1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012 by Delphix. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 /* 28 * The objective of this program is to provide a DMU/ZAP/SPA stress test 29 * that runs entirely in userland, is easy to use, and easy to extend. 30 * 31 * The overall design of the ztest program is as follows: 32 * 33 * (1) For each major functional area (e.g. adding vdevs to a pool, 34 * creating and destroying datasets, reading and writing objects, etc) 35 * we have a simple routine to test that functionality. These 36 * individual routines do not have to do anything "stressful". 37 * 38 * (2) We turn these simple functionality tests into a stress test by 39 * running them all in parallel, with as many threads as desired, 40 * and spread across as many datasets, objects, and vdevs as desired. 41 * 42 * (3) While all this is happening, we inject faults into the pool to 43 * verify that self-healing data really works. 44 * 45 * (4) Every time we open a dataset, we change its checksum and compression 46 * functions. Thus even individual objects vary from block to block 47 * in which checksum they use and whether they're compressed. 48 * 49 * (5) To verify that we never lose on-disk consistency after a crash, 50 * we run the entire test in a child of the main process. 51 * At random times, the child self-immolates with a SIGKILL. 52 * This is the software equivalent of pulling the power cord. 53 * The parent then runs the test again, using the existing 54 * storage pool, as many times as desired. If backwards compatability 55 * testing is enabled ztest will sometimes run the "older" version 56 * of ztest after a SIGKILL. 57 * 58 * (6) To verify that we don't have future leaks or temporal incursions, 59 * many of the functional tests record the transaction group number 60 * as part of their data. When reading old data, they verify that 61 * the transaction group number is less than the current, open txg. 62 * If you add a new test, please do this if applicable. 63 * 64 * When run with no arguments, ztest runs for about five minutes and 65 * produces no output if successful. To get a little bit of information, 66 * specify -V. To get more information, specify -VV, and so on. 67 * 68 * To turn this into an overnight stress test, use -T to specify run time. 69 * 70 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 71 * to increase the pool capacity, fanout, and overall stress level. 72 * 73 * Use the -k option to set the desired frequency of kills. 74 * 75 * When ztest invokes itself it passes all relevant information through a 76 * temporary file which is mmap-ed in the child process. This allows shared 77 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always 78 * stored at offset 0 of this file and contains information on the size and 79 * number of shared structures in the file. The information stored in this file 80 * must remain backwards compatible with older versions of ztest so that 81 * ztest can invoke them during backwards compatibility testing (-B). 82 */ 83 84 #include <sys/zfs_context.h> 85 #include <sys/spa.h> 86 #include <sys/dmu.h> 87 #include <sys/txg.h> 88 #include <sys/dbuf.h> 89 #include <sys/zap.h> 90 #include <sys/dmu_objset.h> 91 #include <sys/poll.h> 92 #include <sys/stat.h> 93 #include <sys/time.h> 94 #include <sys/wait.h> 95 #include <sys/mman.h> 96 #include <sys/resource.h> 97 #include <sys/zio.h> 98 #include <sys/zil.h> 99 #include <sys/zil_impl.h> 100 #include <sys/vdev_impl.h> 101 #include <sys/vdev_file.h> 102 #include <sys/spa_impl.h> 103 #include <sys/metaslab_impl.h> 104 #include <sys/dsl_prop.h> 105 #include <sys/dsl_dataset.h> 106 #include <sys/dsl_scan.h> 107 #include <sys/zio_checksum.h> 108 #include <sys/refcount.h> 109 #include <sys/zfeature.h> 110 #include <stdio.h> 111 #include <stdio_ext.h> 112 #include <stdlib.h> 113 #include <unistd.h> 114 #include <signal.h> 115 #include <umem.h> 116 #include <dlfcn.h> 117 #include <ctype.h> 118 #include <math.h> 119 #include <sys/fs/zfs.h> 120 #include <libnvpair.h> 121 122 static int ztest_fd_data = -1; 123 static int ztest_fd_rand = -1; 124 125 typedef struct ztest_shared_hdr { 126 uint64_t zh_hdr_size; 127 uint64_t zh_opts_size; 128 uint64_t zh_size; 129 uint64_t zh_stats_size; 130 uint64_t zh_stats_count; 131 uint64_t zh_ds_size; 132 uint64_t zh_ds_count; 133 } ztest_shared_hdr_t; 134 135 static ztest_shared_hdr_t *ztest_shared_hdr; 136 137 typedef struct ztest_shared_opts { 138 char zo_pool[MAXNAMELEN]; 139 char zo_dir[MAXNAMELEN]; 140 char zo_alt_ztest[MAXNAMELEN]; 141 char zo_alt_libpath[MAXNAMELEN]; 142 uint64_t zo_vdevs; 143 uint64_t zo_vdevtime; 144 size_t zo_vdev_size; 145 int zo_ashift; 146 int zo_mirrors; 147 int zo_raidz; 148 int zo_raidz_parity; 149 int zo_datasets; 150 int zo_threads; 151 uint64_t zo_passtime; 152 uint64_t zo_killrate; 153 int zo_verbose; 154 int zo_init; 155 uint64_t zo_time; 156 uint64_t zo_maxloops; 157 uint64_t zo_metaslab_gang_bang; 158 } ztest_shared_opts_t; 159 160 static const ztest_shared_opts_t ztest_opts_defaults = { 161 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' }, 162 .zo_dir = { '/', 't', 'm', 'p', '\0' }, 163 .zo_alt_ztest = { '\0' }, 164 .zo_alt_libpath = { '\0' }, 165 .zo_vdevs = 5, 166 .zo_ashift = SPA_MINBLOCKSHIFT, 167 .zo_mirrors = 2, 168 .zo_raidz = 4, 169 .zo_raidz_parity = 1, 170 .zo_vdev_size = SPA_MINDEVSIZE, 171 .zo_datasets = 7, 172 .zo_threads = 23, 173 .zo_passtime = 60, /* 60 seconds */ 174 .zo_killrate = 70, /* 70% kill rate */ 175 .zo_verbose = 0, 176 .zo_init = 1, 177 .zo_time = 300, /* 5 minutes */ 178 .zo_maxloops = 50, /* max loops during spa_freeze() */ 179 .zo_metaslab_gang_bang = 32 << 10 180 }; 181 182 extern uint64_t metaslab_gang_bang; 183 extern uint64_t metaslab_df_alloc_threshold; 184 185 static ztest_shared_opts_t *ztest_shared_opts; 186 static ztest_shared_opts_t ztest_opts; 187 188 typedef struct ztest_shared_ds { 189 uint64_t zd_seq; 190 } ztest_shared_ds_t; 191 192 static ztest_shared_ds_t *ztest_shared_ds; 193 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d]) 194 195 #define BT_MAGIC 0x123456789abcdefULL 196 #define MAXFAULTS() \ 197 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1) 198 199 enum ztest_io_type { 200 ZTEST_IO_WRITE_TAG, 201 ZTEST_IO_WRITE_PATTERN, 202 ZTEST_IO_WRITE_ZEROES, 203 ZTEST_IO_TRUNCATE, 204 ZTEST_IO_SETATTR, 205 ZTEST_IO_REWRITE, 206 ZTEST_IO_TYPES 207 }; 208 209 typedef struct ztest_block_tag { 210 uint64_t bt_magic; 211 uint64_t bt_objset; 212 uint64_t bt_object; 213 uint64_t bt_offset; 214 uint64_t bt_gen; 215 uint64_t bt_txg; 216 uint64_t bt_crtxg; 217 } ztest_block_tag_t; 218 219 typedef struct bufwad { 220 uint64_t bw_index; 221 uint64_t bw_txg; 222 uint64_t bw_data; 223 } bufwad_t; 224 225 /* 226 * XXX -- fix zfs range locks to be generic so we can use them here. 227 */ 228 typedef enum { 229 RL_READER, 230 RL_WRITER, 231 RL_APPEND 232 } rl_type_t; 233 234 typedef struct rll { 235 void *rll_writer; 236 int rll_readers; 237 mutex_t rll_lock; 238 cond_t rll_cv; 239 } rll_t; 240 241 typedef struct rl { 242 uint64_t rl_object; 243 uint64_t rl_offset; 244 uint64_t rl_size; 245 rll_t *rl_lock; 246 } rl_t; 247 248 #define ZTEST_RANGE_LOCKS 64 249 #define ZTEST_OBJECT_LOCKS 64 250 251 /* 252 * Object descriptor. Used as a template for object lookup/create/remove. 253 */ 254 typedef struct ztest_od { 255 uint64_t od_dir; 256 uint64_t od_object; 257 dmu_object_type_t od_type; 258 dmu_object_type_t od_crtype; 259 uint64_t od_blocksize; 260 uint64_t od_crblocksize; 261 uint64_t od_gen; 262 uint64_t od_crgen; 263 char od_name[MAXNAMELEN]; 264 } ztest_od_t; 265 266 /* 267 * Per-dataset state. 268 */ 269 typedef struct ztest_ds { 270 ztest_shared_ds_t *zd_shared; 271 objset_t *zd_os; 272 rwlock_t zd_zilog_lock; 273 zilog_t *zd_zilog; 274 ztest_od_t *zd_od; /* debugging aid */ 275 char zd_name[MAXNAMELEN]; 276 mutex_t zd_dirobj_lock; 277 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; 278 rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; 279 } ztest_ds_t; 280 281 /* 282 * Per-iteration state. 283 */ 284 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); 285 286 typedef struct ztest_info { 287 ztest_func_t *zi_func; /* test function */ 288 uint64_t zi_iters; /* iterations per execution */ 289 uint64_t *zi_interval; /* execute every <interval> seconds */ 290 } ztest_info_t; 291 292 typedef struct ztest_shared_callstate { 293 uint64_t zc_count; /* per-pass count */ 294 uint64_t zc_time; /* per-pass time */ 295 uint64_t zc_next; /* next time to call this function */ 296 } ztest_shared_callstate_t; 297 298 static ztest_shared_callstate_t *ztest_shared_callstate; 299 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c]) 300 301 /* 302 * Note: these aren't static because we want dladdr() to work. 303 */ 304 ztest_func_t ztest_dmu_read_write; 305 ztest_func_t ztest_dmu_write_parallel; 306 ztest_func_t ztest_dmu_object_alloc_free; 307 ztest_func_t ztest_dmu_commit_callbacks; 308 ztest_func_t ztest_zap; 309 ztest_func_t ztest_zap_parallel; 310 ztest_func_t ztest_zil_commit; 311 ztest_func_t ztest_zil_remount; 312 ztest_func_t ztest_dmu_read_write_zcopy; 313 ztest_func_t ztest_dmu_objset_create_destroy; 314 ztest_func_t ztest_dmu_prealloc; 315 ztest_func_t ztest_fzap; 316 ztest_func_t ztest_dmu_snapshot_create_destroy; 317 ztest_func_t ztest_dsl_prop_get_set; 318 ztest_func_t ztest_spa_prop_get_set; 319 ztest_func_t ztest_spa_create_destroy; 320 ztest_func_t ztest_fault_inject; 321 ztest_func_t ztest_ddt_repair; 322 ztest_func_t ztest_dmu_snapshot_hold; 323 ztest_func_t ztest_spa_rename; 324 ztest_func_t ztest_scrub; 325 ztest_func_t ztest_dsl_dataset_promote_busy; 326 ztest_func_t ztest_vdev_attach_detach; 327 ztest_func_t ztest_vdev_LUN_growth; 328 ztest_func_t ztest_vdev_add_remove; 329 ztest_func_t ztest_vdev_aux_add_remove; 330 ztest_func_t ztest_split_pool; 331 ztest_func_t ztest_reguid; 332 ztest_func_t ztest_spa_upgrade; 333 334 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ 335 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ 336 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ 337 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ 338 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ 339 340 ztest_info_t ztest_info[] = { 341 { ztest_dmu_read_write, 1, &zopt_always }, 342 { ztest_dmu_write_parallel, 10, &zopt_always }, 343 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 344 { ztest_dmu_commit_callbacks, 1, &zopt_always }, 345 { ztest_zap, 30, &zopt_always }, 346 { ztest_zap_parallel, 100, &zopt_always }, 347 { ztest_split_pool, 1, &zopt_always }, 348 { ztest_zil_commit, 1, &zopt_incessant }, 349 { ztest_zil_remount, 1, &zopt_sometimes }, 350 { ztest_dmu_read_write_zcopy, 1, &zopt_often }, 351 { ztest_dmu_objset_create_destroy, 1, &zopt_often }, 352 { ztest_dsl_prop_get_set, 1, &zopt_often }, 353 { ztest_spa_prop_get_set, 1, &zopt_sometimes }, 354 #if 0 355 { ztest_dmu_prealloc, 1, &zopt_sometimes }, 356 #endif 357 { ztest_fzap, 1, &zopt_sometimes }, 358 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 359 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 360 { ztest_fault_inject, 1, &zopt_sometimes }, 361 { ztest_ddt_repair, 1, &zopt_sometimes }, 362 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, 363 { ztest_reguid, 1, &zopt_sometimes }, 364 { ztest_spa_rename, 1, &zopt_rarely }, 365 { ztest_scrub, 1, &zopt_rarely }, 366 { ztest_spa_upgrade, 1, &zopt_rarely }, 367 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 368 { ztest_vdev_attach_detach, 1, &zopt_rarely }, 369 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 370 { ztest_vdev_add_remove, 1, 371 &ztest_opts.zo_vdevtime }, 372 { ztest_vdev_aux_add_remove, 1, 373 &ztest_opts.zo_vdevtime }, 374 }; 375 376 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 377 378 /* 379 * The following struct is used to hold a list of uncalled commit callbacks. 380 * The callbacks are ordered by txg number. 381 */ 382 typedef struct ztest_cb_list { 383 mutex_t zcl_callbacks_lock; 384 list_t zcl_callbacks; 385 } ztest_cb_list_t; 386 387 /* 388 * Stuff we need to share writably between parent and child. 389 */ 390 typedef struct ztest_shared { 391 boolean_t zs_do_init; 392 hrtime_t zs_proc_start; 393 hrtime_t zs_proc_stop; 394 hrtime_t zs_thread_start; 395 hrtime_t zs_thread_stop; 396 hrtime_t zs_thread_kill; 397 uint64_t zs_enospc_count; 398 uint64_t zs_vdev_next_leaf; 399 uint64_t zs_vdev_aux; 400 uint64_t zs_alloc; 401 uint64_t zs_space; 402 uint64_t zs_splits; 403 uint64_t zs_mirrors; 404 uint64_t zs_metaslab_sz; 405 uint64_t zs_metaslab_df_alloc_threshold; 406 uint64_t zs_guid; 407 } ztest_shared_t; 408 409 #define ID_PARALLEL -1ULL 410 411 static char ztest_dev_template[] = "%s/%s.%llua"; 412 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 413 ztest_shared_t *ztest_shared; 414 415 static spa_t *ztest_spa = NULL; 416 static ztest_ds_t *ztest_ds; 417 418 static mutex_t ztest_vdev_lock; 419 420 /* 421 * The ztest_name_lock protects the pool and dataset namespace used by 422 * the individual tests. To modify the namespace, consumers must grab 423 * this lock as writer. Grabbing the lock as reader will ensure that the 424 * namespace does not change while the lock is held. 425 */ 426 static rwlock_t ztest_name_lock; 427 428 static boolean_t ztest_dump_core = B_TRUE; 429 static boolean_t ztest_exiting; 430 431 /* Global commit callback list */ 432 static ztest_cb_list_t zcl; 433 434 enum ztest_object { 435 ZTEST_META_DNODE = 0, 436 ZTEST_DIROBJ, 437 ZTEST_OBJECTS 438 }; 439 440 static void usage(boolean_t) __NORETURN; 441 442 /* 443 * These libumem hooks provide a reasonable set of defaults for the allocator's 444 * debugging facilities. 445 */ 446 const char * 447 _umem_debug_init() 448 { 449 return ("default,verbose"); /* $UMEM_DEBUG setting */ 450 } 451 452 const char * 453 _umem_logging_init(void) 454 { 455 return ("fail,contents"); /* $UMEM_LOGGING setting */ 456 } 457 458 #define FATAL_MSG_SZ 1024 459 460 char *fatal_msg; 461 462 static void 463 fatal(int do_perror, char *message, ...) 464 { 465 va_list args; 466 int save_errno = errno; 467 char buf[FATAL_MSG_SZ]; 468 469 (void) fflush(stdout); 470 471 va_start(args, message); 472 (void) sprintf(buf, "ztest: "); 473 /* LINTED */ 474 (void) vsprintf(buf + strlen(buf), message, args); 475 va_end(args); 476 if (do_perror) { 477 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 478 ": %s", strerror(save_errno)); 479 } 480 (void) fprintf(stderr, "%s\n", buf); 481 fatal_msg = buf; /* to ease debugging */ 482 if (ztest_dump_core) 483 abort(); 484 exit(3); 485 } 486 487 static int 488 str2shift(const char *buf) 489 { 490 const char *ends = "BKMGTPEZ"; 491 int i; 492 493 if (buf[0] == '\0') 494 return (0); 495 for (i = 0; i < strlen(ends); i++) { 496 if (toupper(buf[0]) == ends[i]) 497 break; 498 } 499 if (i == strlen(ends)) { 500 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 501 buf); 502 usage(B_FALSE); 503 } 504 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 505 return (10*i); 506 } 507 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 508 usage(B_FALSE); 509 /* NOTREACHED */ 510 } 511 512 static uint64_t 513 nicenumtoull(const char *buf) 514 { 515 char *end; 516 uint64_t val; 517 518 val = strtoull(buf, &end, 0); 519 if (end == buf) { 520 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 521 usage(B_FALSE); 522 } else if (end[0] == '.') { 523 double fval = strtod(buf, &end); 524 fval *= pow(2, str2shift(end)); 525 if (fval > UINT64_MAX) { 526 (void) fprintf(stderr, "ztest: value too large: %s\n", 527 buf); 528 usage(B_FALSE); 529 } 530 val = (uint64_t)fval; 531 } else { 532 int shift = str2shift(end); 533 if (shift >= 64 || (val << shift) >> shift != val) { 534 (void) fprintf(stderr, "ztest: value too large: %s\n", 535 buf); 536 usage(B_FALSE); 537 } 538 val <<= shift; 539 } 540 return (val); 541 } 542 543 static void 544 usage(boolean_t requested) 545 { 546 const ztest_shared_opts_t *zo = &ztest_opts_defaults; 547 548 char nice_vdev_size[10]; 549 char nice_gang_bang[10]; 550 FILE *fp = requested ? stdout : stderr; 551 552 nicenum(zo->zo_vdev_size, nice_vdev_size); 553 nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang); 554 555 (void) fprintf(fp, "Usage: %s\n" 556 "\t[-v vdevs (default: %llu)]\n" 557 "\t[-s size_of_each_vdev (default: %s)]\n" 558 "\t[-a alignment_shift (default: %d)] use 0 for random\n" 559 "\t[-m mirror_copies (default: %d)]\n" 560 "\t[-r raidz_disks (default: %d)]\n" 561 "\t[-R raidz_parity (default: %d)]\n" 562 "\t[-d datasets (default: %d)]\n" 563 "\t[-t threads (default: %d)]\n" 564 "\t[-g gang_block_threshold (default: %s)]\n" 565 "\t[-i init_count (default: %d)] initialize pool i times\n" 566 "\t[-k kill_percentage (default: %llu%%)]\n" 567 "\t[-p pool_name (default: %s)]\n" 568 "\t[-f dir (default: %s)] file directory for vdev files\n" 569 "\t[-V] verbose (use multiple times for ever more blather)\n" 570 "\t[-E] use existing pool instead of creating new one\n" 571 "\t[-T time (default: %llu sec)] total run time\n" 572 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n" 573 "\t[-P passtime (default: %llu sec)] time per pass\n" 574 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n" 575 "\t[-h] (print help)\n" 576 "", 577 zo->zo_pool, 578 (u_longlong_t)zo->zo_vdevs, /* -v */ 579 nice_vdev_size, /* -s */ 580 zo->zo_ashift, /* -a */ 581 zo->zo_mirrors, /* -m */ 582 zo->zo_raidz, /* -r */ 583 zo->zo_raidz_parity, /* -R */ 584 zo->zo_datasets, /* -d */ 585 zo->zo_threads, /* -t */ 586 nice_gang_bang, /* -g */ 587 zo->zo_init, /* -i */ 588 (u_longlong_t)zo->zo_killrate, /* -k */ 589 zo->zo_pool, /* -p */ 590 zo->zo_dir, /* -f */ 591 (u_longlong_t)zo->zo_time, /* -T */ 592 (u_longlong_t)zo->zo_maxloops, /* -F */ 593 (u_longlong_t)zo->zo_passtime); 594 exit(requested ? 0 : 1); 595 } 596 597 static void 598 process_options(int argc, char **argv) 599 { 600 char *path; 601 ztest_shared_opts_t *zo = &ztest_opts; 602 603 int opt; 604 uint64_t value; 605 char altdir[MAXNAMELEN] = { 0 }; 606 607 bcopy(&ztest_opts_defaults, zo, sizeof (*zo)); 608 609 while ((opt = getopt(argc, argv, 610 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:")) != EOF) { 611 value = 0; 612 switch (opt) { 613 case 'v': 614 case 's': 615 case 'a': 616 case 'm': 617 case 'r': 618 case 'R': 619 case 'd': 620 case 't': 621 case 'g': 622 case 'i': 623 case 'k': 624 case 'T': 625 case 'P': 626 case 'F': 627 value = nicenumtoull(optarg); 628 } 629 switch (opt) { 630 case 'v': 631 zo->zo_vdevs = value; 632 break; 633 case 's': 634 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value); 635 break; 636 case 'a': 637 zo->zo_ashift = value; 638 break; 639 case 'm': 640 zo->zo_mirrors = value; 641 break; 642 case 'r': 643 zo->zo_raidz = MAX(1, value); 644 break; 645 case 'R': 646 zo->zo_raidz_parity = MIN(MAX(value, 1), 3); 647 break; 648 case 'd': 649 zo->zo_datasets = MAX(1, value); 650 break; 651 case 't': 652 zo->zo_threads = MAX(1, value); 653 break; 654 case 'g': 655 zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, 656 value); 657 break; 658 case 'i': 659 zo->zo_init = value; 660 break; 661 case 'k': 662 zo->zo_killrate = value; 663 break; 664 case 'p': 665 (void) strlcpy(zo->zo_pool, optarg, 666 sizeof (zo->zo_pool)); 667 break; 668 case 'f': 669 path = realpath(optarg, NULL); 670 if (path == NULL) { 671 (void) fprintf(stderr, "error: %s: %s\n", 672 optarg, strerror(errno)); 673 usage(B_FALSE); 674 } else { 675 (void) strlcpy(zo->zo_dir, path, 676 sizeof (zo->zo_dir)); 677 } 678 break; 679 case 'V': 680 zo->zo_verbose++; 681 break; 682 case 'E': 683 zo->zo_init = 0; 684 break; 685 case 'T': 686 zo->zo_time = value; 687 break; 688 case 'P': 689 zo->zo_passtime = MAX(1, value); 690 break; 691 case 'F': 692 zo->zo_maxloops = MAX(1, value); 693 break; 694 case 'B': 695 (void) strlcpy(altdir, optarg, sizeof (altdir)); 696 break; 697 case 'h': 698 usage(B_TRUE); 699 break; 700 case '?': 701 default: 702 usage(B_FALSE); 703 break; 704 } 705 } 706 707 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1); 708 709 zo->zo_vdevtime = 710 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs : 711 UINT64_MAX >> 2); 712 713 if (strlen(altdir) > 0) { 714 char *cmd; 715 char *realaltdir; 716 char *bin; 717 char *ztest; 718 char *isa; 719 int isalen; 720 721 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 722 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 723 724 VERIFY(NULL != realpath(getexecname(), cmd)); 725 if (0 != access(altdir, F_OK)) { 726 ztest_dump_core = B_FALSE; 727 fatal(B_TRUE, "invalid alternate ztest path: %s", 728 altdir); 729 } 730 VERIFY(NULL != realpath(altdir, realaltdir)); 731 732 /* 733 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest". 734 * We want to extract <isa> to determine if we should use 735 * 32 or 64 bit binaries. 736 */ 737 bin = strstr(cmd, "/usr/bin/"); 738 ztest = strstr(bin, "/ztest"); 739 isa = bin + 9; 740 isalen = ztest - isa; 741 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest), 742 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa); 743 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath), 744 "%s/usr/lib/%.