1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * The objective of this program is to provide a DMU/ZAP/SPA stress test 28 * that runs entirely in userland, is easy to use, and easy to extend. 29 * 30 * The overall design of the ztest program is as follows: 31 * 32 * (1) For each major functional area (e.g. adding vdevs to a pool, 33 * creating and destroying datasets, reading and writing objects, etc) 34 * we have a simple routine to test that functionality. These 35 * individual routines do not have to do anything "stressful". 36 * 37 * (2) We turn these simple functionality tests into a stress test by 38 * running them all in parallel, with as many threads as desired, 39 * and spread across as many datasets, objects, and vdevs as desired. 40 * 41 * (3) While all this is happening, we inject faults into the pool to 42 * verify that self-healing data really works. 43 * 44 * (4) Every time we open a dataset, we change its checksum and compression 45 * functions. Thus even individual objects vary from block to block 46 * in which checksum they use and whether they're compressed. 47 * 48 * (5) To verify that we never lose on-disk consistency after a crash, 49 * we run the entire test in a child of the main process. 50 * At random times, the child self-immolates with a SIGKILL. 51 * This is the software equivalent of pulling the power cord. 52 * The parent then runs the test again, using the existing 53 * storage pool, as many times as desired. 54 * 55 * (6) To verify that we don't have future leaks or temporal incursions, 56 * many of the functional tests record the transaction group number 57 * as part of their data. When reading old data, they verify that 58 * the transaction group number is less than the current, open txg. 59 * If you add a new test, please do this if applicable. 60 * 61 * When run with no arguments, ztest runs for about five minutes and 62 * produces no output if successful. To get a little bit of information, 63 * specify -V. To get more information, specify -VV, and so on. 64 * 65 * To turn this into an overnight stress test, use -T to specify run time. 66 * 67 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 68 * to increase the pool capacity, fanout, and overall stress level. 69 * 70 * The -N(okill) option will suppress kills, so each child runs to completion. 71 * This can be useful when you're trying to distinguish temporal incursions 72 * from plain old race conditions. 73 */ 74 75 #include <sys/zfs_context.h> 76 #include <sys/spa.h> 77 #include <sys/dmu.h> 78 #include <sys/txg.h> 79 #include <sys/dbuf.h> 80 #include <sys/zap.h> 81 #include <sys/dmu_objset.h> 82 #include <sys/poll.h> 83 #include <sys/stat.h> 84 #include <sys/time.h> 85 #include <sys/wait.h> 86 #include <sys/mman.h> 87 #include <sys/resource.h> 88 #include <sys/zio.h> 89 #include <sys/zil.h> 90 #include <sys/zil_impl.h> 91 #include <sys/vdev_impl.h> 92 #include <sys/vdev_file.h> 93 #include <sys/spa_impl.h> 94 #include <sys/metaslab_impl.h> 95 #include <sys/dsl_prop.h> 96 #include <sys/dsl_dataset.h> 97 #include <sys/refcount.h> 98 #include <stdio.h> 99 #include <stdio_ext.h> 100 #include <stdlib.h> 101 #include <unistd.h> 102 #include <signal.h> 103 #include <umem.h> 104 #include <dlfcn.h> 105 #include <ctype.h> 106 #include <math.h> 107 #include <sys/fs/zfs.h> 108 #include <libnvpair.h> 109 110 static char cmdname[] = "ztest"; 111 static char *zopt_pool = cmdname; 112 113 static uint64_t zopt_vdevs = 5; 114 static uint64_t zopt_vdevtime; 115 static int zopt_ashift = SPA_MINBLOCKSHIFT; 116 static int zopt_mirrors = 2; 117 static int zopt_raidz = 4; 118 static int zopt_raidz_parity = 1; 119 static size_t zopt_vdev_size = SPA_MINDEVSIZE; 120 static int zopt_datasets = 7; 121 static int zopt_threads = 23; 122 static uint64_t zopt_passtime = 60; /* 60 seconds */ 123 static uint64_t zopt_killrate = 70; /* 70% kill rate */ 124 static int zopt_verbose = 0; 125 static int zopt_init = 1; 126 static char *zopt_dir = "/tmp"; 127 static uint64_t zopt_time = 300; /* 5 minutes */ 128 static int zopt_maxfaults; 129 130 #define BT_MAGIC 0x123456789abcdefULL 131 132 enum ztest_io_type { 133 ZTEST_IO_WRITE_TAG, 134 ZTEST_IO_WRITE_PATTERN, 135 ZTEST_IO_WRITE_ZEROES, 136 ZTEST_IO_TRUNCATE, 137 ZTEST_IO_SETATTR, 138 ZTEST_IO_TYPES 139 }; 140 141 typedef struct ztest_block_tag { 142 uint64_t bt_magic; 143 uint64_t bt_objset; 144 uint64_t bt_object; 145 uint64_t bt_offset; 146 uint64_t bt_gen; 147 uint64_t bt_txg; 148 uint64_t bt_crtxg; 149 } ztest_block_tag_t; 150 151 typedef struct bufwad { 152 uint64_t bw_index; 153 uint64_t bw_txg; 154 uint64_t bw_data; 155 } bufwad_t; 156 157 /* 158 * XXX -- fix zfs range locks to be generic so we can use them here. 159 */ 160 typedef enum { 161 RL_READER, 162 RL_WRITER, 163 RL_APPEND 164 } rl_type_t; 165 166 typedef struct rll { 167 void *rll_writer; 168 int rll_readers; 169 mutex_t rll_lock; 170 cond_t rll_cv; 171 } rll_t; 172 173 typedef struct rl { 174 uint64_t rl_object; 175 uint64_t rl_offset; 176 uint64_t rl_size; 177 rll_t *rl_lock; 178 } rl_t; 179 180 #define ZTEST_RANGE_LOCKS 64 181 #define ZTEST_OBJECT_LOCKS 64 182 183 /* 184 * Object descriptor. Used as a template for object lookup/create/remove. 185 */ 186 typedef struct ztest_od { 187 uint64_t od_dir; 188 uint64_t od_object; 189 dmu_object_type_t od_type; 190 dmu_object_type_t od_crtype; 191 uint64_t od_blocksize; 192 uint64_t od_crblocksize; 193 uint64_t od_gen; 194 uint64_t od_crgen; 195 char od_name[MAXNAMELEN]; 196 } ztest_od_t; 197 198 /* 199 * Per-dataset state. 200 */ 201 typedef struct ztest_ds { 202 objset_t *zd_os; 203 zilog_t *zd_zilog; 204 uint64_t zd_seq; 205 ztest_od_t *zd_od; /* debugging aid */ 206 char zd_name[MAXNAMELEN]; 207 mutex_t zd_dirobj_lock; 208 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; 209 rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; 210 } ztest_ds_t; 211 212 /* 213 * Per-iteration state. 214 */ 215 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); 216 217 typedef struct ztest_info { 218 ztest_func_t *zi_func; /* test function */ 219 uint64_t zi_iters; /* iterations per execution */ 220 uint64_t *zi_interval; /* execute every <interval> seconds */ 221 uint64_t zi_call_count; /* per-pass count */ 222 uint64_t zi_call_time; /* per-pass time */ 223 uint64_t zi_call_next; /* next time to call this function */ 224 } ztest_info_t; 225 226 /* 227 * Note: these aren't static because we want dladdr() to work. 228 */ 229 ztest_func_t ztest_dmu_read_write; 230 ztest_func_t ztest_dmu_write_parallel; 231 ztest_func_t ztest_dmu_object_alloc_free; 232 ztest_func_t ztest_dmu_commit_callbacks; 233 ztest_func_t ztest_zap; 234 ztest_func_t ztest_zap_parallel; 235 ztest_func_t ztest_zil_commit; 236 ztest_func_t ztest_dmu_read_write_zcopy; 237 ztest_func_t ztest_dmu_objset_create_destroy; 238 ztest_func_t ztest_dmu_prealloc; 239 ztest_func_t ztest_fzap; 240 ztest_func_t ztest_dmu_snapshot_create_destroy; 241 ztest_func_t ztest_dsl_prop_get_set; 242 ztest_func_t ztest_spa_prop_get_set; 243 ztest_func_t ztest_spa_create_destroy; 244 ztest_func_t ztest_fault_inject; 245 ztest_func_t ztest_ddt_repair; 246 ztest_func_t ztest_dmu_snapshot_hold; 247 ztest_func_t ztest_spa_rename; 248 ztest_func_t ztest_scrub; 249 ztest_func_t ztest_dsl_dataset_promote_busy; 250 ztest_func_t ztest_vdev_attach_detach; 251 ztest_func_t ztest_vdev_LUN_growth; 252 ztest_func_t ztest_vdev_add_remove; 253 ztest_func_t ztest_vdev_aux_add_remove; 254 255 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ 256 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ 257 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ 258 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ 259 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ 260 261 ztest_info_t ztest_info[] = { 262 { ztest_dmu_read_write, 1, &zopt_always }, 263 { ztest_dmu_write_parallel, 10, &zopt_always }, 264 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 265 { ztest_dmu_commit_callbacks, 1, &zopt_always }, 266 { ztest_zap, 30, &zopt_always }, 267 { ztest_zap_parallel, 100, &zopt_always }, 268 { ztest_zil_commit, 1, &zopt_incessant }, 269 { ztest_dmu_read_write_zcopy, 1, &zopt_often }, 270 { ztest_dmu_objset_create_destroy, 1, &zopt_often }, 271 { ztest_dsl_prop_get_set, 1, &zopt_often }, 272 { ztest_spa_prop_get_set, 1, &zopt_sometimes }, 273 #if 0 274 { ztest_dmu_prealloc, 1, &zopt_sometimes }, 275 #endif 276 { ztest_fzap, 1, &zopt_sometimes }, 277 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 278 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 279 { ztest_fault_inject, 1, &zopt_sometimes }, 280 { ztest_ddt_repair, 1, &zopt_sometimes }, 281 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, 282 { ztest_spa_rename, 1, &zopt_rarely }, 283 { ztest_scrub, 1, &zopt_rarely }, 284 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 285 { ztest_vdev_attach_detach, 1, &zopt_rarely }, 286 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 287 { ztest_vdev_add_remove, 1, &zopt_vdevtime }, 288 { ztest_vdev_aux_add_remove, 1, &zopt_vdevtime }, 289 }; 290 291 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 292 293 /* 294 * The following struct is used to hold a list of uncalled commit callbacks. 295 * The callbacks are ordered by txg number. 296 */ 297 typedef struct ztest_cb_list { 298 mutex_t zcl_callbacks_lock; 299 list_t zcl_callbacks; 300 } ztest_cb_list_t; 301 302 /* 303 * Stuff we need to share writably between parent and child. 304 */ 305 typedef struct ztest_shared { 306 char *zs_pool; 307 spa_t *zs_spa; 308 hrtime_t zs_proc_start; 309 hrtime_t zs_proc_stop; 310 hrtime_t zs_thread_start; 311 hrtime_t zs_thread_stop; 312 hrtime_t zs_thread_kill; 313 uint64_t zs_enospc_count; 314 uint64_t zs_vdev_next_leaf; 315 uint64_t zs_vdev_aux; 316 uint64_t zs_alloc; 317 uint64_t zs_space; 318 mutex_t zs_vdev_lock; 319 rwlock_t zs_name_lock; 320 ztest_info_t zs_info[ZTEST_FUNCS]; 321 ztest_ds_t zs_zd[]; 322 } ztest_shared_t; 323 324 #define ID_PARALLEL -1ULL 325 326 static char ztest_dev_template[] = "%s/%s.%llua"; 327 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 328 ztest_shared_t *ztest_shared; 329 uint64_t *ztest_seq; 330 331 static int ztest_random_fd; 332 static int ztest_dump_core = 1; 333 334 static boolean_t ztest_exiting; 335 336 /* Global commit callback list */ 337 static ztest_cb_list_t zcl; 338 339 extern uint64_t metaslab_gang_bang; 340 extern uint64_t metaslab_df_alloc_threshold; 341 static uint64_t metaslab_sz; 342 343 enum ztest_object { 344 ZTEST_META_DNODE = 0, 345 ZTEST_DIROBJ, 346 ZTEST_OBJECTS 347 }; 348 349 static void usage(boolean_t) __NORETURN; 350 351 /* 352 * These libumem hooks provide a reasonable set of defaults for the allocator's 353 * debugging facilities. 354 */ 355 const char * 356 _umem_debug_init() 357 { 358 return ("default,verbose"); /* $UMEM_DEBUG setting */ 359 } 360 361 const char * 362 _umem_logging_init(void) 363 { 364 return ("fail,contents"); /* $UMEM_LOGGING setting */ 365 } 366 367 #define FATAL_MSG_SZ 1024 368 369 char *fatal_msg; 370 371 static void 372 fatal(int do_perror, char *message, ...) 373 { 374 va_list args; 375 int save_errno = errno; 376 char buf[FATAL_MSG_SZ]; 377 378 (void) fflush(stdout); 379 380 va_start(args, message); 381 (void) sprintf(buf, "ztest: "); 382 /* LINTED */ 383 (void) vsprintf(buf + strlen(buf), message, args); 384 va_end(args); 385 if (do_perror) { 386 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 387 ": %s", strerror(save_errno)); 388 } 389 (void) fprintf(stderr, "%s\n", buf); 390 fatal_msg = buf; /* to ease debugging */ 391 if (ztest_dump_core) 392 abort(); 393 exit(3); 394 } 395 396 static int 397 str2shift(const char *buf) 398 { 399 const char *ends = "BKMGTPEZ"; 400 int i; 401 402 if (buf[0] == '\0') 403 return (0); 404 for (i = 0; i < strlen(ends); i++) { 405 if (toupper(buf[0]) == ends[i]) 406 break; 407 } 408 if (i == strlen(ends)) { 409 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 410 buf); 411 usage(B_FALSE); 412 } 413 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 414 return (10*i); 415 } 416 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 417 usage(B_FALSE); 418 /* NOTREACHED */ 419 } 420 421 static uint64_t 422 nicenumtoull(const char *buf) 423 { 424 char *end; 425 uint64_t val; 426 427 val = strtoull(buf, &end, 0); 428 if (end == buf) { 429 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 430 usage(B_FALSE); 431 } else if (end[0] == '.') { 432 double fval = strtod(buf, &end); 433 fval *= pow(2, str2shift(end)); 434 if (fval > UINT64_MAX) { 435 (void) fprintf(stderr, "ztest: value too large: %s\n", 436 buf); 437 usage(B_FALSE); 438 } 439 val = (uint64_t)fval; 440 } else { 441 int shift = str2shift(end); 442 if (shift >= 64 || (val << shift) >> shift != val) { 443 (void) fprintf(stderr, "ztest: value too large: %s\n", 444 buf); 445 usage(B_FALSE); 446 } 447 val <<= shift; 448 } 449 return (val); 450 } 451 452 static void 453 usage(boolean_t requested) 454 { 455 char nice_vdev_size[10]; 456 char nice_gang_bang[10]; 457 FILE *fp = requested ? stdout : stderr; 458 459 nicenum(zopt_vdev_size, nice_vdev_size); 460 nicenum(metaslab_gang_bang, nice_gang_bang); 461 462 (void) fprintf(fp, "Usage: %s\n" 463 "\t[-v vdevs (default: %llu)]\n" 464 "\t[-s size_of_each_vdev (default: %s)]\n" 465 "\t[-a alignment_shift (default: %d) (use 0 for random)]\n" 466 "\t[-m mirror_copies (default: %d)]\n" 467 "\t[-r raidz_disks (default: %d)]\n" 468 "\t[-R raidz_parity (default: %d)]\n" 469 "\t[-d datasets (default: %d)]\n" 470 "\t[-t threads (default: %d)]\n" 471 "\t[-g gang_block_threshold (default: %s)]\n" 472 "\t[-i initialize pool i times (default: %d)]\n" 473 "\t[-k kill percentage (default: %llu%%)]\n" 474 "\t[-p pool_name (default: %s)]\n" 475 "\t[-f file directory for vdev files (default: %s)]\n" 476 "\t[-V(erbose)] (use multiple times for ever more blather)\n" 477 "\t[-E(xisting)] (use existing pool instead of creating new one)\n" 478 "\t[-T time] total run time (default: %llu sec)\n" 479 "\t[-P passtime] time per pass (default: %llu sec)\n" 480 "\t[-h] (print help)\n" 481 "", 482 cmdname, 483 (u_longlong_t)zopt_vdevs, /* -v */ 484 nice_vdev_size, /* -s */ 485 zopt_ashift, /* -a */ 486 zopt_mirrors, /* -m */ 487 zopt_raidz, /* -r */ 488 zopt_raidz_parity, /* -R */ 489 zopt_datasets, /* -d */ 490 zopt_threads, /* -t */ 491 nice_gang_bang, /* -g */ 492 zopt_init, /* -i */ 493 (u_longlong_t)zopt_killrate, /* -k */ 494 zopt_pool, /* -p */ 495 zopt_dir, /* -f */ 496 (u_longlong_t)zopt_time, /* -T */ 497 (u_longlong_t)zopt_passtime); /* -P */ 498 exit(requested ? 0 : 1); 499 } 500 501 static void 502 process_options(int argc, char **argv) 503 { 504 int opt; 505 uint64_t value; 506 507 /* By default, test gang blocks for blocks 32K and greater */ 508 metaslab_gang_bang = 32 << 10; 509 510 while ((opt = getopt(argc, argv, 511 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:h")) != EOF) { 512 value = 0; 513 switch (opt) { 514 case 'v': 515 case 's': 516 case 'a': 517 case 'm': 518 case 'r': 519 case 'R': 520 case 'd': 521 case 't': 522 case 'g': 523 case 'i': 524 case 'k': 525 case 'T': 526 case 'P': 527 value = nicenumtoull(optarg); 528 } 529 switch (opt) { 530 case 'v': 531 zopt_vdevs = value; 532 break; 533 case 's': 534 zopt_vdev_size = MAX(SPA_MINDEVSIZE, value); 535 break; 536 case 'a': 537 zopt_ashift = value; 538 break; 539 case 'm': 540 zopt_mirrors = value; 541 break; 542 case 'r': 543 zopt_raidz = MAX(1, value); 544 break; 545 case 'R': 546 zopt_raidz_parity = MIN(MAX(value, 1), 3); 547 break; 548 case 'd': 549 zopt_datasets = MAX(1, value); 550 break; 551 case 't': 552 zopt_threads = MAX(1, value); 553 break; 554 case 'g': 555 metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, value); 556 break; 557 case 'i': 558 zopt_init = value; 559 break; 560 case 'k': 561 zopt_killrate = value; 562 break; 563 case 'p': 564 zopt_pool = strdup(optarg); 565 break; 566 case 'f': 567 zopt_dir = strdup(optarg); 568 break; 569 case 'V': 570 zopt_verbose++; 571 break; 572 case 'E': 573 zopt_init = 0; 574 break; 575 case 'T': 576 zopt_time = value; 577 break; 578 case 'P': 579 zopt_passtime = MAX(1, value); 580 break; 581 case 'h': 582 usage(B_TRUE); 583 break; 584 case '?': 585 default: 586 usage(B_FALSE); 587 break; 588 } 589 } 590 591 zopt_raidz_parity = MIN(zopt_raidz_parity, zopt_raidz - 1); 592 593 zopt_vdevtime = (zopt_vdevs > 0 ? zopt_time * NANOSEC / zopt_vdevs : 594 UINT64_MAX >> 2); 595 zopt_maxfaults = MAX(zopt_mirrors, 1) * (zopt_raidz_parity + 1) - 1; 596 } 597 598 static void 599 ztest_kill(ztest_shared_t *zs) 600 { 601 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(zs->zs_spa)); 602 zs->zs_space = metaslab_class_get_space(spa_normal_class(zs->zs_spa)); 603 (void) kill(getpid(), SIGKILL); 604 } 605 606 static uint64_t 607 ztest_random(uint64_t range) 608 { 609 uint64_t r; 610 611 if (range == 0) 612 return (0); 613 614 if (read(ztest_random_fd, &r, sizeof (r)) != sizeof (r)) 615 fatal(1, "short read from /dev/urandom"); 616 617 return (r % range); 618 } 619 620 /* ARGSUSED */ 621 static void 622 ztest_record_enospc(const char *s) 623 { 624 ztest_shared->zs_enospc_count++; 625 } 626 627 static uint64_t 628 ztest_get_ashift(void) 629 { 630 if (zopt_ashift == 0) 631 return (SPA_MINBLOCKSHIFT + ztest_random(3)); 632 return (zopt_ashift); 633 } 634 635 static nvlist_t * 636 make_vdev_file(char *path, char *aux, size_t size, uint64_t ashift) 637 { 638 char pathbuf[MAXPATHLEN]; 639 uint64_t vdev; 640 nvlist_t *file; 641 642 if (ashift == 0) 643 ashift = ztest_get_ashift(); 644 645 if (path == NULL) { 646 path = pathbuf; 647 648 if (aux != NULL) { 649 vdev = ztest_shared->zs_vdev_aux; 650 (void) sprintf(path, ztest_aux_template, 651 zopt_dir, zopt_pool, aux, vdev); 652 } else { 653 vdev = ztest_shared->zs_vdev_next_leaf++; 654 (void) sprintf(path, ztest_dev_template, 655 zopt_dir, zopt_pool, vdev); 656 } 657 } 658 659 if (size != 0) { 660 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 661 if (fd == -1) 662 fatal(1, "can't open %s", path); 663 if (ftruncate(fd, size) != 0) 664 fatal(1, "can't ftruncate %s", path); 665 (void) close(fd); 666 } 667 668 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 669 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 670 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 671 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 672 673 return (file); 674 } 675 676 static nvlist_t * 677 make_vdev_raidz(char *path, char *aux, size_t size, uint64_t ashift, int r) 678 { 679 nvlist_t *raidz, **child; 680 int c; 681 682 if (r < 2) 683 return (make_vdev_file(path, aux, size, ashift)); 684 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 685 686 for (c = 0; c < r; c++) 687 child[c] = make_vdev_file(path, aux, size, ashift); 688 689 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 690 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 691 VDEV_TYPE_RAIDZ) == 0); 692 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 693 zopt_raidz_parity) == 0); 694 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 695 child, r) == 0); 696 697 for (c = 0; c < r; c++) 698 nvlist_free(child[c]); 699 700 umem_free(child, r * sizeof (nvlist_t *)); 701 702 return (raidz); 703 } 704 705 static nvlist_t * 706 make_vdev_mirror(char *path, char *aux, size_t size, uint64_t ashift, 707 int r, int m) 708 { 709 nvlist_t *mirror, **child; 710 int c; 711 712 if (m < 1) 713 return (make_vdev_raidz(path, aux, size, ashift, r)); 714 715 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 716 717 for (c = 0; c < m; c++) 718 child[c] = make_vdev_raidz(path, aux, size, ashift, r); 719 720 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 721 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 722 VDEV_TYPE_MIRROR) == 0); 723 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 724 child, m) == 0); 725 726 for (c = 0; c < m; c++) 727 nvlist_free(child[c]); 728 729 umem_free(child, m * sizeof (nvlist_t *)); 730 731 return (mirror); 732 } 733 734 static nvlist_t * 735 make_vdev_root(char *path, char *aux, size_t size, uint64_t ashift, 736 int log, int r, int m, int t) 737 { 738 nvlist_t *root, **child; 739 int c; 740 741 ASSERT(t > 0); 742 743 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 744 745 for (c = 0; c < t; c++) { 746 child[c] = make_vdev_mirror(path, aux, size, ashift, r, m); 747 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 748 log) == 0); 749 } 750 751 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 752 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 753 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 754 child, t) == 0); 755 756 for (c = 0; c < t; c++) 757 nvlist_free(child[c]); 758 759 umem_free(child, t * sizeof (nvlist_t *)); 760 761 return (root); 762 } 763 764 static int 765 ztest_random_blocksize(void) 766 { 767 return (1 << (SPA_MINBLOCKSHIFT + 768 ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1))); 769 } 770 771 static int 772 ztest_random_ibshift(void) 773 { 774 return (DN_MIN_INDBLKSHIFT + 775 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); 776 } 777 778 static uint64_t 779 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) 780 { 781 uint64_t top; 782 vdev_t *rvd = spa->spa_root_vdev; 783 vdev_t *tvd; 784 785 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 786 787 do { 788 top = ztest_random(rvd->vdev_children); 789 tvd = rvd->vdev_child[top]; 790 } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) || 791 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); 792 793 return (top); 794 } 795 796 static uint64_t 797 ztest_random_dsl_prop(zfs_prop_t prop) 798 { 799 uint64_t value; 800 801 do { 802 value = zfs_prop_random_value(prop, ztest_random(-1ULL)); 803 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); 804 805 return (value); 806 } 807 808 static int 809 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, 810 boolean_t inherit) 811 { 812 const char *propname = zfs_prop_to_name(prop); 813 const char *valname; 814 char setpoint[MAXPATHLEN]; 815 uint64_t curval; 816 int error; 817 818 error = dsl_prop_set(osname, propname, 819 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), 820 sizeof (value), 1, &value); 821 822 if (error == ENOSPC) { 823 ztest_record_enospc(FTAG); 824 return (error); 825 } 826 ASSERT3U(error, ==, 0); 827 828 VERIFY3U(dsl_prop_get(osname, propname, sizeof (curval), 829 1, &curval, setpoint), ==, 0); 830 831 if (zopt_verbose >= 6) { 832 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0); 833 (void) printf("%s %s = %s at '%s'\n", 834 osname, propname, valname, setpoint); 835 } 836 837 return (error); 838 } 839 840 #if 0 841 static int 842 ztest_spa_prop_set_uint64(ztest_shared_t *zs, zpool_prop_t prop, uint64_t value) 843 { 844 spa_t *spa = zs->zs_spa; 845 nvlist_t *props = NULL; 846 int error; 847 848 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 849 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0); 850 851 error = spa_prop_set(spa, props); 852 853 nvlist_free(props); 854 855 if (error == ENOSPC) { 856 ztest_record_enospc(FTAG); 857 return (error); 858 } 859 ASSERT3U(error, ==, 0); 860 861 return (error); 862 } 863 #endif 864 865 static void 866 ztest_rll_init(rll_t *rll) 867 { 868 rll->rll_writer = NULL; 869 rll->rll_readers = 0; 870 VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0); 871 VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0); 872 } 873 874 static void 875 ztest_rll_destroy(rll_t *rll) 876 { 877 ASSERT(rll->rll_writer == NULL); 878 ASSERT(rll->rll_readers == 0); 879 VERIFY(_mutex_destroy(&rll->rll_lock) == 0); 880 VERIFY(cond_destroy(&rll->rll_cv) == 0); 881 } 882 883 static void 884 ztest_rll_lock(rll_t *rll, rl_type_t type) 885 { 886 VERIFY(mutex_lock(&rll->rll_lock) == 0); 887 888 if (type == RL_READER) { 889 while (rll->rll_writer != NULL) 890 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 891 rll->rll_readers++; 892 } else { 893 while (rll->rll_writer != NULL || rll->rll_readers) 894 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 895 rll->rll_writer = curthread; 896 } 897 898 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 899 } 900 901 static void 902 ztest_rll_unlock(rll_t *rll) 903 { 904 VERIFY(mutex_lock(&rll->rll_lock) == 0); 905 906 if (rll->rll_writer) { 907 ASSERT(rll->rll_readers == 0); 908 rll->rll_writer = NULL; 909 } else { 910 ASSERT(rll->rll_readers != 0); 911 ASSERT(rll->rll_writer == NULL); 912 rll->rll_readers--; 913 } 914 915 if (rll->rll_writer == NULL && rll->rll_readers == 0) 916 VERIFY(cond_broadcast(&rll->rll_cv) == 0); 917 918 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 919 } 920 921 static void 922 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) 923 { 924 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 925 926 ztest_rll_lock(rll, type); 927 } 928 929 static void 930 ztest_object_unlock(ztest_ds_t *zd, uint64_t object) 931 { 932 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 933 934 ztest_rll_unlock(rll); 935 } 936 937 static rl_t * 938 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, 939 uint64_t size, rl_type_t type) 940 { 941 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); 942 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; 943 rl_t *rl; 944 945 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); 946 rl->rl_object = object; 947 rl->rl_offset = offset; 948 rl->rl_size = size; 949 rl->rl_lock = rll; 950 951 ztest_rll_lock(rll, type); 952 953 return (rl); 954 } 955 956 static void 957 ztest_range_unlock(rl_t *rl) 958 { 959 rll_t *rll = rl->rl_lock; 960 961 ztest_rll_unlock(rll); 962 963 umem_free(rl, sizeof (*rl)); 964 } 965 966 static void 967 ztest_zd_init(ztest_ds_t *zd, objset_t *os) 968 { 969 zd->zd_os = os; 970 zd->zd_zilog = dmu_objset_zil(os); 971 zd->zd_seq = 0; 972 dmu_objset_name(os, zd->zd_name); 973 974 VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0); 975 976 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 977 ztest_rll_init(&zd->zd_object_lock[l]); 978 979 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 980 ztest_rll_init(&zd->zd_range_lock[l]); 981 } 982 983 static void 984 ztest_zd_fini(ztest_ds_t *zd) 985 { 986 VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0); 987 988 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 989 ztest_rll_destroy(&zd->zd_object_lock[l]); 990 991 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 992 ztest_rll_destroy(&zd->zd_range_lock[l]); 993 } 994 995 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) 996 997 static uint64_t 998 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) 999 { 1000 uint64_t txg; 1001 int error; 1002 1003 /* 1004 * Attempt to assign tx to some transaction group. 1005 */ 1006 error = dmu_tx_assign(tx, txg_how); 1007 if (error) { 1008 if (error == ERESTART) { 1009 ASSERT(txg_how == TXG_NOWAIT); 1010 dmu_tx_wait(tx); 1011 } else { 1012 ASSERT3U(error, ==, ENOSPC); 1013 ztest_record_enospc(tag); 1014 } 1015 dmu_tx_abort(tx); 1016 return (0); 1017 } 1018 txg = dmu_tx_get_txg(tx); 1019 ASSERT(txg != 0); 1020 return (txg); 1021 } 1022 1023 static void 1024 ztest_pattern_set(void *buf, uint64_t size, uint64_t value) 1025 { 1026 uint64_t *ip = buf; 1027 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1028 1029 while (ip < ip_end) 1030 *ip++ = value; 1031 } 1032 1033 static boolean_t 1034 ztest_pattern_match(void *buf, uint64_t size, uint64_t value) 1035 { 1036 uint64_t *ip = buf; 1037 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1038 uint64_t diff = 0; 1039 1040 while (ip < ip_end) 1041 diff |= (value - *ip++); 1042 1043 return (diff == 0); 1044 } 1045 1046 static void 1047 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1048 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1049 { 1050 bt->bt_magic = BT_MAGIC; 1051 bt->bt_objset = dmu_objset_id(os); 1052 bt->bt_object = object; 1053 bt->bt_offset = offset; 1054 bt->bt_gen = gen; 1055 bt->bt_txg = txg; 1056 bt->bt_crtxg = crtxg; 1057 } 1058 1059 static void 1060 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1061 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1062 { 1063 ASSERT(bt->bt_magic == BT_MAGIC); 1064 ASSERT(bt->bt_objset == dmu_objset_id(os)); 1065 ASSERT(bt->bt_object == object); 1066 ASSERT(bt->bt_offset == offset); 1067 ASSERT(bt->bt_gen <= gen); 1068 ASSERT(bt->bt_txg <= txg); 1069 ASSERT(bt->bt_crtxg == crtxg); 1070 } 1071 1072 static ztest_block_tag_t * 1073 ztest_bt_bonus(dmu_buf_t *db) 1074 { 1075 dmu_object_info_t doi; 1076 ztest_block_tag_t *bt; 1077 1078 dmu_object_info_from_db(db, &doi); 1079 ASSERT3U(doi.doi_bonus_size, <=, db->db_size); 1080 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); 1081 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); 1082 1083 return (bt); 1084 } 1085 1086 /* 1087 * ZIL logging ops 1088 */ 1089 1090 #define lrz_type lr_mode 1091 #define lrz_blocksize lr_uid 1092 #define lrz_ibshift lr_gid 1093 #define lrz_bonustype lr_rdev 1094 #define lrz_bonuslen lr_crtime[1] 1095 1096 static uint64_t 1097 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) 1098 { 1099 char *name = (void *)(lr + 1); /* name follows lr */ 1100 size_t namesize = strlen(name) + 1; 1101 itx_t *itx; 1102 1103 if (zil_replaying(zd->zd_zilog, tx)) 1104 return (0); 1105 1106 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); 1107 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1108 sizeof (*lr) + namesize - sizeof (lr_t)); 1109 1110 return (zil_itx_assign(zd->zd_zilog, itx, tx)); 1111 } 1112 1113 static uint64_t 1114 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr) 1115 { 1116 char *name = (void *)(lr + 1); /* name follows lr */ 1117 size_t namesize = strlen(name) + 1; 1118 itx_t *itx; 1119 1120 if (zil_replaying(zd->zd_zilog, tx)) 1121 return (0); 1122 1123 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); 1124 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1125 sizeof (*lr) + namesize - sizeof (lr_t)); 1126 1127 return (zil_itx_assign(zd->zd_zilog, itx, tx)); 1128 } 1129 1130 static uint64_t 1131 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) 1132 { 1133 itx_t *itx; 1134 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); 1135 1136 if (zil_replaying(zd->zd_zilog, tx)) 1137 return (0); 1138 1139 if (lr->lr_length > ZIL_MAX_LOG_DATA) 1140 write_state = WR_INDIRECT; 1141 1142 itx = zil_itx_create(TX_WRITE, 1143 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); 1144 1145 if (write_state == WR_COPIED && 1146 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, 1147 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { 1148 zil_itx_destroy(itx); 1149 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 1150 write_state = WR_NEED_COPY; 1151 } 1152 itx->itx_private = zd; 1153 itx->itx_wr_state = write_state; 1154 itx->itx_sync = (ztest_random(8) == 0); 1155 itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0); 1156 1157 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1158 sizeof (*lr) - sizeof (lr_t)); 1159 1160 return (zil_itx_assign(zd->zd_zilog, itx, tx)); 1161 } 1162 1163 static uint64_t 1164 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) 1165 { 1166 itx_t *itx; 1167 1168 if (zil_replaying(zd->zd_zilog, tx)) 1169 return (0); 1170 1171 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 1172 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1173 sizeof (*lr) - sizeof (lr_t)); 1174 1175 return (zil_itx_assign(zd->zd_zilog, itx, tx)); 1176 } 1177 1178 static uint64_t 1179 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) 1180 { 1181 itx_t *itx; 1182 1183 if (zil_replaying(zd->zd_zilog, tx)) 1184 return (0); 1185 1186 itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); 1187 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1188 sizeof (*lr) - sizeof (lr_t)); 1189 1190 return (zil_itx_assign(zd->zd_zilog, itx, tx)); 1191 } 1192 1193 /* 1194 * ZIL replay ops 1195 */ 1196 static int 1197 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap) 1198 { 1199 char *name = (void *)(lr + 1); /* name follows lr */ 1200 objset_t *os = zd->zd_os; 1201 ztest_block_tag_t *bbt; 1202 dmu_buf_t *db; 1203 dmu_tx_t *tx; 1204 uint64_t txg; 1205 int error = 0; 1206 1207 if (byteswap) 1208 byteswap_uint64_array(lr, sizeof (*lr)); 1209 1210 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1211 ASSERT(name[0] != '\0'); 1212 1213 tx = dmu_tx_create(os); 1214 1215 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); 1216 1217 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1218 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1219 } else { 1220 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1221 } 1222 1223 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1224 if (txg == 0) 1225 return (ENOSPC); 1226 1227 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid); 1228 1229 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1230 if (lr->lr_foid == 0) { 1231 lr->lr_foid = zap_create(os, 1232 lr->lrz_type, lr->lrz_bonustype, 1233 lr->lrz_bonuslen, tx); 1234 } else { 1235 error = zap_create_claim(os, lr->lr_foid, 1236 lr->lrz_type, lr->lrz_bonustype, 1237 lr->lrz_bonuslen, tx); 1238 } 1239 } else { 1240 if (lr->lr_foid == 0) { 1241 lr->lr_foid = dmu_object_alloc(os, 1242 lr->lrz_type, 0, lr->lrz_bonustype, 1243 lr->lrz_bonuslen, tx); 1244 } else { 1245 error = dmu_object_claim(os, lr->lr_foid, 1246 lr->lrz_type, 0, lr->lrz_bonustype, 1247 lr->lrz_bonuslen, tx); 1248 } 1249 } 1250 1251 if (error) { 1252 ASSERT3U(error, ==, EEXIST); 1253 ASSERT(zd->zd_zilog->zl_replay); 1254 dmu_tx_commit(tx); 1255 return (error); 1256 } 1257 1258 ASSERT(lr->lr_foid != 0); 1259 1260 if (lr->lrz_type != DMU_OT_ZAP_OTHER) 1261 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid, 1262 lr->lrz_blocksize, lr->lrz_ibshift, tx)); 1263 1264 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1265 bbt = ztest_bt_bonus(db); 1266 dmu_buf_will_dirty(db, tx); 1267 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg); 1268 dmu_buf_rele(db, FTAG); 1269 1270 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, 1271 &lr->lr_foid, tx)); 1272 1273 (void) ztest_log_create(zd, tx, lr); 1274 1275 dmu_tx_commit(tx); 1276 1277 return (0); 1278 } 1279 1280 static int 1281 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap) 1282 { 1283 char *name = (void *)(lr + 1); /* name follows lr */ 1284 objset_t *os = zd->zd_os; 1285 dmu_object_info_t doi; 1286 dmu_tx_t *tx; 1287 uint64_t object, txg; 1288 1289 if (byteswap) 1290 byteswap_uint64_array(lr, sizeof (*lr)); 1291 1292 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1293 ASSERT(name[0] != '\0'); 1294 1295 VERIFY3U(0, ==, 1296 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); 1297 ASSERT(object != 0); 1298 1299 ztest_object_lock(zd, object, RL_WRITER); 1300 1301 VERIFY3U(0, ==, dmu_object_info(os, object, &doi)); 1302 1303 tx = dmu_tx_create(os); 1304 1305 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); 1306 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1307 1308 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1309 if (txg == 0) { 1310 ztest_object_unlock(zd, object); 1311 return (ENOSPC); 1312 } 1313 1314 if (doi.doi_type == DMU_OT_ZAP_OTHER) { 1315 VERIFY3U(0, ==, zap_destroy(os, object, tx)); 1316 } else { 1317 VERIFY3U(0, ==, dmu_object_free(os, object, tx)); 1318 } 1319 1320 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx)); 1321 1322 (void) ztest_log_remove(zd, tx, lr); 1323 1324 dmu_tx_commit(tx); 1325 1326 ztest_object_unlock(zd, object); 1327 1328 return (0); 1329 } 1330 1331 static int 1332 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap) 1333 { 1334 objset_t *os = zd->zd_os; 1335 void *data = lr + 1; /* data follows lr */ 1336 uint64_t offset, length; 1337 ztest_block_tag_t *bt = data; 1338 ztest_block_tag_t *bbt; 1339 uint64_t gen, txg, lrtxg, crtxg; 1340 dmu_object_info_t doi; 1341 dmu_tx_t *tx; 1342 dmu_buf_t *db; 1343 arc_buf_t *abuf = NULL; 1344 rl_t *rl; 1345 1346 if (byteswap) 1347 byteswap_uint64_array(lr, sizeof (*lr)); 1348 1349 offset = lr->lr_offset; 1350 length = lr->lr_length; 1351 1352 /* If it's a dmu_sync() block, write the whole block */ 1353 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 1354 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 1355 if (length < blocksize) { 1356 offset -= offset % blocksize; 1357 length = blocksize; 1358 } 1359 } 1360 1361 if (bt->bt_magic == BSWAP_64(BT_MAGIC)) 1362 byteswap_uint64_array(bt, sizeof (*bt)); 1363 1364 if (bt->bt_magic != BT_MAGIC) 1365 bt = NULL; 1366 1367 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1368 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); 1369 1370 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1371 1372 dmu_object_info_from_db(db, &doi); 1373 1374 bbt = ztest_bt_bonus(db); 1375 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1376 gen = bbt->bt_gen; 1377 crtxg = bbt->bt_crtxg; 1378 lrtxg = lr->lr_common.lrc_txg; 1379 1380 tx = dmu_tx_create(os); 1381 1382 dmu_tx_hold_write(tx, lr->lr_foid, offset, length); 1383 1384 if (ztest_random(8) == 0 && length == doi.doi_data_block_size && 1385 P2PHASE(offset, length) == 0) 1386 abuf = dmu_request_arcbuf(db, length); 1387 1388 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1389 if (txg == 0) { 1390 if (abuf != NULL) 1391 dmu_return_arcbuf(abuf); 1392 dmu_buf_rele(db, FTAG); 1393 ztest_range_unlock(rl); 1394 ztest_object_unlock(zd, lr->lr_foid); 1395 return (ENOSPC); 1396 } 1397 1398 if (bt != NULL) { 1399 /* 1400 * Usually, verify the old data before writing new data -- 1401 * but not always, because we also want to verify correct 1402 * behavior when the data was not recently read into cache. 1403 */ 1404 ASSERT(offset % doi.doi_data_block_size == 0); 1405 if (ztest_random(4) != 0) { 1406 int prefetch = ztest_random(2) ? 1407 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; 1408 ztest_block_tag_t rbt; 1409 1410 VERIFY(dmu_read(os, lr->lr_foid, offset, 1411 sizeof (rbt), &rbt, prefetch) == 0); 1412 if (rbt.bt_magic == BT_MAGIC) { 1413 ztest_bt_verify(&rbt, os, lr->lr_foid, 1414 offset, gen, txg, crtxg); 1415 } 1416 } 1417 1418 /* 1419 * Writes can appear to be newer than the bonus buffer because 1420 * the ztest_get_data() callback does a dmu_read() of the 1421 * open-context data, which may be different than the data 1422 * as it was when the write was generated. 