711 		 */
712 		tmp = *node;
713 
714 		*node = *delete;
715 		if (node->avl_child[left] == node)
716 			node->avl_child[left] = &tmp;
717 
718 		parent = AVL_XPARENT(node);
719 		if (parent != NULL)
720 			parent->avl_child[AVL_XCHILD(node)] = node;
721 		else
722 			tree->avl_root = node;
723 		AVL_SETPARENT(node->avl_child[left], node);
724 		AVL_SETPARENT(node->avl_child[right], node);
725 
726 		/*
727 		 * Put tmp where node used to be (just temporary).
728 		 * It always has a parent and at most 1 child.
729 		 */
730 		delete = &tmp;
731 		parent = AVL_XPARENT(delete);
732 		parent->avl_child[AVL_XCHILD(delete)] = delete;
733 		which_child = (delete->avl_child[1] != 0);
734 		if (delete->avl_child[which_child] != NULL)
735 			AVL_SETPARENT(delete->avl_child[which_child], delete);
736 	}
737 
738 
739 	/*
740 	 * Here we know "delete" is at least partially a leaf node. It can
741 	 * be easily removed from the tree.
742 	 */
743 	ASSERT(tree->avl_numnodes > 0);
744 	--tree->avl_numnodes;
745 	parent = AVL_XPARENT(delete);
746 	which_child = AVL_XCHILD(delete);
747 	if (delete->avl_child[0] != NULL)
748 		node = delete->avl_child[0];
749 	else
750 		node = delete->avl_child[1];
751 
752 	/*
753 	 * Connect parent directly to node (leaving out delete).
754 	 */
755 	if (node != NULL) {
756 		AVL_SETPARENT(node, parent);
757 		AVL_SETCHILD(node, which_child);
758 	}
759 	if (parent == NULL) {
760 		tree->avl_root = node;
761 		return;
762 	}
763 	parent->avl_child[which_child] = node;
764 
765 
766 	/*
767 	 * Since the subtree is now shorter, begin adjusting parent balances
768 	 * and performing any needed rotations.
769 	 */
770 	do {
771 
772 		/*
773 		 * Move up the tree and adjust the balance
774 		 *
775 		 * Capture the parent and which_child values for the next
776 		 * iteration before any rotations occur.
777 		 */
778 		node = parent;
779 		old_balance = AVL_XBALANCE(node);
780 		new_balance = old_balance - avl_child2balance[which_child];
781 		parent = AVL_XPARENT(node);
782 		which_child = AVL_XCHILD(node);
783 
784 		/*
785 		 * If a node was in perfect balance but isn't anymore then
786 		 * we can stop, since the height didn't change above this point
787 		 * due to a deletion.
788 		 */
789 		if (old_balance == 0) {
790 			AVL_SETBALANCE(node, new_balance);
791 			break;
792 		}
793 
794 		/*
795 		 * If the new balance is zero, we don't need to rotate
796 		 * else
797 		 * need a rotation to fix the balance.
798 		 * If the rotation doesn't change the height
799 		 * of the sub-tree we have finished adjusting.
800 		 */
801 		if (new_balance == 0)
802 			AVL_SETBALANCE(node, new_balance);
803 		else if (!avl_rotation(tree, node, new_balance))
804 			break;
805 	} while (parent != NULL);
806 }
807 
808 #define	AVL_REINSERT(tree, obj)		\
809 	avl_remove((tree), (obj));	\
810 	avl_add((tree), (obj))
811 
812 boolean_t
813 avl_update_lt(avl_tree_t *t, void *obj)
814 {
815 	void *neighbor;
816 
817 	ASSERT(((neighbor = AVL_NEXT(t, obj)) == NULL) ||
818 	    (t->avl_compar(obj, neighbor) <= 0));
819 
820 	neighbor = AVL_PREV(t, obj);
821 	if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) {
822 		AVL_REINSERT(t, obj);
823 		return (B_TRUE);
824 	}
825 
826 	return (B_FALSE);
827 }
828 
829 boolean_t
830 avl_update_gt(avl_tree_t *t, void *obj)
831 {
832 	void *neighbor;
833 
834 	ASSERT(((neighbor = AVL_PREV(t, obj)) == NULL) ||
835 	    (t->avl_compar(obj, neighbor) >= 0));
836 
837 	neighbor = AVL_NEXT(t, obj);
838 	if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) {
839 		AVL_REINSERT(t, obj);
840 		return (B_TRUE);
841 	}
842 
843 	return (B_FALSE);
844 }
845 
846 boolean_t
847 avl_update(avl_tree_t *t, void *obj)
848 {
849 	void *neighbor;
850 
851 	neighbor = AVL_PREV(t, obj);
852 	if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) {
853 		AVL_REINSERT(t, obj);
854 		return (B_TRUE);
855 	}
856 
857 	neighbor = AVL_NEXT(t, obj);
858 	if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) {
859 		AVL_REINSERT(t, obj);
860 		return (B_TRUE);
861 	}
862 
863 	return (B_FALSE);
864 }
865 
866 /*
867  * initialize a new AVL tree
868  */
869 void
870 avl_create(avl_tree_t *tree, int (*compar) (const void *, const void *),
871     size_t size, size_t offset)
872 {
873 	ASSERT(tree);
874 	ASSERT(compar);
875 	ASSERT(size > 0);
876 	ASSERT(size >= offset + sizeof (avl_node_t));
877 #ifdef _LP64
878 	ASSERT((offset & 0x7) == 0);
879 #endif
880 
881 	tree->avl_compar = compar;
882 	tree->avl_root = NULL;
883 	tree->avl_numnodes = 0;
884 	tree->avl_size = size;
885 	tree->avl_offset = offset;
886 }
887 
888 /*
889  * Delete a tree.