*s", realaltdir, isalen, isa); 745 746 if (0 != access(zo->zo_alt_ztest, X_OK)) { 747 ztest_dump_core = B_FALSE; 748 fatal(B_TRUE, "invalid alternate ztest: %s", 749 zo->zo_alt_ztest); 750 } else if (0 != access(zo->zo_alt_libpath, X_OK)) { 751 ztest_dump_core = B_FALSE; 752 fatal(B_TRUE, "invalid alternate lib directory %s", 753 zo->zo_alt_libpath); 754 } 755 756 umem_free(cmd, MAXPATHLEN); 757 umem_free(realaltdir, MAXPATHLEN); 758 } 759 } 760 761 static void 762 ztest_kill(ztest_shared_t *zs) 763 { 764 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa)); 765 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa)); 766 (void) kill(getpid(), SIGKILL); 767 } 768 769 static uint64_t 770 ztest_random(uint64_t range) 771 { 772 uint64_t r; 773 774 ASSERT3S(ztest_fd_rand, >=, 0); 775 776 if (range == 0) 777 return (0); 778 779 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r)) 780 fatal(1, "short read from /dev/urandom"); 781 782 return (r % range); 783 } 784 785 /* ARGSUSED */ 786 static void 787 ztest_record_enospc(const char *s) 788 { 789 ztest_shared->zs_enospc_count++; 790 } 791 792 static uint64_t 793 ztest_get_ashift(void) 794 { 795 if (ztest_opts.zo_ashift == 0) 796 return (SPA_MINBLOCKSHIFT + ztest_random(3)); 797 return (ztest_opts.zo_ashift); 798 } 799 800 static nvlist_t * 801 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift) 802 { 803 char pathbuf[MAXPATHLEN]; 804 uint64_t vdev; 805 nvlist_t *file; 806 807 if (ashift == 0) 808 ashift = ztest_get_ashift(); 809 810 if (path == NULL) { 811 path = pathbuf; 812 813 if (aux != NULL) { 814 vdev = ztest_shared->zs_vdev_aux; 815 (void) snprintf(path, sizeof (pathbuf), 816 ztest_aux_template, ztest_opts.zo_dir, 817 pool == NULL ? ztest_opts.zo_pool : pool, 818 aux, vdev); 819 } else { 820 vdev = ztest_shared->zs_vdev_next_leaf++; 821 (void) snprintf(path, sizeof (pathbuf), 822 ztest_dev_template, ztest_opts.zo_dir, 823 pool == NULL ? ztest_opts.zo_pool : pool, vdev); 824 } 825 } 826 827 if (size != 0) { 828 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 829 if (fd == -1) 830 fatal(1, "can't open %s", path); 831 if (ftruncate(fd, size) != 0) 832 fatal(1, "can't ftruncate %s", path); 833 (void) close(fd); 834 } 835 836 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 837 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 838 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 839 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 840 841 return (file); 842 } 843 844 static nvlist_t * 845 make_vdev_raidz(char *path, char *aux, char *pool, size_t size, 846 uint64_t ashift, int r) 847 { 848 nvlist_t *raidz, **child; 849 int c; 850 851 if (r < 2) 852 return (make_vdev_file(path, aux, pool, size, ashift)); 853 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 854 855 for (c = 0; c < r; c++) 856 child[c] = make_vdev_file(path, aux, pool, size, ashift); 857 858 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 859 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 860 VDEV_TYPE_RAIDZ) == 0); 861 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 862 ztest_opts.zo_raidz_parity) == 0); 863 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 864 child, r) == 0); 865 866 for (c = 0; c < r; c++) 867 nvlist_free(child[c]); 868 869 umem_free(child, r * sizeof (nvlist_t *)); 870 871 return (raidz); 872 } 873 874 static nvlist_t * 875 make_vdev_mirror(char *path, char *aux, char *pool, size_t size, 876 uint64_t ashift, int r, int m) 877 { 878 nvlist_t *mirror, **child; 879 int c; 880 881 if (m < 1) 882 return (make_vdev_raidz(path, aux, pool, size, ashift, r)); 883 884 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 885 886 for (c = 0; c < m; c++) 887 child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r); 888 889 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 890 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 891 VDEV_TYPE_MIRROR) == 0); 892 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 893 child, m) == 0); 894 895 for (c = 0; c < m; c++) 896 nvlist_free(child[c]); 897 898 umem_free(child, m * sizeof (nvlist_t *)); 899 900 return (mirror); 901 } 902 903 static nvlist_t * 904 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift, 905 int log, int r, int m, int t) 906 { 907 nvlist_t *root, **child; 908 int c; 909 910 ASSERT(t > 0); 911 912 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 913 914 for (c = 0; c < t; c++) { 915 child[c] = make_vdev_mirror(path, aux, pool, size, ashift, 916 r, m); 917 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 918 log) == 0); 919 } 920 921 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 922 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 923 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 924 child, t) == 0); 925 926 for (c = 0; c < t; c++) 927 nvlist_free(child[c]); 928 929 umem_free(child, t * sizeof (nvlist_t *)); 930 931 return (root); 932 } 933 934 /* 935 * Find a random spa version. Returns back a random spa version in the 936 * range [initial_version, SPA_VERSION_FEATURES]. 937 */ 938 static uint64_t 939 ztest_random_spa_version(uint64_t initial_version) 940 { 941 uint64_t version = initial_version; 942 943 if (version <= SPA_VERSION_BEFORE_FEATURES) { 944 version = version + 945 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1); 946 } 947 948 if (version > SPA_VERSION_BEFORE_FEATURES) 949 version = SPA_VERSION_FEATURES; 950 951 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 952 return (version); 953 } 954 955 static int 956 ztest_random_blocksize(void) 957 { 958 return (1 << (SPA_MINBLOCKSHIFT + 959 ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1))); 960 } 961 962 static int 963 ztest_random_ibshift(void) 964 { 965 return (DN_MIN_INDBLKSHIFT + 966 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); 967 } 968 969 static uint64_t 970 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) 971 { 972 uint64_t top; 973 vdev_t *rvd = spa->spa_root_vdev; 974 vdev_t *tvd; 975 976 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 977 978 do { 979 top = ztest_random(rvd->vdev_children); 980 tvd = rvd->vdev_child[top]; 981 } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) || 982 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); 983 984 return (top); 985 } 986 987 static uint64_t 988 ztest_random_dsl_prop(zfs_prop_t prop) 989 { 990 uint64_t value; 991 992 do { 993 value = zfs_prop_random_value(prop, ztest_random(-1ULL)); 994 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); 995 996 return (value); 997 } 998 999 static int 1000 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, 1001 boolean_t inherit) 1002 { 1003 const char *propname = zfs_prop_to_name(prop); 1004 const char *valname; 1005 char setpoint[MAXPATHLEN]; 1006 uint64_t curval; 1007 int error; 1008 1009 error = dsl_prop_set(osname, propname, 1010 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), 1011 sizeof (value), 1, &value); 1012 1013 if (error == ENOSPC) { 1014 ztest_record_enospc(FTAG); 1015 return (error); 1016 } 1017 ASSERT0(error); 1018 1019 VERIFY3U(dsl_prop_get(osname, propname, sizeof (curval), 1020 1, &curval, setpoint), ==, 0); 1021 1022 if (ztest_opts.zo_verbose >= 6) { 1023 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0); 1024 (void) printf("%s %s = %s at '%s'\n", 1025 osname, propname, valname, setpoint); 1026 } 1027 1028 return (error); 1029 } 1030 1031 static int 1032 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value) 1033 { 1034 spa_t *spa = ztest_spa; 1035 nvlist_t *props = NULL; 1036 int error; 1037 1038 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 1039 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0); 1040 1041 error = spa_prop_set(spa, props); 1042 1043 nvlist_free(props); 1044 1045 if (error == ENOSPC) { 1046 ztest_record_enospc(FTAG); 1047 return (error); 1048 } 1049 ASSERT0(error); 1050 1051 return (error); 1052 } 1053 1054 static void 1055 ztest_rll_init(rll_t *rll) 1056 { 1057 rll->rll_writer = NULL; 1058 rll->rll_readers = 0; 1059 VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0); 1060 VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0); 1061 } 1062 1063 static void 1064 ztest_rll_destroy(rll_t *rll) 1065 { 1066 ASSERT(rll->rll_writer == NULL); 1067 ASSERT(rll->rll_readers == 0); 1068 VERIFY(_mutex_destroy(&rll->rll_lock) == 0); 1069 VERIFY(cond_destroy(&rll->rll_cv) == 0); 1070 } 1071 1072 static void 1073 ztest_rll_lock(rll_t *rll, rl_type_t type) 1074 { 1075 VERIFY(mutex_lock(&rll->rll_lock) == 0); 1076 1077 if (type == RL_READER) { 1078 while (rll->rll_writer != NULL) 1079 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 1080 rll->rll_readers++; 1081 } else { 1082 while (rll->rll_writer != NULL || rll->rll_readers) 1083 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 1084 rll->rll_writer = curthread; 1085 } 1086 1087 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 1088 } 1089 1090 static void 1091 ztest_rll_unlock(rll_t *rll) 1092 { 1093 VERIFY(mutex_lock(&rll->rll_lock) == 0); 1094 1095 if (rll->rll_writer) { 1096 ASSERT(rll->rll_readers == 0); 1097 rll->rll_writer = NULL; 1098 } else { 1099 ASSERT(rll->rll_readers != 0); 1100 ASSERT(rll->rll_writer == NULL); 1101 rll->rll_readers--; 1102 } 1103 1104 if (rll->rll_writer == NULL && rll->rll_readers == 0) 1105 VERIFY(cond_broadcast(&rll->rll_cv) == 0); 1106 1107 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 1108 } 1109 1110 static void 1111 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) 1112 { 1113 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1114 1115 ztest_rll_lock(rll, type); 1116 } 1117 1118 static void 1119 ztest_object_unlock(ztest_ds_t *zd, uint64_t object) 1120 { 1121 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1122 1123 ztest_rll_unlock(rll); 1124 } 1125 1126 static rl_t * 1127 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, 1128 uint64_t size, rl_type_t type) 1129 { 1130 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); 1131 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; 1132 rl_t *rl; 1133 1134 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); 1135 rl->rl_object = object; 1136 rl->rl_offset = offset; 1137 rl->rl_size = size; 1138 rl->rl_lock = rll; 1139 1140 ztest_rll_lock(rll, type); 1141 1142 return (rl); 1143 } 1144 1145 static void 1146 ztest_range_unlock(rl_t *rl) 1147 { 1148 rll_t *rll = rl->rl_lock; 1149 1150 ztest_rll_unlock(rll); 1151 1152 umem_free(rl, sizeof (*rl)); 1153 } 1154 1155 static void 1156 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os) 1157 { 1158 zd->zd_os = os; 1159 zd->zd_zilog = dmu_objset_zil(os); 1160 zd->zd_shared = szd; 1161 dmu_objset_name(os, zd->zd_name); 1162 1163 if (zd->zd_shared != NULL) 1164 zd->zd_shared->zd_seq = 0; 1165 1166 VERIFY(rwlock_init(&zd->zd_zilog_lock, USYNC_THREAD, NULL) == 0); 1167 VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0); 1168 1169 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1170 ztest_rll_init(&zd->zd_object_lock[l]); 1171 1172 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1173 ztest_rll_init(&zd->zd_range_lock[l]); 1174 } 1175 1176 static void 1177 ztest_zd_fini(ztest_ds_t *zd) 1178 { 1179 VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0); 1180 1181 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1182 ztest_rll_destroy(&zd->zd_object_lock[l]); 1183 1184 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1185 ztest_rll_destroy(&zd->zd_range_lock[l]); 1186 } 1187 1188 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) 1189 1190 static uint64_t 1191 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) 1192 { 1193 uint64_t txg; 1194 int error; 1195 1196 /* 1197 * Attempt to assign tx to some transaction group. 1198 */ 1199 error = dmu_tx_assign(tx, txg_how); 1200 if (error) { 1201 if (error == ERESTART) { 1202 ASSERT(txg_how == TXG_NOWAIT); 1203 dmu_tx_wait(tx); 1204 } else { 1205 ASSERT3U(error, ==, ENOSPC); 1206 ztest_record_enospc(tag); 1207 } 1208 dmu_tx_abort(tx); 1209 return (0); 1210 } 1211 txg = dmu_tx_get_txg(tx); 1212 ASSERT(txg != 0); 1213 return (txg); 1214 } 1215 1216 static void 1217 ztest_pattern_set(void *buf, uint64_t size, uint64_t value) 1218 { 1219 uint64_t *ip = buf; 1220 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1221 1222 while (ip < ip_end) 1223 *ip++ = value; 1224 } 1225 1226 static boolean_t 1227 ztest_pattern_match(void *buf, uint64_t size, uint64_t value) 1228 { 1229 uint64_t *ip = buf; 1230 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1231 uint64_t diff = 0; 1232 1233 while (ip < ip_end) 1234 diff |= (value - *ip++); 1235 1236 return (diff == 0); 1237 } 1238 1239 static void 1240 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1241 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1242 { 1243 bt->bt_magic = BT_MAGIC; 1244 bt->bt_objset = dmu_objset_id(os); 1245 bt->bt_object = object; 1246 bt->bt_offset = offset; 1247 bt->bt_gen = gen; 1248 bt->bt_txg = txg; 1249 bt->bt_crtxg = crtxg; 1250 } 1251 1252 static void 1253 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1254 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1255 { 1256 ASSERT(bt->bt_magic == BT_MAGIC); 1257 ASSERT(bt->bt_objset == dmu_objset_id(os)); 1258 ASSERT(bt->bt_object == object); 1259 ASSERT(bt->bt_offset == offset); 1260 ASSERT(bt->bt_gen <= gen); 1261 ASSERT(bt->bt_txg <= txg); 1262 ASSERT(bt->bt_crtxg == crtxg); 1263 } 1264 1265 static ztest_block_tag_t * 1266 ztest_bt_bonus(dmu_buf_t *db) 1267 { 1268 dmu_object_info_t doi; 1269 ztest_block_tag_t *bt; 1270 1271 dmu_object_info_from_db(db, &doi); 1272 ASSERT3U(doi.doi_bonus_size, <=, db->db_size); 1273 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); 1274 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); 1275 1276 return (bt); 1277 } 1278 1279 /* 1280 * ZIL logging ops 1281 */ 1282 1283 #define lrz_type lr_mode 1284 #define lrz_blocksize lr_uid 1285 #define lrz_ibshift lr_gid 1286 #define lrz_bonustype lr_rdev 1287 #define lrz_bonuslen lr_crtime[1] 1288 1289 static void 1290 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) 1291 { 1292 char *name = (void *)(lr + 1); /* name follows lr */ 1293 size_t namesize = strlen(name) + 1; 1294 itx_t *itx; 1295 1296 if (zil_replaying(zd->zd_zilog, tx)) 1297 return; 1298 1299 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); 1300 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1301 sizeof (*lr) + namesize - sizeof (lr_t)); 1302 1303 zil_itx_assign(zd->zd_zilog, itx, tx); 1304 } 1305 1306 static void 1307 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object) 1308 { 1309 char *name = (void *)(lr + 1); /* name follows lr */ 1310 size_t namesize = strlen(name) + 1; 1311 itx_t *itx; 1312 1313 if (zil_replaying(zd->zd_zilog, tx)) 1314 return; 1315 1316 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); 1317 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1318 sizeof (*lr) + namesize - sizeof (lr_t)); 1319 1320 itx->itx_oid = object; 1321 zil_itx_assign(zd->zd_zilog, itx, tx); 1322 } 1323 1324 static void 1325 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) 1326 { 1327 itx_t *itx; 1328 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); 1329 1330 if (zil_replaying(zd->zd_zilog, tx)) 1331 return; 1332 1333 if (lr->lr_length > ZIL_MAX_LOG_DATA) 1334 write_state = WR_INDIRECT; 1335 1336 itx = zil_itx_create(TX_WRITE, 1337 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); 1338 1339 if (write_state == WR_COPIED && 1340 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, 1341 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { 1342 zil_itx_destroy(itx); 1343 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 1344 write_state = WR_NEED_COPY; 1345 } 1346 itx->itx_private = zd; 1347 itx->itx_wr_state = write_state; 1348 itx->itx_sync = (ztest_random(8) == 0); 1349 itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0); 1350 1351 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1352 sizeof (*lr) - sizeof (lr_t)); 1353 1354 zil_itx_assign(zd->zd_zilog, itx, tx); 1355 } 1356 1357 static void 1358 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) 1359 { 1360 itx_t *itx; 1361 1362 if (zil_replaying(zd->zd_zilog, tx)) 1363 return; 1364 1365 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 1366 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1367 sizeof (*lr) - sizeof (lr_t)); 1368 1369 itx->itx_sync = B_FALSE; 1370 zil_itx_assign(zd->zd_zilog, itx, tx); 1371 } 1372 1373 static void 1374 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) 1375 { 1376 itx_t *itx; 1377 1378 if (zil_replaying(zd->zd_zilog, tx)) 1379 return; 1380 1381 itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); 1382 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1383 sizeof (*lr) - sizeof (lr_t)); 1384 1385 itx->itx_sync = B_FALSE; 1386 zil_itx_assign(zd->zd_zilog, itx, tx); 1387 } 1388 1389 /* 1390 * ZIL replay ops 1391 */ 1392 static int 1393 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap) 1394 { 1395 char *name = (void *)(lr + 1); /* name follows lr */ 1396 objset_t *os = zd->zd_os; 1397 ztest_block_tag_t *bbt; 1398 dmu_buf_t *db; 1399 dmu_tx_t *tx; 1400 uint64_t txg; 1401 int error = 0; 1402 1403 if (byteswap) 1404 byteswap_uint64_array(lr, sizeof (*lr)); 1405 1406 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1407 ASSERT(name[0] != '\0'); 1408 1409 tx = dmu_tx_create(os); 1410 1411 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); 1412 1413 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1414 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1415 } else { 1416 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1417 } 1418 1419 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1420 if (txg == 0) 1421 return (ENOSPC); 1422 1423 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid); 1424 1425 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1426 if (lr->lr_foid == 0) { 1427 lr->lr_foid = zap_create(os, 1428 lr->lrz_type, lr->lrz_bonustype, 1429 lr->lrz_bonuslen, tx); 1430 } else { 1431 error = zap_create_claim(os, lr->lr_foid, 1432 lr->lrz_type, lr->lrz_bonustype, 1433 lr->lrz_bonuslen, tx); 1434 } 1435 } else { 1436 if (lr->lr_foid == 0) { 1437 lr->lr_foid = dmu_object_alloc(os, 1438 lr->lrz_type, 0, lr->lrz_bonustype, 1439 lr->lrz_bonuslen, tx); 1440 } else { 1441 error = dmu_object_claim(os, lr->lr_foid, 1442 lr->lrz_type, 0, lr->lrz_bonustype, 1443 lr->lrz_bonuslen, tx); 1444 } 1445 } 1446 1447 if (error) { 1448 ASSERT3U(error, ==, EEXIST); 1449 ASSERT(zd->zd_zilog->zl_replay); 1450 dmu_tx_commit(tx); 1451 return (error); 1452 } 1453 1454 ASSERT(lr->lr_foid != 0); 1455 1456 if (lr->lrz_type != DMU_OT_ZAP_OTHER) 1457 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid, 1458 lr->lrz_blocksize, lr->lrz_ibshift, tx)); 1459 1460 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1461 bbt = ztest_bt_bonus(db); 1462 dmu_buf_will_dirty(db, tx); 1463 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg); 1464 dmu_buf_rele(db, FTAG); 1465 1466 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, 1467 &lr->lr_foid, tx)); 1468 1469 (void) ztest_log_create(zd, tx, lr); 1470 1471 dmu_tx_commit(tx); 1472 1473 return (0); 1474 } 1475 1476 static int 1477 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap) 1478 { 1479 char *name = (void *)(lr + 1); /* name follows lr */ 1480 objset_t *os = zd->zd_os; 1481 dmu_object_info_t doi; 1482 dmu_tx_t *tx; 1483 uint64_t object, txg; 1484 1485 if (byteswap) 1486 byteswap_uint64_array(lr, sizeof (*lr)); 1487 1488 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1489 ASSERT(name[0] != '\0'); 1490 1491 VERIFY3U(0, ==, 1492 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); 1493 ASSERT(object != 0); 1494 1495 ztest_object_lock(zd, object, RL_WRITER); 1496 1497 VERIFY3U(0, ==, dmu_object_info(os, object, &doi)); 1498 1499 tx = dmu_tx_create(os); 1500 1501 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); 1502 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1503 1504 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1505 if (txg == 0) { 1506 ztest_object_unlock(zd, object); 1507 return (ENOSPC); 1508 } 1509 1510 if (doi.doi_type == DMU_OT_ZAP_OTHER) { 1511 VERIFY3U(0, ==, zap_destroy(os, object, tx)); 1512 } else { 1513 VERIFY3U(0, ==, dmu_object_free(os, object, tx)); 1514 } 1515 1516 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx)); 1517 1518 (void) ztest_log_remove(zd, tx, lr, object); 1519 1520 dmu_tx_commit(tx); 1521 1522 ztest_object_unlock(zd, object); 1523 1524 return (0); 1525 } 1526 1527 static int 1528 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap) 1529 { 1530 objset_t *os = zd->zd_os; 1531 void *data = lr + 1; /* data follows lr */ 1532 uint64_t offset, length; 1533 ztest_block_tag_t *bt = data; 1534 ztest_block_tag_t *bbt; 1535 uint64_t gen, txg, lrtxg, crtxg; 1536 dmu_object_info_t doi; 1537 dmu_tx_t *tx; 1538 dmu_buf_t *db; 1539 arc_buf_t *abuf = NULL; 1540 rl_t *rl; 1541 1542 if (byteswap) 1543 byteswap_uint64_array(lr, sizeof (*lr)); 1544 1545 offset = lr->lr_offset; 1546 length = lr->lr_length; 1547 1548 /* If it's a dmu_sync() block, write the whole block */ 1549 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 1550 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 1551 if (length < blocksize) { 1552 offset -= offset % blocksize; 1553 length = blocksize; 1554 } 1555 } 1556 1557 if (bt->bt_magic == BSWAP_64(BT_MAGIC)) 1558 byteswap_uint64_array(bt, sizeof (*bt)); 1559 1560 if (bt->bt_magic != BT_MAGIC) 1561 bt = NULL; 1562 1563 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1564 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); 1565 1566 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1567 1568 dmu_object_info_from_db(db, &doi); 1569 1570 bbt = ztest_bt_bonus(db); 1571 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1572 gen = bbt->bt_gen; 1573 crtxg = bbt->bt_crtxg; 1574 lrtxg = lr->lr_common.lrc_txg; 1575 1576 tx = dmu_tx_create(os); 1577 1578 dmu_tx_hold_write(tx, lr->lr_foid, offset, length); 1579 1580 if (ztest_random(8) == 0 && length == doi.doi_data_block_size && 1581 P2PHASE(offset, length) == 0) 1582 abuf = dmu_request_arcbuf(db, length); 1583 1584 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1585 if (txg == 0) { 1586 if (abuf != NULL) 1587 dmu_return_arcbuf(abuf); 1588 dmu_buf_rele(db, FTAG); 1589 ztest_range_unlock(rl); 1590 ztest_object_unlock(zd, lr->lr_foid); 1591 return (ENOSPC); 1592 } 1593 1594 if (bt != NULL) { 1595 /* 1596 * Usually, verify the old data before writing new data -- 1597 * but not always, because we also want to verify correct 1598 * behavior when the data was not recently read into cache. 