1423 */ 1424 if (zd->zd_zilog->zl_replay) { 1425 ztest_bt_verify(bt, os, lr->lr_foid, offset, 1426 MAX(gen, bt->bt_gen), MAX(txg, lrtxg), 1427 bt->bt_crtxg); 1428 } 1429 1430 /* 1431 * Set the bt's gen/txg to the bonus buffer's gen/txg 1432 * so that all of the usual ASSERTs will work. 1433 */ 1434 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg); 1435 } 1436 1437 if (abuf == NULL) { 1438 dmu_write(os, lr->lr_foid, offset, length, data, tx); 1439 } else { 1440 bcopy(data, abuf->b_data, length); 1441 dmu_assign_arcbuf(db, offset, abuf, tx); 1442 } 1443 1444 (void) ztest_log_write(zd, tx, lr); 1445 1446 dmu_buf_rele(db, FTAG); 1447 1448 dmu_tx_commit(tx); 1449 1450 ztest_range_unlock(rl); 1451 ztest_object_unlock(zd, lr->lr_foid); 1452 1453 return (0); 1454 } 1455 1456 static int 1457 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap) 1458 { 1459 objset_t *os = zd->zd_os; 1460 dmu_tx_t *tx; 1461 uint64_t txg; 1462 rl_t *rl; 1463 1464 if (byteswap) 1465 byteswap_uint64_array(lr, sizeof (*lr)); 1466 1467 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1468 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, 1469 RL_WRITER); 1470 1471 tx = dmu_tx_create(os); 1472 1473 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); 1474 1475 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1476 if (txg == 0) { 1477 ztest_range_unlock(rl); 1478 ztest_object_unlock(zd, lr->lr_foid); 1479 return (ENOSPC); 1480 } 1481 1482 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset, 1483 lr->lr_length, tx) == 0); 1484 1485 (void) ztest_log_truncate(zd, tx, lr); 1486 1487 dmu_tx_commit(tx); 1488 1489 ztest_range_unlock(rl); 1490 ztest_object_unlock(zd, lr->lr_foid); 1491 1492 return (0); 1493 } 1494 1495 static int 1496 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap) 1497 { 1498 objset_t *os = zd->zd_os; 1499 dmu_tx_t *tx; 1500 dmu_buf_t *db; 1501 ztest_block_tag_t *bbt; 1502 uint64_t txg, lrtxg, crtxg; 1503 1504 if (byteswap) 1505 byteswap_uint64_array(lr, sizeof (*lr)); 1506 1507 ztest_object_lock(zd, lr->lr_foid, RL_WRITER); 1508 1509 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1510 1511 tx = dmu_tx_create(os); 1512 dmu_tx_hold_bonus(tx, lr->lr_foid); 1513 1514 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1515 if (txg == 0) { 1516 dmu_buf_rele(db, FTAG); 1517 ztest_object_unlock(zd, lr->lr_foid); 1518 return (ENOSPC); 1519 } 1520 1521 bbt = ztest_bt_bonus(db); 1522 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1523 crtxg = bbt->bt_crtxg; 1524 lrtxg = lr->lr_common.lrc_txg; 1525 1526 if (zd->zd_zilog->zl_replay) { 1527 ASSERT(lr->lr_size != 0); 1528 ASSERT(lr->lr_mode != 0); 1529 ASSERT(lrtxg != 0); 1530 } else { 1531 /* 1532 * Randomly change the size and increment the generation. 1533 */ 1534 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * 1535 sizeof (*bbt); 1536 lr->lr_mode = bbt->bt_gen + 1; 1537 ASSERT(lrtxg == 0); 1538 } 1539 1540 /* 1541 * Verify that the current bonus buffer is not newer than our txg. 1542 */ 1543 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, 1544 MAX(txg, lrtxg), crtxg); 1545 1546 dmu_buf_will_dirty(db, tx); 1547 1548 ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); 1549 ASSERT3U(lr->lr_size, <=, db->db_size); 1550 VERIFY3U(dmu_set_bonus(db, lr->lr_size, tx), ==, 0); 1551 bbt = ztest_bt_bonus(db); 1552 1553 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg); 1554 1555 dmu_buf_rele(db, FTAG); 1556 1557 (void) ztest_log_setattr(zd, tx, lr); 1558 1559 dmu_tx_commit(tx); 1560 1561 ztest_object_unlock(zd, lr->lr_foid); 1562 1563 return (0); 1564 } 1565 1566 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 1567 NULL, /* 0 no such transaction type */ 1568 ztest_replay_create, /* TX_CREATE */ 1569 NULL, /* TX_MKDIR */ 1570 NULL, /* TX_MKXATTR */ 1571 NULL, /* TX_SYMLINK */ 1572 ztest_replay_remove, /* TX_REMOVE */ 1573 NULL, /* TX_RMDIR */ 1574 NULL, /* TX_LINK */ 1575 NULL, /* TX_RENAME */ 1576 ztest_replay_write, /* TX_WRITE */ 1577 ztest_replay_truncate, /* TX_TRUNCATE */ 1578 ztest_replay_setattr, /* TX_SETATTR */ 1579 NULL, /* TX_ACL */ 1580 NULL, /* TX_CREATE_ACL */ 1581 NULL, /* TX_CREATE_ATTR */ 1582 NULL, /* TX_CREATE_ACL_ATTR */ 1583 NULL, /* TX_MKDIR_ACL */ 1584 NULL, /* TX_MKDIR_ATTR */ 1585 NULL, /* TX_MKDIR_ACL_ATTR */ 1586 NULL, /* TX_WRITE2 */ 1587 }; 1588 1589 /* 1590 * ZIL get_data callbacks 1591 */ 1592 1593 static void 1594 ztest_get_done(zgd_t *zgd, int error) 1595 { 1596 ztest_ds_t *zd = zgd->zgd_private; 1597 uint64_t object = zgd->zgd_rl->rl_object; 1598 1599 if (zgd->zgd_db) 1600 dmu_buf_rele(zgd->zgd_db, zgd); 1601 1602 ztest_range_unlock(zgd->zgd_rl); 1603 ztest_object_unlock(zd, object); 1604 1605 if (error == 0 && zgd->zgd_bp) 1606 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 1607 1608 umem_free(zgd, sizeof (*zgd)); 1609 } 1610 1611 static int 1612 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 1613 { 1614 ztest_ds_t *zd = arg; 1615 objset_t *os = zd->zd_os; 1616 uint64_t object = lr->lr_foid; 1617 uint64_t offset = lr->lr_offset; 1618 uint64_t size = lr->lr_length; 1619 blkptr_t *bp = &lr->lr_blkptr; 1620 uint64_t txg = lr->lr_common.lrc_txg; 1621 uint64_t crtxg; 1622 dmu_object_info_t doi; 1623 dmu_buf_t *db; 1624 zgd_t *zgd; 1625 int error; 1626 1627 ztest_object_lock(zd, object, RL_READER); 1628 error = dmu_bonus_hold(os, object, FTAG, &db); 1629 if (error) { 1630 ztest_object_unlock(zd, object); 1631 return (error); 1632 } 1633 1634 crtxg = ztest_bt_bonus(db)->bt_crtxg; 1635 1636 if (crtxg == 0 || crtxg > txg) { 1637 dmu_buf_rele(db, FTAG); 1638 ztest_object_unlock(zd, object); 1639 return (ENOENT); 1640 } 1641 1642 dmu_object_info_from_db(db, &doi); 1643 dmu_buf_rele(db, FTAG); 1644 db = NULL; 1645 1646 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); 1647 zgd->zgd_zilog = zd->zd_zilog; 1648 zgd->zgd_private = zd; 1649 1650 if (buf != NULL) { /* immediate write */ 1651 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1652 RL_READER); 1653 1654 error = dmu_read(os, object, offset, size, buf, 1655 DMU_READ_NO_PREFETCH); 1656 ASSERT(error == 0); 1657 } else { 1658 size = doi.doi_data_block_size; 1659 if (ISP2(size)) { 1660 offset = P2ALIGN(offset, size); 1661 } else { 1662 ASSERT(offset < size); 1663 offset = 0; 1664 } 1665 1666 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1667 RL_READER); 1668 1669 error = dmu_buf_hold(os, object, offset, zgd, &db); 1670 1671 if (error == 0) { 1672 zgd->zgd_db = db; 1673 zgd->zgd_bp = bp; 1674 1675 ASSERT(db->db_offset == offset); 1676 ASSERT(db->db_size == size); 1677 1678 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1679 ztest_get_done, zgd); 1680 1681 if (error == 0) 1682 return (0); 1683 } 1684 } 1685 1686 ztest_get_done(zgd, error); 1687 1688 return (error); 1689 } 1690 1691 static void * 1692 ztest_lr_alloc(size_t lrsize, char *name) 1693 { 1694 char *lr; 1695 size_t namesize = name ? strlen(name) + 1 : 0; 1696 1697 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); 1698 1699 if (name) 1700 bcopy(name, lr + lrsize, namesize); 1701 1702 return (lr); 1703 } 1704 1705 void 1706 ztest_lr_free(void *lr, size_t lrsize, char *name) 1707 { 1708 size_t namesize = name ? strlen(name) + 1 : 0; 1709 1710 umem_free(lr, lrsize + namesize); 1711 } 1712 1713 /* 1714 * Lookup a bunch of objects. Returns the number of objects not found. 1715 */ 1716 static int 1717 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) 1718 { 1719 int missing = 0; 1720 int error; 1721 1722 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1723 1724 for (int i = 0; i < count; i++, od++) { 1725 od->od_object = 0; 1726 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, 1727 sizeof (uint64_t), 1, &od->od_object); 1728 if (error) { 1729 ASSERT(error == ENOENT); 1730 ASSERT(od->od_object == 0); 1731 missing++; 1732 } else { 1733 dmu_buf_t *db; 1734 ztest_block_tag_t *bbt; 1735 dmu_object_info_t doi; 1736 1737 ASSERT(od->od_object != 0); 1738 ASSERT(missing == 0); /* there should be no gaps */ 1739 1740 ztest_object_lock(zd, od->od_object, RL_READER); 1741 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os, 1742 od->od_object, FTAG, &db)); 1743 dmu_object_info_from_db(db, &doi); 1744 bbt = ztest_bt_bonus(db); 1745 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1746 od->od_type = doi.doi_type; 1747 od->od_blocksize = doi.doi_data_block_size; 1748 od->od_gen = bbt->bt_gen; 1749 dmu_buf_rele(db, FTAG); 1750 ztest_object_unlock(zd, od->od_object); 1751 } 1752 } 1753 1754 return (missing); 1755 } 1756 1757 static int 1758 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) 1759 { 1760 int missing = 0; 1761 1762 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1763 1764 for (int i = 0; i < count; i++, od++) { 1765 if (missing) { 1766 od->od_object = 0; 1767 missing++; 1768 continue; 1769 } 1770 1771 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 1772 1773 lr->lr_doid = od->od_dir; 1774 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ 1775 lr->lrz_type = od->od_crtype; 1776 lr->lrz_blocksize = od->od_crblocksize; 1777 lr->lrz_ibshift = ztest_random_ibshift(); 1778 lr->lrz_bonustype = DMU_OT_UINT64_OTHER; 1779 lr->lrz_bonuslen = dmu_bonus_max(); 1780 lr->lr_gen = od->od_crgen; 1781 lr->lr_crtime[0] = time(NULL); 1782 1783 if (ztest_replay_create(zd, lr, B_FALSE) != 0) { 1784 ASSERT(missing == 0); 1785 od->od_object = 0; 1786 missing++; 1787 } else { 1788 od->od_object = lr->lr_foid; 1789 od->od_type = od->od_crtype; 1790 od->od_blocksize = od->od_crblocksize; 1791 od->od_gen = od->od_crgen; 1792 ASSERT(od->od_object != 0); 1793 } 1794 1795 ztest_lr_free(lr, sizeof (*lr), od->od_name); 1796 } 1797 1798 return (missing); 1799 } 1800 1801 static int 1802 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) 1803 { 1804 int missing = 0; 1805 int error; 1806 1807 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1808 1809 od += count - 1; 1810 1811 for (int i = count - 1; i >= 0; i--, od--) { 1812 if (missing) { 1813 missing++; 1814 continue; 1815 } 1816 1817 if (od->od_object == 0) 1818 continue; 1819 1820 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 1821 1822 lr->lr_doid = od->od_dir; 1823 1824 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { 1825 ASSERT3U(error, ==, ENOSPC); 1826 missing++; 1827 } else { 1828 od->od_object = 0; 1829 } 1830 ztest_lr_free(lr, sizeof (*lr), od->od_name); 1831 } 1832 1833 return (missing); 1834 } 1835 1836 static int 1837 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, 1838 void *data) 1839 { 1840 lr_write_t *lr; 1841 int error; 1842 1843 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); 1844 1845 lr->lr_foid = object; 1846 lr->lr_offset = offset; 1847 lr->lr_length = size; 1848 lr->lr_blkoff = 0; 1849 BP_ZERO(&lr->lr_blkptr); 1850 1851 bcopy(data, lr + 1, size); 1852 1853 error = ztest_replay_write(zd, lr, B_FALSE); 1854 1855 ztest_lr_free(lr, sizeof (*lr) + size, NULL); 1856 1857 return (error); 1858 } 1859 1860 static int 1861 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 1862 { 1863 lr_truncate_t *lr; 1864 int error; 1865 1866 lr = ztest_lr_alloc(sizeof (*lr), NULL); 1867 1868 lr->lr_foid = object; 1869 lr->lr_offset = offset; 1870 lr->lr_length = size; 1871 1872 error = ztest_replay_truncate(zd, lr, B_FALSE); 1873 1874 ztest_lr_free(lr, sizeof (*lr), NULL); 1875 1876 return (error); 1877 } 1878 1879 static int 1880 ztest_setattr(ztest_ds_t *zd, uint64_t object) 1881 { 1882 lr_setattr_t *lr; 1883 int error; 1884 1885 lr = ztest_lr_alloc(sizeof (*lr), NULL); 1886 1887 lr->lr_foid = object; 1888 lr->lr_size = 0; 1889 lr->lr_mode = 0; 1890 1891 error = ztest_replay_setattr(zd, lr, B_FALSE); 1892 1893 ztest_lr_free(lr, sizeof (*lr), NULL); 1894 1895 return (error); 1896 } 1897 1898 static void 1899 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 1900 { 1901 objset_t *os = zd->zd_os; 1902 dmu_tx_t *tx; 1903 uint64_t txg; 1904 rl_t *rl; 1905 1906 txg_wait_synced(dmu_objset_pool(os), 0); 1907 1908 ztest_object_lock(zd, object, RL_READER); 1909 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); 1910 1911 tx = dmu_tx_create(os); 1912 1913 dmu_tx_hold_write(tx, object, offset, size); 1914 1915 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1916 1917 if (txg != 0) { 1918 dmu_prealloc(os, object, offset, size, tx); 1919 dmu_tx_commit(tx); 1920 txg_wait_synced(dmu_objset_pool(os), txg); 1921 } else { 1922 (void) dmu_free_long_range(os, object, offset, size); 1923 } 1924 1925 ztest_range_unlock(rl); 1926 ztest_object_unlock(zd, object); 1927 } 1928 1929 static void 1930 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) 1931 { 1932 ztest_block_tag_t wbt; 1933 dmu_object_info_t doi; 1934 enum ztest_io_type io_type; 1935 uint64_t blocksize; 1936 void *data; 1937 1938 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0); 1939 blocksize = doi.doi_data_block_size; 1940 data = umem_alloc(blocksize, UMEM_NOFAIL); 1941 1942 /* 1943 * Pick an i/o type at random, biased toward writing block tags. 1944 */ 1945 io_type = ztest_random(ZTEST_IO_TYPES); 1946 if (ztest_random(2) == 0) 1947 io_type = ZTEST_IO_WRITE_TAG; 1948 1949 switch (io_type) { 1950 1951 case ZTEST_IO_WRITE_TAG: 1952 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0); 1953 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); 1954 break; 1955 1956 case ZTEST_IO_WRITE_PATTERN: 1957 (void) memset(data, 'a' + (object + offset) % 5, blocksize); 1958 if (ztest_random(2) == 0) { 1959 /* 1960 * Induce fletcher2 collisions to ensure that 1961 * zio_ddt_collision() detects and resolves them 1962 * when using fletcher2-verify for deduplication. 1963 */ 1964 ((uint64_t *)data)[0] ^= 1ULL << 63; 1965 ((uint64_t *)data)[4] ^= 1ULL << 63; 1966 } 1967 (void) ztest_write(zd, object, offset, blocksize, data); 1968 break; 1969 1970 case ZTEST_IO_WRITE_ZEROES: 1971 bzero(data, blocksize); 1972 (void) ztest_write(zd, object, offset, blocksize, data); 1973 break; 1974 1975 case ZTEST_IO_TRUNCATE: 1976 (void) ztest_truncate(zd, object, offset, blocksize); 1977 break; 1978 1979 case ZTEST_IO_SETATTR: 1980 (void) ztest_setattr(zd, object); 1981 break; 1982 } 1983 1984 umem_free(data, blocksize); 1985 } 1986 1987 /* 1988 * Initialize an object description template. 1989 */ 1990 static void 1991 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index, 1992 dmu_object_type_t type, uint64_t blocksize, uint64_t gen) 1993 { 1994 od->od_dir = ZTEST_DIROBJ; 1995 od->od_object = 0; 1996 1997 od->od_crtype = type; 1998 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); 1999 od->od_crgen = gen; 2000 2001 od->od_type = DMU_OT_NONE; 2002 od->od_blocksize = 0; 2003 od->od_gen = 0; 2004 2005 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]", 2006 tag, (int64_t)id, index); 2007 } 2008 2009 /* 2010 * Lookup or create the objects for a test using the od template. 2011 * If the objects do not all exist, or if 'remove' is specified, 2012 * remove any existing objects and create new ones. Otherwise, 2013 * use the existing objects. 2014 */ 2015 static int 2016 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) 2017 { 2018 int count = size / sizeof (*od); 2019 int rv = 0; 2020 2021 VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0); 2022 if ((ztest_lookup(zd, od, count) != 0 || remove) && 2023 (ztest_remove(zd, od, count) != 0 || 2024 ztest_create(zd, od, count) != 0)) 2025 rv = -1; 2026 zd->zd_od = od; 2027 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2028 2029 return (rv); 2030 } 2031 2032 /* ARGSUSED */ 2033 void 2034 ztest_zil_commit(ztest_ds_t *zd, uint64_t id) 2035 { 2036 zilog_t *zilog = zd->zd_zilog; 2037 2038 zil_commit(zilog, UINT64_MAX, ztest_random(ZTEST_OBJECTS)); 2039 2040 /* 2041 * Remember the committed values in zd, which is in parent/child 2042 * shared memory. If we die, the next iteration of ztest_run() 2043 * will verify that the log really does contain this record. 2044 */ 2045 mutex_enter(&zilog->zl_lock); 2046 ASSERT(zd->zd_seq <= zilog->zl_commit_lr_seq); 2047 zd->zd_seq = zilog->zl_commit_lr_seq; 2048 mutex_exit(&zilog->zl_lock); 2049 } 2050 2051 /* 2052 * Verify that we can't destroy an active pool, create an existing pool, 2053 * or create a pool with a bad vdev spec. 2054 */ 2055 /* ARGSUSED */ 2056 void 2057 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) 2058 { 2059 ztest_shared_t *zs = ztest_shared; 2060 spa_t *spa; 2061 nvlist_t *nvroot; 2062 2063 /* 2064 * Attempt to create using a bad file. 2065 */ 2066 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 2067 VERIFY3U(ENOENT, ==, 2068 spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL)); 2069 nvlist_free(nvroot); 2070 2071 /* 2072 * Attempt to create using a bad mirror. 2073 */ 2074 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 2, 1); 2075 VERIFY3U(ENOENT, ==, 2076 spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL)); 2077 nvlist_free(nvroot); 2078 2079 /* 2080 * Attempt to create an existing pool. It shouldn't matter 2081 * what's in the nvroot; we should fail with EEXIST. 2082 */ 2083 (void) rw_rdlock(&zs->zs_name_lock); 2084 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 2085 VERIFY3U(EEXIST, ==, spa_create(zs->zs_pool, nvroot, NULL, NULL, NULL)); 2086 nvlist_free(nvroot); 2087 VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG)); 2088 VERIFY3U(EBUSY, ==, spa_destroy(zs->zs_pool)); 2089 spa_close(spa, FTAG); 2090 2091 (void) rw_unlock(&zs->zs_name_lock); 2092 } 2093 2094 static vdev_t * 2095 vdev_lookup_by_path(vdev_t *vd, const char *path) 2096 { 2097 vdev_t *mvd; 2098 2099 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 2100 return (vd); 2101 2102 for (int c = 0; c < vd->vdev_children; c++) 2103 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 2104 NULL) 2105 return (mvd); 2106 2107 return (NULL); 2108 } 2109 2110 /* 2111 * Find the first available hole which can be used as a top-level. 2112 */ 2113 int 2114 find_vdev_hole(spa_t *spa) 2115 { 2116 vdev_t *rvd = spa->spa_root_vdev; 2117 int c; 2118 2119 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); 2120 2121 for (c = 0; c < rvd->vdev_children; c++) { 2122 vdev_t *cvd = rvd->vdev_child[c]; 2123 2124 if (cvd->vdev_ishole) 2125 break; 2126 } 2127 return (c); 2128 } 2129 2130 /* 2131 * Verify that vdev_add() works as expected. 2132 */ 2133 /* ARGSUSED */ 2134 void 2135 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) 2136 { 2137 ztest_shared_t *zs = ztest_shared; 2138 spa_t *spa = zs->zs_spa; 2139 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 2140 uint64_t guid; 2141 nvlist_t *nvroot; 2142 int error; 2143 2144 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 2145 2146 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2147 2148 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; 2149 2150 /* 2151 * If we have slogs then remove them 1/4 of the time. 2152 */ 2153 if (spa_has_slogs(spa) && ztest_random(4) == 0) { 2154 /* 2155 * Grab the guid from the head of the log class rotor. 2156 */ 2157 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid; 2158 2159 spa_config_exit(spa, SCL_VDEV, FTAG); 2160 2161 /* 2162 * We have to grab the zs_name_lock as writer to 2163 * prevent a race between removing a slog (dmu_objset_find) 2164 * and destroying a dataset. Removing the slog will 2165 * grab a reference on the dataset which may cause 2166 * dmu_objset_destroy() to fail with EBUSY thus 2167 * leaving the dataset in an inconsistent state. 