890  */
891 /* ARGSUSED */
892 void
893 avl_destroy(avl_tree_t *tree)
894 {
895 	ASSERT(tree);
896 	ASSERT(tree->avl_numnodes == 0);
897 	ASSERT(tree->avl_root == NULL);
898 }
899 
900 
901 /*
902  * Return the number of nodes in an AVL tree.
903  */
904 ulong_t
905 avl_numnodes(avl_tree_t *tree)
906 {
907 	ASSERT(tree);
908 	return (tree->avl_numnodes);
909 }
910 
911 boolean_t
912 avl_is_empty(avl_tree_t *tree)
913 {
914 	ASSERT(tree);
915 	return (tree->avl_numnodes == 0);
916 }
917 
918 #define	CHILDBIT	(1L)
919 
920 /*
921  * Post-order tree walk used to visit all tree nodes and destroy the tree
922  * in post order. This is used for destroying a tree w/o paying any cost
923  * for rebalancing it.
924  *
925  * example:
926  *
927  *	void *cookie = NULL;
928  *	my_data_t *node;
929  *
930  *	while ((node = avl_destroy_nodes(tree, &cookie)) != NULL)
931  *		free(node);
932  *	avl_destroy(tree);
933  *
934  * The cookie is really an avl_node_t to the current node's parent and
935  * an indication of which child you looked at last.
936  *
937  * On input, a cookie value of CHILDBIT indicates the tree is done.
938  */
939 void *
940 avl_destroy_nodes(avl_tree_t *tree, void **cookie)
941 {
942 	avl_node_t	*node;
943 	avl_node_t	*parent;
944 	int		child;
945 	void		*first;
946 	size_t		off = tree->avl_offset;
947 
948 	/*
949 	 * Initial calls go to the first node or it's right descendant.
950 	 */
951 	if (*cookie == NULL) {
952 		first = avl_first(tree);
953 
954 		/*
955 		 * deal with an empty tree
956 		 */
957 		if (first == NULL) {
958 			*cookie = (void *)CHILDBIT;
959 			return (NULL);
960 		}
961 
962 		node = AVL_DATA2NODE(first, off);
963 		parent = AVL_XPARENT(node);
964 		goto check_right_side;
965 	}
966 
967 	/*
968 	 * If there is no parent to return to we are done.
969 	 */
970 	parent = (avl_node_t *)((uintptr_t)(*cookie) & ~CHILDBIT);
971 	if (parent == NULL) {
972 		if (tree->avl_root != NULL) {
973 			ASSERT(tree->avl_numnodes == 1);
974 			tree->avl_root = NULL;
975 			tree->avl_numnodes = 0;
976 		}
977 		return (NULL);
978 	}
979 
980 	/*
981 	 * Remove the child pointer we just visited from the parent and tree.
982 	 */
983 	child = (uintptr_t)(*cookie) & CHILDBIT;
984 	parent->avl_child[child] = NULL;
985 	ASSERT(tree->avl_numnodes > 1);
986 	--tree->avl_numnodes;
987 
988 	/*
989 	 * If we just did a right child or there isn't one, go up to parent.
990 	 */
991 	if (child == 1 || parent->avl_child[1] == NULL) {
992 		node = parent;
993 		parent = AVL_XPARENT(parent);
994 		goto done;
995 	}
996 
997 	/*
998 	 * Do parent's right child, then leftmost descendent.
999 	 */
1000 	node = parent->avl_child[1];
1001 	while (node->avl_child[0] != NULL) {
1002 		parent = node;
1003 		node = node->avl_child[0];
1004 	}
1005 
1006 	/*
1007 	 * If here, we moved to a left child. It may have one
1008 	 * child on the right (when balance == +1).
1009 	 */
1010 check_right_side:
1011 	if (node->avl_child[1] != NULL) {
1012 		ASSERT(AVL_XBALANCE(node) == 1);
1013 		parent = node;
1014 		node = node->avl_child[1];
1015 		ASSERT(node->avl_child[0] == NULL &&
1016 		    node->avl_child[1] == NULL);
1017 	} else {
1018 		ASSERT(AVL_XBALANCE(node) <= 0);
1019 	}
1020 
1021 done:
1022 	if (parent == NULL) {
1023 		*cookie = (void *)CHILDBIT;
1024 		ASSERT(node == tree->avl_root);
1025 	} else {
1026 		*cookie = (void *)((uintptr_t)parent | AVL_XCHILD(node));
1027 	}
1028 
1029 	return (AVL_NODE2DATA(node, off));
1030 }
1031