1599 */ 1600 ASSERT(offset % doi.doi_data_block_size == 0); 1601 if (ztest_random(4) != 0) { 1602 int prefetch = ztest_random(2) ? 1603 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; 1604 ztest_block_tag_t rbt; 1605 1606 VERIFY(dmu_read(os, lr->lr_foid, offset, 1607 sizeof (rbt), &rbt, prefetch) == 0); 1608 if (rbt.bt_magic == BT_MAGIC) { 1609 ztest_bt_verify(&rbt, os, lr->lr_foid, 1610 offset, gen, txg, crtxg); 1611 } 1612 } 1613 1614 /* 1615 * Writes can appear to be newer than the bonus buffer because 1616 * the ztest_get_data() callback does a dmu_read() of the 1617 * open-context data, which may be different than the data 1618 * as it was when the write was generated. 1619 */ 1620 if (zd->zd_zilog->zl_replay) { 1621 ztest_bt_verify(bt, os, lr->lr_foid, offset, 1622 MAX(gen, bt->bt_gen), MAX(txg, lrtxg), 1623 bt->bt_crtxg); 1624 } 1625 1626 /* 1627 * Set the bt's gen/txg to the bonus buffer's gen/txg 1628 * so that all of the usual ASSERTs will work. 1629 */ 1630 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg); 1631 } 1632 1633 if (abuf == NULL) { 1634 dmu_write(os, lr->lr_foid, offset, length, data, tx); 1635 } else { 1636 bcopy(data, abuf->b_data, length); 1637 dmu_assign_arcbuf(db, offset, abuf, tx); 1638 } 1639 1640 (void) ztest_log_write(zd, tx, lr); 1641 1642 dmu_buf_rele(db, FTAG); 1643 1644 dmu_tx_commit(tx); 1645 1646 ztest_range_unlock(rl); 1647 ztest_object_unlock(zd, lr->lr_foid); 1648 1649 return (0); 1650 } 1651 1652 static int 1653 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap) 1654 { 1655 objset_t *os = zd->zd_os; 1656 dmu_tx_t *tx; 1657 uint64_t txg; 1658 rl_t *rl; 1659 1660 if (byteswap) 1661 byteswap_uint64_array(lr, sizeof (*lr)); 1662 1663 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1664 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, 1665 RL_WRITER); 1666 1667 tx = dmu_tx_create(os); 1668 1669 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); 1670 1671 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1672 if (txg == 0) { 1673 ztest_range_unlock(rl); 1674 ztest_object_unlock(zd, lr->lr_foid); 1675 return (ENOSPC); 1676 } 1677 1678 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset, 1679 lr->lr_length, tx) == 0); 1680 1681 (void) ztest_log_truncate(zd, tx, lr); 1682 1683 dmu_tx_commit(tx); 1684 1685 ztest_range_unlock(rl); 1686 ztest_object_unlock(zd, lr->lr_foid); 1687 1688 return (0); 1689 } 1690 1691 static int 1692 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap) 1693 { 1694 objset_t *os = zd->zd_os; 1695 dmu_tx_t *tx; 1696 dmu_buf_t *db; 1697 ztest_block_tag_t *bbt; 1698 uint64_t txg, lrtxg, crtxg; 1699 1700 if (byteswap) 1701 byteswap_uint64_array(lr, sizeof (*lr)); 1702 1703 ztest_object_lock(zd, lr->lr_foid, RL_WRITER); 1704 1705 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1706 1707 tx = dmu_tx_create(os); 1708 dmu_tx_hold_bonus(tx, lr->lr_foid); 1709 1710 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1711 if (txg == 0) { 1712 dmu_buf_rele(db, FTAG); 1713 ztest_object_unlock(zd, lr->lr_foid); 1714 return (ENOSPC); 1715 } 1716 1717 bbt = ztest_bt_bonus(db); 1718 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1719 crtxg = bbt->bt_crtxg; 1720 lrtxg = lr->lr_common.lrc_txg; 1721 1722 if (zd->zd_zilog->zl_replay) { 1723 ASSERT(lr->lr_size != 0); 1724 ASSERT(lr->lr_mode != 0); 1725 ASSERT(lrtxg != 0); 1726 } else { 1727 /* 1728 * Randomly change the size and increment the generation. 1729 */ 1730 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * 1731 sizeof (*bbt); 1732 lr->lr_mode = bbt->bt_gen + 1; 1733 ASSERT(lrtxg == 0); 1734 } 1735 1736 /* 1737 * Verify that the current bonus buffer is not newer than our txg. 1738 */ 1739 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, 1740 MAX(txg, lrtxg), crtxg); 1741 1742 dmu_buf_will_dirty(db, tx); 1743 1744 ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); 1745 ASSERT3U(lr->lr_size, <=, db->db_size); 1746 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx)); 1747 bbt = ztest_bt_bonus(db); 1748 1749 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg); 1750 1751 dmu_buf_rele(db, FTAG); 1752 1753 (void) ztest_log_setattr(zd, tx, lr); 1754 1755 dmu_tx_commit(tx); 1756 1757 ztest_object_unlock(zd, lr->lr_foid); 1758 1759 return (0); 1760 } 1761 1762 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 1763 NULL, /* 0 no such transaction type */ 1764 ztest_replay_create, /* TX_CREATE */ 1765 NULL, /* TX_MKDIR */ 1766 NULL, /* TX_MKXATTR */ 1767 NULL, /* TX_SYMLINK */ 1768 ztest_replay_remove, /* TX_REMOVE */ 1769 NULL, /* TX_RMDIR */ 1770 NULL, /* TX_LINK */ 1771 NULL, /* TX_RENAME */ 1772 ztest_replay_write, /* TX_WRITE */ 1773 ztest_replay_truncate, /* TX_TRUNCATE */ 1774 ztest_replay_setattr, /* TX_SETATTR */ 1775 NULL, /* TX_ACL */ 1776 NULL, /* TX_CREATE_ACL */ 1777 NULL, /* TX_CREATE_ATTR */ 1778 NULL, /* TX_CREATE_ACL_ATTR */ 1779 NULL, /* TX_MKDIR_ACL */ 1780 NULL, /* TX_MKDIR_ATTR */ 1781 NULL, /* TX_MKDIR_ACL_ATTR */ 1782 NULL, /* TX_WRITE2 */ 1783 }; 1784 1785 /* 1786 * ZIL get_data callbacks 1787 */ 1788 1789 static void 1790 ztest_get_done(zgd_t *zgd, int error) 1791 { 1792 ztest_ds_t *zd = zgd->zgd_private; 1793 uint64_t object = zgd->zgd_rl->rl_object; 1794 1795 if (zgd->zgd_db) 1796 dmu_buf_rele(zgd->zgd_db, zgd); 1797 1798 ztest_range_unlock(zgd->zgd_rl); 1799 ztest_object_unlock(zd, object); 1800 1801 if (error == 0 && zgd->zgd_bp) 1802 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 1803 1804 umem_free(zgd, sizeof (*zgd)); 1805 } 1806 1807 static int 1808 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 1809 { 1810 ztest_ds_t *zd = arg; 1811 objset_t *os = zd->zd_os; 1812 uint64_t object = lr->lr_foid; 1813 uint64_t offset = lr->lr_offset; 1814 uint64_t size = lr->lr_length; 1815 blkptr_t *bp = &lr->lr_blkptr; 1816 uint64_t txg = lr->lr_common.lrc_txg; 1817 uint64_t crtxg; 1818 dmu_object_info_t doi; 1819 dmu_buf_t *db; 1820 zgd_t *zgd; 1821 int error; 1822 1823 ztest_object_lock(zd, object, RL_READER); 1824 error = dmu_bonus_hold(os, object, FTAG, &db); 1825 if (error) { 1826 ztest_object_unlock(zd, object); 1827 return (error); 1828 } 1829 1830 crtxg = ztest_bt_bonus(db)->bt_crtxg; 1831 1832 if (crtxg == 0 || crtxg > txg) { 1833 dmu_buf_rele(db, FTAG); 1834 ztest_object_unlock(zd, object); 1835 return (ENOENT); 1836 } 1837 1838 dmu_object_info_from_db(db, &doi); 1839 dmu_buf_rele(db, FTAG); 1840 db = NULL; 1841 1842 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); 1843 zgd->zgd_zilog = zd->zd_zilog; 1844 zgd->zgd_private = zd; 1845 1846 if (buf != NULL) { /* immediate write */ 1847 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1848 RL_READER); 1849 1850 error = dmu_read(os, object, offset, size, buf, 1851 DMU_READ_NO_PREFETCH); 1852 ASSERT(error == 0); 1853 } else { 1854 size = doi.doi_data_block_size; 1855 if (ISP2(size)) { 1856 offset = P2ALIGN(offset, size); 1857 } else { 1858 ASSERT(offset < size); 1859 offset = 0; 1860 } 1861 1862 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1863 RL_READER); 1864 1865 error = dmu_buf_hold(os, object, offset, zgd, &db, 1866 DMU_READ_NO_PREFETCH); 1867 1868 if (error == 0) { 1869 blkptr_t *obp = dmu_buf_get_blkptr(db); 1870 if (obp) { 1871 ASSERT(BP_IS_HOLE(bp)); 1872 *bp = *obp; 1873 } 1874 1875 zgd->zgd_db = db; 1876 zgd->zgd_bp = bp; 1877 1878 ASSERT(db->db_offset == offset); 1879 ASSERT(db->db_size == size); 1880 1881 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1882 ztest_get_done, zgd); 1883 1884 if (error == 0) 1885 return (0); 1886 } 1887 } 1888 1889 ztest_get_done(zgd, error); 1890 1891 return (error); 1892 } 1893 1894 static void * 1895 ztest_lr_alloc(size_t lrsize, char *name) 1896 { 1897 char *lr; 1898 size_t namesize = name ? strlen(name) + 1 : 0; 1899 1900 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); 1901 1902 if (name) 1903 bcopy(name, lr + lrsize, namesize); 1904 1905 return (lr); 1906 } 1907 1908 void 1909 ztest_lr_free(void *lr, size_t lrsize, char *name) 1910 { 1911 size_t namesize = name ? strlen(name) + 1 : 0; 1912 1913 umem_free(lr, lrsize + namesize); 1914 } 1915 1916 /* 1917 * Lookup a bunch of objects. Returns the number of objects not found. 1918 */ 1919 static int 1920 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) 1921 { 1922 int missing = 0; 1923 int error; 1924 1925 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1926 1927 for (int i = 0; i < count; i++, od++) { 1928 od->od_object = 0; 1929 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, 1930 sizeof (uint64_t), 1, &od->od_object); 1931 if (error) { 1932 ASSERT(error == ENOENT); 1933 ASSERT(od->od_object == 0); 1934 missing++; 1935 } else { 1936 dmu_buf_t *db; 1937 ztest_block_tag_t *bbt; 1938 dmu_object_info_t doi; 1939 1940 ASSERT(od->od_object != 0); 1941 ASSERT(missing == 0); /* there should be no gaps */ 1942 1943 ztest_object_lock(zd, od->od_object, RL_READER); 1944 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os, 1945 od->od_object, FTAG, &db)); 1946 dmu_object_info_from_db(db, &doi); 1947 bbt = ztest_bt_bonus(db); 1948 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1949 od->od_type = doi.doi_type; 1950 od->od_blocksize = doi.doi_data_block_size; 1951 od->od_gen = bbt->bt_gen; 1952 dmu_buf_rele(db, FTAG); 1953 ztest_object_unlock(zd, od->od_object); 1954 } 1955 } 1956 1957 return (missing); 1958 } 1959 1960 static int 1961 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) 1962 { 1963 int missing = 0; 1964 1965 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1966 1967 for (int i = 0; i < count; i++, od++) { 1968 if (missing) { 1969 od->od_object = 0; 1970 missing++; 1971 continue; 1972 } 1973 1974 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 1975 1976 lr->lr_doid = od->od_dir; 1977 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ 1978 lr->lrz_type = od->od_crtype; 1979 lr->lrz_blocksize = od->od_crblocksize; 1980 lr->lrz_ibshift = ztest_random_ibshift(); 1981 lr->lrz_bonustype = DMU_OT_UINT64_OTHER; 1982 lr->lrz_bonuslen = dmu_bonus_max(); 1983 lr->lr_gen = od->od_crgen; 1984 lr->lr_crtime[0] = time(NULL); 1985 1986 if (ztest_replay_create(zd, lr, B_FALSE) != 0) { 1987 ASSERT(missing == 0); 1988 od->od_object = 0; 1989 missing++; 1990 } else { 1991 od->od_object = lr->lr_foid; 1992 od->od_type = od->od_crtype; 1993 od->od_blocksize = od->od_crblocksize; 1994 od->od_gen = od->od_crgen; 1995 ASSERT(od->od_object != 0); 1996 } 1997 1998 ztest_lr_free(lr, sizeof (*lr), od->od_name); 1999 } 2000 2001 return (missing); 2002 } 2003 2004 static int 2005 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) 2006 { 2007 int missing = 0; 2008 int error; 2009 2010 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 2011 2012 od += count - 1; 2013 2014 for (int i = count - 1; i >= 0; i--, od--) { 2015 if (missing) { 2016 missing++; 2017 continue; 2018 } 2019 2020 /* 2021 * No object was found. 2022 */ 2023 if (od->od_object == 0) 2024 continue; 2025 2026 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 2027 2028 lr->lr_doid = od->od_dir; 2029 2030 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { 2031 ASSERT3U(error, ==, ENOSPC); 2032 missing++; 2033 } else { 2034 od->od_object = 0; 2035 } 2036 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2037 } 2038 2039 return (missing); 2040 } 2041 2042 static int 2043 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, 2044 void *data) 2045 { 2046 lr_write_t *lr; 2047 int error; 2048 2049 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); 2050 2051 lr->lr_foid = object; 2052 lr->lr_offset = offset; 2053 lr->lr_length = size; 2054 lr->lr_blkoff = 0; 2055 BP_ZERO(&lr->lr_blkptr); 2056 2057 bcopy(data, lr + 1, size); 2058 2059 error = ztest_replay_write(zd, lr, B_FALSE); 2060 2061 ztest_lr_free(lr, sizeof (*lr) + size, NULL); 2062 2063 return (error); 2064 } 2065 2066 static int 2067 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2068 { 2069 lr_truncate_t *lr; 2070 int error; 2071 2072 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2073 2074 lr->lr_foid = object; 2075 lr->lr_offset = offset; 2076 lr->lr_length = size; 2077 2078 error = ztest_replay_truncate(zd, lr, B_FALSE); 2079 2080 ztest_lr_free(lr, sizeof (*lr), NULL); 2081 2082 return (error); 2083 } 2084 2085 static int 2086 ztest_setattr(ztest_ds_t *zd, uint64_t object) 2087 { 2088 lr_setattr_t *lr; 2089 int error; 2090 2091 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2092 2093 lr->lr_foid = object; 2094 lr->lr_size = 0; 2095 lr->lr_mode = 0; 2096 2097 error = ztest_replay_setattr(zd, lr, B_FALSE); 2098 2099 ztest_lr_free(lr, sizeof (*lr), NULL); 2100 2101 return (error); 2102 } 2103 2104 static void 2105 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2106 { 2107 objset_t *os = zd->zd_os; 2108 dmu_tx_t *tx; 2109 uint64_t txg; 2110 rl_t *rl; 2111 2112 txg_wait_synced(dmu_objset_pool(os), 0); 2113 2114 ztest_object_lock(zd, object, RL_READER); 2115 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); 2116 2117 tx = dmu_tx_create(os); 2118 2119 dmu_tx_hold_write(tx, object, offset, size); 2120 2121 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 2122 2123 if (txg != 0) { 2124 dmu_prealloc(os, object, offset, size, tx); 2125 dmu_tx_commit(tx); 2126 txg_wait_synced(dmu_objset_pool(os), txg); 2127 } else { 2128 (void) dmu_free_long_range(os, object, offset, size); 2129 } 2130 2131 ztest_range_unlock(rl); 2132 ztest_object_unlock(zd, object); 2133 } 2134 2135 static void 2136 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) 2137 { 2138 int err; 2139 ztest_block_tag_t wbt; 2140 dmu_object_info_t doi; 2141 enum ztest_io_type io_type; 2142 uint64_t blocksize; 2143 void *data; 2144 2145 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0); 2146 blocksize = doi.doi_data_block_size; 2147 data = umem_alloc(blocksize, UMEM_NOFAIL); 2148 2149 /* 2150 * Pick an i/o type at random, biased toward writing block tags. 2151 */ 2152 io_type = ztest_random(ZTEST_IO_TYPES); 2153 if (ztest_random(2) == 0) 2154 io_type = ZTEST_IO_WRITE_TAG; 2155 2156 (void) rw_rdlock(&zd->zd_zilog_lock); 2157 2158 switch (io_type) { 2159 2160 case ZTEST_IO_WRITE_TAG: 2161 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0); 2162 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); 2163 break; 2164 2165 case ZTEST_IO_WRITE_PATTERN: 2166 (void) memset(data, 'a' + (object + offset) % 5, blocksize); 2167 if (ztest_random(2) == 0) { 2168 /* 2169 * Induce fletcher2 collisions to ensure that 2170 * zio_ddt_collision() detects and resolves them 2171 * when using fletcher2-verify for deduplication. 2172 */ 2173 ((uint64_t *)data)[0] ^= 1ULL << 63; 2174 ((uint64_t *)data)[4] ^= 1ULL << 63; 2175 } 2176 (void) ztest_write(zd, object, offset, blocksize, data); 2177 break; 2178 2179 case ZTEST_IO_WRITE_ZEROES: 2180 bzero(data, blocksize); 2181 (void) ztest_write(zd, object, offset, blocksize, data); 2182 break; 2183 2184 case ZTEST_IO_TRUNCATE: 2185 (void) ztest_truncate(zd, object, offset, blocksize); 2186 break; 2187 2188 case ZTEST_IO_SETATTR: 2189 (void) ztest_setattr(zd, object); 2190 break; 2191 2192 case ZTEST_IO_REWRITE: 2193 (void) rw_rdlock(&ztest_name_lock); 2194 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2195 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa), 2196 B_FALSE); 2197 VERIFY(err == 0 || err == ENOSPC); 2198 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2199 ZFS_PROP_COMPRESSION, 2200 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), 2201 B_FALSE); 2202 VERIFY(err == 0 || err == ENOSPC); 2203 (void) rw_unlock(&ztest_name_lock); 2204 2205 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data, 2206 DMU_READ_NO_PREFETCH)); 2207 2208 (void) ztest_write(zd, object, offset, blocksize, data); 2209 break; 2210 } 2211 2212 (void) rw_unlock(&zd->zd_zilog_lock); 2213 2214 umem_free(data, blocksize); 2215 } 2216 2217 /* 2218 * Initialize an object description template. 2219 */ 2220 static void 2221 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index, 2222 dmu_object_type_t type, uint64_t blocksize, uint64_t gen) 2223 { 2224 od->od_dir = ZTEST_DIROBJ; 2225 od->od_object = 0; 2226 2227 od->od_crtype = type; 2228 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); 2229 od->od_crgen = gen; 2230 2231 od->od_type = DMU_OT_NONE; 2232 od->od_blocksize = 0; 2233 od->od_gen = 0; 2234 2235 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]", 2236 tag, (int64_t)id, index); 2237 } 2238 2239 /* 2240 * Lookup or create the objects for a test using the od template. 2241 * If the objects do not all exist, or if 'remove' is specified, 2242 * remove any existing objects and create new ones. Otherwise, 2243 * use the existing objects. 2244 */ 2245 static int 2246 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) 2247 { 2248 int count = size / sizeof (*od); 2249 int rv = 0; 2250 2251 VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0); 2252 if ((ztest_lookup(zd, od, count) != 0 || remove) && 2253 (ztest_remove(zd, od, count) != 0 || 2254 ztest_create(zd, od, count) != 0)) 2255 rv = -1; 2256 zd->zd_od = od; 2257 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2258 2259 return (rv); 2260 } 2261 2262 /* ARGSUSED */ 2263 void 2264 ztest_zil_commit(ztest_ds_t *zd, uint64_t id) 2265 { 2266 zilog_t *zilog = zd->zd_zilog; 2267 2268 (void) rw_rdlock(&zd->zd_zilog_lock); 2269 2270 zil_commit(zilog, ztest_random(ZTEST_OBJECTS)); 2271 2272 /* 2273 * Remember the committed values in zd, which is in parent/child 2274 * shared memory. If we die, the next iteration of ztest_run() 2275 * will verify that the log really does contain this record. 2276 */ 2277 mutex_enter(&zilog->zl_lock); 2278 ASSERT(zd->zd_shared != NULL); 2279 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq); 2280 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq; 2281 mutex_exit(&zilog->zl_lock); 2282 2283 (void) rw_unlock(&zd->zd_zilog_lock); 2284 } 2285 2286 /* 2287 * This function is designed to simulate the operations that occur during a 2288 * mount/unmount operation. We hold the dataset across these operations in an 2289 * attempt to expose any implicit assumptions about ZIL management. 2290 */ 2291 /* ARGSUSED */ 2292 void 2293 ztest_zil_remount(ztest_ds_t *zd, uint64_t id) 2294 { 2295 objset_t *os = zd->zd_os; 2296 2297 /* 2298 * We grab the zd_dirobj_lock to ensure that no other thread is 2299 * updating the zil (i.e. adding in-memory log records) and the 2300 * zd_zilog_lock to block any I/O. 2301 */ 2302 VERIFY0(mutex_lock(&zd->zd_dirobj_lock)); 2303 (void) rw_wrlock(&zd->zd_zilog_lock); 2304 2305 /* zfsvfs_teardown() */ 2306 zil_close(zd->zd_zilog); 2307 2308 /* zfsvfs_setup() */ 2309 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog); 2310 zil_replay(os, zd, ztest_replay_vector); 2311 2312 (void) rw_unlock(&zd->zd_zilog_lock); 2313 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2314 } 2315 2316 /* 2317 * Verify that we can't destroy an active pool, create an existing pool, 2318 * or create a pool with a bad vdev spec. 2319 */ 2320 /* ARGSUSED */ 2321 void 2322 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) 2323 { 2324 ztest_shared_opts_t *zo = &ztest_opts; 2325 spa_t *spa; 2326 nvlist_t *nvroot; 2327 2328 /* 2329 * Attempt to create using a bad file. 2330 */ 2331 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2332 VERIFY3U(ENOENT, ==, 2333 spa_create("ztest_bad_file", nvroot, NULL, NULL)); 2334 nvlist_free(nvroot); 2335 2336 /* 2337 * Attempt to create using a bad mirror. 