2168 */ 2169 VERIFY(rw_wrlock(&ztest_shared->zs_name_lock) == 0); 2170 error = spa_vdev_remove(spa, guid, B_FALSE); 2171 VERIFY(rw_unlock(&ztest_shared->zs_name_lock) == 0); 2172 2173 if (error && error != EEXIST) 2174 fatal(0, "spa_vdev_remove() = %d", error); 2175 } else { 2176 spa_config_exit(spa, SCL_VDEV, FTAG); 2177 2178 /* 2179 * Make 1/4 of the devices be log devices. 2180 */ 2181 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, 2182 ztest_random(4) == 0, zopt_raidz, zopt_mirrors, 1); 2183 2184 error = spa_vdev_add(spa, nvroot); 2185 nvlist_free(nvroot); 2186 2187 if (error == ENOSPC) 2188 ztest_record_enospc("spa_vdev_add"); 2189 else if (error != 0) 2190 fatal(0, "spa_vdev_add() = %d", error); 2191 } 2192 2193 VERIFY(mutex_unlock(&ztest_shared->zs_vdev_lock) == 0); 2194 } 2195 2196 /* 2197 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 2198 */ 2199 /* ARGSUSED */ 2200 void 2201 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) 2202 { 2203 ztest_shared_t *zs = ztest_shared; 2204 spa_t *spa = zs->zs_spa; 2205 vdev_t *rvd = spa->spa_root_vdev; 2206 spa_aux_vdev_t *sav; 2207 char *aux; 2208 uint64_t guid = 0; 2209 int error; 2210 2211 if (ztest_random(2) == 0) { 2212 sav = &spa->spa_spares; 2213 aux = ZPOOL_CONFIG_SPARES; 2214 } else { 2215 sav = &spa->spa_l2cache; 2216 aux = ZPOOL_CONFIG_L2CACHE; 2217 } 2218 2219 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 2220 2221 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2222 2223 if (sav->sav_count != 0 && ztest_random(4) == 0) { 2224 /* 2225 * Pick a random device to remove. 2226 */ 2227 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 2228 } else { 2229 /* 2230 * Find an unused device we can add. 2231 */ 2232 zs->zs_vdev_aux = 0; 2233 for (;;) { 2234 char path[MAXPATHLEN]; 2235 int c; 2236 (void) sprintf(path, ztest_aux_template, zopt_dir, 2237 zopt_pool, aux, zs->zs_vdev_aux); 2238 for (c = 0; c < sav->sav_count; c++) 2239 if (strcmp(sav->sav_vdevs[c]->vdev_path, 2240 path) == 0) 2241 break; 2242 if (c == sav->sav_count && 2243 vdev_lookup_by_path(rvd, path) == NULL) 2244 break; 2245 zs->zs_vdev_aux++; 2246 } 2247 } 2248 2249 spa_config_exit(spa, SCL_VDEV, FTAG); 2250 2251 if (guid == 0) { 2252 /* 2253 * Add a new device. 2254 */ 2255 nvlist_t *nvroot = make_vdev_root(NULL, aux, 2256 (zopt_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 2257 error = spa_vdev_add(spa, nvroot); 2258 if (error != 0) 2259 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 2260 nvlist_free(nvroot); 2261 } else { 2262 /* 2263 * Remove an existing device. Sometimes, dirty its 2264 * vdev state first to make sure we handle removal 2265 * of devices that have pending state changes. 2266 */ 2267 if (ztest_random(2) == 0) 2268 (void) vdev_online(spa, guid, 0, NULL); 2269 2270 error = spa_vdev_remove(spa, guid, B_FALSE); 2271 if (error != 0 && error != EBUSY) 2272 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 2273 } 2274 2275 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2276 } 2277 2278 /* 2279 * Verify that we can attach and detach devices. 2280 */ 2281 /* ARGSUSED */ 2282 void 2283 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) 2284 { 2285 ztest_shared_t *zs = ztest_shared; 2286 spa_t *spa = zs->zs_spa; 2287 spa_aux_vdev_t *sav = &spa->spa_spares; 2288 vdev_t *rvd = spa->spa_root_vdev; 2289 vdev_t *oldvd, *newvd, *pvd; 2290 nvlist_t *root; 2291 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 2292 uint64_t leaf, top; 2293 uint64_t ashift = ztest_get_ashift(); 2294 uint64_t oldguid, pguid; 2295 size_t oldsize, newsize; 2296 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 2297 int replacing; 2298 int oldvd_has_siblings = B_FALSE; 2299 int newvd_is_spare = B_FALSE; 2300 int oldvd_is_log; 2301 int error, expected_error; 2302 2303 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 2304 2305 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2306 2307 /* 2308 * Decide whether to do an attach or a replace. 2309 */ 2310 replacing = ztest_random(2); 2311 2312 /* 2313 * Pick a random top-level vdev. 2314 */ 2315 top = ztest_random_vdev_top(spa, B_TRUE); 2316 2317 /* 2318 * Pick a random leaf within it. 2319 */ 2320 leaf = ztest_random(leaves); 2321 2322 /* 2323 * Locate this vdev. 2324 */ 2325 oldvd = rvd->vdev_child[top]; 2326 if (zopt_mirrors >= 1) { 2327 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 2328 ASSERT(oldvd->vdev_children >= zopt_mirrors); 2329 oldvd = oldvd->vdev_child[leaf / zopt_raidz]; 2330 } 2331 if (zopt_raidz > 1) { 2332 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 2333 ASSERT(oldvd->vdev_children == zopt_raidz); 2334 oldvd = oldvd->vdev_child[leaf % zopt_raidz]; 2335 } 2336 2337 /* 2338 * If we're already doing an attach or replace, oldvd may be a 2339 * mirror vdev -- in which case, pick a random child. 2340 */ 2341 while (oldvd->vdev_children != 0) { 2342 oldvd_has_siblings = B_TRUE; 2343 ASSERT(oldvd->vdev_children >= 2); 2344 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 2345 } 2346 2347 oldguid = oldvd->vdev_guid; 2348 oldsize = vdev_get_min_asize(oldvd); 2349 oldvd_is_log = oldvd->vdev_top->vdev_islog; 2350 (void) strcpy(oldpath, oldvd->vdev_path); 2351 pvd = oldvd->vdev_parent; 2352 pguid = pvd->vdev_guid; 2353 2354 /* 2355 * If oldvd has siblings, then half of the time, detach it. 2356 */ 2357 if (oldvd_has_siblings && ztest_random(2) == 0) { 2358 spa_config_exit(spa, SCL_VDEV, FTAG); 2359 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 2360 if (error != 0 && error != ENODEV && error != EBUSY && 2361 error != ENOTSUP) 2362 fatal(0, "detach (%s) returned %d", oldpath, error); 2363 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2364 return; 2365 } 2366 2367 /* 2368 * For the new vdev, choose with equal probability between the two 2369 * standard paths (ending in either 'a' or 'b') or a random hot spare. 2370 */ 2371 if (sav->sav_count != 0 && ztest_random(3) == 0) { 2372 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 2373 newvd_is_spare = B_TRUE; 2374 (void) strcpy(newpath, newvd->vdev_path); 2375 } else { 2376 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 2377 zopt_dir, zopt_pool, top * leaves + leaf); 2378 if (ztest_random(2) == 0) 2379 newpath[strlen(newpath) - 1] = 'b'; 2380 newvd = vdev_lookup_by_path(rvd, newpath); 2381 } 2382 2383 if (newvd) { 2384 newsize = vdev_get_min_asize(newvd); 2385 } else { 2386 /* 2387 * Make newsize a little bigger or smaller than oldsize. 2388 * If it's smaller, the attach should fail. 2389 * If it's larger, and we're doing a replace, 2390 * we should get dynamic LUN growth when we're done. 2391 */ 2392 newsize = 10 * oldsize / (9 + ztest_random(3)); 2393 } 2394 2395 /* 2396 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 2397 * unless it's a replace; in that case any non-replacing parent is OK. 2398 * 2399 * If newvd is already part of the pool, it should fail with EBUSY. 2400 * 2401 * If newvd is too small, it should fail with EOVERFLOW. 2402 */ 2403 if (pvd->vdev_ops != &vdev_mirror_ops && 2404 pvd->vdev_ops != &vdev_root_ops && (!replacing || 2405 pvd->vdev_ops == &vdev_replacing_ops || 2406 pvd->vdev_ops == &vdev_spare_ops)) 2407 expected_error = ENOTSUP; 2408 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 2409 expected_error = ENOTSUP; 2410 else if (newvd == oldvd) 2411 expected_error = replacing ? 0 : EBUSY; 2412 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 2413 expected_error = EBUSY; 2414 else if (newsize < oldsize) 2415 expected_error = EOVERFLOW; 2416 else if (ashift > oldvd->vdev_top->vdev_ashift) 2417 expected_error = EDOM; 2418 else 2419 expected_error = 0; 2420 2421 spa_config_exit(spa, SCL_VDEV, FTAG); 2422 2423 /* 2424 * Build the nvlist describing newpath. 2425 */ 2426 root = make_vdev_root(newpath, NULL, newvd == NULL ? newsize : 0, 2427 ashift, 0, 0, 0, 1); 2428 2429 error = spa_vdev_attach(spa, oldguid, root, replacing); 2430 2431 nvlist_free(root); 2432 2433 /* 2434 * If our parent was the replacing vdev, but the replace completed, 2435 * then instead of failing with ENOTSUP we may either succeed, 2436 * fail with ENODEV, or fail with EOVERFLOW. 2437 */ 2438 if (expected_error == ENOTSUP && 2439 (error == 0 || error == ENODEV || error == EOVERFLOW)) 2440 expected_error = error; 2441 2442 /* 2443 * If someone grew the LUN, the replacement may be too small. 2444 */ 2445 if (error == EOVERFLOW || error == EBUSY) 2446 expected_error = error; 2447 2448 /* XXX workaround 6690467 */ 2449 if (error != expected_error && expected_error != EBUSY) { 2450 fatal(0, "attach (%s %llu, %s %llu, %d) " 2451 "returned %d, expected %d", 2452 oldpath, (longlong_t)oldsize, newpath, 2453 (longlong_t)newsize, replacing, error, expected_error); 2454 } 2455 2456 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2457 } 2458 2459 /* 2460 * Callback function which expands the physical size of the vdev. 2461 */ 2462 vdev_t * 2463 grow_vdev(vdev_t *vd, void *arg) 2464 { 2465 spa_t *spa = vd->vdev_spa; 2466 size_t *newsize = arg; 2467 size_t fsize; 2468 int fd; 2469 2470 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2471 ASSERT(vd->vdev_ops->vdev_op_leaf); 2472 2473 if ((fd = open(vd->vdev_path, O_RDWR)) == -1) 2474 return (vd); 2475 2476 fsize = lseek(fd, 0, SEEK_END); 2477 (void) ftruncate(fd, *newsize); 2478 2479 if (zopt_verbose >= 6) { 2480 (void) printf("%s grew from %lu to %lu bytes\n", 2481 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); 2482 } 2483 (void) close(fd); 2484 return (NULL); 2485 } 2486 2487 /* 2488 * Callback function which expands a given vdev by calling vdev_online(). 2489 */ 2490 /* ARGSUSED */ 2491 vdev_t * 2492 online_vdev(vdev_t *vd, void *arg) 2493 { 2494 spa_t *spa = vd->vdev_spa; 2495 vdev_t *tvd = vd->vdev_top; 2496 uint64_t guid = vd->vdev_guid; 2497 uint64_t generation = spa->spa_config_generation + 1; 2498 vdev_state_t newstate = VDEV_STATE_UNKNOWN; 2499 int error; 2500 2501 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2502 ASSERT(vd->vdev_ops->vdev_op_leaf); 2503 2504 /* Calling vdev_online will initialize the new metaslabs */ 2505 spa_config_exit(spa, SCL_STATE, spa); 2506 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); 2507 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2508 2509 /* 2510 * If vdev_online returned an error or the underlying vdev_open 2511 * failed then we abort the expand. The only way to know that 2512 * vdev_open fails is by checking the returned newstate. 2513 */ 2514 if (error || newstate != VDEV_STATE_HEALTHY) { 2515 if (zopt_verbose >= 5) { 2516 (void) printf("Unable to expand vdev, state %llu, " 2517 "error %d\n", (u_longlong_t)newstate, error); 2518 } 2519 return (vd); 2520 } 2521 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); 2522 2523 /* 2524 * Since we dropped the lock we need to ensure that we're 2525 * still talking to the original vdev. It's possible this 2526 * vdev may have been detached/replaced while we were 2527 * trying to online it. 2528 */ 2529 if (generation != spa->spa_config_generation) { 2530 if (zopt_verbose >= 5) { 2531 (void) printf("vdev configuration has changed, " 2532 "guid %llu, state %llu, expected gen %llu, " 2533 "got gen %llu\n", 2534 (u_longlong_t)guid, 2535 (u_longlong_t)tvd->vdev_state, 2536 (u_longlong_t)generation, 2537 (u_longlong_t)spa->spa_config_generation); 2538 } 2539 return (vd); 2540 } 2541 return (NULL); 2542 } 2543 2544 /* 2545 * Traverse the vdev tree calling the supplied function. 2546 * We continue to walk the tree until we either have walked all 2547 * children or we receive a non-NULL return from the callback. 2548 * If a NULL callback is passed, then we just return back the first 2549 * leaf vdev we encounter. 2550 */ 2551 vdev_t * 2552 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) 2553 { 2554 if (vd->vdev_ops->vdev_op_leaf) { 2555 if (func == NULL) 2556 return (vd); 2557 else 2558 return (func(vd, arg)); 2559 } 2560 2561 for (uint_t c = 0; c < vd->vdev_children; c++) { 2562 vdev_t *cvd = vd->vdev_child[c]; 2563 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) 2564 return (cvd); 2565 } 2566 return (NULL); 2567 } 2568 2569 /* 2570 * Verify that dynamic LUN growth works as expected. 2571 */ 2572 /* ARGSUSED */ 2573 void 2574 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) 2575 { 2576 ztest_shared_t *zs = ztest_shared; 2577 spa_t *spa = zs->zs_spa; 2578 vdev_t *vd, *tvd; 2579 metaslab_class_t *mc; 2580 metaslab_group_t *mg; 2581 size_t psize, newsize; 2582 uint64_t top; 2583 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; 2584 2585 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 2586 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2587 2588 top = ztest_random_vdev_top(spa, B_TRUE); 2589 2590 tvd = spa->spa_root_vdev->vdev_child[top]; 2591 mg = tvd->vdev_mg; 2592 mc = mg->mg_class; 2593 old_ms_count = tvd->vdev_ms_count; 2594 old_class_space = metaslab_class_get_space(mc); 2595 2596 /* 2597 * Determine the size of the first leaf vdev associated with 2598 * our top-level device. 2599 */ 2600 vd = vdev_walk_tree(tvd, NULL, NULL); 2601 ASSERT3P(vd, !=, NULL); 2602 ASSERT(vd->vdev_ops->vdev_op_leaf); 2603 2604 psize = vd->vdev_psize; 2605 2606 /* 2607 * We only try to expand the vdev if it's healthy, less than 4x its 2608 * original size, and it has a valid psize. 2609 */ 2610 if (tvd->vdev_state != VDEV_STATE_HEALTHY || 2611 psize == 0 || psize >= 4 * zopt_vdev_size) { 2612 spa_config_exit(spa, SCL_STATE, spa); 2613 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2614 return; 2615 } 2616 ASSERT(psize > 0); 2617 newsize = psize + psize / 8; 2618 ASSERT3U(newsize, >, psize); 2619 2620 if (zopt_verbose >= 6) { 2621 (void) printf("Expanding LUN %s from %lu to %lu\n", 2622 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); 2623 } 2624 2625 /* 2626 * Growing the vdev is a two step process: 2627 * 1). expand the physical size (i.e. relabel) 2628 * 2). online the vdev to create the new metaslabs 2629 */ 2630 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || 2631 vdev_walk_tree(tvd, online_vdev, NULL) != NULL || 2632 tvd->vdev_state != VDEV_STATE_HEALTHY) { 2633 if (zopt_verbose >= 5) { 2634 (void) printf("Could not expand LUN because " 2635 "the vdev configuration changed.\n"); 2636 } 2637 spa_config_exit(spa, SCL_STATE, spa); 2638 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2639 return; 2640 } 2641 2642 spa_config_exit(spa, SCL_STATE, spa); 2643 2644 /* 2645 * Expanding the LUN will update the config asynchronously, 2646 * thus we must wait for the async thread to complete any 2647 * pending tasks before proceeding. 2648 */ 2649 for (;;) { 2650 boolean_t done; 2651 mutex_enter(&spa->spa_async_lock); 2652 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); 2653 mutex_exit(&spa->spa_async_lock); 2654 if (done) 2655 break; 2656 txg_wait_synced(spa_get_dsl(spa), 0); 2657 (void) poll(NULL, 0, 100); 2658 } 2659 2660 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2661 2662 tvd = spa->spa_root_vdev->vdev_child[top]; 2663 new_ms_count = tvd->vdev_ms_count; 2664 new_class_space = metaslab_class_get_space(mc); 2665 2666 if (tvd->vdev_mg != mg || mg->mg_class != mc) { 2667 if (zopt_verbose >= 5) { 2668 (void) printf("Could not verify LUN expansion due to " 2669 "intervening vdev offline or remove.\n"); 2670 } 2671 spa_config_exit(spa, SCL_STATE, spa); 2672 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2673 return; 2674 } 2675 2676 /* 2677 * Make sure we were able to grow the vdev. 2678 */ 2679 if (new_ms_count <= old_ms_count) 2680 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n", 2681 old_ms_count, new_ms_count); 2682 2683 /* 2684 * Make sure we were able to grow the pool. 2685 */ 2686 if (new_class_space <= old_class_space) 2687 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n", 2688 old_class_space, new_class_space); 2689 2690 if (zopt_verbose >= 5) { 2691 char oldnumbuf[6], newnumbuf[6]; 2692 2693 nicenum(old_class_space, oldnumbuf); 2694 nicenum(new_class_space, newnumbuf); 2695 (void) printf("%s grew from %s to %s\n", 2696 spa->spa_name, oldnumbuf, newnumbuf); 2697 } 2698 2699 spa_config_exit(spa, SCL_STATE, spa); 2700 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2701 } 2702 2703 /* 2704 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 2705 */ 2706 /* ARGSUSED */ 2707 static void 2708 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 2709 { 2710 /* 2711 * Create the objects common to all ztest datasets. 2712 */ 2713 VERIFY(zap_create_claim(os, ZTEST_DIROBJ, 2714 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 2715 } 2716 2717 /* ARGSUSED */ 2718 static int 2719 ztest_objset_destroy_cb(char *name, void *arg) 2720 { 2721 objset_t *os; 2722 dmu_object_info_t doi; 2723 int error; 2724 2725 /* 2726 * Verify that the dataset contains a directory object. 2727 */ 2728 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os)); 2729 error = dmu_object_info(os, ZTEST_DIROBJ, &doi); 2730 if (error != ENOENT) { 2731 /* We could have crashed in the middle of destroying it */ 2732 ASSERT3U(error, ==, 0); 2733 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); 2734 ASSERT3S(doi.doi_physical_blocks_512, >=, 0); 2735 } 2736 dmu_objset_rele(os, FTAG); 2737 2738 /* 2739 * Destroy the dataset. 2740 */ 2741 VERIFY3U(0, ==, dmu_objset_destroy(name, B_FALSE)); 2742 return (0); 2743 } 2744 2745 static boolean_t 2746 ztest_snapshot_create(char *osname, uint64_t id) 2747 { 2748 char snapname[MAXNAMELEN]; 2749 int error; 2750 2751 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname, 2752 (u_longlong_t)id); 2753 2754 error = dmu_objset_snapshot(osname, strchr(snapname, '@') + 1, 2755 NULL, B_FALSE); 2756 if (error == ENOSPC) { 2757 ztest_record_enospc(FTAG); 2758 return (B_FALSE); 2759 } 2760 if (error != 0 && error != EEXIST) 2761 fatal(0, "ztest_snapshot_create(%s) = %d", snapname, error); 2762 return (B_TRUE); 2763 } 2764 2765 static boolean_t 2766 ztest_snapshot_destroy(char *osname, uint64_t id) 2767 { 2768 char snapname[MAXNAMELEN]; 2769 int error; 2770 2771 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname, 2772 (u_longlong_t)id); 2773 2774 error = dmu_objset_destroy(snapname, B_FALSE); 2775 if (error != 0 && error != ENOENT) 2776 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error); 2777 return (B_TRUE); 2778 } 2779 2780 /* ARGSUSED */ 2781 void 2782 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) 2783 { 2784 ztest_shared_t *zs = ztest_shared; 2785 ztest_ds_t zdtmp; 2786 int iters; 2787 int error; 2788 objset_t *os, *os2; 2789 char name[MAXNAMELEN]; 2790 zilog_t *zilog; 2791 2792 (void) rw_rdlock(&zs->zs_name_lock); 2793 2794 (void) snprintf(name, MAXNAMELEN, "%s/temp_%llu", 2795 zs->zs_pool, (u_longlong_t)id); 2796 2797 /* 2798 * If this dataset exists from a previous run, process its replay log 2799 * half of the time. If we don't replay it, then dmu_objset_destroy() 2800 * (invoked from ztest_objset_destroy_cb()) should just throw it away. 2801 */ 2802 if (ztest_random(2) == 0 && 2803 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { 2804 ztest_zd_init(&zdtmp, os); 2805 zil_replay(os, &zdtmp, ztest_replay_vector); 2806 ztest_zd_fini(&zdtmp); 2807 dmu_objset_disown(os, FTAG); 2808 } 2809 2810 /* 2811 * There may be an old instance of the dataset we're about to 2812 * create lying around from a previous run. If so, destroy it 2813 * and all of its snapshots. 