2338 */ 2339 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1); 2340 VERIFY3U(ENOENT, ==, 2341 spa_create("ztest_bad_mirror", nvroot, NULL, NULL)); 2342 nvlist_free(nvroot); 2343 2344 /* 2345 * Attempt to create an existing pool. It shouldn't matter 2346 * what's in the nvroot; we should fail with EEXIST. 2347 */ 2348 (void) rw_rdlock(&ztest_name_lock); 2349 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2350 VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL)); 2351 nvlist_free(nvroot); 2352 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG)); 2353 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool)); 2354 spa_close(spa, FTAG); 2355 2356 (void) rw_unlock(&ztest_name_lock); 2357 } 2358 2359 /* ARGSUSED */ 2360 void 2361 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id) 2362 { 2363 spa_t *spa; 2364 uint64_t initial_version = SPA_VERSION_INITIAL; 2365 uint64_t version, newversion; 2366 nvlist_t *nvroot, *props; 2367 char *name; 2368 2369 VERIFY0(mutex_lock(&ztest_vdev_lock)); 2370 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool); 2371 2372 /* 2373 * Clean up from previous runs. 2374 */ 2375 (void) spa_destroy(name); 2376 2377 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0, 2378 0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1); 2379 2380 /* 2381 * If we're configuring a RAIDZ device then make sure that the 2382 * the initial version is capable of supporting that feature. 2383 */ 2384 switch (ztest_opts.zo_raidz_parity) { 2385 case 0: 2386 case 1: 2387 initial_version = SPA_VERSION_INITIAL; 2388 break; 2389 case 2: 2390 initial_version = SPA_VERSION_RAIDZ2; 2391 break; 2392 case 3: 2393 initial_version = SPA_VERSION_RAIDZ3; 2394 break; 2395 } 2396 2397 /* 2398 * Create a pool with a spa version that can be upgraded. Pick 2399 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES. 2400 */ 2401 do { 2402 version = ztest_random_spa_version(initial_version); 2403 } while (version > SPA_VERSION_BEFORE_FEATURES); 2404 2405 props = fnvlist_alloc(); 2406 fnvlist_add_uint64(props, 2407 zpool_prop_to_name(ZPOOL_PROP_VERSION), version); 2408 VERIFY0(spa_create(name, nvroot, props, NULL)); 2409 fnvlist_free(nvroot); 2410 fnvlist_free(props); 2411 2412 VERIFY0(spa_open(name, &spa, FTAG)); 2413 VERIFY3U(spa_version(spa), ==, version); 2414 newversion = ztest_random_spa_version(version + 1); 2415 2416 if (ztest_opts.zo_verbose >= 4) { 2417 (void) printf("upgrading spa version from %llu to %llu\n", 2418 (u_longlong_t)version, (u_longlong_t)newversion); 2419 } 2420 2421 spa_upgrade(spa, newversion); 2422 VERIFY3U(spa_version(spa), >, version); 2423 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config, 2424 zpool_prop_to_name(ZPOOL_PROP_VERSION))); 2425 spa_close(spa, FTAG); 2426 2427 strfree(name); 2428 VERIFY0(mutex_unlock(&ztest_vdev_lock)); 2429 } 2430 2431 static vdev_t * 2432 vdev_lookup_by_path(vdev_t *vd, const char *path) 2433 { 2434 vdev_t *mvd; 2435 2436 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 2437 return (vd); 2438 2439 for (int c = 0; c < vd->vdev_children; c++) 2440 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 2441 NULL) 2442 return (mvd); 2443 2444 return (NULL); 2445 } 2446 2447 /* 2448 * Find the first available hole which can be used as a top-level. 2449 */ 2450 int 2451 find_vdev_hole(spa_t *spa) 2452 { 2453 vdev_t *rvd = spa->spa_root_vdev; 2454 int c; 2455 2456 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); 2457 2458 for (c = 0; c < rvd->vdev_children; c++) { 2459 vdev_t *cvd = rvd->vdev_child[c]; 2460 2461 if (cvd->vdev_ishole) 2462 break; 2463 } 2464 return (c); 2465 } 2466 2467 /* 2468 * Verify that vdev_add() works as expected. 2469 */ 2470 /* ARGSUSED */ 2471 void 2472 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) 2473 { 2474 ztest_shared_t *zs = ztest_shared; 2475 spa_t *spa = ztest_spa; 2476 uint64_t leaves; 2477 uint64_t guid; 2478 nvlist_t *nvroot; 2479 int error; 2480 2481 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2482 leaves = 2483 MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz; 2484 2485 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2486 2487 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; 2488 2489 /* 2490 * If we have slogs then remove them 1/4 of the time. 2491 */ 2492 if (spa_has_slogs(spa) && ztest_random(4) == 0) { 2493 /* 2494 * Grab the guid from the head of the log class rotor. 2495 */ 2496 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid; 2497 2498 spa_config_exit(spa, SCL_VDEV, FTAG); 2499 2500 /* 2501 * We have to grab the zs_name_lock as writer to 2502 * prevent a race between removing a slog (dmu_objset_find) 2503 * and destroying a dataset. Removing the slog will 2504 * grab a reference on the dataset which may cause 2505 * dmu_objset_destroy() to fail with EBUSY thus 2506 * leaving the dataset in an inconsistent state. 2507 */ 2508 VERIFY(rw_wrlock(&ztest_name_lock) == 0); 2509 error = spa_vdev_remove(spa, guid, B_FALSE); 2510 VERIFY(rw_unlock(&ztest_name_lock) == 0); 2511 2512 if (error && error != EEXIST) 2513 fatal(0, "spa_vdev_remove() = %d", error); 2514 } else { 2515 spa_config_exit(spa, SCL_VDEV, FTAG); 2516 2517 /* 2518 * Make 1/4 of the devices be log devices. 2519 */ 2520 nvroot = make_vdev_root(NULL, NULL, NULL, 2521 ztest_opts.zo_vdev_size, 0, 2522 ztest_random(4) == 0, ztest_opts.zo_raidz, 2523 zs->zs_mirrors, 1); 2524 2525 error = spa_vdev_add(spa, nvroot); 2526 nvlist_free(nvroot); 2527 2528 if (error == ENOSPC) 2529 ztest_record_enospc("spa_vdev_add"); 2530 else if (error != 0) 2531 fatal(0, "spa_vdev_add() = %d", error); 2532 } 2533 2534 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2535 } 2536 2537 /* 2538 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 2539 */ 2540 /* ARGSUSED */ 2541 void 2542 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) 2543 { 2544 ztest_shared_t *zs = ztest_shared; 2545 spa_t *spa = ztest_spa; 2546 vdev_t *rvd = spa->spa_root_vdev; 2547 spa_aux_vdev_t *sav; 2548 char *aux; 2549 uint64_t guid = 0; 2550 int error; 2551 2552 if (ztest_random(2) == 0) { 2553 sav = &spa->spa_spares; 2554 aux = ZPOOL_CONFIG_SPARES; 2555 } else { 2556 sav = &spa->spa_l2cache; 2557 aux = ZPOOL_CONFIG_L2CACHE; 2558 } 2559 2560 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2561 2562 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2563 2564 if (sav->sav_count != 0 && ztest_random(4) == 0) { 2565 /* 2566 * Pick a random device to remove. 2567 */ 2568 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 2569 } else { 2570 /* 2571 * Find an unused device we can add. 2572 */ 2573 zs->zs_vdev_aux = 0; 2574 for (;;) { 2575 char path[MAXPATHLEN]; 2576 int c; 2577 (void) snprintf(path, sizeof (path), ztest_aux_template, 2578 ztest_opts.zo_dir, ztest_opts.zo_pool, aux, 2579 zs->zs_vdev_aux); 2580 for (c = 0; c < sav->sav_count; c++) 2581 if (strcmp(sav->sav_vdevs[c]->vdev_path, 2582 path) == 0) 2583 break; 2584 if (c == sav->sav_count && 2585 vdev_lookup_by_path(rvd, path) == NULL) 2586 break; 2587 zs->zs_vdev_aux++; 2588 } 2589 } 2590 2591 spa_config_exit(spa, SCL_VDEV, FTAG); 2592 2593 if (guid == 0) { 2594 /* 2595 * Add a new device. 2596 */ 2597 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL, 2598 (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 2599 error = spa_vdev_add(spa, nvroot); 2600 if (error != 0) 2601 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 2602 nvlist_free(nvroot); 2603 } else { 2604 /* 2605 * Remove an existing device. Sometimes, dirty its 2606 * vdev state first to make sure we handle removal 2607 * of devices that have pending state changes. 2608 */ 2609 if (ztest_random(2) == 0) 2610 (void) vdev_online(spa, guid, 0, NULL); 2611 2612 error = spa_vdev_remove(spa, guid, B_FALSE); 2613 if (error != 0 && error != EBUSY) 2614 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 2615 } 2616 2617 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2618 } 2619 2620 /* 2621 * split a pool if it has mirror tlvdevs 2622 */ 2623 /* ARGSUSED */ 2624 void 2625 ztest_split_pool(ztest_ds_t *zd, uint64_t id) 2626 { 2627 ztest_shared_t *zs = ztest_shared; 2628 spa_t *spa = ztest_spa; 2629 vdev_t *rvd = spa->spa_root_vdev; 2630 nvlist_t *tree, **child, *config, *split, **schild; 2631 uint_t c, children, schildren = 0, lastlogid = 0; 2632 int error = 0; 2633 2634 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2635 2636 /* ensure we have a useable config; mirrors of raidz aren't supported */ 2637 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) { 2638 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2639 return; 2640 } 2641 2642 /* clean up the old pool, if any */ 2643 (void) spa_destroy("splitp"); 2644 2645 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2646 2647 /* generate a config from the existing config */ 2648 mutex_enter(&spa->spa_props_lock); 2649 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE, 2650 &tree) == 0); 2651 mutex_exit(&spa->spa_props_lock); 2652 2653 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child, 2654 &children) == 0); 2655 2656 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *)); 2657 for (c = 0; c < children; c++) { 2658 vdev_t *tvd = rvd->vdev_child[c]; 2659 nvlist_t **mchild; 2660 uint_t mchildren; 2661 2662 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) { 2663 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME, 2664 0) == 0); 2665 VERIFY(nvlist_add_string(schild[schildren], 2666 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0); 2667 VERIFY(nvlist_add_uint64(schild[schildren], 2668 ZPOOL_CONFIG_IS_HOLE, 1) == 0); 2669 if (lastlogid == 0) 2670 lastlogid = schildren; 2671 ++schildren; 2672 continue; 2673 } 2674 lastlogid = 0; 2675 VERIFY(nvlist_lookup_nvlist_array(child[c], 2676 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0); 2677 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0); 2678 } 2679 2680 /* OK, create a config that can be used to split */ 2681 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0); 2682 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE, 2683 VDEV_TYPE_ROOT) == 0); 2684 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild, 2685 lastlogid != 0 ? lastlogid : schildren) == 0); 2686 2687 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0); 2688 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0); 2689 2690 for (c = 0; c < schildren; c++) 2691 nvlist_free(schild[c]); 2692 free(schild); 2693 nvlist_free(split); 2694 2695 spa_config_exit(spa, SCL_VDEV, FTAG); 2696 2697 (void) rw_wrlock(&ztest_name_lock); 2698 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE); 2699 (void) rw_unlock(&ztest_name_lock); 2700 2701 nvlist_free(config); 2702 2703 if (error == 0) { 2704 (void) printf("successful split - results:\n"); 2705 mutex_enter(&spa_namespace_lock); 2706 show_pool_stats(spa); 2707 show_pool_stats(spa_lookup("splitp")); 2708 mutex_exit(&spa_namespace_lock); 2709 ++zs->zs_splits; 2710 --zs->zs_mirrors; 2711 } 2712 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2713 2714 } 2715 2716 /* 2717 * Verify that we can attach and detach devices. 2718 */ 2719 /* ARGSUSED */ 2720 void 2721 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) 2722 { 2723 ztest_shared_t *zs = ztest_shared; 2724 spa_t *spa = ztest_spa; 2725 spa_aux_vdev_t *sav = &spa->spa_spares; 2726 vdev_t *rvd = spa->spa_root_vdev; 2727 vdev_t *oldvd, *newvd, *pvd; 2728 nvlist_t *root; 2729 uint64_t leaves; 2730 uint64_t leaf, top; 2731 uint64_t ashift = ztest_get_ashift(); 2732 uint64_t oldguid, pguid; 2733 size_t oldsize, newsize; 2734 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 2735 int replacing; 2736 int oldvd_has_siblings = B_FALSE; 2737 int newvd_is_spare = B_FALSE; 2738 int oldvd_is_log; 2739 int error, expected_error; 2740 2741 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2742 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 2743 2744 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2745 2746 /* 2747 * Decide whether to do an attach or a replace. 2748 */ 2749 replacing = ztest_random(2); 2750 2751 /* 2752 * Pick a random top-level vdev. 2753 */ 2754 top = ztest_random_vdev_top(spa, B_TRUE); 2755 2756 /* 2757 * Pick a random leaf within it. 2758 */ 2759 leaf = ztest_random(leaves); 2760 2761 /* 2762 * Locate this vdev. 2763 */ 2764 oldvd = rvd->vdev_child[top]; 2765 if (zs->zs_mirrors >= 1) { 2766 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 2767 ASSERT(oldvd->vdev_children >= zs->zs_mirrors); 2768 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz]; 2769 } 2770 if (ztest_opts.zo_raidz > 1) { 2771 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 2772 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz); 2773 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz]; 2774 } 2775 2776 /* 2777 * If we're already doing an attach or replace, oldvd may be a 2778 * mirror vdev -- in which case, pick a random child. 2779 */ 2780 while (oldvd->vdev_children != 0) { 2781 oldvd_has_siblings = B_TRUE; 2782 ASSERT(oldvd->vdev_children >= 2); 2783 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 2784 } 2785 2786 oldguid = oldvd->vdev_guid; 2787 oldsize = vdev_get_min_asize(oldvd); 2788 oldvd_is_log = oldvd->vdev_top->vdev_islog; 2789 (void) strcpy(oldpath, oldvd->vdev_path); 2790 pvd = oldvd->vdev_parent; 2791 pguid = pvd->vdev_guid; 2792 2793 /* 2794 * If oldvd has siblings, then half of the time, detach it. 2795 */ 2796 if (oldvd_has_siblings && ztest_random(2) == 0) { 2797 spa_config_exit(spa, SCL_VDEV, FTAG); 2798 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 2799 if (error != 0 && error != ENODEV && error != EBUSY && 2800 error != ENOTSUP) 2801 fatal(0, "detach (%s) returned %d", oldpath, error); 2802 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2803 return; 2804 } 2805 2806 /* 2807 * For the new vdev, choose with equal probability between the two 2808 * standard paths (ending in either 'a' or 'b') or a random hot spare. 2809 */ 2810 if (sav->sav_count != 0 && ztest_random(3) == 0) { 2811 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 2812 newvd_is_spare = B_TRUE; 2813 (void) strcpy(newpath, newvd->vdev_path); 2814 } else { 2815 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 2816 ztest_opts.zo_dir, ztest_opts.zo_pool, 2817 top * leaves + leaf); 2818 if (ztest_random(2) == 0) 2819 newpath[strlen(newpath) - 1] = 'b'; 2820 newvd = vdev_lookup_by_path(rvd, newpath); 2821 } 2822 2823 if (newvd) { 2824 newsize = vdev_get_min_asize(newvd); 2825 } else { 2826 /* 2827 * Make newsize a little bigger or smaller than oldsize. 2828 * If it's smaller, the attach should fail. 2829 * If it's larger, and we're doing a replace, 2830 * we should get dynamic LUN growth when we're done. 2831 */ 2832 newsize = 10 * oldsize / (9 + ztest_random(3)); 2833 } 2834 2835 /* 2836 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 2837 * unless it's a replace; in that case any non-replacing parent is OK. 2838 * 2839 * If newvd is already part of the pool, it should fail with EBUSY. 2840 * 2841 * If newvd is too small, it should fail with EOVERFLOW. 2842 */ 2843 if (pvd->vdev_ops != &vdev_mirror_ops && 2844 pvd->vdev_ops != &vdev_root_ops && (!replacing || 2845 pvd->vdev_ops == &vdev_replacing_ops || 2846 pvd->vdev_ops == &vdev_spare_ops)) 2847 expected_error = ENOTSUP; 2848 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 2849 expected_error = ENOTSUP; 2850 else if (newvd == oldvd) 2851 expected_error = replacing ? 0 : EBUSY; 2852 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 2853 expected_error = EBUSY; 2854 else if (newsize < oldsize) 2855 expected_error = EOVERFLOW; 2856 else if (ashift > oldvd->vdev_top->vdev_ashift) 2857 expected_error = EDOM; 2858 else 2859 expected_error = 0; 2860 2861 spa_config_exit(spa, SCL_VDEV, FTAG); 2862 2863 /* 2864 * Build the nvlist describing newpath. 2865 */ 2866 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0, 2867 ashift, 0, 0, 0, 1); 2868 2869 error = spa_vdev_attach(spa, oldguid, root, replacing); 2870 2871 nvlist_free(root); 2872 2873 /* 2874 * If our parent was the replacing vdev, but the replace completed, 2875 * then instead of failing with ENOTSUP we may either succeed, 2876 * fail with ENODEV, or fail with EOVERFLOW. 2877 */ 2878 if (expected_error == ENOTSUP && 2879 (error == 0 || error == ENODEV || error == EOVERFLOW)) 2880 expected_error = error; 2881 2882 /* 2883 * If someone grew the LUN, the replacement may be too small. 2884 */ 2885 if (error == EOVERFLOW || error == EBUSY) 2886 expected_error = error; 2887 2888 /* XXX workaround 6690467 */ 2889 if (error != expected_error && expected_error != EBUSY) { 2890 fatal(0, "attach (%s %llu, %s %llu, %d) " 2891 "returned %d, expected %d", 2892 oldpath, (longlong_t)oldsize, newpath, 2893 (longlong_t)newsize, replacing, error, expected_error); 2894 } 2895 2896 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2897 } 2898 2899 /* 2900 * Callback function which expands the physical size of the vdev. 2901 */ 2902 vdev_t * 2903 grow_vdev(vdev_t *vd, void *arg) 2904 { 2905 spa_t *spa = vd->vdev_spa; 2906 size_t *newsize = arg; 2907 size_t fsize; 2908 int fd; 2909 2910 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2911 ASSERT(vd->vdev_ops->vdev_op_leaf); 2912 2913 if ((fd = open(vd->vdev_path, O_RDWR)) == -1) 2914 return (vd); 2915 2916 fsize = lseek(fd, 0, SEEK_END); 2917 (void) ftruncate(fd, *newsize); 2918 2919 if (ztest_opts.zo_verbose >= 6) { 2920 (void) printf("%s grew from %lu to %lu bytes\n", 2921 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); 2922 } 2923 (void) close(fd); 2924 return (NULL); 2925 } 2926 2927 /* 2928 * Callback function which expands a given vdev by calling vdev_online(). 2929 */ 2930 /* ARGSUSED */ 2931 vdev_t * 2932 online_vdev(vdev_t *vd, void *arg) 2933 { 2934 spa_t *spa = vd->vdev_spa; 2935 vdev_t *tvd = vd->vdev_top; 2936 uint64_t guid = vd->vdev_guid; 2937 uint64_t generation = spa->spa_config_generation + 1; 2938 vdev_state_t newstate = VDEV_STATE_UNKNOWN; 2939 int error; 2940 2941 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2942 ASSERT(vd->vdev_ops->vdev_op_leaf); 2943 2944 /* Calling vdev_online will initialize the new metaslabs */ 2945 spa_config_exit(spa, SCL_STATE, spa); 2946 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); 2947 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2948 2949 /* 2950 * If vdev_online returned an error or the underlying vdev_open 2951 * failed then we abort the expand. The only way to know that 2952 * vdev_open fails is by checking the returned newstate. 2953 */ 2954 if (error || newstate != VDEV_STATE_HEALTHY) { 2955 if (ztest_opts.zo_verbose >= 5) { 2956 (void) printf("Unable to expand vdev, state %llu, " 2957 "error %d\n", (u_longlong_t)newstate, error); 2958 } 2959 return (vd); 2960 } 2961 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); 2962 2963 /* 2964 * Since we dropped the lock we need to ensure that we're 2965 * still talking to the original vdev. It's possible this 2966 * vdev may have been detached/replaced while we were 2967 * trying to online it. 2968 */ 2969 if (generation != spa->spa_config_generation) { 2970 if (ztest_opts.zo_verbose >= 5) { 2971 (void) printf("vdev configuration has changed, " 2972 "guid %llu, state %llu, expected gen %llu, " 2973 "got gen %llu\n", 2974 (u_longlong_t)guid, 2975 (u_longlong_t)tvd->vdev_state, 2976 (u_longlong_t)generation, 2977 (u_longlong_t)spa->spa_config_generation); 2978 } 2979 return (vd); 2980 } 2981 return (NULL); 2982 } 2983 2984 /* 2985 * Traverse the vdev tree calling the supplied function. 2986 * We continue to walk the tree until we either have walked all 2987 * children or we receive a non-NULL return from the callback. 2988 * If a NULL callback is passed, then we just return back the first 2989 * leaf vdev we encounter. 2990 */ 2991 vdev_t * 2992 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) 2993 { 2994 if (vd->vdev_ops->vdev_op_leaf) { 2995 if (func == NULL) 2996 return (vd); 2997 else 2998 return (func(vd, arg)); 2999 } 3000 3001 for (uint_t c = 0; c < vd->vdev_children; c++) { 3002 vdev_t *cvd = vd->vdev_child[c]; 3003 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) 3004 return (cvd); 3005 } 3006 return (NULL); 3007 } 3008 3009 /* 3010 * Verify that dynamic LUN growth works as expected. 3011 */ 3012 /* ARGSUSED */ 3013 void 3014 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) 3015 { 3016 spa_t *spa = ztest_spa; 3017 vdev_t *vd, *tvd; 3018 metaslab_class_t *mc; 3019 metaslab_group_t *mg; 3020 size_t psize, newsize; 3021 uint64_t top; 3022 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; 3023 3024 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 3025 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3026 3027 top = ztest_random_vdev_top(spa, B_TRUE); 3028 3029 tvd = spa->spa_root_vdev->vdev_child[top]; 3030 mg = tvd->vdev_mg; 3031 mc = mg->mg_class; 3032 old_ms_count = tvd->vdev_ms_count; 3033 old_class_space = metaslab_class_get_space(mc); 3034 3035 /* 3036 * Determine the size of the first leaf vdev associated with 3037 * our top-level device. 3038 */ 3039 vd = vdev_walk_tree(tvd, NULL, NULL); 3040 ASSERT3P(vd, !=, NULL); 3041 ASSERT(vd->vdev_ops->vdev_op_leaf); 3042 3043 psize = vd->vdev_psize; 3044 3045 /* 3046 * We only try to expand the vdev if it's healthy, less than 4x its 3047 * original size, and it has a valid psize. 3048 */ 3049 if (tvd->vdev_state != VDEV_STATE_HEALTHY || 3050 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) { 3051 spa_config_exit(spa, SCL_STATE, spa); 3052 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3053 return; 3054 } 3055 ASSERT(psize > 0); 3056 newsize = psize + psize / 8; 3057 ASSERT3U(newsize, >, psize); 3058 3059 if (ztest_opts.zo_verbose >= 6) { 3060 (void) printf("Expanding LUN %s from %lu to %lu\n", 3061 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); 3062 } 3063 3064 /* 3065 * Growing the vdev is a two step process: 3066 * 1). expand the physical size (i.e. relabel) 3067 * 2). online the vdev to create the new metaslabs 3068 */ 3069 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || 3070 vdev_walk_tree(tvd, online_vdev, NULL) != NULL || 3071 tvd->vdev_state != VDEV_STATE_HEALTHY) { 3072 if (ztest_opts.zo_verbose >= 5) { 3073 (void) printf("Could not expand LUN because " 3074 "the vdev configuration changed.\n"); 3075 } 3076 spa_config_exit(spa, SCL_STATE, spa); 3077 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3078 return; 3079 } 3080 3081 spa_config_exit(spa, SCL_STATE, spa); 3082 3083 /* 3084 * Expanding the LUN will update the config asynchronously, 3085 * thus we must wait for the async thread to complete any 3086 * pending tasks before proceeding. 3087 */ 3088 for (;;) { 3089 boolean_t done; 3090 mutex_enter(&spa->spa_async_lock); 3091 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); 3092 mutex_exit(&spa->spa_async_lock); 3093 if (done) 3094 break; 3095 txg_wait_synced(spa_get_dsl(spa), 0); 3096 (void) poll(NULL, 0, 100); 3097 } 3098 3099 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3100 3101 tvd = spa->spa_root_vdev->vdev_child[top]; 3102 new_ms_count = tvd->vdev_ms_count; 3103 new_class_space = metaslab_class_get_space(mc); 3104 3105 if (tvd->vdev_mg != mg || mg->mg_class != mc) { 3106 if (ztest_opts.zo_verbose >= 5) { 3107 (void) printf("Could not verify LUN expansion due to " 3108 "intervening vdev offline or remove.\n"); 3109 } 3110 spa_config_exit(spa, SCL_STATE, spa); 3111 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3112 return; 3113 } 3114 3115 /* 3116 * Make sure we were able to grow the vdev. 3117 */ 3118 if (new_ms_count <= old_ms_count) 3119 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n", 3120 old_ms_count, new_ms_count); 3121 3122 /* 3123 * Make sure we were able to grow the pool. 3124 */ 3125 if (new_class_space <= old_class_space) 3126 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n", 3127 old_class_space, new_class_space); 3128 3129 if (ztest_opts.zo_verbose >= 5) { 3130 char oldnumbuf[6], newnumbuf[6]; 3131 3132 nicenum(old_class_space, oldnumbuf); 3133 nicenum(new_class_space, newnumbuf); 3134 (void) printf("%s grew from %s to %s\n", 3135 spa->spa_name, oldnumbuf, newnumbuf); 3136 } 3137 3138 spa_config_exit(spa, SCL_STATE, spa); 3139 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3140 } 3141 3142 /* 3143 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 3144 */ 3145 /* ARGSUSED */ 3146 static void 3147 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 3148 { 3149 /* 3150 * Create the objects common to all ztest datasets. 3151 */ 3152 VERIFY(zap_create_claim(os, ZTEST_DIROBJ, 3153 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 3154 } 3155 3156 static int 3157 ztest_dataset_create(char *dsname) 3158 { 3159 uint64_t zilset = ztest_random(100); 3160 int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, 3161 ztest_objset_create_cb, NULL); 3162 3163 if (err || zilset < 80) 3164 return (err); 3165 3166 if (ztest_opts.zo_verbose >= 6) 3167 (void) printf("Setting dataset %s to sync always\n", dsname); 3168 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC, 3169 ZFS_SYNC_ALWAYS, B_FALSE)); 3170 } 3171 3172 /* ARGSUSED */ 3173 static int 3174 ztest_objset_destroy_cb(const char *name, void *arg) 3175 { 3176 objset_t *os; 3177 dmu_object_info_t doi; 3178 int error; 3179 3180 /* 3181 * Verify that the dataset contains a directory object. 3182 */ 3183 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os)); 3184 error = dmu_object_info(os, ZTEST_DIROBJ, &doi); 3185 if (error != ENOENT) { 3186 /* We could have crashed in the middle of destroying it */ 3187 ASSERT0(error); 3188 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); 3189 ASSERT3S(doi.doi_physical_blocks_512, >=, 0); 3190 } 3191 dmu_objset_rele(os, FTAG); 3192 3193 /* 3194 * Destroy the dataset. 3195 */ 3196 VERIFY3U(0, ==, dmu_objset_destroy(name, B_FALSE)); 3197 return (0); 3198 } 3199 3200 static boolean_t 3201 ztest_snapshot_create(char *osname, uint64_t id) 3202 { 3203 char snapname[MAXNAMELEN]; 3204 int error; 3205 3206 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname, 3207 (u_longlong_t)id); 3208 3209 error = dmu_objset_snapshot_one(osname, strchr(snapname, '@') + 1); 3210 if (error == ENOSPC) { 3211 ztest_record_enospc(FTAG); 3212 return (B_FALSE); 3213 } 3214 if (error != 0 && error != EEXIST) 3215 fatal(0, "ztest_snapshot_create(%s) = %d", snapname, error); 3216 return (B_TRUE); 3217 } 3218 3219 static boolean_t 3220 ztest_snapshot_destroy(char *osname, uint64_t id) 3221 { 3222 char snapname[MAXNAMELEN]; 3223 int error; 3224 3225 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname, 3226 (u_longlong_t)id); 3227 3228 error = dmu_objset_destroy(snapname, B_FALSE); 3229 if (error != 0 && error != ENOENT) 3230 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error); 3231 return (B_TRUE); 3232 } 3233 3234 /* ARGSUSED */ 3235 void 3236 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) 3237 { 3238 ztest_ds_t zdtmp; 3239 int iters; 3240 int error; 3241 objset_t *os, *os2; 3242 char name[MAXNAMELEN]; 3243 zilog_t *zilog; 3244 3245 (void) rw_rdlock(&ztest_name_lock); 3246 3247 (void) snprintf(name, MAXNAMELEN, "%s/temp_%llu", 3248 ztest_opts.zo_pool, (u_longlong_t)id); 3249 3250 /* 3251 * If this dataset exists from a previous run, process its replay log 3252 * half of the time. If we don't replay it, then dmu_objset_destroy() 3253 * (invoked from ztest_objset_destroy_cb()) should just throw it away. 3254 */ 3255 if (ztest_random(2) == 0 && 3256 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { 3257 ztest_zd_init(&zdtmp, NULL, os); 3258 zil_replay(os, &zdtmp, ztest_replay_vector); 3259 ztest_zd_fini(&zdtmp); 3260 dmu_objset_disown(os, FTAG); 3261 } 3262 3263 /* 3264 * There may be an old instance of the dataset we're about to 3265 * create lying around from a previous run. If so, destroy it 3266 * and all of its snapshots. 3267 */ 3268 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 3269 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 3270 3271 /* 3272 * Verify that the destroyed dataset is no longer in the namespace. 3273 */ 3274 VERIFY3U(ENOENT, ==, dmu_objset_hold(name, FTAG, &os)); 3275 3276 /* 3277 * Verify that we can create a new dataset. 3278 */ 3279 error = ztest_dataset_create(name); 3280 if (error) { 3281 if (error == ENOSPC) { 3282 ztest_record_enospc(FTAG); 3283 (void) rw_unlock(&ztest_name_lock); 3284 return; 3285 } 3286 fatal(0, "dmu_objset_create(%s) = %d", name, error); 3287 } 3288 3289 VERIFY3U(0, ==, 3290 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os)); 3291 3292 ztest_zd_init(&zdtmp, NULL, os); 3293 3294 /* 3295 * Open the intent log for it. 3296 */ 3297 zilog = zil_open(os, ztest_get_data); 3298 3299 /* 3300 * Put some objects in there, do a little I/O to them, 3301 * and randomly take a couple of snapshots along the way. 3302 */ 3303 iters = ztest_random(5); 3304 for (int i = 0; i < iters; i++) { 3305 ztest_dmu_object_alloc_free(&zdtmp, id); 3306 if (ztest_random(iters) == 0) 3307 (void) ztest_snapshot_create(name, i); 3308 } 3309 3310 /* 3311 * Verify that we cannot create an existing dataset. 3312 */ 3313 VERIFY3U(EEXIST, ==, 3314 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL)); 3315 3316 /* 3317 * Verify that we can hold an objset that is also owned. 3318 */ 3319 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2)); 3320 dmu_objset_rele(os2, FTAG); 3321 3322 /* 3323 * Verify that we cannot own an objset that is already owned. 3324 */ 3325 VERIFY3U(EBUSY, ==, 3326 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2)); 3327 3328 zil_close(zilog); 3329 dmu_objset_disown(os, FTAG); 3330 ztest_zd_fini(&zdtmp); 3331 3332 (void) rw_unlock(&ztest_name_lock); 3333 } 3334 3335 /* 3336 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 3337 */ 3338 void 3339 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) 3340 { 3341 (void) rw_rdlock(&ztest_name_lock); 3342 (void) ztest_snapshot_destroy(zd->zd_name, id); 3343 (void) ztest_snapshot_create(zd->zd_name, id); 3344 (void) rw_unlock(&ztest_name_lock); 3345 } 3346 3347 /* 3348 * Cleanup non-standard snapshots and clones. 3349 */ 3350 void 3351 ztest_dsl_dataset_cleanup(char *osname, uint64_t id) 3352 { 3353 char snap1name[MAXNAMELEN]; 3354 char clone1name[MAXNAMELEN]; 3355 char snap2name[MAXNAMELEN]; 3356 char clone2name[MAXNAMELEN]; 3357 char snap3name[MAXNAMELEN]; 3358 int error; 3359 3360 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 3361 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 3362 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 3363 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 3364 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 3365 3366 error = dmu_objset_destroy(clone2name, B_FALSE); 3367 if (error && error != ENOENT) 3368 fatal(0, "dmu_objset_destroy(%s) = %d", clone2name, error); 3369 error = dmu_objset_destroy(snap3name, B_FALSE); 3370 if (error && error != ENOENT) 3371 fatal(0, "dmu_objset_destroy(%s) = %d", snap3name, error); 3372 error = dmu_objset_destroy(snap2name, B_FALSE); 3373 if (error && error != ENOENT) 3374 fatal(0, "dmu_objset_destroy(%s) = %d", snap2name, error); 3375 error = dmu_objset_destroy(clone1name, B_FALSE); 3376 if (error && error != ENOENT) 3377 fatal(0, "dmu_objset_destroy(%s) = %d", clone1name, error); 3378 error = dmu_objset_destroy(snap1name, B_FALSE); 3379 if (error && error != ENOENT) 3380 fatal(0, "dmu_objset_destroy(%s) = %d", snap1name, error); 3381 } 3382 3383 /* 3384 * Verify dsl_dataset_promote handles EBUSY 3385 */ 3386 void 3387 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) 3388 { 3389 objset_t *clone; 3390 dsl_dataset_t *ds; 3391 char snap1name[MAXNAMELEN]; 3392 char clone1name[MAXNAMELEN]; 3393 char snap2name[MAXNAMELEN]; 3394 char clone2name[MAXNAMELEN]; 3395 char snap3name[MAXNAMELEN]; 3396 char *osname = zd->zd_name; 3397 int error; 3398 3399 (void) rw_rdlock(&ztest_name_lock); 3400 3401 ztest_dsl_dataset_cleanup(osname, id); 3402 3403 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 3404 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 3405 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 3406 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 3407 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 3408 3409 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1); 3410 if (error && error != EEXIST) { 3411 if (error == ENOSPC) { 3412 ztest_record_enospc(FTAG); 3413 goto out; 3414 } 3415 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 3416 } 3417 3418 error = dmu_objset_hold(snap1name, FTAG, &clone); 3419 if (error) 3420 fatal(0, "dmu_open_snapshot(%s) = %d", snap1name, error); 3421 3422 error = dmu_objset_clone(clone1name, dmu_objset_ds(clone), 0); 3423 dmu_objset_rele(clone, FTAG); 3424 if (error) { 3425 if (error == ENOSPC) { 3426 ztest_record_enospc(FTAG); 3427 goto out; 3428 } 3429 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 3430 } 3431 3432 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1); 3433 if (error && error != EEXIST) { 3434 if (error == ENOSPC) { 3435 ztest_record_enospc(FTAG); 3436 goto out; 3437 } 3438 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 3439 } 3440 3441 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1); 3442 if (error && error != EEXIST) { 3443 if (error == ENOSPC) { 3444 ztest_record_enospc(FTAG); 3445 goto out; 3446 } 3447 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3448 } 3449 3450 error = dmu_objset_hold(snap3name, FTAG, &clone); 3451 if (error) 3452 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3453 3454 error = dmu_objset_clone(clone2name, dmu_objset_ds(clone), 0); 3455 dmu_objset_rele(clone, FTAG); 3456 if (error) { 3457 if (error == ENOSPC) { 3458 ztest_record_enospc(FTAG); 3459 goto out; 3460 } 3461 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 3462 } 3463 3464 error = dsl_dataset_own(snap2name, B_FALSE, FTAG, &ds); 3465 if (error) 3466 fatal(0, "dsl_dataset_own(%s) = %d", snap2name, error); 3467 error = dsl_dataset_promote(clone2name, NULL); 3468 if (error != EBUSY) 3469 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 3470 error); 3471 dsl_dataset_disown(ds, FTAG); 3472 3473 out: 3474 ztest_dsl_dataset_cleanup(osname, id); 3475 3476 (void) rw_unlock(&ztest_name_lock); 3477 } 3478 3479 /* 3480 * Verify that dmu_object_{alloc,free} work as expected. 3481 */ 3482 void 3483 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) 3484 { 3485 ztest_od_t od[4]; 3486 int batchsize = sizeof (od) / sizeof (od[0]); 3487 3488 for (int b = 0; b < batchsize; b++) 3489 ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0); 3490 3491 /* 3492 * Destroy the previous batch of objects, create a new batch, 3493 * and do some I/O on the new objects. 3494 */ 3495 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0) 3496 return; 3497 3498 while (ztest_random(4 * batchsize) != 0) 3499 ztest_io(zd, od[ztest_random(batchsize)].od_object, 3500 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3501 } 3502 3503 /* 3504 * Verify that dmu_{read,write} work as expected. 3505 */ 3506 void 3507 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) 3508 { 3509 objset_t *os = zd->zd_os; 3510 ztest_od_t od[2]; 3511 dmu_tx_t *tx; 3512 int i, freeit, error; 3513 uint64_t n, s, txg; 3514 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 3515 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3516 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); 3517 uint64_t regions = 997; 3518 uint64_t stride = 123456789ULL; 3519 uint64_t width = 40; 3520 int free_percent = 5; 3521 3522 /* 3523 * This test uses two objects, packobj and bigobj, that are always 3524 * updated together (i.e. in the same tx) so that their contents are 3525 * in sync and can be compared. Their contents relate to each other 3526 * in a simple way: packobj is a dense array of 'bufwad' structures, 3527 * while bigobj is a sparse array of the same bufwads. Specifically, 3528 * for any index n, there are three bufwads that should be identical: 3529 * 3530 * packobj, at offset n * sizeof (bufwad_t) 3531 * bigobj, at the head of the nth chunk 3532 * bigobj, at the tail of the nth chunk 3533 * 3534 * The chunk size is arbitrary. It doesn't have to be a power of two, 3535 * and it doesn't have any relation to the object blocksize. 3536 * The only requirement is that it can hold at least two bufwads. 3537 * 3538 * Normally, we write the bufwad to each of these locations. 3539 * However, free_percent of the time we instead write zeroes to 3540 * packobj and perform a dmu_free_range() on bigobj. By comparing 3541 * bigobj to packobj, we can verify that the DMU is correctly 3542 * tracking which parts of an object are allocated and free, 3543 * and that the contents of the allocated blocks are correct. 3544 */ 3545 3546 /* 3547 * Read the directory info. If it's the first time, set things up. 3548 */ 3549 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize); 3550 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3551 3552 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3553 return; 3554 3555 bigobj = od[0].od_object; 3556 packobj = od[1].od_object; 3557 chunksize = od[0].od_gen; 3558 ASSERT(chunksize == od[1].od_gen); 3559 3560 /* 3561 * Prefetch a random chunk of the big object. 3562 * Our aim here is to get some async reads in flight 3563 * for blocks that we may free below; the DMU should 3564 * handle this race correctly. 3565 */ 3566 n = ztest_random(regions) * stride + ztest_random(width); 3567 s = 1 + ztest_random(2 * width - 1); 3568 dmu_prefetch(os, bigobj, n * chunksize, s * chunksize); 3569 3570 /* 3571 * Pick a random index and compute the offsets into packobj and bigobj. 3572 */ 3573 n = ztest_random(regions) * stride + ztest_random(width); 3574 s = 1 + ztest_random(width - 1); 3575 3576 packoff = n * sizeof (bufwad_t); 3577 packsize = s * sizeof (bufwad_t); 3578 3579 bigoff = n * chunksize; 3580 bigsize = s * chunksize; 3581 3582 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 3583 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 3584 3585 /* 3586 * free_percent of the time, free a range of bigobj rather than 3587 * overwriting it. 3588 */ 3589 freeit = (ztest_random(100) < free_percent); 3590 3591 /* 3592 * Read the current contents of our objects. 3593 */ 3594 error = dmu_read(os, packobj, packoff, packsize, packbuf, 3595 DMU_READ_PREFETCH); 3596 ASSERT0(error); 3597 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, 3598 DMU_READ_PREFETCH); 3599 ASSERT0(error); 3600 3601 /* 3602 * Get a tx for the mods to both packobj and bigobj. 3603 */ 3604 tx = dmu_tx_create(os); 3605 3606 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3607 3608 if (freeit) 3609 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); 3610 else 3611 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3612 3613 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3614 if (txg == 0) { 3615 umem_free(packbuf, packsize); 3616 umem_free(bigbuf, bigsize); 3617 return; 3618 } 3619 3620 dmu_object_set_checksum(os, bigobj, 3621 (enum zio_checksum)ztest_random_dsl_prop(ZFS_PROP_CHECKSUM), tx); 3622 3623 dmu_object_set_compress(os, bigobj, 3624 (enum zio_compress)ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), tx); 3625 3626 /* 3627 * For each index from n to n + s, verify that the existing bufwad 3628 * in packobj matches the bufwads at the head and tail of the 3629 * corresponding chunk in bigobj. Then update all three bufwads 3630 * with the new values we want to write out. 3631 */ 3632 for (i = 0; i < s; i++) { 3633 /* LINTED */ 3634 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3635 /* LINTED */ 3636 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3637 /* LINTED */ 3638 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3639 3640 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3641 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3642 3643 if (pack->bw_txg > txg) 3644 fatal(0, "future leak: got %llx, open txg is %llx", 3645 pack->bw_txg, txg); 3646 3647 if (pack->bw_data != 0 && pack->bw_index != n + i) 3648 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3649 pack->bw_index, n, i); 3650 3651 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3652 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3653 3654 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3655 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3656 3657 if (freeit) { 3658 bzero(pack, sizeof (bufwad_t)); 3659 } else { 3660 pack->bw_index = n + i; 3661 pack->bw_txg = txg; 3662 pack->bw_data = 1 + ztest_random(-2ULL); 3663 } 3664 *bigH = *pack; 3665 *bigT = *pack; 3666 } 3667 3668 /* 3669 * We've verified all the old bufwads, and made new ones. 3670 * Now write them out. 3671 */ 3672 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3673 3674 if (freeit) { 3675 if (ztest_opts.zo_verbose >= 7) { 3676 (void) printf("freeing offset %llx size %llx" 3677 " txg %llx\n", 3678 (u_longlong_t)bigoff, 3679 (u_longlong_t)bigsize, 3680 (u_longlong_t)txg); 3681 } 3682 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx)); 3683 } else { 3684 if (ztest_opts.zo_verbose >= 7) { 3685 (void) printf("writing offset %llx size %llx" 3686 " txg %llx\n", 3687 (u_longlong_t)bigoff, 3688 (u_longlong_t)bigsize, 3689 (u_longlong_t)txg); 3690 } 3691 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); 3692 } 3693 3694 dmu_tx_commit(tx); 3695 3696 /* 3697 * Sanity check the stuff we just wrote. 