2814 */ 2815 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 2816 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 2817 2818 /* 2819 * Verify that the destroyed dataset is no longer in the namespace. 2820 */ 2821 VERIFY3U(ENOENT, ==, dmu_objset_hold(name, FTAG, &os)); 2822 2823 /* 2824 * Verify that we can create a new dataset. 2825 */ 2826 error = dmu_objset_create(name, DMU_OST_OTHER, 0, 2827 ztest_objset_create_cb, NULL); 2828 if (error) { 2829 if (error == ENOSPC) { 2830 ztest_record_enospc(FTAG); 2831 (void) rw_unlock(&zs->zs_name_lock); 2832 return; 2833 } 2834 fatal(0, "dmu_objset_create(%s) = %d", name, error); 2835 } 2836 2837 VERIFY3U(0, ==, 2838 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os)); 2839 2840 ztest_zd_init(&zdtmp, os); 2841 2842 /* 2843 * Open the intent log for it. 2844 */ 2845 zilog = zil_open(os, ztest_get_data); 2846 2847 /* 2848 * Put some objects in there, do a little I/O to them, 2849 * and randomly take a couple of snapshots along the way. 2850 */ 2851 iters = ztest_random(5); 2852 for (int i = 0; i < iters; i++) { 2853 ztest_dmu_object_alloc_free(&zdtmp, id); 2854 if (ztest_random(iters) == 0) 2855 (void) ztest_snapshot_create(name, i); 2856 } 2857 2858 /* 2859 * Verify that we cannot create an existing dataset. 2860 */ 2861 VERIFY3U(EEXIST, ==, 2862 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL)); 2863 2864 /* 2865 * Verify that we can hold an objset that is also owned. 2866 */ 2867 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2)); 2868 dmu_objset_rele(os2, FTAG); 2869 2870 /* 2871 * Verify that we cannot own an objset that is already owned. 2872 */ 2873 VERIFY3U(EBUSY, ==, 2874 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2)); 2875 2876 zil_close(zilog); 2877 dmu_objset_disown(os, FTAG); 2878 ztest_zd_fini(&zdtmp); 2879 2880 (void) rw_unlock(&zs->zs_name_lock); 2881 } 2882 2883 /* 2884 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 2885 */ 2886 void 2887 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) 2888 { 2889 ztest_shared_t *zs = ztest_shared; 2890 2891 (void) rw_rdlock(&zs->zs_name_lock); 2892 (void) ztest_snapshot_destroy(zd->zd_name, id); 2893 (void) ztest_snapshot_create(zd->zd_name, id); 2894 (void) rw_unlock(&zs->zs_name_lock); 2895 } 2896 2897 /* 2898 * Cleanup non-standard snapshots and clones. 2899 */ 2900 void 2901 ztest_dsl_dataset_cleanup(char *osname, uint64_t id) 2902 { 2903 char snap1name[MAXNAMELEN]; 2904 char clone1name[MAXNAMELEN]; 2905 char snap2name[MAXNAMELEN]; 2906 char clone2name[MAXNAMELEN]; 2907 char snap3name[MAXNAMELEN]; 2908 int error; 2909 2910 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 2911 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 2912 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 2913 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 2914 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 2915 2916 error = dmu_objset_destroy(clone2name, B_FALSE); 2917 if (error && error != ENOENT) 2918 fatal(0, "dmu_objset_destroy(%s) = %d", clone2name, error); 2919 error = dmu_objset_destroy(snap3name, B_FALSE); 2920 if (error && error != ENOENT) 2921 fatal(0, "dmu_objset_destroy(%s) = %d", snap3name, error); 2922 error = dmu_objset_destroy(snap2name, B_FALSE); 2923 if (error && error != ENOENT) 2924 fatal(0, "dmu_objset_destroy(%s) = %d", snap2name, error); 2925 error = dmu_objset_destroy(clone1name, B_FALSE); 2926 if (error && error != ENOENT) 2927 fatal(0, "dmu_objset_destroy(%s) = %d", clone1name, error); 2928 error = dmu_objset_destroy(snap1name, B_FALSE); 2929 if (error && error != ENOENT) 2930 fatal(0, "dmu_objset_destroy(%s) = %d", snap1name, error); 2931 } 2932 2933 /* 2934 * Verify dsl_dataset_promote handles EBUSY 2935 */ 2936 void 2937 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) 2938 { 2939 ztest_shared_t *zs = ztest_shared; 2940 objset_t *clone; 2941 dsl_dataset_t *ds; 2942 char snap1name[MAXNAMELEN]; 2943 char clone1name[MAXNAMELEN]; 2944 char snap2name[MAXNAMELEN]; 2945 char clone2name[MAXNAMELEN]; 2946 char snap3name[MAXNAMELEN]; 2947 char *osname = zd->zd_name; 2948 int error; 2949 2950 (void) rw_rdlock(&zs->zs_name_lock); 2951 2952 ztest_dsl_dataset_cleanup(osname, id); 2953 2954 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 2955 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 2956 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 2957 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 2958 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 2959 2960 error = dmu_objset_snapshot(osname, strchr(snap1name, '@')+1, 2961 NULL, B_FALSE); 2962 if (error && error != EEXIST) { 2963 if (error == ENOSPC) { 2964 ztest_record_enospc(FTAG); 2965 goto out; 2966 } 2967 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 2968 } 2969 2970 error = dmu_objset_hold(snap1name, FTAG, &clone); 2971 if (error) 2972 fatal(0, "dmu_open_snapshot(%s) = %d", snap1name, error); 2973 2974 error = dmu_objset_clone(clone1name, dmu_objset_ds(clone), 0); 2975 dmu_objset_rele(clone, FTAG); 2976 if (error) { 2977 if (error == ENOSPC) { 2978 ztest_record_enospc(FTAG); 2979 goto out; 2980 } 2981 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 2982 } 2983 2984 error = dmu_objset_snapshot(clone1name, strchr(snap2name, '@')+1, 2985 NULL, B_FALSE); 2986 if (error && error != EEXIST) { 2987 if (error == ENOSPC) { 2988 ztest_record_enospc(FTAG); 2989 goto out; 2990 } 2991 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 2992 } 2993 2994 error = dmu_objset_snapshot(clone1name, strchr(snap3name, '@')+1, 2995 NULL, B_FALSE); 2996 if (error && error != EEXIST) { 2997 if (error == ENOSPC) { 2998 ztest_record_enospc(FTAG); 2999 goto out; 3000 } 3001 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3002 } 3003 3004 error = dmu_objset_hold(snap3name, FTAG, &clone); 3005 if (error) 3006 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3007 3008 error = dmu_objset_clone(clone2name, dmu_objset_ds(clone), 0); 3009 dmu_objset_rele(clone, FTAG); 3010 if (error) { 3011 if (error == ENOSPC) { 3012 ztest_record_enospc(FTAG); 3013 goto out; 3014 } 3015 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 3016 } 3017 3018 error = dsl_dataset_own(snap1name, B_FALSE, FTAG, &ds); 3019 if (error) 3020 fatal(0, "dsl_dataset_own(%s) = %d", snap1name, error); 3021 error = dsl_dataset_promote(clone2name, NULL); 3022 if (error != EBUSY) 3023 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 3024 error); 3025 dsl_dataset_disown(ds, FTAG); 3026 3027 out: 3028 ztest_dsl_dataset_cleanup(osname, id); 3029 3030 (void) rw_unlock(&zs->zs_name_lock); 3031 } 3032 3033 /* 3034 * Verify that dmu_object_{alloc,free} work as expected. 3035 */ 3036 void 3037 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) 3038 { 3039 ztest_od_t od[4]; 3040 int batchsize = sizeof (od) / sizeof (od[0]); 3041 3042 for (int b = 0; b < batchsize; b++) 3043 ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0); 3044 3045 /* 3046 * Destroy the previous batch of objects, create a new batch, 3047 * and do some I/O on the new objects. 3048 */ 3049 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0) 3050 return; 3051 3052 while (ztest_random(4 * batchsize) != 0) 3053 ztest_io(zd, od[ztest_random(batchsize)].od_object, 3054 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3055 } 3056 3057 /* 3058 * Verify that dmu_{read,write} work as expected. 3059 */ 3060 void 3061 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) 3062 { 3063 objset_t *os = zd->zd_os; 3064 ztest_od_t od[2]; 3065 dmu_tx_t *tx; 3066 int i, freeit, error; 3067 uint64_t n, s, txg; 3068 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 3069 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3070 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); 3071 uint64_t regions = 997; 3072 uint64_t stride = 123456789ULL; 3073 uint64_t width = 40; 3074 int free_percent = 5; 3075 3076 /* 3077 * This test uses two objects, packobj and bigobj, that are always 3078 * updated together (i.e. in the same tx) so that their contents are 3079 * in sync and can be compared. Their contents relate to each other 3080 * in a simple way: packobj is a dense array of 'bufwad' structures, 3081 * while bigobj is a sparse array of the same bufwads. Specifically, 3082 * for any index n, there are three bufwads that should be identical: 3083 * 3084 * packobj, at offset n * sizeof (bufwad_t) 3085 * bigobj, at the head of the nth chunk 3086 * bigobj, at the tail of the nth chunk 3087 * 3088 * The chunk size is arbitrary. It doesn't have to be a power of two, 3089 * and it doesn't have any relation to the object blocksize. 3090 * The only requirement is that it can hold at least two bufwads. 3091 * 3092 * Normally, we write the bufwad to each of these locations. 3093 * However, free_percent of the time we instead write zeroes to 3094 * packobj and perform a dmu_free_range() on bigobj. By comparing 3095 * bigobj to packobj, we can verify that the DMU is correctly 3096 * tracking which parts of an object are allocated and free, 3097 * and that the contents of the allocated blocks are correct. 3098 */ 3099 3100 /* 3101 * Read the directory info. If it's the first time, set things up. 3102 */ 3103 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize); 3104 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3105 3106 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3107 return; 3108 3109 bigobj = od[0].od_object; 3110 packobj = od[1].od_object; 3111 chunksize = od[0].od_gen; 3112 ASSERT(chunksize == od[1].od_gen); 3113 3114 /* 3115 * Prefetch a random chunk of the big object. 3116 * Our aim here is to get some async reads in flight 3117 * for blocks that we may free below; the DMU should 3118 * handle this race correctly. 3119 */ 3120 n = ztest_random(regions) * stride + ztest_random(width); 3121 s = 1 + ztest_random(2 * width - 1); 3122 dmu_prefetch(os, bigobj, n * chunksize, s * chunksize); 3123 3124 /* 3125 * Pick a random index and compute the offsets into packobj and bigobj. 3126 */ 3127 n = ztest_random(regions) * stride + ztest_random(width); 3128 s = 1 + ztest_random(width - 1); 3129 3130 packoff = n * sizeof (bufwad_t); 3131 packsize = s * sizeof (bufwad_t); 3132 3133 bigoff = n * chunksize; 3134 bigsize = s * chunksize; 3135 3136 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 3137 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 3138 3139 /* 3140 * free_percent of the time, free a range of bigobj rather than 3141 * overwriting it. 3142 */ 3143 freeit = (ztest_random(100) < free_percent); 3144 3145 /* 3146 * Read the current contents of our objects. 3147 */ 3148 error = dmu_read(os, packobj, packoff, packsize, packbuf, 3149 DMU_READ_PREFETCH); 3150 ASSERT3U(error, ==, 0); 3151 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, 3152 DMU_READ_PREFETCH); 3153 ASSERT3U(error, ==, 0); 3154 3155 /* 3156 * Get a tx for the mods to both packobj and bigobj. 3157 */ 3158 tx = dmu_tx_create(os); 3159 3160 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3161 3162 if (freeit) 3163 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); 3164 else 3165 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3166 3167 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3168 if (txg == 0) { 3169 umem_free(packbuf, packsize); 3170 umem_free(bigbuf, bigsize); 3171 return; 3172 } 3173 3174 dmu_object_set_checksum(os, bigobj, 3175 (enum zio_checksum)ztest_random_dsl_prop(ZFS_PROP_CHECKSUM), tx); 3176 3177 dmu_object_set_compress(os, bigobj, 3178 (enum zio_compress)ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), tx); 3179 3180 /* 3181 * For each index from n to n + s, verify that the existing bufwad 3182 * in packobj matches the bufwads at the head and tail of the 3183 * corresponding chunk in bigobj. Then update all three bufwads 3184 * with the new values we want to write out. 3185 */ 3186 for (i = 0; i < s; i++) { 3187 /* LINTED */ 3188 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3189 /* LINTED */ 3190 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3191 /* LINTED */ 3192 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3193 3194 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3195 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3196 3197 if (pack->bw_txg > txg) 3198 fatal(0, "future leak: got %llx, open txg is %llx", 3199 pack->bw_txg, txg); 3200 3201 if (pack->bw_data != 0 && pack->bw_index != n + i) 3202 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3203 pack->bw_index, n, i); 3204 3205 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3206 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3207 3208 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3209 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3210 3211 if (freeit) { 3212 bzero(pack, sizeof (bufwad_t)); 3213 } else { 3214 pack->bw_index = n + i; 3215 pack->bw_txg = txg; 3216 pack->bw_data = 1 + ztest_random(-2ULL); 3217 } 3218 *bigH = *pack; 3219 *bigT = *pack; 3220 } 3221 3222 /* 3223 * We've verified all the old bufwads, and made new ones. 3224 * Now write them out. 3225 */ 3226 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3227 3228 if (freeit) { 3229 if (zopt_verbose >= 7) { 3230 (void) printf("freeing offset %llx size %llx" 3231 " txg %llx\n", 3232 (u_longlong_t)bigoff, 3233 (u_longlong_t)bigsize, 3234 (u_longlong_t)txg); 3235 } 3236 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx)); 3237 } else { 3238 if (zopt_verbose >= 7) { 3239 (void) printf("writing offset %llx size %llx" 3240 " txg %llx\n", 3241 (u_longlong_t)bigoff, 3242 (u_longlong_t)bigsize, 3243 (u_longlong_t)txg); 3244 } 3245 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); 3246 } 3247 3248 dmu_tx_commit(tx); 3249 3250 /* 3251 * Sanity check the stuff we just wrote. 3252 */ 3253 { 3254 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3255 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3256 3257 VERIFY(0 == dmu_read(os, packobj, packoff, 3258 packsize, packcheck, DMU_READ_PREFETCH)); 3259 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3260 bigsize, bigcheck, DMU_READ_PREFETCH)); 3261 3262 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3263 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3264 3265 umem_free(packcheck, packsize); 3266 umem_free(bigcheck, bigsize); 3267 } 3268 3269 umem_free(packbuf, packsize); 3270 umem_free(bigbuf, bigsize); 3271 } 3272 3273 void 3274 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 3275 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) 3276 { 3277 uint64_t i; 3278 bufwad_t *pack; 3279 bufwad_t *bigH; 3280 bufwad_t *bigT; 3281 3282 /* 3283 * For each index from n to n + s, verify that the existing bufwad 3284 * in packobj matches the bufwads at the head and tail of the 3285 * corresponding chunk in bigobj. Then update all three bufwads 3286 * with the new values we want to write out. 3287 */ 3288 for (i = 0; i < s; i++) { 3289 /* LINTED */ 3290 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3291 /* LINTED */ 3292 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3293 /* LINTED */ 3294 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3295 3296 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3297 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3298 3299 if (pack->bw_txg > txg) 3300 fatal(0, "future leak: got %llx, open txg is %llx", 3301 pack->bw_txg, txg); 3302 3303 if (pack->bw_data != 0 && pack->bw_index != n + i) 3304 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3305 pack->bw_index, n, i); 3306 3307 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3308 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3309 3310 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3311 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3312 3313 pack->bw_index = n + i; 3314 pack->bw_txg = txg; 3315 pack->bw_data = 1 + ztest_random(-2ULL); 3316 3317 *bigH = *pack; 3318 *bigT = *pack; 3319 } 3320 } 3321 3322 void 3323 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) 3324 { 3325 objset_t *os = zd->zd_os; 3326 ztest_od_t od[2]; 3327 dmu_tx_t *tx; 3328 uint64_t i; 3329 int error; 3330 uint64_t n, s, txg; 3331 bufwad_t *packbuf, *bigbuf; 3332 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3333 uint64_t blocksize = ztest_random_blocksize(); 3334 uint64_t chunksize = blocksize; 3335 uint64_t regions = 997; 3336 uint64_t stride = 123456789ULL; 3337 uint64_t width = 9; 3338 dmu_buf_t *bonus_db; 3339 arc_buf_t **bigbuf_arcbufs; 3340 dmu_object_info_t doi; 3341 3342 /* 3343 * This test uses two objects, packobj and bigobj, that are always 3344 * updated together (i.e. in the same tx) so that their contents are 3345 * in sync and can be compared. Their contents relate to each other 3346 * in a simple way: packobj is a dense array of 'bufwad' structures, 3347 * while bigobj is a sparse array of the same bufwads. Specifically, 3348 * for any index n, there are three bufwads that should be identical: 3349 * 3350 * packobj, at offset n * sizeof (bufwad_t) 3351 * bigobj, at the head of the nth chunk 3352 * bigobj, at the tail of the nth chunk 3353 * 3354 * The chunk size is set equal to bigobj block size so that 3355 * dmu_assign_arcbuf() can be tested for object updates. 3356 */ 3357 3358 /* 3359 * Read the directory info. If it's the first time, set things up. 3360 */ 3361 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 3362 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3363 3364 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3365 return; 3366 3367 bigobj = od[0].od_object; 3368 packobj = od[1].od_object; 3369 blocksize = od[0].od_blocksize; 3370 chunksize = blocksize; 3371 ASSERT(chunksize == od[1].od_gen); 3372 3373 VERIFY(dmu_object_info(os, bigobj, &doi) == 0); 3374 VERIFY(ISP2(doi.doi_data_block_size)); 3375 VERIFY(chunksize == doi.doi_data_block_size); 3376 VERIFY(chunksize >= 2 * sizeof (bufwad_t)); 3377 3378 /* 3379 * Pick a random index and compute the offsets into packobj and bigobj. 3380 */ 3381 n = ztest_random(regions) * stride + ztest_random(width); 3382 s = 1 + ztest_random(width - 1); 3383 3384 packoff = n * sizeof (bufwad_t); 3385 packsize = s * sizeof (bufwad_t); 3386 3387 bigoff = n * chunksize; 3388 bigsize = s * chunksize; 3389 3390 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 3391 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 3392 3393 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); 3394 3395 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 3396 3397 /* 3398 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 3399 * Iteration 1 test zcopy to already referenced dbufs. 3400 * Iteration 2 test zcopy to dirty dbuf in the same txg. 3401 * Iteration 3 test zcopy to dbuf dirty in previous txg. 3402 * Iteration 4 test zcopy when dbuf is no longer dirty. 