3698 */ 3699 { 3700 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3701 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3702 3703 VERIFY(0 == dmu_read(os, packobj, packoff, 3704 packsize, packcheck, DMU_READ_PREFETCH)); 3705 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3706 bigsize, bigcheck, DMU_READ_PREFETCH)); 3707 3708 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3709 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3710 3711 umem_free(packcheck, packsize); 3712 umem_free(bigcheck, bigsize); 3713 } 3714 3715 umem_free(packbuf, packsize); 3716 umem_free(bigbuf, bigsize); 3717 } 3718 3719 void 3720 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 3721 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) 3722 { 3723 uint64_t i; 3724 bufwad_t *pack; 3725 bufwad_t *bigH; 3726 bufwad_t *bigT; 3727 3728 /* 3729 * For each index from n to n + s, verify that the existing bufwad 3730 * in packobj matches the bufwads at the head and tail of the 3731 * corresponding chunk in bigobj. Then update all three bufwads 3732 * with the new values we want to write out. 3733 */ 3734 for (i = 0; i < s; i++) { 3735 /* LINTED */ 3736 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3737 /* LINTED */ 3738 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3739 /* LINTED */ 3740 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3741 3742 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3743 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3744 3745 if (pack->bw_txg > txg) 3746 fatal(0, "future leak: got %llx, open txg is %llx", 3747 pack->bw_txg, txg); 3748 3749 if (pack->bw_data != 0 && pack->bw_index != n + i) 3750 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3751 pack->bw_index, n, i); 3752 3753 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3754 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3755 3756 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3757 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3758 3759 pack->bw_index = n + i; 3760 pack->bw_txg = txg; 3761 pack->bw_data = 1 + ztest_random(-2ULL); 3762 3763 *bigH = *pack; 3764 *bigT = *pack; 3765 } 3766 } 3767 3768 void 3769 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) 3770 { 3771 objset_t *os = zd->zd_os; 3772 ztest_od_t od[2]; 3773 dmu_tx_t *tx; 3774 uint64_t i; 3775 int error; 3776 uint64_t n, s, txg; 3777 bufwad_t *packbuf, *bigbuf; 3778 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3779 uint64_t blocksize = ztest_random_blocksize(); 3780 uint64_t chunksize = blocksize; 3781 uint64_t regions = 997; 3782 uint64_t stride = 123456789ULL; 3783 uint64_t width = 9; 3784 dmu_buf_t *bonus_db; 3785 arc_buf_t **bigbuf_arcbufs; 3786 dmu_object_info_t doi; 3787 3788 /* 3789 * This test uses two objects, packobj and bigobj, that are always 3790 * updated together (i.e. in the same tx) so that their contents are 3791 * in sync and can be compared. Their contents relate to each other 3792 * in a simple way: packobj is a dense array of 'bufwad' structures, 3793 * while bigobj is a sparse array of the same bufwads. Specifically, 3794 * for any index n, there are three bufwads that should be identical: 3795 * 3796 * packobj, at offset n * sizeof (bufwad_t) 3797 * bigobj, at the head of the nth chunk 3798 * bigobj, at the tail of the nth chunk 3799 * 3800 * The chunk size is set equal to bigobj block size so that 3801 * dmu_assign_arcbuf() can be tested for object updates. 3802 */ 3803 3804 /* 3805 * Read the directory info. If it's the first time, set things up. 3806 */ 3807 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 3808 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3809 3810 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3811 return; 3812 3813 bigobj = od[0].od_object; 3814 packobj = od[1].od_object; 3815 blocksize = od[0].od_blocksize; 3816 chunksize = blocksize; 3817 ASSERT(chunksize == od[1].od_gen); 3818 3819 VERIFY(dmu_object_info(os, bigobj, &doi) == 0); 3820 VERIFY(ISP2(doi.doi_data_block_size)); 3821 VERIFY(chunksize == doi.doi_data_block_size); 3822 VERIFY(chunksize >= 2 * sizeof (bufwad_t)); 3823 3824 /* 3825 * Pick a random index and compute the offsets into packobj and bigobj. 3826 */ 3827 n = ztest_random(regions) * stride + ztest_random(width); 3828 s = 1 + ztest_random(width - 1); 3829 3830 packoff = n * sizeof (bufwad_t); 3831 packsize = s * sizeof (bufwad_t); 3832 3833 bigoff = n * chunksize; 3834 bigsize = s * chunksize; 3835 3836 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 3837 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 3838 3839 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); 3840 3841 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 3842 3843 /* 3844 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 3845 * Iteration 1 test zcopy to already referenced dbufs. 3846 * Iteration 2 test zcopy to dirty dbuf in the same txg. 3847 * Iteration 3 test zcopy to dbuf dirty in previous txg. 3848 * Iteration 4 test zcopy when dbuf is no longer dirty. 3849 * Iteration 5 test zcopy when it can't be done. 3850 * Iteration 6 one more zcopy write. 3851 */ 3852 for (i = 0; i < 7; i++) { 3853 uint64_t j; 3854 uint64_t off; 3855 3856 /* 3857 * In iteration 5 (i == 5) use arcbufs 3858 * that don't match bigobj blksz to test 3859 * dmu_assign_arcbuf() when it can't directly 3860 * assign an arcbuf to a dbuf. 3861 */ 3862 for (j = 0; j < s; j++) { 3863 if (i != 5) { 3864 bigbuf_arcbufs[j] = 3865 dmu_request_arcbuf(bonus_db, chunksize); 3866 } else { 3867 bigbuf_arcbufs[2 * j] = 3868 dmu_request_arcbuf(bonus_db, chunksize / 2); 3869 bigbuf_arcbufs[2 * j + 1] = 3870 dmu_request_arcbuf(bonus_db, chunksize / 2); 3871 } 3872 } 3873 3874 /* 3875 * Get a tx for the mods to both packobj and bigobj. 3876 */ 3877 tx = dmu_tx_create(os); 3878 3879 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3880 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3881 3882 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3883 if (txg == 0) { 3884 umem_free(packbuf, packsize); 3885 umem_free(bigbuf, bigsize); 3886 for (j = 0; j < s; j++) { 3887 if (i != 5) { 3888 dmu_return_arcbuf(bigbuf_arcbufs[j]); 3889 } else { 3890 dmu_return_arcbuf( 3891 bigbuf_arcbufs[2 * j]); 3892 dmu_return_arcbuf( 3893 bigbuf_arcbufs[2 * j + 1]); 3894 } 3895 } 3896 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3897 dmu_buf_rele(bonus_db, FTAG); 3898 return; 3899 } 3900 3901 /* 3902 * 50% of the time don't read objects in the 1st iteration to 3903 * test dmu_assign_arcbuf() for the case when there're no 3904 * existing dbufs for the specified offsets. 3905 */ 3906 if (i != 0 || ztest_random(2) != 0) { 3907 error = dmu_read(os, packobj, packoff, 3908 packsize, packbuf, DMU_READ_PREFETCH); 3909 ASSERT0(error); 3910 error = dmu_read(os, bigobj, bigoff, bigsize, 3911 bigbuf, DMU_READ_PREFETCH); 3912 ASSERT0(error); 3913 } 3914 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 3915 n, chunksize, txg); 3916 3917 /* 3918 * We've verified all the old bufwads, and made new ones. 3919 * Now write them out. 3920 */ 3921 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3922 if (ztest_opts.zo_verbose >= 7) { 3923 (void) printf("writing offset %llx size %llx" 3924 " txg %llx\n", 3925 (u_longlong_t)bigoff, 3926 (u_longlong_t)bigsize, 3927 (u_longlong_t)txg); 3928 } 3929 for (off = bigoff, j = 0; j < s; j++, off += chunksize) { 3930 dmu_buf_t *dbt; 3931 if (i != 5) { 3932 bcopy((caddr_t)bigbuf + (off - bigoff), 3933 bigbuf_arcbufs[j]->b_data, chunksize); 3934 } else { 3935 bcopy((caddr_t)bigbuf + (off - bigoff), 3936 bigbuf_arcbufs[2 * j]->b_data, 3937 chunksize / 2); 3938 bcopy((caddr_t)bigbuf + (off - bigoff) + 3939 chunksize / 2, 3940 bigbuf_arcbufs[2 * j + 1]->b_data, 3941 chunksize / 2); 3942 } 3943 3944 if (i == 1) { 3945 VERIFY(dmu_buf_hold(os, bigobj, off, 3946 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0); 3947 } 3948 if (i != 5) { 3949 dmu_assign_arcbuf(bonus_db, off, 3950 bigbuf_arcbufs[j], tx); 3951 } else { 3952 dmu_assign_arcbuf(bonus_db, off, 3953 bigbuf_arcbufs[2 * j], tx); 3954 dmu_assign_arcbuf(bonus_db, 3955 off + chunksize / 2, 3956 bigbuf_arcbufs[2 * j + 1], tx); 3957 } 3958 if (i == 1) { 3959 dmu_buf_rele(dbt, FTAG); 3960 } 3961 } 3962 dmu_tx_commit(tx); 3963 3964 /* 3965 * Sanity check the stuff we just wrote. 3966 */ 3967 { 3968 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3969 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3970 3971 VERIFY(0 == dmu_read(os, packobj, packoff, 3972 packsize, packcheck, DMU_READ_PREFETCH)); 3973 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3974 bigsize, bigcheck, DMU_READ_PREFETCH)); 3975 3976 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3977 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3978 3979 umem_free(packcheck, packsize); 3980 umem_free(bigcheck, bigsize); 3981 } 3982 if (i == 2) { 3983 txg_wait_open(dmu_objset_pool(os), 0); 3984 } else if (i == 3) { 3985 txg_wait_synced(dmu_objset_pool(os), 0); 3986 } 3987 } 3988 3989 dmu_buf_rele(bonus_db, FTAG); 3990 umem_free(packbuf, packsize); 3991 umem_free(bigbuf, bigsize); 3992 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3993 } 3994 3995 /* ARGSUSED */ 3996 void 3997 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) 3998 { 3999 ztest_od_t od[1]; 4000 uint64_t offset = (1ULL << (ztest_random(20) + 43)) + 4001 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4002 4003 /* 4004 * Have multiple threads write to large offsets in an object 4005 * to verify that parallel writes to an object -- even to the 4006 * same blocks within the object -- doesn't cause any trouble. 4007 */ 4008 ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4009 4010 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4011 return; 4012 4013 while (ztest_random(10) != 0) 4014 ztest_io(zd, od[0].od_object, offset); 4015 } 4016 4017 void 4018 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) 4019 { 4020 ztest_od_t od[1]; 4021 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + 4022 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4023 uint64_t count = ztest_random(20) + 1; 4024 uint64_t blocksize = ztest_random_blocksize(); 4025 void *data; 4026 4027 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4028 4029 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4030 return; 4031 4032 if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0) 4033 return; 4034 4035 ztest_prealloc(zd, od[0].od_object, offset, count * blocksize); 4036 4037 data = umem_zalloc(blocksize, UMEM_NOFAIL); 4038 4039 while (ztest_random(count) != 0) { 4040 uint64_t randoff = offset + (ztest_random(count) * blocksize); 4041 if (ztest_write(zd, od[0].od_object, randoff, blocksize, 4042 data) != 0) 4043 break; 4044 while (ztest_random(4) != 0) 4045 ztest_io(zd, od[0].od_object, randoff); 4046 } 4047 4048 umem_free(data, blocksize); 4049 } 4050 4051 /* 4052 * Verify that zap_{create,destroy,add,remove,update} work as expected. 4053 */ 4054 #define ZTEST_ZAP_MIN_INTS 1 4055 #define ZTEST_ZAP_MAX_INTS 4 4056 #define ZTEST_ZAP_MAX_PROPS 1000 4057 4058 void 4059 ztest_zap(ztest_ds_t *zd, uint64_t id) 4060 { 4061 objset_t *os = zd->zd_os; 4062 ztest_od_t od[1]; 4063 uint64_t object; 4064 uint64_t txg, last_txg; 4065 uint64_t value[ZTEST_ZAP_MAX_INTS]; 4066 uint64_t zl_ints, zl_intsize, prop; 4067 int i, ints; 4068 dmu_tx_t *tx; 4069 char propname[100], txgname[100]; 4070 int error; 4071 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 4072 4073 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4074 4075 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4076 return; 4077 4078 object = od[0].od_object; 4079 4080 /* 4081 * Generate a known hash collision, and verify that 4082 * we can lookup and remove both entries. 4083 */ 4084 tx = dmu_tx_create(os); 4085 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4086 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4087 if (txg == 0) 4088 return; 4089 for (i = 0; i < 2; i++) { 4090 value[i] = i; 4091 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 4092 1, &value[i], tx)); 4093 } 4094 for (i = 0; i < 2; i++) { 4095 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], 4096 sizeof (uint64_t), 1, &value[i], tx)); 4097 VERIFY3U(0, ==, 4098 zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); 4099 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4100 ASSERT3U(zl_ints, ==, 1); 4101 } 4102 for (i = 0; i < 2; i++) { 4103 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx)); 4104 } 4105 dmu_tx_commit(tx); 4106 4107 /* 4108 * Generate a buch of random entries. 4109 */ 4110 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 4111 4112 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4113 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4114 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4115 bzero(value, sizeof (value)); 4116 last_txg = 0; 4117 4118 /* 4119 * If these zap entries already exist, validate their contents. 4120 */ 4121 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4122 if (error == 0) { 4123 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4124 ASSERT3U(zl_ints, ==, 1); 4125 4126 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 4127 zl_ints, &last_txg) == 0); 4128 4129 VERIFY(zap_length(os, object, propname, &zl_intsize, 4130 &zl_ints) == 0); 4131 4132 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4133 ASSERT3U(zl_ints, ==, ints); 4134 4135 VERIFY(zap_lookup(os, object, propname, zl_intsize, 4136 zl_ints, value) == 0); 4137 4138 for (i = 0; i < ints; i++) { 4139 ASSERT3U(value[i], ==, last_txg + object + i); 4140 } 4141 } else { 4142 ASSERT3U(error, ==, ENOENT); 4143 } 4144 4145 /* 4146 * Atomically update two entries in our zap object. 4147 * The first is named txg_%llu, and contains the txg 4148 * in which the property was last updated. The second 4149 * is named prop_%llu, and the nth element of its value 4150 * should be txg + object + n. 4151 */ 4152 tx = dmu_tx_create(os); 4153 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4154 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4155 if (txg == 0) 4156 return; 4157 4158 if (last_txg > txg) 4159 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 4160 4161 for (i = 0; i < ints; i++) 4162 value[i] = txg + object + i; 4163 4164 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t), 4165 1, &txg, tx)); 4166 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t), 4167 ints, value, tx)); 4168 4169 dmu_tx_commit(tx); 4170 4171 /* 4172 * Remove a random pair of entries. 4173 */ 4174 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4175 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4176 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4177 4178 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4179 4180 if (error == ENOENT) 4181 return; 4182 4183 ASSERT0(error); 4184 4185 tx = dmu_tx_create(os); 4186 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4187 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4188 if (txg == 0) 4189 return; 4190 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx)); 4191 VERIFY3U(0, ==, zap_remove(os, object, propname, tx)); 4192 dmu_tx_commit(tx); 4193 } 4194 4195 /* 4196 * Testcase to test the upgrading of a microzap to fatzap. 4197 */ 4198 void 4199 ztest_fzap(ztest_ds_t *zd, uint64_t id) 4200 { 4201 objset_t *os = zd->zd_os; 4202 ztest_od_t od[1]; 4203 uint64_t object, txg; 4204 4205 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4206 4207 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4208 return; 4209 4210 object = od[0].od_object; 4211 4212 /* 4213 * Add entries to this ZAP and make sure it spills over 4214 * and gets upgraded to a fatzap. Also, since we are adding 4215 * 2050 entries we should see ptrtbl growth and leaf-block split. 4216 */ 4217 for (int i = 0; i < 2050; i++) { 4218 char name[MAXNAMELEN]; 4219 uint64_t value = i; 4220 dmu_tx_t *tx; 4221 int error; 4222 4223 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu", 4224 id, value); 4225 4226 tx = dmu_tx_create(os); 4227 dmu_tx_hold_zap(tx, object, B_TRUE, name); 4228 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4229 if (txg == 0) 4230 return; 4231 error = zap_add(os, object, name, sizeof (uint64_t), 1, 4232 &value, tx); 4233 ASSERT(error == 0 || error == EEXIST); 4234 dmu_tx_commit(tx); 4235 } 4236 } 4237 4238 /* ARGSUSED */ 4239 void 4240 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) 4241 { 4242 objset_t *os = zd->zd_os; 4243 ztest_od_t od[1]; 4244 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 4245 dmu_tx_t *tx; 4246 int i, namelen, error; 4247 int micro = ztest_random(2); 4248 char name[20], string_value[20]; 4249 void *data; 4250 4251 ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0); 4252 4253 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4254 return; 4255 4256 object = od[0].od_object; 4257 4258 /* 4259 * Generate a random name of the form 'xxx.....' where each 4260 * x is a random printable character and the dots are dots. 4261 * There are 94 such characters, and the name length goes from 4262 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 4263 */ 4264 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 4265 4266 for (i = 0; i < 3; i++) 4267 name[i] = '!' + ztest_random('~' - '!' + 1); 4268 for (; i < namelen - 1; i++) 4269 name[i] = '.'; 4270 name[i] = '\0'; 4271 4272 if ((namelen & 1) || micro) { 4273 wsize = sizeof (txg); 4274 wc = 1; 4275 data = &txg; 4276 } else { 4277 wsize = 1; 4278 wc = namelen; 4279 data = string_value; 4280 } 4281 4282 count = -1ULL; 4283 VERIFY(zap_count(os, object, &count) == 0); 4284 ASSERT(count != -1ULL); 4285 4286 /* 4287 * Select an operation: length, lookup, add, update, remove. 4288 */ 4289 i = ztest_random(5); 4290 4291 if (i >= 2) { 4292 tx = dmu_tx_create(os); 4293 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4294 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4295 if (txg == 0) 4296 return; 4297 bcopy(name, string_value, namelen); 4298 } else { 4299 tx = NULL; 4300 txg = 0; 4301 bzero(string_value, namelen); 4302 } 4303 4304 switch (i) { 4305 4306 case 0: 4307 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 4308 if (error == 0) { 4309 ASSERT3U(wsize, ==, zl_wsize); 4310 ASSERT3U(wc, ==, zl_wc); 4311 } else { 4312 ASSERT3U(error, ==, ENOENT); 4313 } 4314 break; 4315 4316 case 1: 4317 error = zap_lookup(os, object, name, wsize, wc, data); 4318 if (error == 0) { 4319 if (data == string_value && 4320 bcmp(name, data, namelen) != 0) 4321 fatal(0, "name '%s' != val '%s' len %d", 4322 name, data, namelen); 4323 } else { 4324 ASSERT3U(error, ==, ENOENT); 4325 } 4326 break; 4327 4328 case 2: 4329 error = zap_add(os, object, name, wsize, wc, data, tx); 4330 ASSERT(error == 0 || error == EEXIST); 4331 break; 4332 4333 case 3: 4334 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 4335 break; 4336 4337 case 4: 4338 error = zap_remove(os, object, name, tx); 4339 ASSERT(error == 0 || error == ENOENT); 4340 break; 4341 } 4342 4343 if (tx != NULL) 4344 dmu_tx_commit(tx); 4345 } 4346 4347 /* 4348 * Commit callback data. 4349 */ 4350 typedef struct ztest_cb_data { 4351 list_node_t zcd_node; 4352 uint64_t zcd_txg; 4353 int zcd_expected_err; 4354 boolean_t zcd_added; 4355 boolean_t zcd_called; 4356 spa_t *zcd_spa; 4357 } ztest_cb_data_t; 4358 4359 /* This is the actual commit callback function */ 4360 static void 4361 ztest_commit_callback(void *arg, int error) 4362 { 4363 ztest_cb_data_t *data = arg; 4364 uint64_t synced_txg; 4365 4366 VERIFY(data != NULL); 4367 VERIFY3S(data->zcd_expected_err, ==, error); 4368 VERIFY(!data->zcd_called); 4369 4370 synced_txg = spa_last_synced_txg(data->zcd_spa); 4371 if (data->zcd_txg > synced_txg) 4372 fatal(0, "commit callback of txg %" PRIu64 " called prematurely" 4373 ", last synced txg = %" PRIu64 "\n", data->zcd_txg, 4374 synced_txg); 4375 4376 data->zcd_called = B_TRUE; 4377 4378 if (error == ECANCELED) { 4379 ASSERT0(data->zcd_txg); 4380 ASSERT(!data->zcd_added); 4381 4382 /* 4383 * The private callback data should be destroyed here, but 4384 * since we are going to check the zcd_called field after 4385 * dmu_tx_abort(), we will destroy it there. 4386 */ 4387 return; 4388 } 4389 4390 /* Was this callback added to the global callback list? */ 4391 if (!data->zcd_added) 4392 goto out; 4393 4394 ASSERT3U(data->zcd_txg, !=, 0); 4395 4396 /* Remove our callback from the list */ 4397 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4398 list_remove(&zcl.zcl_callbacks, data); 4399 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4400 4401 out: 4402 umem_free(data, sizeof (ztest_cb_data_t)); 4403 } 4404 4405 /* Allocate and initialize callback data structure */ 4406 static ztest_cb_data_t * 4407 ztest_create_cb_data(objset_t *os, uint64_t txg) 4408 { 4409 ztest_cb_data_t *cb_data; 4410 4411 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); 4412 4413 cb_data->zcd_txg = txg; 4414 cb_data->zcd_spa = dmu_objset_spa(os); 4415 4416 return (cb_data); 4417 } 4418 4419 /* 4420 * If a number of txgs equal to this threshold have been created after a commit 4421 * callback has been registered but not called, then we assume there is an 4422 * implementation bug. 4423 */ 4424 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) 4425 4426 /* 4427 * Commit callback test. 4428 */ 4429 void 4430 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) 4431 { 4432 objset_t *os = zd->zd_os; 4433 ztest_od_t od[1]; 4434 dmu_tx_t *tx; 4435 ztest_cb_data_t *cb_data[3], *tmp_cb; 4436 uint64_t old_txg, txg; 4437 int i, error; 4438 4439 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4440 4441 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4442 return; 4443 4444 tx = dmu_tx_create(os); 4445 4446 cb_data[0] = ztest_create_cb_data(os, 0); 4447 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); 4448 4449 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t)); 4450 4451 /* Every once in a while, abort the transaction on purpose */ 4452 if (ztest_random(100) == 0) 4453 error = -1; 4454 4455 if (!error) 4456 error = dmu_tx_assign(tx, TXG_NOWAIT); 4457 4458 txg = error ? 0 : dmu_tx_get_txg(tx); 4459 4460 cb_data[0]->zcd_txg = txg; 4461 cb_data[1] = ztest_create_cb_data(os, txg); 4462 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); 4463 4464 if (error) { 4465 /* 4466 * It's not a strict requirement to call the registered 4467 * callbacks from inside dmu_tx_abort(), but that's what 4468 * it's supposed to happen in the current implementation 4469 * so we will check for that. 4470 */ 4471 for (i = 0; i < 2; i++) { 4472 cb_data[i]->zcd_expected_err = ECANCELED; 4473 VERIFY(!cb_data[i]->zcd_called); 4474 } 4475 4476 dmu_tx_abort(tx); 4477 4478 for (i = 0; i < 2; i++) { 4479 VERIFY(cb_data[i]->zcd_called); 4480 umem_free(cb_data[i], sizeof (ztest_cb_data_t)); 4481 } 4482 4483 return; 4484 } 4485 4486 cb_data[2] = ztest_create_cb_data(os, txg); 4487 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); 4488 4489 /* 4490 * Read existing data to make sure there isn't a future leak. 4491 */ 4492 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t), 4493 &old_txg, DMU_READ_PREFETCH)); 4494 4495 if (old_txg > txg) 4496 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, 4497 old_txg, txg); 4498 4499 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx); 4500 4501 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4502 4503 /* 4504 * Since commit callbacks don't have any ordering requirement and since 4505 * it is theoretically possible for a commit callback to be called 4506 * after an arbitrary amount of time has elapsed since its txg has been 4507 * synced, it is difficult to reliably determine whether a commit 4508 * callback hasn't been called due to high load or due to a flawed 4509 * implementation. 4510 * 4511 * In practice, we will assume that if after a certain number of txgs a 4512 * commit callback hasn't been called, then most likely there's an 4513 * implementation bug.. 4514 */ 4515 tmp_cb = list_head(&zcl.zcl_callbacks); 4516 if (tmp_cb != NULL && 4517 tmp_cb->zcd_txg > txg - ZTEST_COMMIT_CALLBACK_THRESH) { 4518 fatal(0, "Commit callback threshold exceeded, oldest txg: %" 4519 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); 4520 } 4521 4522 /* 4523 * Let's find the place to insert our callbacks. 4524 * 4525 * Even though the list is ordered by txg, it is possible for the 4526 * insertion point to not be the end because our txg may already be 4527 * quiescing at this point and other callbacks in the open txg 4528 * (from other objsets) may have sneaked in. 4529 */ 4530 tmp_cb = list_tail(&zcl.zcl_callbacks); 4531 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) 4532 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); 4533 4534 /* Add the 3 callbacks to the list */ 4535 for (i = 0; i < 3; i++) { 4536 if (tmp_cb == NULL) 4537 list_insert_head(&zcl.zcl_callbacks, cb_data[i]); 4538 else 4539 list_insert_after(&zcl.zcl_callbacks, tmp_cb, 4540 cb_data[i]); 4541 4542 cb_data[i]->zcd_added = B_TRUE; 4543 VERIFY(!cb_data[i]->zcd_called); 4544 4545 tmp_cb = cb_data[i]; 4546 } 4547 4548 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4549 4550 dmu_tx_commit(tx); 4551 } 4552 4553 /* ARGSUSED */ 4554 void 4555 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) 4556 { 4557 zfs_prop_t proplist[] = { 4558 ZFS_PROP_CHECKSUM, 4559 ZFS_PROP_COMPRESSION, 4560 ZFS_PROP_COPIES, 4561 ZFS_PROP_DEDUP 4562 }; 4563 4564 (void) rw_rdlock(&ztest_name_lock); 4565 4566 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) 4567 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], 4568 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); 4569 4570 (void) rw_unlock(&ztest_name_lock); 4571 } 4572 4573 /* ARGSUSED */ 4574 void 4575 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) 4576 { 4577 nvlist_t *props = NULL; 4578 4579 (void) rw_rdlock(&ztest_name_lock); 4580 4581 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO, 4582 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN)); 4583 4584 VERIFY0(spa_prop_get(ztest_spa, &props)); 4585 4586 if (ztest_opts.zo_verbose >= 6) 4587 dump_nvlist(props, 4); 4588 4589 nvlist_free(props); 4590 4591 (void) rw_unlock(&ztest_name_lock); 4592 } 4593 4594 /* 4595 * Test snapshot hold/release and deferred destroy. 4596 */ 4597 void 4598 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) 4599 { 4600 int error; 4601 objset_t *os = zd->zd_os; 4602 objset_t *origin; 4603 char snapname[100]; 4604 char fullname[100]; 4605 char clonename[100]; 4606 char tag[100]; 4607 char osname[MAXNAMELEN]; 4608 4609 (void) rw_rdlock(&ztest_name_lock); 4610 4611 dmu_objset_name(os, osname); 4612 4613 (void) snprintf(snapname, 100, "sh1_%llu", id); 4614 (void) snprintf(fullname, 100, "%s@%s", osname, snapname); 4615 (void) snprintf(clonename, 100, "%s/ch1_%llu", osname, id); 4616 (void) snprintf(tag, 100, "%tag_%llu", id); 4617 4618 /* 4619 * Clean up from any previous run. 4620 */ 4621 (void) dmu_objset_destroy(clonename, B_FALSE); 4622 (void) dsl_dataset_user_release(osname, snapname, tag, B_FALSE); 4623 (void) dmu_objset_destroy(fullname, B_FALSE); 4624 4625 /* 4626 * Create snapshot, clone it, mark snap for deferred destroy, 4627 * destroy clone, verify snap was also destroyed. 4628 */ 4629 error = dmu_objset_snapshot_one(osname, snapname); 4630 if (error) { 4631 if (error == ENOSPC) { 4632 ztest_record_enospc("dmu_objset_snapshot"); 4633 goto out; 4634 } 4635 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4636 } 4637 4638 error = dmu_objset_hold(fullname, FTAG, &origin); 4639 if (error) 4640 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4641 4642 error = dmu_objset_clone(clonename, dmu_objset_ds(origin), 0); 4643 dmu_objset_rele(origin, FTAG); 4644 if (error) { 4645 if (error == ENOSPC) { 4646 ztest_record_enospc("dmu_objset_clone"); 4647 goto out; 4648 } 4649 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); 4650 } 4651 4652 error = dmu_objset_destroy(fullname, B_TRUE); 4653 if (error) { 4654 fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d", 4655 fullname, error); 4656 } 4657 4658 error = dmu_objset_destroy(clonename, B_FALSE); 4659 if (error) 4660 fatal(0, "dmu_objset_destroy(%s) = %d", clonename, error); 4661 4662 error = dmu_objset_hold(fullname, FTAG, &origin); 4663 if (error != ENOENT) 4664 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4665 4666 /* 4667 * Create snapshot, add temporary hold, verify that we can't 4668 * destroy a held snapshot, mark for deferred destroy, 4669 * release hold, verify snapshot was destroyed. 4670 */ 4671 error = dmu_objset_snapshot_one(osname, snapname); 4672 if (error) { 4673 if (error == ENOSPC) { 4674 ztest_record_enospc("dmu_objset_snapshot"); 4675 goto out; 4676 } 4677 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4678 } 4679 4680 error = dsl_dataset_user_hold(osname, snapname, tag, B_FALSE, 4681 B_TRUE, -1); 4682 if (error) 4683 fatal(0, "dsl_dataset_user_hold(%s)", fullname, tag); 4684 4685 error = dmu_objset_destroy(fullname, B_FALSE); 4686 if (error != EBUSY) { 4687 fatal(0, "dmu_objset_destroy(%s, B_FALSE) = %d", 4688 fullname, error); 4689 } 4690 4691 error = dmu_objset_destroy(fullname, B_TRUE); 4692 if (error) { 4693 fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d", 4694 fullname, error); 4695 } 4696 4697 error = dsl_dataset_user_release(osname, snapname, tag, B_FALSE); 4698 if (error) 4699 fatal(0, "dsl_dataset_user_release(%s)", fullname, tag); 4700 4701 VERIFY(dmu_objset_hold(fullname, FTAG, &origin) == ENOENT); 4702 4703 out: 4704 (void) rw_unlock(&ztest_name_lock); 4705 } 4706 4707 /* 4708 * Inject random faults into the on-disk data. 4709 */ 4710 /* ARGSUSED */ 4711 void 4712 ztest_fault_inject(ztest_ds_t *zd, uint64_t id) 4713 { 4714 ztest_shared_t *zs = ztest_shared; 4715 spa_t *spa = ztest_spa; 4716 int fd; 4717 uint64_t offset; 4718 uint64_t leaves; 4719 uint64_t bad = 0x1990c0ffeedecade; 4720 uint64_t top, leaf; 4721 char path0[MAXPATHLEN]; 4722 char pathrand[MAXPATHLEN]; 4723 size_t fsize; 4724 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ 4725 int iters = 1000; 4726 int maxfaults; 4727 int mirror_save; 4728 vdev_t *vd0 = NULL; 4729 uint64_t guid0 = 0; 4730 boolean_t islog = B_FALSE; 4731 4732 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4733 maxfaults = MAXFAULTS(); 4734 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 4735 mirror_save = zs->zs_mirrors; 4736 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4737 4738 ASSERT(leaves >= 1); 4739 4740 /* 4741 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 4742 */ 4743 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4744 4745 if (ztest_random(2) == 0) { 4746 /* 4747 * Inject errors on a normal data device or slog device. 4748 */ 4749 top = ztest_random_vdev_top(spa, B_TRUE); 4750 leaf = ztest_random(leaves) + zs->zs_splits; 4751 4752 /* 4753 * Generate paths to the first leaf in this top-level vdev, 4754 * and to the random leaf we selected. We'll induce transient 4755 * write failures and random online/offline activity on leaf 0, 4756 * and we'll write random garbage to the randomly chosen leaf. 4757 */ 4758 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 4759 ztest_opts.zo_dir, ztest_opts.zo_pool, 4760 top * leaves + zs->zs_splits); 4761 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 4762 ztest_opts.zo_dir, ztest_opts.zo_pool, 4763 top * leaves + leaf); 4764 4765 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 4766 if (vd0 != NULL && vd0->vdev_top->vdev_islog) 4767 islog = B_TRUE; 4768 4769 if (vd0 != NULL && maxfaults != 1) { 4770 /* 4771 * Make vd0 explicitly claim to be unreadable, 4772 * or unwriteable, or reach behind its back 4773 * and close the underlying fd. We can do this if 4774 * maxfaults == 0 because we'll fail and reexecute, 4775 * and we can do it if maxfaults >= 2 because we'll 4776 * have enough redundancy. If maxfaults == 1, the 4777 * combination of this with injection of random data 4778 * corruption below exceeds the pool's fault tolerance. 4779 */ 4780 vdev_file_t *vf = vd0->vdev_tsd; 4781 4782 if (vf != NULL && ztest_random(3) == 0) { 4783 (void) close(vf->vf_vnode->v_fd); 4784 vf->vf_vnode->v_fd = -1; 4785 } else if (ztest_random(2) == 0) { 4786 vd0->vdev_cant_read = B_TRUE; 4787 } else { 4788 vd0->vdev_cant_write = B_TRUE; 4789 } 4790 guid0 = vd0->vdev_guid; 4791 } 4792 } else { 4793 /* 4794 * Inject errors on an l2cache device. 4795 */ 4796 spa_aux_vdev_t *sav = &spa->spa_l2cache; 4797 4798 if (sav->sav_count == 0) { 4799 spa_config_exit(spa, SCL_STATE, FTAG); 4800 return; 4801 } 4802 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 4803 guid0 = vd0->vdev_guid; 4804 (void) strcpy(path0, vd0->vdev_path); 4805 (void) strcpy(pathrand, vd0->vdev_path); 4806 4807 leaf = 0; 4808 leaves = 1; 4809 maxfaults = INT_MAX; /* no limit on cache devices */ 4810 } 4811 4812 spa_config_exit(spa, SCL_STATE, FTAG); 4813 4814 /* 4815 * If we can tolerate two or more faults, or we're dealing 4816 * with a slog, randomly online/offline vd0. 4817 */ 4818 if ((maxfaults >= 2 || islog) && guid0 != 0) { 4819 if (ztest_random(10) < 6) { 4820 int flags = (ztest_random(2) == 0 ? 4821 ZFS_OFFLINE_TEMPORARY : 0); 4822 4823 /* 4824 * We have to grab the zs_name_lock as writer to 4825 * prevent a race between offlining a slog and 4826 * destroying a dataset. Offlining the slog will 4827 * grab a reference on the dataset which may cause 4828 * dmu_objset_destroy() to fail with EBUSY thus 4829 * leaving the dataset in an inconsistent state. 4830 */ 4831 if (islog) 4832 (void) rw_wrlock(&ztest_name_lock); 4833 4834 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 4835 4836 if (islog) 4837 (void) rw_unlock(&ztest_name_lock); 4838 } else { 4839 /* 4840 * Ideally we would like to be able to randomly 4841 * call vdev_[on|off]line without holding locks 4842 * to force unpredictable failures but the side 4843 * effects of vdev_[on|off]line prevent us from 4844 * doing so. We grab the ztest_vdev_lock here to 4845 * prevent a race between injection testing and 4846 * aux_vdev removal. 4847 */ 4848 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4849 (void) vdev_online(spa, guid0, 0, NULL); 4850 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4851 } 4852 } 4853 4854 if (maxfaults == 0) 4855 return; 4856 4857 /* 4858 * We have at least single-fault tolerance, so inject data corruption. 4859 */ 4860 fd = open(pathrand, O_RDWR); 4861 4862 if (fd == -1) /* we hit a gap in the device namespace */ 4863 return; 4864 4865 fsize = lseek(fd, 0, SEEK_END); 4866 4867 while (--iters != 0) { 4868 offset = ztest_random(fsize / (leaves << bshift)) * 4869 (leaves << bshift) + (leaf << bshift) + 4870 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 4871 4872 if (offset >= fsize) 4873 continue; 4874 4875 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4876 if (mirror_save != zs->zs_mirrors) { 4877 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4878 (void) close(fd); 4879 return; 4880 } 4881 4882 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 4883 fatal(1, "can't inject bad word at 0x%llx in %s", 4884 offset, pathrand); 4885 4886 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4887 4888 if (ztest_opts.zo_verbose >= 7) 4889 (void) printf("injected bad word into %s," 4890 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 4891 } 4892 4893 (void) close(fd); 4894 } 4895 4896 /* 4897 * Verify that DDT repair works as expected. 4898 */ 4899 void 4900 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id) 4901 { 4902 ztest_shared_t *zs = ztest_shared; 4903 spa_t *spa = ztest_spa; 4904 objset_t *os = zd->zd_os; 4905 ztest_od_t od[1]; 4906 uint64_t object, blocksize, txg, pattern, psize; 4907 enum zio_checksum checksum = spa_dedup_checksum(spa); 4908 dmu_buf_t *db; 4909 dmu_tx_t *tx; 4910 void *buf; 4911 blkptr_t blk; 4912 int copies = 2 * ZIO_DEDUPDITTO_MIN; 4913 4914 blocksize = ztest_random_blocksize(); 4915 blocksize = MIN(blocksize, 2048); /* because we write so many */ 4916 4917 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4918 4919 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4920 return; 4921 4922 /* 4923 * Take the name lock as writer to prevent anyone else from changing 4924 * the pool and dataset properies we need to maintain during this test. 4925 */ 4926 (void) rw_wrlock(&ztest_name_lock); 4927 4928 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum, 4929 B_FALSE) != 0 || 4930 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1, 4931 B_FALSE) != 0) { 4932 (void) rw_unlock(&ztest_name_lock); 4933 return; 4934 } 4935 4936 object = od[0].od_object; 4937 blocksize = od[0].od_blocksize; 4938 pattern = zs->zs_guid ^ dmu_objset_fsid_guid(os); 4939 4940 ASSERT(object != 0); 4941 4942 tx = dmu_tx_create(os); 4943 dmu_tx_hold_write(tx, object, 0, copies * blocksize); 4944 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 4945 if (txg == 0) { 4946 (void) rw_unlock(&ztest_name_lock); 4947 return; 4948 } 4949 4950 /* 4951 * Write all the copies of our block. 4952 */ 4953 for (int i = 0; i < copies; i++) { 4954 uint64_t offset = i * blocksize; 4955 VERIFY0(dmu_buf_hold(os, object, offset, FTAG, &db, 4956 DMU_READ_NO_PREFETCH)); 4957 ASSERT(db->db_offset == offset); 4958 ASSERT(db->db_size == blocksize); 4959 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) || 4960 ztest_pattern_match(db->db_data, db->db_size, 0ULL)); 4961 dmu_buf_will_fill(db, tx); 4962 ztest_pattern_set(db->db_data, db->db_size, pattern); 4963 dmu_buf_rele(db, FTAG); 4964 } 4965 4966 dmu_tx_commit(tx); 4967 txg_wait_synced(spa_get_dsl(spa), txg); 4968 4969 /* 4970 * Find out what block we got. 4971 */ 4972 VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db, 4973 DMU_READ_NO_PREFETCH)); 4974 blk = *((dmu_buf_impl_t *)db)->db_blkptr; 4975 dmu_buf_rele(db, FTAG); 4976 4977 /* 4978 * Damage the block. Dedup-ditto will save us when we read it later. 4979 */ 4980 psize = BP_GET_PSIZE(&blk); 4981 buf = zio_buf_alloc(psize); 4982 ztest_pattern_set(buf, psize, ~pattern); 4983 4984 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk, 4985 buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, 4986 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL)); 4987 4988 zio_buf_free(buf, psize); 4989 4990 (void) rw_unlock(&ztest_name_lock); 4991 } 4992 4993 /* 4994 * Scrub the pool. 4995 */ 4996 /* ARGSUSED */ 4997 void 4998 ztest_scrub(ztest_ds_t *zd, uint64_t id) 4999 { 5000 spa_t *spa = ztest_spa; 5001 5002 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5003 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */ 5004 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5005 } 5006 5007 /* 5008 * Change the guid for the pool. 5009 */ 5010 /* ARGSUSED */ 5011 void 5012 ztest_reguid(ztest_ds_t *zd, uint64_t id) 5013 { 5014 spa_t *spa = ztest_spa; 5015 uint64_t orig, load; 5016 int error; 5017 5018 orig = spa_guid(spa); 5019 load = spa_load_guid(spa); 5020 5021 (void) rw_wrlock(&ztest_name_lock); 5022 error = spa_change_guid(spa); 5023 (void) rw_unlock(&ztest_name_lock); 5024 5025 if (error != 0) 5026 return; 5027 5028 if (ztest_opts.zo_verbose >= 4) { 5029 (void) printf("Changed guid old %llu -> %llu\n", 5030 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa)); 5031 } 5032 5033 VERIFY3U(orig, !=, spa_guid(spa)); 5034 VERIFY3U(load, ==, spa_load_guid(spa)); 5035 } 5036 5037 /* 5038 * Rename the pool to a different name and then rename it back. 5039 */ 5040 /* ARGSUSED */ 5041 void 5042 ztest_spa_rename(ztest_ds_t *zd, uint64_t id) 5043 { 5044 char *oldname, *newname; 5045 spa_t *spa; 5046 5047 (void) rw_wrlock(&ztest_name_lock); 5048 5049 oldname = ztest_opts.zo_pool; 5050 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 5051 (void) strcpy(newname, oldname); 5052 (void) strcat(newname, "_tmp"); 5053 5054 /* 5055 * Do the rename 5056 */ 5057 VERIFY3U(0, ==, spa_rename(oldname, newname)); 5058 5059 /* 5060 * Try to open it under the old name, which shouldn't exist 5061 */ 5062 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5063 5064 /* 5065 * Open it under the new name and make sure it's still the same spa_t. 5066 */ 5067 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5068 5069 ASSERT(spa == ztest_spa); 5070 spa_close(spa, FTAG); 5071 5072 /* 5073 * Rename it back to the original 5074 */ 5075 VERIFY3U(0, ==, spa_rename(newname, oldname)); 5076 5077 /* 5078 * Make sure it can still be opened 5079 */ 5080 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5081 5082 ASSERT(spa == ztest_spa); 5083 spa_close(spa, FTAG); 5084 5085 umem_free(newname, strlen(newname) + 1); 5086 5087 (void) rw_unlock(&ztest_name_lock); 5088 } 5089 5090 /* 5091 * Verify pool integrity by running zdb. 5092 */ 5093 static void 5094 ztest_run_zdb(char *pool) 5095 { 5096 int status; 5097 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 5098 char zbuf[1024]; 5099 char *bin; 5100 char *ztest; 5101 char *isa; 5102 int isalen; 5103 FILE *fp; 5104 5105 (void) realpath(getexecname(), zdb); 5106 5107 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 5108 bin = strstr(zdb, "/usr/bin/"); 5109 ztest = strstr(bin, "/ztest"); 5110 isa = bin + 8; 5111 isalen = ztest - isa; 5112 isa = strdup(isa); 5113 /* LINTED */ 5114 (void) sprintf(bin, 5115 "/usr/sbin%.*s/zdb -bcc%s%s -U %s %s", 5116 isalen, 5117 isa, 5118 ztest_opts.zo_verbose >= 3 ? "s" : "", 5119 ztest_opts.zo_verbose >= 4 ? "v" : "", 5120 spa_config_path, 5121 pool); 5122 free(isa); 5123 5124 if (ztest_opts.zo_verbose >= 5) 5125 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 5126 5127 fp = popen(zdb, "r"); 5128 5129 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 5130 if (ztest_opts.zo_verbose >= 3) 5131 (void) printf("%s", zbuf); 5132 5133 status = pclose(fp); 5134 5135 if (status == 0) 5136 return; 5137 5138 ztest_dump_core = 0; 5139 if (WIFEXITED(status)) 5140 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 5141 else 5142 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 5143 } 5144 5145 static void 5146 ztest_walk_pool_directory(char *header) 5147 { 5148 spa_t *spa = NULL; 5149 5150 if (ztest_opts.zo_verbose >= 6) 5151 (void) printf("%s\n", header); 5152 5153 mutex_enter(&spa_namespace_lock); 5154 while ((spa = spa_next(spa)) != NULL) 5155 if (ztest_opts.zo_verbose >= 6) 5156 (void) printf("\t%s\n", spa_name(spa)); 5157 mutex_exit(&spa_namespace_lock); 5158 } 5159 5160 static void 5161 ztest_spa_import_export(char *oldname, char *newname) 5162 { 5163 nvlist_t *config, *newconfig; 5164 uint64_t pool_guid; 5165 spa_t *spa; 5166 5167 if (ztest_opts.zo_verbose >= 4) { 5168 (void) printf("import/export: old = %s, new = %s\n", 5169 oldname, newname); 5170 } 5171 5172 /* 5173 * Clean up from previous runs. 5174 */ 5175 (void) spa_destroy(newname); 5176 5177 /* 5178 * Get the pool's configuration and guid. 5179 */ 5180 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5181 5182 /* 5183 * Kick off a scrub to tickle scrub/export races. 