3403 * Iteration 5 test zcopy when it can't be done. 3404 * Iteration 6 one more zcopy write. 3405 */ 3406 for (i = 0; i < 7; i++) { 3407 uint64_t j; 3408 uint64_t off; 3409 3410 /* 3411 * In iteration 5 (i == 5) use arcbufs 3412 * that don't match bigobj blksz to test 3413 * dmu_assign_arcbuf() when it can't directly 3414 * assign an arcbuf to a dbuf. 3415 */ 3416 for (j = 0; j < s; j++) { 3417 if (i != 5) { 3418 bigbuf_arcbufs[j] = 3419 dmu_request_arcbuf(bonus_db, chunksize); 3420 } else { 3421 bigbuf_arcbufs[2 * j] = 3422 dmu_request_arcbuf(bonus_db, chunksize / 2); 3423 bigbuf_arcbufs[2 * j + 1] = 3424 dmu_request_arcbuf(bonus_db, chunksize / 2); 3425 } 3426 } 3427 3428 /* 3429 * Get a tx for the mods to both packobj and bigobj. 3430 */ 3431 tx = dmu_tx_create(os); 3432 3433 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3434 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3435 3436 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3437 if (txg == 0) { 3438 umem_free(packbuf, packsize); 3439 umem_free(bigbuf, bigsize); 3440 for (j = 0; j < s; j++) { 3441 if (i != 5) { 3442 dmu_return_arcbuf(bigbuf_arcbufs[j]); 3443 } else { 3444 dmu_return_arcbuf( 3445 bigbuf_arcbufs[2 * j]); 3446 dmu_return_arcbuf( 3447 bigbuf_arcbufs[2 * j + 1]); 3448 } 3449 } 3450 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3451 dmu_buf_rele(bonus_db, FTAG); 3452 return; 3453 } 3454 3455 /* 3456 * 50% of the time don't read objects in the 1st iteration to 3457 * test dmu_assign_arcbuf() for the case when there're no 3458 * existing dbufs for the specified offsets. 3459 */ 3460 if (i != 0 || ztest_random(2) != 0) { 3461 error = dmu_read(os, packobj, packoff, 3462 packsize, packbuf, DMU_READ_PREFETCH); 3463 ASSERT3U(error, ==, 0); 3464 error = dmu_read(os, bigobj, bigoff, bigsize, 3465 bigbuf, DMU_READ_PREFETCH); 3466 ASSERT3U(error, ==, 0); 3467 } 3468 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 3469 n, chunksize, txg); 3470 3471 /* 3472 * We've verified all the old bufwads, and made new ones. 3473 * Now write them out. 3474 */ 3475 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3476 if (zopt_verbose >= 7) { 3477 (void) printf("writing offset %llx size %llx" 3478 " txg %llx\n", 3479 (u_longlong_t)bigoff, 3480 (u_longlong_t)bigsize, 3481 (u_longlong_t)txg); 3482 } 3483 for (off = bigoff, j = 0; j < s; j++, off += chunksize) { 3484 dmu_buf_t *dbt; 3485 if (i != 5) { 3486 bcopy((caddr_t)bigbuf + (off - bigoff), 3487 bigbuf_arcbufs[j]->b_data, chunksize); 3488 } else { 3489 bcopy((caddr_t)bigbuf + (off - bigoff), 3490 bigbuf_arcbufs[2 * j]->b_data, 3491 chunksize / 2); 3492 bcopy((caddr_t)bigbuf + (off - bigoff) + 3493 chunksize / 2, 3494 bigbuf_arcbufs[2 * j + 1]->b_data, 3495 chunksize / 2); 3496 } 3497 3498 if (i == 1) { 3499 VERIFY(dmu_buf_hold(os, bigobj, off, 3500 FTAG, &dbt) == 0); 3501 } 3502 if (i != 5) { 3503 dmu_assign_arcbuf(bonus_db, off, 3504 bigbuf_arcbufs[j], tx); 3505 } else { 3506 dmu_assign_arcbuf(bonus_db, off, 3507 bigbuf_arcbufs[2 * j], tx); 3508 dmu_assign_arcbuf(bonus_db, 3509 off + chunksize / 2, 3510 bigbuf_arcbufs[2 * j + 1], tx); 3511 } 3512 if (i == 1) { 3513 dmu_buf_rele(dbt, FTAG); 3514 } 3515 } 3516 dmu_tx_commit(tx); 3517 3518 /* 3519 * Sanity check the stuff we just wrote. 3520 */ 3521 { 3522 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3523 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3524 3525 VERIFY(0 == dmu_read(os, packobj, packoff, 3526 packsize, packcheck, DMU_READ_PREFETCH)); 3527 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3528 bigsize, bigcheck, DMU_READ_PREFETCH)); 3529 3530 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3531 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3532 3533 umem_free(packcheck, packsize); 3534 umem_free(bigcheck, bigsize); 3535 } 3536 if (i == 2) { 3537 txg_wait_open(dmu_objset_pool(os), 0); 3538 } else if (i == 3) { 3539 txg_wait_synced(dmu_objset_pool(os), 0); 3540 } 3541 } 3542 3543 dmu_buf_rele(bonus_db, FTAG); 3544 umem_free(packbuf, packsize); 3545 umem_free(bigbuf, bigsize); 3546 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3547 } 3548 3549 /* ARGSUSED */ 3550 void 3551 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) 3552 { 3553 ztest_od_t od[1]; 3554 uint64_t offset = (1ULL << (ztest_random(20) + 43)) + 3555 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3556 3557 /* 3558 * Have multiple threads write to large offsets in an object 3559 * to verify that parallel writes to an object -- even to the 3560 * same blocks within the object -- doesn't cause any trouble. 3561 */ 3562 ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 3563 3564 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3565 return; 3566 3567 while (ztest_random(10) != 0) 3568 ztest_io(zd, od[0].od_object, offset); 3569 } 3570 3571 void 3572 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) 3573 { 3574 ztest_od_t od[1]; 3575 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + 3576 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3577 uint64_t count = ztest_random(20) + 1; 3578 uint64_t blocksize = ztest_random_blocksize(); 3579 void *data; 3580 3581 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 3582 3583 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 3584 return; 3585 3586 if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0) 3587 return; 3588 3589 ztest_prealloc(zd, od[0].od_object, offset, count * blocksize); 3590 3591 data = umem_zalloc(blocksize, UMEM_NOFAIL); 3592 3593 while (ztest_random(count) != 0) { 3594 uint64_t randoff = offset + (ztest_random(count) * blocksize); 3595 if (ztest_write(zd, od[0].od_object, randoff, blocksize, 3596 data) != 0) 3597 break; 3598 while (ztest_random(4) != 0) 3599 ztest_io(zd, od[0].od_object, randoff); 3600 } 3601 3602 umem_free(data, blocksize); 3603 } 3604 3605 /* 3606 * Verify that zap_{create,destroy,add,remove,update} work as expected. 3607 */ 3608 #define ZTEST_ZAP_MIN_INTS 1 3609 #define ZTEST_ZAP_MAX_INTS 4 3610 #define ZTEST_ZAP_MAX_PROPS 1000 3611 3612 void 3613 ztest_zap(ztest_ds_t *zd, uint64_t id) 3614 { 3615 objset_t *os = zd->zd_os; 3616 ztest_od_t od[1]; 3617 uint64_t object; 3618 uint64_t txg, last_txg; 3619 uint64_t value[ZTEST_ZAP_MAX_INTS]; 3620 uint64_t zl_ints, zl_intsize, prop; 3621 int i, ints; 3622 dmu_tx_t *tx; 3623 char propname[100], txgname[100]; 3624 int error; 3625 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 3626 3627 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 3628 3629 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 3630 return; 3631 3632 object = od[0].od_object; 3633 3634 /* 3635 * Generate a known hash collision, and verify that 3636 * we can lookup and remove both entries. 3637 */ 3638 tx = dmu_tx_create(os); 3639 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 3640 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3641 if (txg == 0) 3642 return; 3643 for (i = 0; i < 2; i++) { 3644 value[i] = i; 3645 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 3646 1, &value[i], tx)); 3647 } 3648 for (i = 0; i < 2; i++) { 3649 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], 3650 sizeof (uint64_t), 1, &value[i], tx)); 3651 VERIFY3U(0, ==, 3652 zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); 3653 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 3654 ASSERT3U(zl_ints, ==, 1); 3655 } 3656 for (i = 0; i < 2; i++) { 3657 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx)); 3658 } 3659 dmu_tx_commit(tx); 3660 3661 /* 3662 * Generate a buch of random entries. 3663 */ 3664 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 3665 3666 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 3667 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 3668 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 3669 bzero(value, sizeof (value)); 3670 last_txg = 0; 3671 3672 /* 3673 * If these zap entries already exist, validate their contents. 3674 */ 3675 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 3676 if (error == 0) { 3677 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 3678 ASSERT3U(zl_ints, ==, 1); 3679 3680 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 3681 zl_ints, &last_txg) == 0); 3682 3683 VERIFY(zap_length(os, object, propname, &zl_intsize, 3684 &zl_ints) == 0); 3685 3686 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 3687 ASSERT3U(zl_ints, ==, ints); 3688 3689 VERIFY(zap_lookup(os, object, propname, zl_intsize, 3690 zl_ints, value) == 0); 3691 3692 for (i = 0; i < ints; i++) { 3693 ASSERT3U(value[i], ==, last_txg + object + i); 3694 } 3695 } else { 3696 ASSERT3U(error, ==, ENOENT); 3697 } 3698 3699 /* 3700 * Atomically update two entries in our zap object. 3701 * The first is named txg_%llu, and contains the txg 3702 * in which the property was last updated. The second 3703 * is named prop_%llu, and the nth element of its value 3704 * should be txg + object + n. 3705 */ 3706 tx = dmu_tx_create(os); 3707 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 3708 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3709 if (txg == 0) 3710 return; 3711 3712 if (last_txg > txg) 3713 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 3714 3715 for (i = 0; i < ints; i++) 3716 value[i] = txg + object + i; 3717 3718 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t), 3719 1, &txg, tx)); 3720 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t), 3721 ints, value, tx)); 3722 3723 dmu_tx_commit(tx); 3724 3725 /* 3726 * Remove a random pair of entries. 3727 */ 3728 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 3729 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 3730 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 3731 3732 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 3733 3734 if (error == ENOENT) 3735 return; 3736 3737 ASSERT3U(error, ==, 0); 3738 3739 tx = dmu_tx_create(os); 3740 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 3741 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3742 if (txg == 0) 3743 return; 3744 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx)); 3745 VERIFY3U(0, ==, zap_remove(os, object, propname, tx)); 3746 dmu_tx_commit(tx); 3747 } 3748 3749 /* 3750 * Testcase to test the upgrading of a microzap to fatzap. 3751 */ 3752 void 3753 ztest_fzap(ztest_ds_t *zd, uint64_t id) 3754 { 3755 objset_t *os = zd->zd_os; 3756 ztest_od_t od[1]; 3757 uint64_t object, txg; 3758 3759 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 3760 3761 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 3762 return; 3763 3764 object = od[0].od_object; 3765 3766 /* 3767 * Add entries to this ZAP and make sure it spills over 3768 * and gets upgraded to a fatzap. Also, since we are adding 3769 * 2050 entries we should see ptrtbl growth and leaf-block split. 3770 */ 3771 for (int i = 0; i < 2050; i++) { 3772 char name[MAXNAMELEN]; 3773 uint64_t value = i; 3774 dmu_tx_t *tx; 3775 int error; 3776 3777 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu", 3778 id, value); 3779 3780 tx = dmu_tx_create(os); 3781 dmu_tx_hold_zap(tx, object, B_TRUE, name); 3782 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3783 if (txg == 0) 3784 return; 3785 error = zap_add(os, object, name, sizeof (uint64_t), 1, 3786 &value, tx); 3787 ASSERT(error == 0 || error == EEXIST); 3788 dmu_tx_commit(tx); 3789 } 3790 } 3791 3792 /* ARGSUSED */ 3793 void 3794 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) 3795 { 3796 objset_t *os = zd->zd_os; 3797 ztest_od_t od[1]; 3798 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 3799 dmu_tx_t *tx; 3800 int i, namelen, error; 3801 int micro = ztest_random(2); 3802 char name[20], string_value[20]; 3803 void *data; 3804 3805 ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0); 3806 3807 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3808 return; 3809 3810 object = od[0].od_object; 3811 3812 /* 3813 * Generate a random name of the form 'xxx.....' where each 3814 * x is a random printable character and the dots are dots. 3815 * There are 94 such characters, and the name length goes from 3816 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 3817 */ 3818 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 3819 3820 for (i = 0; i < 3; i++) 3821 name[i] = '!' + ztest_random('~' - '!' + 1); 3822 for (; i < namelen - 1; i++) 3823 name[i] = '.'; 3824 name[i] = '\0'; 3825 3826 if ((namelen & 1) || micro) { 3827 wsize = sizeof (txg); 3828 wc = 1; 3829 data = &txg; 3830 } else { 3831 wsize = 1; 3832 wc = namelen; 3833 data = string_value; 3834 } 3835 3836 count = -1ULL; 3837 VERIFY(zap_count(os, object, &count) == 0); 3838 ASSERT(count != -1ULL); 3839 3840 /* 3841 * Select an operation: length, lookup, add, update, remove. 3842 */ 3843 i = ztest_random(5); 3844 3845 if (i >= 2) { 3846 tx = dmu_tx_create(os); 3847 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 3848 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3849 if (txg == 0) 3850 return; 3851 bcopy(name, string_value, namelen); 3852 } else { 3853 tx = NULL; 3854 txg = 0; 3855 bzero(string_value, namelen); 3856 } 3857 3858 switch (i) { 3859 3860 case 0: 3861 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 3862 if (error == 0) { 3863 ASSERT3U(wsize, ==, zl_wsize); 3864 ASSERT3U(wc, ==, zl_wc); 3865 } else { 3866 ASSERT3U(error, ==, ENOENT); 3867 } 3868 break; 3869 3870 case 1: 3871 error = zap_lookup(os, object, name, wsize, wc, data); 3872 if (error == 0) { 3873 if (data == string_value && 3874 bcmp(name, data, namelen) != 0) 3875 fatal(0, "name '%s' != val '%s' len %d", 3876 name, data, namelen); 3877 } else { 3878 ASSERT3U(error, ==, ENOENT); 3879 } 3880 break; 3881 3882 case 2: 3883 error = zap_add(os, object, name, wsize, wc, data, tx); 3884 ASSERT(error == 0 || error == EEXIST); 3885 break; 3886 3887 case 3: 3888 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 3889 break; 3890 3891 case 4: 3892 error = zap_remove(os, object, name, tx); 3893 ASSERT(error == 0 || error == ENOENT); 3894 break; 3895 } 3896 3897 if (tx != NULL) 3898 dmu_tx_commit(tx); 3899 } 3900 3901 /* 3902 * Commit callback data. 3903 */ 3904 typedef struct ztest_cb_data { 3905 list_node_t zcd_node; 3906 uint64_t zcd_txg; 3907 int zcd_expected_err; 3908 boolean_t zcd_added; 3909 boolean_t zcd_called; 3910 spa_t *zcd_spa; 3911 } ztest_cb_data_t; 3912 3913 /* This is the actual commit callback function */ 3914 static void 3915 ztest_commit_callback(void *arg, int error) 3916 { 3917 ztest_cb_data_t *data = arg; 3918 uint64_t synced_txg; 3919 3920 VERIFY(data != NULL); 3921 VERIFY3S(data->zcd_expected_err, ==, error); 3922 VERIFY(!data->zcd_called); 3923 3924 synced_txg = spa_last_synced_txg(data->zcd_spa); 3925 if (data->zcd_txg > synced_txg) 3926 fatal(0, "commit callback of txg %" PRIu64 " called prematurely" 3927 ", last synced txg = %" PRIu64 "\n", data->zcd_txg, 3928 synced_txg); 3929 3930 data->zcd_called = B_TRUE; 3931 3932 if (error == ECANCELED) { 3933 ASSERT3U(data->zcd_txg, ==, 0); 3934 ASSERT(!data->zcd_added); 3935 3936 /* 3937 * The private callback data should be destroyed here, but 3938 * since we are going to check the zcd_called field after 3939 * dmu_tx_abort(), we will destroy it there. 3940 */ 3941 return; 3942 } 3943 3944 /* Was this callback added to the global callback list? */ 3945 if (!data->zcd_added) 3946 goto out; 3947 3948 ASSERT3U(data->zcd_txg, !=, 0); 3949 3950 /* Remove our callback from the list */ 3951 (void) mutex_lock(&zcl.zcl_callbacks_lock); 3952 list_remove(&zcl.zcl_callbacks, data); 3953 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 3954 3955 out: 3956 umem_free(data, sizeof (ztest_cb_data_t)); 3957 } 3958 3959 /* Allocate and initialize callback data structure */ 3960 static ztest_cb_data_t * 3961 ztest_create_cb_data(objset_t *os, uint64_t txg) 3962 { 3963 ztest_cb_data_t *cb_data; 3964 3965 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); 3966 3967 cb_data->zcd_txg = txg; 3968 cb_data->zcd_spa = dmu_objset_spa(os); 3969 3970 return (cb_data); 3971 } 3972 3973 /* 3974 * If a number of txgs equal to this threshold have been created after a commit 3975 * callback has been registered but not called, then we assume there is an 3976 * implementation bug. 3977 */ 3978 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) 3979 3980 /* 3981 * Commit callback test. 3982 */ 3983 void 3984 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) 3985 { 3986 objset_t *os = zd->zd_os; 3987 ztest_od_t od[1]; 3988 dmu_tx_t *tx; 3989 ztest_cb_data_t *cb_data[3], *tmp_cb; 3990 uint64_t old_txg, txg; 3991 int i, error; 3992 3993 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 3994 3995 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3996 return; 3997 3998 tx = dmu_tx_create(os); 3999 4000 cb_data[0] = ztest_create_cb_data(os, 0); 4001 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); 4002 4003 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t)); 4004 4005 /* Every once in a while, abort the transaction on purpose */ 4006 if (ztest_random(100) == 0) 4007 error = -1; 4008 4009 if (!error) 4010 error = dmu_tx_assign(tx, TXG_NOWAIT); 4011 4012 txg = error ? 0 : dmu_tx_get_txg(tx); 4013 4014 cb_data[0]->zcd_txg = txg; 4015 cb_data[1] = ztest_create_cb_data(os, txg); 4016 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); 4017 4018 if (error) { 4019 /* 4020 * It's not a strict requirement to call the registered 4021 * callbacks from inside dmu_tx_abort(), but that's what 4022 * it's supposed to happen in the current implementation 4023 * so we will check for that. 4024 */ 4025 for (i = 0; i < 2; i++) { 4026 cb_data[i]->zcd_expected_err = ECANCELED; 4027 VERIFY(!cb_data[i]->zcd_called); 4028 } 4029 4030 dmu_tx_abort(tx); 4031 4032 for (i = 0; i < 2; i++) { 4033 VERIFY(cb_data[i]->zcd_called); 4034 umem_free(cb_data[i], sizeof (ztest_cb_data_t)); 4035 } 4036 4037 return; 4038 } 4039 4040 cb_data[2] = ztest_create_cb_data(os, txg); 4041 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); 4042 4043 /* 4044 * Read existing data to make sure there isn't a future leak. 4045 */ 4046 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t), 4047 &old_txg, DMU_READ_PREFETCH)); 4048 4049 if (old_txg > txg) 4050 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, 4051 old_txg, txg); 4052 4053 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx); 4054 4055 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4056 4057 /* 4058 * Since commit callbacks don't have any ordering requirement and since 4059 * it is theoretically possible for a commit callback to be called 4060 * after an arbitrary amount of time has elapsed since its txg has been 4061 * synced, it is difficult to reliably determine whether a commit 4062 * callback hasn't been called due to high load or due to a flawed 4063 * implementation. 4064 * 4065 * In practice, we will assume that if after a certain number of txgs a 4066 * commit callback hasn't been called, then most likely there's an 4067 * implementation bug.. 4068 */ 4069 tmp_cb = list_head(&zcl.zcl_callbacks); 4070 if (tmp_cb != NULL && 4071 tmp_cb->zcd_txg > txg - ZTEST_COMMIT_CALLBACK_THRESH) { 4072 fatal(0, "Commit callback threshold exceeded, oldest txg: %" 4073 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); 4074 } 4075 4076 /* 4077 * Let's find the place to insert our callbacks. 4078 * 4079 * Even though the list is ordered by txg, it is possible for the 4080 * insertion point to not be the end because our txg may already be 4081 * quiescing at this point and other callbacks in the open txg 4082 * (from other objsets) may have sneaked in. 4083 */ 4084 tmp_cb = list_tail(&zcl.zcl_callbacks); 4085 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) 4086 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); 4087 4088 /* Add the 3 callbacks to the list */ 4089 for (i = 0; i < 3; i++) { 4090 if (tmp_cb == NULL) 4091 list_insert_head(&zcl.zcl_callbacks, cb_data[i]); 4092 else 4093 list_insert_after(&zcl.zcl_callbacks, tmp_cb, 4094 cb_data[i]); 4095 4096 cb_data[i]->zcd_added = B_TRUE; 4097 VERIFY(!cb_data[i]->zcd_called); 4098 4099 tmp_cb = cb_data[i]; 4100 } 4101 4102 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4103 4104 dmu_tx_commit(tx); 4105 } 4106 4107 /* ARGSUSED */ 4108 void 4109 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) 4110 { 4111 zfs_prop_t proplist[] = { 4112 ZFS_PROP_CHECKSUM, 4113 ZFS_PROP_COMPRESSION, 4114 ZFS_PROP_COPIES, 4115 ZFS_PROP_DEDUP 4116 }; 4117 ztest_shared_t *zs = ztest_shared; 4118 4119 (void) rw_rdlock(&zs->zs_name_lock); 4120 4121 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) 4122 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], 4123 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); 4124 4125 (void) rw_unlock(&zs->zs_name_lock); 4126 } 4127 4128 /* ARGSUSED */ 4129 void 4130 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) 4131 { 4132 ztest_shared_t *zs = ztest_shared; 4133 nvlist_t *props = NULL; 4134 4135 (void) rw_rdlock(&zs->zs_name_lock); 4136 4137 #if 0 4138 (void) ztest_spa_prop_set_uint64(zs, ZPOOL_PROP_DEDUPDITTO, 4139 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN)); 4140 #endif 4141 4142 VERIFY3U(spa_prop_get(zs->zs_spa, &props), ==, 0); 4143 4144 if (zopt_verbose >= 6) 4145 dump_nvlist(props, 4); 4146 4147 nvlist_free(props); 4148 4149 (void) rw_unlock(&zs->zs_name_lock); 4150 } 4151 4152 /* 4153 * Test snapshot hold/release and deferred destroy. 4154 */ 4155 void 4156 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) 4157 { 4158 int error; 4159 objset_t *os = zd->zd_os; 4160 objset_t *origin; 4161 char snapname[100]; 4162 char fullname[100]; 4163 char clonename[100]; 4164 char tag[100]; 4165 char osname[MAXNAMELEN]; 4166 4167 (void) rw_rdlock(&ztest_shared->zs_name_lock); 4168 4169 dmu_objset_name(os, osname); 4170 4171 (void) snprintf(snapname, 100, "sh1_%llu", id); 4172 (void) snprintf(fullname, 100, "%s@%s", osname, snapname); 4173 (void) snprintf(clonename, 100, "%s/ch1_%llu", osname, id); 4174 (void) snprintf(tag, 100, "%tag_%llu", id); 4175 4176 /* 4177 * Clean up from any previous run. 4178 */ 4179 (void) dmu_objset_destroy(clonename, B_FALSE); 4180 (void) dsl_dataset_user_release(osname, snapname, tag, B_FALSE); 4181 (void) dmu_objset_destroy(fullname, B_FALSE); 4182 4183 /* 4184 * Create snapshot, clone it, mark snap for deferred destroy, 4185 * destroy clone, verify snap was also destroyed. 4186 */ 4187 error = dmu_objset_snapshot(osname, snapname, NULL, FALSE); 4188 if (error) { 4189 if (error == ENOSPC) { 4190 ztest_record_enospc("dmu_objset_snapshot"); 4191 goto out; 4192 } 4193 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4194 } 4195 4196 error = dmu_objset_hold(fullname, FTAG, &origin); 4197 if (error) 4198 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4199 4200 error = dmu_objset_clone(clonename, dmu_objset_ds(origin), 0); 4201 dmu_objset_rele(origin, FTAG); 4202 if (error) { 4203 if (error == ENOSPC) { 4204 ztest_record_enospc("dmu_objset_clone"); 4205 goto out; 4206 } 4207 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); 4208 } 4209 4210 error = dmu_objset_destroy(fullname, B_TRUE); 4211 if (error) { 4212 fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d", 4213 fullname, error); 4214 } 4215 4216 error = dmu_objset_destroy(clonename, B_FALSE); 4217 if (error) 4218 fatal(0, "dmu_objset_destroy(%s) = %d", clonename, error); 4219 4220 error = dmu_objset_hold(fullname, FTAG, &origin); 4221 if (error != ENOENT) 4222 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4223 4224 /* 4225 * Create snapshot, add temporary hold, verify that we can't 4226 * destroy a held snapshot, mark for deferred destroy, 4227 * release hold, verify snapshot was destroyed. 4228 */ 4229 error = dmu_objset_snapshot(osname, snapname, NULL, FALSE); 4230 if (error) { 4231 if (error == ENOSPC) { 4232 ztest_record_enospc("dmu_objset_snapshot"); 4233 goto out; 4234 } 4235 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4236 } 4237 4238 error = dsl_dataset_user_hold(osname, snapname, tag, B_FALSE, B_TRUE); 4239 if (error) 4240 fatal(0, "dsl_dataset_user_hold(%s)", fullname, tag); 4241 4242 error = dmu_objset_destroy(fullname, B_FALSE); 4243 if (error != EBUSY) { 4244 fatal(0, "dmu_objset_destroy(%s, B_FALSE) = %d", 4245 fullname, error); 4246 } 4247 4248 error = dmu_objset_destroy(fullname, B_TRUE); 4249 if (error) { 4250 fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d", 4251 fullname, error); 4252 } 4253 4254 error = dsl_dataset_user_release(osname, snapname, tag, B_FALSE); 4255 if (error) 4256 fatal(0, "dsl_dataset_user_release(%s)", fullname, tag); 4257 4258 VERIFY(dmu_objset_hold(fullname, FTAG, &origin) == ENOENT); 4259 4260 out: 4261 (void) rw_unlock(&ztest_shared->zs_name_lock); 4262 } 4263 4264 /* 4265 * Inject random faults into the on-disk data. 4266 */ 4267 /* ARGSUSED */ 4268 void 4269 ztest_fault_inject(ztest_ds_t *zd, uint64_t id) 4270 { 4271 ztest_shared_t *zs = ztest_shared; 4272 spa_t *spa = zs->zs_spa; 4273 int fd; 4274 uint64_t offset; 4275 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 4276 uint64_t bad = 0x1990c0ffeedecade; 4277 uint64_t top, leaf; 4278 char path0[MAXPATHLEN]; 4279 char pathrand[MAXPATHLEN]; 4280 size_t fsize; 4281 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ 4282 int iters = 1000; 4283 int maxfaults = zopt_maxfaults; 4284 vdev_t *vd0 = NULL; 4285 uint64_t guid0 = 0; 4286 boolean_t islog = B_FALSE; 4287 4288 ASSERT(leaves >= 1); 4289 4290 /* 4291 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 4292 */ 4293 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4294 4295 if (ztest_random(2) == 0) { 4296 /* 4297 * Inject errors on a normal data device or slog device. 4298 */ 4299 top = ztest_random_vdev_top(spa, B_TRUE); 4300 leaf = ztest_random(leaves); 4301 4302 /* 4303 * Generate paths to the first leaf in this top-level vdev, 4304 * and to the random leaf we selected. We'll induce transient 4305 * write failures and random online/offline activity on leaf 0, 4306 * and we'll write random garbage to the randomly chosen leaf. 4307 */ 4308 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 4309 zopt_dir, zopt_pool, top * leaves + 0); 4310 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 4311 zopt_dir, zopt_pool, top * leaves + leaf); 4312 4313 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 4314 if (vd0 != NULL && vd0->vdev_top->vdev_islog) 4315 islog = B_TRUE; 4316 4317 if (vd0 != NULL && maxfaults != 1) { 4318 /* 4319 * Make vd0 explicitly claim to be unreadable, 4320 * or unwriteable, or reach behind its back 4321 * and close the underlying fd. We can do this if 4322 * maxfaults == 0 because we'll fail and reexecute, 4323 * and we can do it if maxfaults >= 2 because we'll 4324 * have enough redundancy. If maxfaults == 1, the 4325 * combination of this with injection of random data 4326 * corruption below exceeds the pool's fault tolerance. 4327 */ 4328 vdev_file_t *vf = vd0->vdev_tsd; 4329 4330 if (vf != NULL && ztest_random(3) == 0) { 4331 (void) close(vf->vf_vnode->v_fd); 4332 vf->vf_vnode->v_fd = -1; 4333 } else if (ztest_random(2) == 0) { 4334 vd0->vdev_cant_read = B_TRUE; 4335 } else { 4336 vd0->vdev_cant_write = B_TRUE; 4337 } 4338 guid0 = vd0->vdev_guid; 4339 } 4340 } else { 4341 /* 4342 * Inject errors on an l2cache device. 4343 */ 4344 spa_aux_vdev_t *sav = &spa->spa_l2cache; 4345 4346 if (sav->sav_count == 0) { 4347 spa_config_exit(spa, SCL_STATE, FTAG); 4348 return; 4349 } 4350 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 4351 guid0 = vd0->vdev_guid; 4352 (void) strcpy(path0, vd0->vdev_path); 4353 (void) strcpy(pathrand, vd0->vdev_path); 4354 4355 leaf = 0; 4356 leaves = 1; 4357 maxfaults = INT_MAX; /* no limit on cache devices */ 4358 } 4359 4360 spa_config_exit(spa, SCL_STATE, FTAG); 4361 4362 /* 4363 * If we can tolerate two or more faults, or we're dealing 4364 * with a slog, randomly online/offline vd0. 4365 */ 4366 if ((maxfaults >= 2 || islog) && guid0 != 0) { 4367 if (ztest_random(10) < 6) { 4368 int flags = (ztest_random(2) == 0 ? 4369 ZFS_OFFLINE_TEMPORARY : 0); 4370 4371 /* 4372 * We have to grab the zs_name_lock as writer to 4373 * prevent a race between offlining a slog and 4374 * destroying a dataset. Offlining the slog will 4375 * grab a reference on the dataset which may cause 4376 * dmu_objset_destroy() to fail with EBUSY thus 4377 * leaving the dataset in an inconsistent state. 4378 */ 4379 if (islog) 4380 (void) rw_wrlock(&ztest_shared->zs_name_lock); 4381 4382 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 4383 4384 if (islog) 4385 (void) rw_unlock(&ztest_shared->zs_name_lock); 4386 } else { 4387 (void) vdev_online(spa, guid0, 0, NULL); 4388 } 4389 } 4390 4391 if (maxfaults == 0) 4392 return; 4393 4394 /* 4395 * We have at least single-fault tolerance, so inject data corruption. 4396 */ 4397 fd = open(pathrand, O_RDWR); 4398 4399 if (fd == -1) /* we hit a gap in the device namespace */ 4400 return; 4401 4402 fsize = lseek(fd, 0, SEEK_END); 4403 4404 while (--iters != 0) { 4405 offset = ztest_random(fsize / (leaves << bshift)) * 4406 (leaves << bshift) + (leaf << bshift) + 4407 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 4408 4409 if (offset >= fsize) 4410 continue; 4411 4412 if (zopt_verbose >= 7) 4413 (void) printf("injecting bad word into %s," 4414 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 4415 4416 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 4417 fatal(1, "can't inject bad word at 0x%llx in %s", 4418 offset, pathrand); 4419 } 4420 4421 (void) close(fd); 4422 } 4423 4424 /* 4425 * Verify that DDT repair works as expected. 4426 */ 4427 void 4428 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id) 4429 { 4430 ztest_shared_t *zs = ztest_shared; 4431 spa_t *spa = zs->zs_spa; 4432 objset_t *os = zd->zd_os; 4433 ztest_od_t od[1]; 4434 uint64_t object, blocksize, txg, pattern, psize; 4435 enum zio_checksum checksum = spa_dedup_checksum(spa); 4436 dmu_buf_t *db; 4437 dmu_tx_t *tx; 4438 void *buf; 4439 blkptr_t blk; 4440 int copies = 2 * ZIO_DEDUPDITTO_MIN; 4441 4442 blocksize = ztest_random_blocksize(); 4443 blocksize = MIN(blocksize, 2048); /* because we write so many */ 4444 4445 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4446 4447 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4448 return; 4449 4450 /* 4451 * Take the name lock as writer to prevent anyone else from changing 4452 * the pool and dataset properies we need to maintain during this test. 4453 */ 4454 (void) rw_wrlock(&zs->zs_name_lock); 4455 4456 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum, 4457 B_FALSE) != 0 || 4458 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1, 4459 B_FALSE) != 0) { 4460 (void) rw_unlock(&zs->zs_name_lock); 4461 return; 4462 } 4463 4464 object = od[0].od_object; 4465 blocksize = od[0].od_blocksize; 4466 pattern = spa_guid(spa) ^ dmu_objset_fsid_guid(os); 4467 4468 ASSERT(object != 0); 4469 4470 tx = dmu_tx_create(os); 4471 dmu_tx_hold_write(tx, object, 0, copies * blocksize); 4472 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 4473 if (txg == 0) { 4474 (void) rw_unlock(&zs->zs_name_lock); 4475 return; 4476 } 4477 4478 /* 4479 * Write all the copies of our block. 4480 */ 4481 for (int i = 0; i < copies; i++) { 4482 uint64_t offset = i * blocksize; 4483 VERIFY(dmu_buf_hold(os, object, offset, FTAG, &db) == 0); 4484 ASSERT(db->db_offset == offset); 4485 ASSERT(db->db_size == blocksize); 4486 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) || 4487 ztest_pattern_match(db->db_data, db->db_size, 0ULL)); 4488 dmu_buf_will_fill(db, tx); 4489 ztest_pattern_set(db->db_data, db->db_size, pattern); 4490 dmu_buf_rele(db, FTAG); 4491 } 4492 4493 dmu_tx_commit(tx); 4494 txg_wait_synced(spa_get_dsl(spa), txg); 4495 4496 /* 4497 * Find out what block we got. 4498 */ 4499 VERIFY(dmu_buf_hold(os, object, 0, FTAG, &db) == 0); 4500 blk = *((dmu_buf_impl_t *)db)->db_blkptr; 4501 dmu_buf_rele(db, FTAG); 4502 4503 /* 4504 * Damage the block. Dedup-ditto will save us when we read it later. 4505 */ 4506 psize = BP_GET_PSIZE(&blk); 4507 buf = zio_buf_alloc(psize); 4508 ztest_pattern_set(buf, psize, ~pattern); 4509 4510 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk, 4511 buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, 4512 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL)); 4513 4514 zio_buf_free(buf, psize); 4515 4516 (void) rw_unlock(&zs->zs_name_lock); 4517 } 4518 4519 /* 4520 * Scrub the pool. 4521 */ 4522 /* ARGSUSED */ 4523 void 4524 ztest_scrub(ztest_ds_t *zd, uint64_t id) 4525 { 4526 ztest_shared_t *zs = ztest_shared; 4527 spa_t *spa = zs->zs_spa; 4528 4529 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 4530 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */ 4531 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 4532 } 4533 4534 /* 4535 * Rename the pool to a different name and then rename it back. 4536 */ 4537 /* ARGSUSED */ 4538 void 4539 ztest_spa_rename(ztest_ds_t *zd, uint64_t id) 4540 { 4541 ztest_shared_t *zs = ztest_shared; 4542 char *oldname, *newname; 4543 spa_t *spa; 4544 4545 (void) rw_wrlock(&zs->zs_name_lock); 4546 4547 oldname = zs->zs_pool; 4548 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 4549 (void) strcpy(newname, oldname); 4550 (void) strcat(newname, "_tmp"); 4551 4552 /* 4553 * Do the rename 4554 */ 4555 VERIFY3U(0, ==, spa_rename(oldname, newname)); 4556 4557 /* 4558 * Try to open it under the old name, which shouldn't exist 4559 */ 4560 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 4561 4562 /* 4563 * Open it under the new name and make sure it's still the same spa_t. 4564 */ 4565 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 4566 4567 ASSERT(spa == zs->zs_spa); 4568 spa_close(spa, FTAG); 4569 4570 /* 4571 * Rename it back to the original 4572 */ 4573 VERIFY3U(0, ==, spa_rename(newname, oldname)); 4574 4575 /* 4576 * Make sure it can still be opened 4577 */ 4578 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 4579 4580 ASSERT(spa == zs->zs_spa); 4581 spa_close(spa, FTAG); 4582 4583 umem_free(newname, strlen(newname) + 1); 4584 4585 (void) rw_unlock(&zs->zs_name_lock); 4586 } 4587 4588 /* 4589 * Verify pool integrity by running zdb. 4590 */ 4591 static void 4592 ztest_run_zdb(char *pool) 4593 { 4594 int status; 4595 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 4596 char zbuf[1024]; 4597 char *bin; 4598 char *ztest; 4599 char *isa; 4600 int isalen; 4601 FILE *fp; 4602 4603 (void) realpath(getexecname(), zdb); 4604 4605 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 4606 bin = strstr(zdb, "/usr/bin/"); 4607 ztest = strstr(bin, "/ztest"); 4608 isa = bin + 8; 4609 isalen = ztest - isa; 4610 isa = strdup(isa); 4611 /* LINTED */ 4612 (void) sprintf(bin, 4613 "/usr/sbin%.*s/zdb -bcc%s%s -U /tmp/zpool.cache %s", 4614 isalen, 4615 isa, 4616 zopt_verbose >= 3 ? "s" : "", 4617 zopt_verbose >= 4 ? "v" : "", 4618 pool); 4619 free(isa); 4620 4621 if (zopt_verbose >= 5) 4622 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 4623 4624 fp = popen(zdb, "r"); 4625 4626 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 4627 if (zopt_verbose >= 3) 4628 (void) printf("%s", zbuf); 4629 4630 status = pclose(fp); 4631 4632 if (status == 0) 4633 return; 4634 4635 ztest_dump_core = 0; 4636 if (WIFEXITED(status)) 4637 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 4638 else 4639 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 4640 } 4641 4642 static void 4643 ztest_walk_pool_directory(char *header) 4644 { 4645 spa_t *spa = NULL; 4646 4647 if (zopt_verbose >= 6) 4648 (void) printf("%s\n", header); 4649 4650 mutex_enter(&spa_namespace_lock); 4651 while ((spa = spa_next(spa)) != NULL) 4652 if (zopt_verbose >= 6) 4653 (void) printf("\t%s\n", spa_name(spa)); 4654 mutex_exit(&spa_namespace_lock); 4655 } 4656 4657 static void 4658 ztest_spa_import_export(char *oldname, char *newname) 4659 { 4660 nvlist_t *config, *newconfig; 4661 uint64_t pool_guid; 4662 spa_t *spa; 4663 4664 if (zopt_verbose >= 4) { 4665 (void) printf("import/export: old = %s, new = %s\n", 4666 oldname, newname); 4667 } 4668 4669 /* 4670 * Clean up from previous runs. 4671 */ 4672 (void) spa_destroy(newname); 4673 4674 /* 4675 * Get the pool's configuration and guid. 4676 */ 4677 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 4678 4679 /* 4680 * Kick off a scrub to tickle scrub/export races. 4681 */ 4682 if (ztest_random(2) == 0) 4683 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 4684 4685 pool_guid = spa_guid(spa); 4686 spa_close(spa, FTAG); 4687 4688 ztest_walk_pool_directory("pools before export"); 4689 4690 /* 4691 * Export it. 4692 */ 4693 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE)); 4694 4695 ztest_walk_pool_directory("pools after export"); 4696 4697 /* 4698 * Try to import it. 4699 */ 4700 newconfig = spa_tryimport(config); 4701 ASSERT(newconfig != NULL); 4702 nvlist_free(newconfig); 4703 4704 /* 4705 * Import it under the new name. 4706 */ 4707 VERIFY3U(0, ==, spa_import(newname, config, NULL)); 4708 4709 ztest_walk_pool_directory("pools after import"); 4710 4711 /* 4712 * Try to import it again -- should fail with EEXIST. 4713 */ 4714 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL)); 4715 4716 /* 4717 * Try to import it under a different name -- should fail with EEXIST. 4718 */ 4719 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL)); 4720 4721 /* 4722 * Verify that the pool is no longer visible under the old name. 4723 */ 4724 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 4725 4726 /* 4727 * Verify that we can open and close the pool using the new name. 4728 */ 4729 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 4730 ASSERT(pool_guid == spa_guid(spa)); 4731 spa_close(spa, FTAG); 4732 4733 nvlist_free(config); 4734 } 4735 4736 static void 4737 ztest_resume(spa_t *spa) 4738 { 4739 if (spa_suspended(spa) && zopt_verbose >= 6) 4740 (void) printf("resuming from suspended state\n"); 4741 spa_vdev_state_enter(spa, SCL_NONE); 4742 vdev_clear(spa, NULL); 4743 (void) spa_vdev_state_exit(spa, NULL, 0); 4744 (void) zio_resume(spa); 4745 } 4746 4747 static void * 4748 ztest_resume_thread(void *arg) 4749 { 4750 spa_t *spa = arg; 4751 4752 while (!ztest_exiting) { 4753 if (spa_suspended(spa)) 4754 ztest_resume(spa); 4755 (void) poll(NULL, 0, 100); 4756 } 4757 return (NULL); 4758 } 4759 4760 static void * 4761 ztest_deadman_thread(void *arg) 4762 { 4763 ztest_shared_t *zs = arg; 4764 int grace = 300; 4765 hrtime_t delta; 4766 4767 delta = (zs->zs_thread_stop - zs->zs_thread_start) / NANOSEC + grace; 4768 4769 (void) poll(NULL, 0, (int)(1000 * delta)); 4770 4771 fatal(0, "failed to complete within %d seconds of deadline", grace); 4772 4773 return (NULL); 4774 } 4775 4776 static void 4777 ztest_execute(ztest_info_t *zi, uint64_t id) 4778 { 4779 ztest_shared_t *zs = ztest_shared; 4780 ztest_ds_t *zd = &zs->zs_zd[id % zopt_datasets]; 4781 hrtime_t functime = gethrtime(); 4782 4783 for (int i = 0; i < zi->zi_iters; i++) 4784 zi->zi_func(zd, id); 4785 4786 functime = gethrtime() - functime; 4787 4788 atomic_add_64(&zi->zi_call_count, 1); 4789 atomic_add_64(&zi->zi_call_time, functime); 4790 4791 if (zopt_verbose >= 4) { 4792 Dl_info dli; 4793 (void) dladdr((void *)zi->zi_func, &dli); 4794 (void) printf("%6.2f sec in %s\n", 4795 (double)functime / NANOSEC, dli.dli_sname); 4796 } 4797 } 4798 4799 static void * 4800 ztest_thread(void *arg) 4801 { 4802 uint64_t id = (uintptr_t)arg; 4803 ztest_shared_t *zs = ztest_shared; 4804 uint64_t call_next; 4805 hrtime_t now; 4806 ztest_info_t *zi; 4807 4808 while ((now = gethrtime()) < zs->zs_thread_stop) { 4809 /* 4810 * See if it's time to force a crash. 4811 */ 4812 if (now > zs->zs_thread_kill) 4813 ztest_kill(zs); 4814 4815 /* 4816 * If we're getting ENOSPC with some regularity, stop. 4817 */ 4818 if (zs->zs_enospc_count > 10) 4819 break; 4820 4821 /* 4822 * Pick a random function to execute. 4823 */ 4824 zi = &zs->zs_info[ztest_random(ZTEST_FUNCS)]; 4825 call_next = zi->zi_call_next; 4826 4827 if (now >= call_next && 4828 atomic_cas_64(&zi->zi_call_next, call_next, call_next + 4829 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) 4830 ztest_execute(zi, id); 4831 } 4832 4833 return (NULL); 4834 } 4835 4836 static void 4837 ztest_dataset_name(char *dsname, char *pool, int d) 4838 { 4839 (void) snprintf(dsname, MAXNAMELEN, "%s/ds_%d", pool, d); 4840 } 4841 4842 static void 4843 ztest_dataset_destroy(ztest_shared_t *zs, int d) 4844 { 4845 char name[MAXNAMELEN]; 4846 4847 ztest_dataset_name(name, zs->zs_pool, d); 4848 4849 if (zopt_verbose >= 3) 4850 (void) printf("Destroying %s to free up space\n", name); 4851 4852 /* 4853 * Cleanup any non-standard clones and snapshots. In general, 4854 * ztest thread t operates on dataset (t % zopt_datasets), 4855 * so there may be more than one thing to clean up. 4856 */ 4857 for (int t = d; t < zopt_threads; t += zopt_datasets) 4858 ztest_dsl_dataset_cleanup(name, t); 4859 4860 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 4861 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 4862 } 4863 4864 static void 4865 ztest_dataset_dirobj_verify(ztest_ds_t *zd) 4866 { 4867 uint64_t usedobjs, dirobjs, scratch; 4868 4869 /* 4870 * ZTEST_DIROBJ is the object directory for the entire dataset. 4871 * Therefore, the number of objects in use should equal the 4872 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. 4873 * If not, we have an object leak. 4874 * 4875 * Note that we can only check this in ztest_dataset_open(), 4876 * when the open-context and syncing-context values agree. 4877 * That's because zap_count() returns the open-context value, 4878 * while dmu_objset_space() returns the rootbp fill count. 4879 */ 4880 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); 4881 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); 4882 ASSERT3U(dirobjs + 1, ==, usedobjs); 4883 } 4884 4885 static int 4886 ztest_dataset_open(ztest_shared_t *zs, int d) 4887 { 4888 ztest_ds_t *zd = &zs->zs_zd[d]; 4889 uint64_t committed_seq = zd->zd_seq; 4890 objset_t *os; 4891 zilog_t *zilog; 4892 char name[MAXNAMELEN]; 4893 int error; 4894 4895 ztest_dataset_name(name, zs->zs_pool, d); 4896 4897 (void) rw_rdlock(&zs->zs_name_lock); 4898 4899 error = dmu_objset_create(name, DMU_OST_OTHER, 0, 4900 ztest_objset_create_cb, NULL); 4901 if (error == ENOSPC) { 4902 (void) rw_unlock(&zs->zs_name_lock); 4903 ztest_record_enospc(FTAG); 4904 return (error); 4905 } 4906 ASSERT(error == 0 || error == EEXIST); 4907 4908 VERIFY3U(dmu_objset_hold(name, zd, &os), ==, 0); 4909 (void) rw_unlock(&zs->zs_name_lock); 4910 4911 ztest_zd_init(zd, os); 4912 4913 zilog = zd->zd_zilog; 4914 4915 if (zilog->zl_header->zh_claim_lr_seq != 0 && 4916 zilog->zl_header->zh_claim_lr_seq < committed_seq) 4917 fatal(0, "missing log records: claimed %llu < committed %llu", 4918 zilog->zl_header->zh_claim_lr_seq, committed_seq); 4919 4920 ztest_dataset_dirobj_verify(zd); 4921 4922 zil_replay(os, zd, ztest_replay_vector); 4923 4924 ztest_dataset_dirobj_verify(zd); 4925 4926 if (zopt_verbose >= 6) 4927 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n", 4928 zd->zd_name, 4929 (u_longlong_t)zilog->zl_parse_blk_count, 4930 (u_longlong_t)zilog->zl_parse_lr_count, 4931 (u_longlong_t)zilog->zl_replaying_seq); 4932 4933 zilog = zil_open(os, ztest_get_data); 4934 4935 if (zilog->zl_replaying_seq != 0 && 4936 zilog->zl_replaying_seq < committed_seq) 4937 fatal(0, "missing log records: replayed %llu < committed %llu", 4938 zilog->zl_replaying_seq, committed_seq); 4939 4940 return (0); 4941 } 4942 4943 static void 4944 ztest_dataset_close(ztest_shared_t *zs, int d) 4945 { 4946 ztest_ds_t *zd = &zs->zs_zd[d]; 4947 4948 zil_close(zd->zd_zilog); 4949 dmu_objset_rele(zd->zd_os, zd); 4950 4951 ztest_zd_fini(zd); 4952 } 4953 4954 /* 4955 * Kick off threads to run tests on all datasets in parallel. 4956 */ 4957 static void 4958 ztest_run(ztest_shared_t *zs) 4959 { 4960 thread_t *tid; 4961 spa_t *spa; 4962 thread_t resume_tid; 4963 int error; 4964 4965 ztest_exiting = B_FALSE; 4966 4967 /* 4968 * Initialize parent/child shared state. 4969 */ 4970 VERIFY(_mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL) == 0); 4971 VERIFY(rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL) == 0); 4972 4973 zs->zs_thread_start = gethrtime(); 4974 zs->zs_thread_stop = zs->zs_thread_start + zopt_passtime * NANOSEC; 4975 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); 4976 zs->zs_thread_kill = zs->zs_thread_stop; 4977 if (ztest_random(100) < zopt_killrate) 4978 zs->zs_thread_kill -= ztest_random(zopt_passtime * NANOSEC); 4979 4980 (void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL); 4981 4982 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), 4983 offsetof(ztest_cb_data_t, zcd_node)); 4984 4985 /* 4986 * Open our pool. 4987 */ 4988 kernel_init(FREAD | FWRITE); 4989 VERIFY(spa_open(zs->zs_pool, &spa, FTAG) == 0); 4990 zs->zs_spa = spa; 4991 4992 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN; 4993 4994 /* 4995 * We don't expect the pool to suspend unless maxfaults == 0, 4996 * in which case ztest_fault_inject() temporarily takes away 4997 * the only valid replica. 4998 */ 4999 if (zopt_maxfaults == 0) 5000 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 5001 else 5002 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 5003 5004 /* 5005 * Create a thread to periodically resume suspended I/O. 5006 */ 5007 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, 5008 &resume_tid) == 0); 5009 5010 /* 5011 * Create a deadman thread to abort() if we hang. 5012 */ 5013 VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND, 5014 NULL) == 0); 5015 5016 /* 5017 * Verify that we can safely inquire about about any object, 5018 * whether it's allocated or not. To make it interesting, 5019 * we probe a 5-wide window around each power of two. 5020 * This hits all edge cases, including zero and the max. 5021 */ 5022 for (int t = 0; t < 64; t++) { 5023 for (int d = -5; d <= 5; d++) { 5024 error = dmu_object_info(spa->spa_meta_objset, 5025 (1ULL << t) + d, NULL); 5026 ASSERT(error == 0 || error == ENOENT || 5027 error == EINVAL); 5028 } 5029 } 5030 5031 /* 5032 * If we got any ENOSPC errors on the previous run, destroy something. 5033 */ 5034 if (zs->zs_enospc_count != 0) { 5035 int d = ztest_random(zopt_datasets); 5036 ztest_dataset_destroy(zs, d); 5037 } 5038 zs->zs_enospc_count = 0; 5039 5040 tid = umem_zalloc(zopt_threads * sizeof (thread_t), UMEM_NOFAIL); 5041 5042 if (zopt_verbose >= 4) 5043 (void) printf("starting main threads...\n"); 5044 5045 /* 5046 * Kick off all the tests that run in parallel. 5047 */ 5048 for (int t = 0; t < zopt_threads; t++) { 5049 if (t < zopt_datasets && ztest_dataset_open(zs, t) != 0) 5050 return; 5051 VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t, 5052 THR_BOUND, &tid[t]) == 0); 5053 } 5054 5055 /* 5056 * Wait for all of the tests to complete. We go in reverse order 5057 * so we don't close datasets while threads are still using them. 5058 */ 5059 for (int t = zopt_threads - 1; t >= 0; t--) { 5060 VERIFY(thr_join(tid[t], NULL, NULL) == 0); 5061 if (t < zopt_datasets) 5062 ztest_dataset_close(zs, t); 5063 } 5064 5065 txg_wait_synced(spa_get_dsl(spa), 0); 5066 5067 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 5068 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); 5069 5070 umem_free(tid, zopt_threads * sizeof (thread_t)); 5071 5072 /* Kill the resume thread */ 5073 ztest_exiting = B_TRUE; 5074 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 5075 ztest_resume(spa); 5076 5077 /* 5078 * Right before closing the pool, kick off a bunch of async I/O; 5079 * spa_close() should wait for it to complete. 5080 */ 5081 for (uint64_t object = 1; object < 50; object++) 5082 dmu_prefetch(spa->spa_meta_objset, object, 0, 1ULL << 20); 5083 5084 spa_close(spa, FTAG); 5085 5086 /* 5087 * Verify that we can loop over all pools. 5088 */ 5089 mutex_enter(&spa_namespace_lock); 5090 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) 5091 if (zopt_verbose > 3) 5092 (void) printf("spa_next: found %s\n", spa_name(spa)); 5093 mutex_exit(&spa_namespace_lock); 5094 5095 /* 5096 * Verify that we can export the pool and reimport it under a 5097 * different name. 5098 */ 5099 if (ztest_random(2) == 0) { 5100 char name[MAXNAMELEN]; 5101 (void) snprintf(name, MAXNAMELEN, "%s_import", zs->zs_pool); 5102 ztest_spa_import_export(zs->zs_pool, name); 5103 ztest_spa_import_export(name, zs->zs_pool); 5104 } 5105 5106 kernel_fini(); 5107 } 5108 5109 static void 5110 ztest_freeze(ztest_shared_t *zs) 5111 { 5112 ztest_ds_t *zd = &zs->zs_zd[0]; 5113 spa_t *spa; 5114 5115 if (zopt_verbose >= 3) 5116 (void) printf("testing spa_freeze()...\n"); 5117 5118 kernel_init(FREAD | FWRITE); 5119 VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG)); 5120 VERIFY3U(0, ==, ztest_dataset_open(zs, 0)); 5121 5122 /* 5123 * Force the first log block to be transactionally allocated. 5124 * We have to do this before we freeze the pool -- otherwise 5125 * the log chain won't be anchored. 5126 */ 5127 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { 5128 ztest_dmu_object_alloc_free(zd, 0); 5129 zil_commit(zd->zd_zilog, UINT64_MAX, 0); 5130 } 5131 5132 txg_wait_synced(spa_get_dsl(spa), 0); 5133 5134 /* 5135 * Freeze the pool. This stops spa_sync() from doing anything, 5136 * so that the only way to record changes from now on is the ZIL. 5137 */ 5138 spa_freeze(spa); 5139 5140 /* 5141 * Run tests that generate log records but don't alter the pool config 5142 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). 5143 * We do a txg_wait_synced() after each iteration to force the txg 5144 * to increase well beyond the last synced value in the uberblock. 5145 * The ZIL should be OK with that. 5146 */ 5147 while (ztest_random(20) != 0) { 5148 ztest_dmu_write_parallel(zd, 0); 5149 ztest_dmu_object_alloc_free(zd, 0); 5150 txg_wait_synced(spa_get_dsl(spa), 0); 5151 } 5152 5153 /* 5154 * Commit all of the changes we just generated. 5155 */ 5156 zil_commit(zd->zd_zilog, UINT64_MAX, 0); 5157 txg_wait_synced(spa_get_dsl(spa), 0); 5158 5159 /* 5160 * Close our dataset and close the pool. 5161 */ 5162 ztest_dataset_close(zs, 0); 5163 spa_close(spa, FTAG); 5164 kernel_fini(); 5165 5166 /* 5167 * Open and close the pool and dataset to induce log replay. 5168 */ 5169 kernel_init(FREAD | FWRITE); 5170 VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG)); 5171 VERIFY3U(0, ==, ztest_dataset_open(zs, 0)); 5172 ztest_dataset_close(zs, 0); 5173 spa_close(spa, FTAG); 5174 kernel_fini(); 5175 5176 list_destroy(&zcl.zcl_callbacks); 5177 5178 (void) _mutex_destroy(&zcl.zcl_callbacks_lock); 5179 5180 (void) rwlock_destroy(&zs->zs_name_lock); 5181 (void) _mutex_destroy(&zs->zs_vdev_lock); 5182 } 5183 5184 void 5185 print_time(hrtime_t t, char *timebuf) 5186 { 5187 hrtime_t s = t / NANOSEC; 5188 hrtime_t m = s / 60; 5189 hrtime_t h = m / 60; 5190 hrtime_t d = h / 24; 5191 5192 s -= m * 60; 5193 m -= h * 60; 5194 h -= d * 24; 5195 5196 timebuf[0] = '\0'; 5197 5198 if (d) 5199 (void) sprintf(timebuf, 5200 "%llud%02lluh%02llum%02llus", d, h, m, s); 5201 else if (h) 5202 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 5203 else if (m) 5204 (void) sprintf(timebuf, "%llum%02llus", m, s); 5205 else 5206 (void) sprintf(timebuf, "%llus", s); 5207 } 5208 5209 /* 5210 * Create a storage pool with the given name and initial vdev size. 5211 * Then test spa_freeze() functionality. 5212 */ 5213 static void 5214 ztest_init(ztest_shared_t *zs) 5215 { 5216 spa_t *spa; 5217 nvlist_t *nvroot; 5218 5219 VERIFY(_mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL) == 0); 5220 VERIFY(rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL) == 0); 5221 5222 kernel_init(FREAD | FWRITE); 5223 5224 /* 5225 * Create the storage pool. 5226 */ 5227 (void) spa_destroy(zs->zs_pool); 5228 ztest_shared->zs_vdev_next_leaf = 0; 5229 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, 5230 0, zopt_raidz, zopt_mirrors, 1); 5231 VERIFY3U(0, ==, spa_create(zs->zs_pool, nvroot, NULL, NULL, NULL)); 5232 nvlist_free(nvroot); 5233 5234 VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG)); 5235 metaslab_sz = 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 5236 spa_close(spa, FTAG); 5237 5238 kernel_fini(); 5239 5240 ztest_run_zdb(zs->zs_pool); 5241 5242 ztest_freeze(zs); 5243 5244 ztest_run_zdb(zs->zs_pool); 5245 } 5246 5247 int 5248 main(int argc, char **argv) 5249 { 5250 int kills = 0; 5251 int iters = 0; 5252 ztest_shared_t *zs; 5253 size_t shared_size; 5254 ztest_info_t *zi; 5255 char timebuf[100]; 5256 char numbuf[6]; 5257 spa_t *spa; 5258 5259 (void) setvbuf(stdout, NULL, _IOLBF, 0); 5260 5261 /* Override location of zpool.cache */ 5262 spa_config_path = "/tmp/zpool.cache"; 5263 5264 ztest_random_fd = open("/dev/urandom", O_RDONLY); 5265 5266 process_options(argc, argv); 5267 5268 /* 5269 * Blow away any existing copy of zpool.cache 5270 */ 5271 if (zopt_init != 0) 5272 (void) remove("/tmp/zpool.cache"); 5273 5274 shared_size = sizeof (*zs) + zopt_datasets * sizeof (ztest_ds_t); 5275 5276 zs = ztest_shared = (void *)mmap(0, 5277 P2ROUNDUP(shared_size, getpagesize()), 5278 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0); 5279 5280 if (zopt_verbose >= 1) { 5281 (void) printf("%llu vdevs, %d datasets, %d threads," 5282 " %llu seconds...\n", 5283 (u_longlong_t)zopt_vdevs, zopt_datasets, zopt_threads, 5284 (u_longlong_t)zopt_time); 5285 } 5286 5287 /* 5288 * Create and initialize our storage pool. 5289 */ 5290 for (int i = 1; i <= zopt_init; i++) { 5291 bzero(zs, sizeof (ztest_shared_t)); 5292 if (zopt_verbose >= 3 && zopt_init != 1) 5293 (void) printf("ztest_init(), pass %d\n", i); 5294 zs->zs_pool = zopt_pool; 5295 ztest_init(zs); 5296 } 5297 5298 zs->zs_pool = zopt_pool; 5299 zs->zs_proc_start = gethrtime(); 5300 zs->zs_proc_stop = zs->zs_proc_start + zopt_time * NANOSEC; 5301 5302 for (int f = 0; f < ZTEST_FUNCS; f++) { 5303 zi = &zs->zs_info[f]; 5304 *zi = ztest_info[f]; 5305 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) 5306 zi->zi_call_next = UINT64_MAX; 5307 else 5308 zi->zi_call_next = zs->zs_proc_start + 5309 ztest_random(2 * zi->zi_interval[0] + 1); 5310 } 5311 5312 /* 5313 * Run the tests in a loop. These tests include fault injection 5314 * to verify that self-healing data works, and forced crashes 5315 * to verify that we never lose on-disk consistency. 5316 */ 5317 while (gethrtime() < zs->zs_proc_stop) { 5318 int status; 5319 pid_t pid; 5320 5321 /* 5322 * Initialize the workload counters for each function. 5323 */ 5324 for (int f = 0; f < ZTEST_FUNCS; f++) { 5325 zi = &zs->zs_info[f]; 5326 zi->zi_call_count = 0; 5327 zi->zi_call_time = 0; 5328 } 5329 5330 /* Set the allocation switch size */ 5331 metaslab_df_alloc_threshold = ztest_random(metaslab_sz / 4) + 1; 5332 5333 pid = fork(); 5334 5335 if (pid == -1) 5336 fatal(1, "fork failed"); 5337 5338 if (pid == 0) { /* child */ 5339 struct rlimit rl = { 1024, 1024 }; 5340 (void) setrlimit(RLIMIT_NOFILE, &rl); 5341 (void) enable_extended_FILE_stdio(-1, -1); 5342 ztest_run(zs); 5343 exit(0); 5344 } 5345 5346 while (waitpid(pid, &status, 0) != pid) 5347 continue; 5348 5349 if (WIFEXITED(status)) { 5350 if (WEXITSTATUS(status) != 0) { 5351 (void) fprintf(stderr, 5352 "child exited with code %d\n", 5353 WEXITSTATUS(status)); 5354 exit(2); 5355 } 5356 } else if (WIFSIGNALED(status)) { 5357 if (WTERMSIG(status) != SIGKILL) { 5358 (void) fprintf(stderr, 5359 "child died with signal %d\n", 5360 WTERMSIG(status)); 5361 exit(3); 5362 } 5363 kills++; 5364 } else { 5365 (void) fprintf(stderr, "something strange happened " 5366 "to child\n"); 5367 exit(4); 5368 } 5369 5370 iters++; 5371 5372 if (zopt_verbose >= 1) { 5373 hrtime_t now = gethrtime(); 5374 5375 now = MIN(now, zs->zs_proc_stop); 5376 print_time(zs->zs_proc_stop - now, timebuf); 5377 nicenum(zs->zs_space, numbuf); 5378 5379 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 5380 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 5381 iters, 5382 WIFEXITED(status) ? "Complete" : "SIGKILL", 5383 (u_longlong_t)zs->zs_enospc_count, 5384 100.0 * zs->zs_alloc / zs->zs_space, 5385 numbuf, 5386 100.0 * (now - zs->zs_proc_start) / 5387 (zopt_time * NANOSEC), timebuf); 5388 } 5389 5390 if (zopt_verbose >= 2) { 5391 (void) printf("\nWorkload summary:\n\n"); 5392 (void) printf("%7s %9s %s\n", 5393 "Calls", "Time", "Function"); 5394 (void) printf("%7s %9s %s\n", 5395 "-----", "----", "--------"); 5396 for (int f = 0; f < ZTEST_FUNCS; f++) { 5397 Dl_info dli; 5398 5399 zi = &zs->zs_info[f]; 5400 print_time(zi->zi_call_time, timebuf); 5401 (void) dladdr((void *)zi->zi_func, &dli); 5402 (void) printf("%7llu %9s %s\n", 5403 (u_longlong_t)zi->zi_call_count, timebuf, 5404 dli.dli_sname); 5405 } 5406 (void) printf("\n"); 5407 } 5408 5409 /* 5410 * It's possible that we killed a child during a rename test, 5411 * in which case we'll have a 'ztest_tmp' pool lying around 5412 * instead of 'ztest'. Do a blind rename in case this happened. 5413 */ 5414 kernel_init(FREAD); 5415 if (spa_open(zopt_pool, &spa, FTAG) == 0) { 5416 spa_close(spa, FTAG); 5417 } else { 5418 char tmpname[MAXNAMELEN]; 5419 kernel_fini(); 5420 kernel_init(FREAD | FWRITE); 5421 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp", 5422 zopt_pool); 5423 (void) spa_rename(tmpname, zopt_pool); 5424 } 5425 kernel_fini(); 5426 5427 ztest_run_zdb(zopt_pool); 5428 } 5429 5430 if (zopt_verbose >= 1) { 5431 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 5432 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 5433 } 5434 5435 return (0); 5436 } 5437