5184 */ 5185 if (ztest_random(2) == 0) 5186 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5187 5188 pool_guid = spa_guid(spa); 5189 spa_close(spa, FTAG); 5190 5191 ztest_walk_pool_directory("pools before export"); 5192 5193 /* 5194 * Export it. 5195 */ 5196 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE)); 5197 5198 ztest_walk_pool_directory("pools after export"); 5199 5200 /* 5201 * Try to import it. 5202 */ 5203 newconfig = spa_tryimport(config); 5204 ASSERT(newconfig != NULL); 5205 nvlist_free(newconfig); 5206 5207 /* 5208 * Import it under the new name. 5209 */ 5210 VERIFY3U(0, ==, spa_import(newname, config, NULL, 0)); 5211 5212 ztest_walk_pool_directory("pools after import"); 5213 5214 /* 5215 * Try to import it again -- should fail with EEXIST. 5216 */ 5217 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0)); 5218 5219 /* 5220 * Try to import it under a different name -- should fail with EEXIST. 5221 */ 5222 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0)); 5223 5224 /* 5225 * Verify that the pool is no longer visible under the old name. 5226 */ 5227 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5228 5229 /* 5230 * Verify that we can open and close the pool using the new name. 5231 */ 5232 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5233 ASSERT(pool_guid == spa_guid(spa)); 5234 spa_close(spa, FTAG); 5235 5236 nvlist_free(config); 5237 } 5238 5239 static void 5240 ztest_resume(spa_t *spa) 5241 { 5242 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6) 5243 (void) printf("resuming from suspended state\n"); 5244 spa_vdev_state_enter(spa, SCL_NONE); 5245 vdev_clear(spa, NULL); 5246 (void) spa_vdev_state_exit(spa, NULL, 0); 5247 (void) zio_resume(spa); 5248 } 5249 5250 static void * 5251 ztest_resume_thread(void *arg) 5252 { 5253 spa_t *spa = arg; 5254 5255 while (!ztest_exiting) { 5256 if (spa_suspended(spa)) 5257 ztest_resume(spa); 5258 (void) poll(NULL, 0, 100); 5259 } 5260 return (NULL); 5261 } 5262 5263 static void * 5264 ztest_deadman_thread(void *arg) 5265 { 5266 ztest_shared_t *zs = arg; 5267 int grace = 300; 5268 hrtime_t delta; 5269 5270 delta = (zs->zs_thread_stop - zs->zs_thread_start) / NANOSEC + grace; 5271 5272 (void) poll(NULL, 0, (int)(1000 * delta)); 5273 5274 fatal(0, "failed to complete within %d seconds of deadline", grace); 5275 5276 return (NULL); 5277 } 5278 5279 static void 5280 ztest_execute(int test, ztest_info_t *zi, uint64_t id) 5281 { 5282 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets]; 5283 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test); 5284 hrtime_t functime = gethrtime(); 5285 5286 for (int i = 0; i < zi->zi_iters; i++) 5287 zi->zi_func(zd, id); 5288 5289 functime = gethrtime() - functime; 5290 5291 atomic_add_64(&zc->zc_count, 1); 5292 atomic_add_64(&zc->zc_time, functime); 5293 5294 if (ztest_opts.zo_verbose >= 4) { 5295 Dl_info dli; 5296 (void) dladdr((void *)zi->zi_func, &dli); 5297 (void) printf("%6.2f sec in %s\n", 5298 (double)functime / NANOSEC, dli.dli_sname); 5299 } 5300 } 5301 5302 static void * 5303 ztest_thread(void *arg) 5304 { 5305 int rand; 5306 uint64_t id = (uintptr_t)arg; 5307 ztest_shared_t *zs = ztest_shared; 5308 uint64_t call_next; 5309 hrtime_t now; 5310 ztest_info_t *zi; 5311 ztest_shared_callstate_t *zc; 5312 5313 while ((now = gethrtime()) < zs->zs_thread_stop) { 5314 /* 5315 * See if it's time to force a crash. 5316 */ 5317 if (now > zs->zs_thread_kill) 5318 ztest_kill(zs); 5319 5320 /* 5321 * If we're getting ENOSPC with some regularity, stop. 5322 */ 5323 if (zs->zs_enospc_count > 10) 5324 break; 5325 5326 /* 5327 * Pick a random function to execute. 5328 */ 5329 rand = ztest_random(ZTEST_FUNCS); 5330 zi = &ztest_info[rand]; 5331 zc = ZTEST_GET_SHARED_CALLSTATE(rand); 5332 call_next = zc->zc_next; 5333 5334 if (now >= call_next && 5335 atomic_cas_64(&zc->zc_next, call_next, call_next + 5336 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) { 5337 ztest_execute(rand, zi, id); 5338 } 5339 } 5340 5341 return (NULL); 5342 } 5343 5344 static void 5345 ztest_dataset_name(char *dsname, char *pool, int d) 5346 { 5347 (void) snprintf(dsname, MAXNAMELEN, "%s/ds_%d", pool, d); 5348 } 5349 5350 static void 5351 ztest_dataset_destroy(int d) 5352 { 5353 char name[MAXNAMELEN]; 5354 5355 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5356 5357 if (ztest_opts.zo_verbose >= 3) 5358 (void) printf("Destroying %s to free up space\n", name); 5359 5360 /* 5361 * Cleanup any non-standard clones and snapshots. In general, 5362 * ztest thread t operates on dataset (t % zopt_datasets), 5363 * so there may be more than one thing to clean up. 5364 */ 5365 for (int t = d; t < ztest_opts.zo_threads; 5366 t += ztest_opts.zo_datasets) { 5367 ztest_dsl_dataset_cleanup(name, t); 5368 } 5369 5370 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 5371 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 5372 } 5373 5374 static void 5375 ztest_dataset_dirobj_verify(ztest_ds_t *zd) 5376 { 5377 uint64_t usedobjs, dirobjs, scratch; 5378 5379 /* 5380 * ZTEST_DIROBJ is the object directory for the entire dataset. 5381 * Therefore, the number of objects in use should equal the 5382 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. 5383 * If not, we have an object leak. 5384 * 5385 * Note that we can only check this in ztest_dataset_open(), 5386 * when the open-context and syncing-context values agree. 5387 * That's because zap_count() returns the open-context value, 5388 * while dmu_objset_space() returns the rootbp fill count. 5389 */ 5390 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); 5391 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); 5392 ASSERT3U(dirobjs + 1, ==, usedobjs); 5393 } 5394 5395 static int 5396 ztest_dataset_open(int d) 5397 { 5398 ztest_ds_t *zd = &ztest_ds[d]; 5399 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq; 5400 objset_t *os; 5401 zilog_t *zilog; 5402 char name[MAXNAMELEN]; 5403 int error; 5404 5405 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5406 5407 (void) rw_rdlock(&ztest_name_lock); 5408 5409 error = ztest_dataset_create(name); 5410 if (error == ENOSPC) { 5411 (void) rw_unlock(&ztest_name_lock); 5412 ztest_record_enospc(FTAG); 5413 return (error); 5414 } 5415 ASSERT(error == 0 || error == EEXIST); 5416 5417 VERIFY0(dmu_objset_hold(name, zd, &os)); 5418 (void) rw_unlock(&ztest_name_lock); 5419 5420 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os); 5421 5422 zilog = zd->zd_zilog; 5423 5424 if (zilog->zl_header->zh_claim_lr_seq != 0 && 5425 zilog->zl_header->zh_claim_lr_seq < committed_seq) 5426 fatal(0, "missing log records: claimed %llu < committed %llu", 5427 zilog->zl_header->zh_claim_lr_seq, committed_seq); 5428 5429 ztest_dataset_dirobj_verify(zd); 5430 5431 zil_replay(os, zd, ztest_replay_vector); 5432 5433 ztest_dataset_dirobj_verify(zd); 5434 5435 if (ztest_opts.zo_verbose >= 6) 5436 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n", 5437 zd->zd_name, 5438 (u_longlong_t)zilog->zl_parse_blk_count, 5439 (u_longlong_t)zilog->zl_parse_lr_count, 5440 (u_longlong_t)zilog->zl_replaying_seq); 5441 5442 zilog = zil_open(os, ztest_get_data); 5443 5444 if (zilog->zl_replaying_seq != 0 && 5445 zilog->zl_replaying_seq < committed_seq) 5446 fatal(0, "missing log records: replayed %llu < committed %llu", 5447 zilog->zl_replaying_seq, committed_seq); 5448 5449 return (0); 5450 } 5451 5452 static void 5453 ztest_dataset_close(int d) 5454 { 5455 ztest_ds_t *zd = &ztest_ds[d]; 5456 5457 zil_close(zd->zd_zilog); 5458 dmu_objset_rele(zd->zd_os, zd); 5459 5460 ztest_zd_fini(zd); 5461 } 5462 5463 /* 5464 * Kick off threads to run tests on all datasets in parallel. 5465 */ 5466 static void 5467 ztest_run(ztest_shared_t *zs) 5468 { 5469 thread_t *tid; 5470 spa_t *spa; 5471 objset_t *os; 5472 thread_t resume_tid; 5473 int error; 5474 5475 ztest_exiting = B_FALSE; 5476 5477 /* 5478 * Initialize parent/child shared state. 5479 */ 5480 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0); 5481 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0); 5482 5483 zs->zs_thread_start = gethrtime(); 5484 zs->zs_thread_stop = 5485 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC; 5486 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); 5487 zs->zs_thread_kill = zs->zs_thread_stop; 5488 if (ztest_random(100) < ztest_opts.zo_killrate) { 5489 zs->zs_thread_kill -= 5490 ztest_random(ztest_opts.zo_passtime * NANOSEC); 5491 } 5492 5493 (void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL); 5494 5495 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), 5496 offsetof(ztest_cb_data_t, zcd_node)); 5497 5498 /* 5499 * Open our pool. 5500 */ 5501 kernel_init(FREAD | FWRITE); 5502 VERIFY(spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0); 5503 spa->spa_debug = B_TRUE; 5504 ztest_spa = spa; 5505 5506 VERIFY3U(0, ==, dmu_objset_hold(ztest_opts.zo_pool, FTAG, &os)); 5507 zs->zs_guid = dmu_objset_fsid_guid(os); 5508 dmu_objset_rele(os, FTAG); 5509 5510 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN; 5511 5512 /* 5513 * We don't expect the pool to suspend unless maxfaults == 0, 5514 * in which case ztest_fault_inject() temporarily takes away 5515 * the only valid replica. 5516 */ 5517 if (MAXFAULTS() == 0) 5518 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 5519 else 5520 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 5521 5522 /* 5523 * Create a thread to periodically resume suspended I/O. 5524 */ 5525 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, 5526 &resume_tid) == 0); 5527 5528 /* 5529 * Create a deadman thread to abort() if we hang. 5530 */ 5531 VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND, 5532 NULL) == 0); 5533 5534 /* 5535 * Verify that we can safely inquire about about any object, 5536 * whether it's allocated or not. To make it interesting, 5537 * we probe a 5-wide window around each power of two. 5538 * This hits all edge cases, including zero and the max. 5539 */ 5540 for (int t = 0; t < 64; t++) { 5541 for (int d = -5; d <= 5; d++) { 5542 error = dmu_object_info(spa->spa_meta_objset, 5543 (1ULL << t) + d, NULL); 5544 ASSERT(error == 0 || error == ENOENT || 5545 error == EINVAL); 5546 } 5547 } 5548 5549 /* 5550 * If we got any ENOSPC errors on the previous run, destroy something. 5551 */ 5552 if (zs->zs_enospc_count != 0) { 5553 int d = ztest_random(ztest_opts.zo_datasets); 5554 ztest_dataset_destroy(d); 5555 } 5556 zs->zs_enospc_count = 0; 5557 5558 tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t), 5559 UMEM_NOFAIL); 5560 5561 if (ztest_opts.zo_verbose >= 4) 5562 (void) printf("starting main threads...\n"); 5563 5564 /* 5565 * Kick off all the tests that run in parallel. 5566 */ 5567 for (int t = 0; t < ztest_opts.zo_threads; t++) { 5568 if (t < ztest_opts.zo_datasets && 5569 ztest_dataset_open(t) != 0) 5570 return; 5571 VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t, 5572 THR_BOUND, &tid[t]) == 0); 5573 } 5574 5575 /* 5576 * Wait for all of the tests to complete. We go in reverse order 5577 * so we don't close datasets while threads are still using them. 5578 */ 5579 for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) { 5580 VERIFY(thr_join(tid[t], NULL, NULL) == 0); 5581 if (t < ztest_opts.zo_datasets) 5582 ztest_dataset_close(t); 5583 } 5584 5585 txg_wait_synced(spa_get_dsl(spa), 0); 5586 5587 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 5588 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); 5589 5590 umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t)); 5591 5592 /* Kill the resume thread */ 5593 ztest_exiting = B_TRUE; 5594 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 5595 ztest_resume(spa); 5596 5597 /* 5598 * Right before closing the pool, kick off a bunch of async I/O; 5599 * spa_close() should wait for it to complete. 5600 */ 5601 for (uint64_t object = 1; object < 50; object++) 5602 dmu_prefetch(spa->spa_meta_objset, object, 0, 1ULL << 20); 5603 5604 spa_close(spa, FTAG); 5605 5606 /* 5607 * Verify that we can loop over all pools. 5608 */ 5609 mutex_enter(&spa_namespace_lock); 5610 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) 5611 if (ztest_opts.zo_verbose > 3) 5612 (void) printf("spa_next: found %s\n", spa_name(spa)); 5613 mutex_exit(&spa_namespace_lock); 5614 5615 /* 5616 * Verify that we can export the pool and reimport it under a 5617 * different name. 5618 */ 5619 if (ztest_random(2) == 0) { 5620 char name[MAXNAMELEN]; 5621 (void) snprintf(name, MAXNAMELEN, "%s_import", 5622 ztest_opts.zo_pool); 5623 ztest_spa_import_export(ztest_opts.zo_pool, name); 5624 ztest_spa_import_export(name, ztest_opts.zo_pool); 5625 } 5626 5627 kernel_fini(); 5628 5629 list_destroy(&zcl.zcl_callbacks); 5630 5631 (void) _mutex_destroy(&zcl.zcl_callbacks_lock); 5632 5633 (void) rwlock_destroy(&ztest_name_lock); 5634 (void) _mutex_destroy(&ztest_vdev_lock); 5635 } 5636 5637 static void 5638 ztest_freeze(void) 5639 { 5640 ztest_ds_t *zd = &ztest_ds[0]; 5641 spa_t *spa; 5642 int numloops = 0; 5643 5644 if (ztest_opts.zo_verbose >= 3) 5645 (void) printf("testing spa_freeze()...\n"); 5646 5647 kernel_init(FREAD | FWRITE); 5648 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5649 VERIFY3U(0, ==, ztest_dataset_open(0)); 5650 spa->spa_debug = B_TRUE; 5651 ztest_spa = spa; 5652 5653 /* 5654 * Force the first log block to be transactionally allocated. 5655 * We have to do this before we freeze the pool -- otherwise 5656 * the log chain won't be anchored. 5657 */ 5658 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { 5659 ztest_dmu_object_alloc_free(zd, 0); 5660 zil_commit(zd->zd_zilog, 0); 5661 } 5662 5663 txg_wait_synced(spa_get_dsl(spa), 0); 5664 5665 /* 5666 * Freeze the pool. This stops spa_sync() from doing anything, 5667 * so that the only way to record changes from now on is the ZIL. 5668 */ 5669 spa_freeze(spa); 5670 5671 /* 5672 * Run tests that generate log records but don't alter the pool config 5673 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). 5674 * We do a txg_wait_synced() after each iteration to force the txg 5675 * to increase well beyond the last synced value in the uberblock. 5676 * The ZIL should be OK with that. 5677 */ 5678 while (ztest_random(10) != 0 && 5679 numloops++ < ztest_opts.zo_maxloops) { 5680 ztest_dmu_write_parallel(zd, 0); 5681 ztest_dmu_object_alloc_free(zd, 0); 5682 txg_wait_synced(spa_get_dsl(spa), 0); 5683 } 5684 5685 /* 5686 * Commit all of the changes we just generated. 5687 */ 5688 zil_commit(zd->zd_zilog, 0); 5689 txg_wait_synced(spa_get_dsl(spa), 0); 5690 5691 /* 5692 * Close our dataset and close the pool. 5693 */ 5694 ztest_dataset_close(0); 5695 spa_close(spa, FTAG); 5696 kernel_fini(); 5697 5698 /* 5699 * Open and close the pool and dataset to induce log replay. 5700 */ 5701 kernel_init(FREAD | FWRITE); 5702 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5703 ASSERT(spa_freeze_txg(spa) == UINT64_MAX); 5704 VERIFY3U(0, ==, ztest_dataset_open(0)); 5705 ztest_dataset_close(0); 5706 5707 spa->spa_debug = B_TRUE; 5708 ztest_spa = spa; 5709 txg_wait_synced(spa_get_dsl(spa), 0); 5710 ztest_reguid(NULL, 0); 5711 5712 spa_close(spa, FTAG); 5713 kernel_fini(); 5714 } 5715 5716 void 5717 print_time(hrtime_t t, char *timebuf) 5718 { 5719 hrtime_t s = t / NANOSEC; 5720 hrtime_t m = s / 60; 5721 hrtime_t h = m / 60; 5722 hrtime_t d = h / 24; 5723 5724 s -= m * 60; 5725 m -= h * 60; 5726 h -= d * 24; 5727 5728 timebuf[0] = '\0'; 5729 5730 if (d) 5731 (void) sprintf(timebuf, 5732 "%llud%02lluh%02llum%02llus", d, h, m, s); 5733 else if (h) 5734 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 5735 else if (m) 5736 (void) sprintf(timebuf, "%llum%02llus", m, s); 5737 else 5738 (void) sprintf(timebuf, "%llus", s); 5739 } 5740 5741 static nvlist_t * 5742 make_random_props() 5743 { 5744 nvlist_t *props; 5745 5746 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 5747 if (ztest_random(2) == 0) 5748 return (props); 5749 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0); 5750 5751 return (props); 5752 } 5753 5754 /* 5755 * Create a storage pool with the given name and initial vdev size. 5756 * Then test spa_freeze() functionality. 5757 */ 5758 static void 5759 ztest_init(ztest_shared_t *zs) 5760 { 5761 spa_t *spa; 5762 nvlist_t *nvroot, *props; 5763 5764 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0); 5765 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0); 5766 5767 kernel_init(FREAD | FWRITE); 5768 5769 /* 5770 * Create the storage pool. 5771 */ 5772 (void) spa_destroy(ztest_opts.zo_pool); 5773 ztest_shared->zs_vdev_next_leaf = 0; 5774 zs->zs_splits = 0; 5775 zs->zs_mirrors = ztest_opts.zo_mirrors; 5776 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, 5777 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1); 5778 props = make_random_props(); 5779 for (int i = 0; i < SPA_FEATURES; i++) { 5780 char buf[1024]; 5781 (void) snprintf(buf, sizeof (buf), "feature@%s", 5782 spa_feature_table[i].fi_uname); 5783 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0)); 5784 } 5785 VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL)); 5786 nvlist_free(nvroot); 5787 5788 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5789 zs->zs_metaslab_sz = 5790 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 5791 5792 spa_close(spa, FTAG); 5793 5794 kernel_fini(); 5795 5796 ztest_run_zdb(ztest_opts.zo_pool); 5797 5798 ztest_freeze(); 5799 5800 ztest_run_zdb(ztest_opts.zo_pool); 5801 5802 (void) rwlock_destroy(&ztest_name_lock); 5803 (void) _mutex_destroy(&ztest_vdev_lock); 5804 } 5805 5806 static void 5807 setup_data_fd(void) 5808 { 5809 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX"; 5810 5811 ztest_fd_data = mkstemp(ztest_name_data); 5812 ASSERT3S(ztest_fd_data, >=, 0); 5813 (void) unlink(ztest_name_data); 5814 } 5815 5816 5817 static int 5818 shared_data_size(ztest_shared_hdr_t *hdr) 5819 { 5820 int size; 5821 5822 size = hdr->zh_hdr_size; 5823 size += hdr->zh_opts_size; 5824 size += hdr->zh_size; 5825 size += hdr->zh_stats_size * hdr->zh_stats_count; 5826 size += hdr->zh_ds_size * hdr->zh_ds_count; 5827 5828 return (size); 5829 } 5830 5831 static void 5832 setup_hdr(void) 5833 { 5834 int size; 5835 ztest_shared_hdr_t *hdr; 5836 5837 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 5838 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 5839 ASSERT(hdr != MAP_FAILED); 5840 5841 VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t))); 5842 5843 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t); 5844 hdr->zh_opts_size = sizeof (ztest_shared_opts_t); 5845 hdr->zh_size = sizeof (ztest_shared_t); 5846 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t); 5847 hdr->zh_stats_count = ZTEST_FUNCS; 5848 hdr->zh_ds_size = sizeof (ztest_shared_ds_t); 5849 hdr->zh_ds_count = ztest_opts.zo_datasets; 5850 5851 size = shared_data_size(hdr); 5852 VERIFY3U(0, ==, ftruncate(ztest_fd_data, size)); 5853 5854 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 5855 } 5856 5857 static void 5858 setup_data(void) 5859 { 5860 int size, offset; 5861 ztest_shared_hdr_t *hdr; 5862 uint8_t *buf; 5863 5864 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 5865 PROT_READ, MAP_SHARED, ztest_fd_data, 0); 5866 ASSERT(hdr != MAP_FAILED); 5867 5868 size = shared_data_size(hdr); 5869 5870 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 5871 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()), 5872 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 5873 ASSERT(hdr != MAP_FAILED); 5874 buf = (uint8_t *)hdr; 5875 5876 offset = hdr->zh_hdr_size; 5877 ztest_shared_opts = (void *)&buf[offset]; 5878 offset += hdr->zh_opts_size; 5879 ztest_shared = (void *)&buf[offset]; 5880 offset += hdr->zh_size; 5881 ztest_shared_callstate = (void *)&buf[offset]; 5882 offset += hdr->zh_stats_size * hdr->zh_stats_count; 5883 ztest_shared_ds = (void *)&buf[offset]; 5884 } 5885 5886 static boolean_t 5887 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp) 5888 { 5889 pid_t pid; 5890 int status; 5891 char *cmdbuf = NULL; 5892 5893 pid = fork(); 5894 5895 if (cmd == NULL) { 5896 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 5897 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN); 5898 cmd = cmdbuf; 5899 } 5900 5901 if (pid == -1) 5902 fatal(1, "fork failed"); 5903 5904 if (pid == 0) { /* child */ 5905 char *emptyargv[2] = { cmd, NULL }; 5906 char fd_data_str[12]; 5907 5908 struct rlimit rl = { 1024, 1024 }; 5909 (void) setrlimit(RLIMIT_NOFILE, &rl); 5910 5911 (void) close(ztest_fd_rand); 5912 VERIFY3U(11, >=, 5913 snprintf(fd_data_str, 12, "%d", ztest_fd_data)); 5914 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1)); 5915 5916 (void) enable_extended_FILE_stdio(-1, -1); 5917 if (libpath != NULL) 5918 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1)); 5919 (void) execv(cmd, emptyargv); 5920 ztest_dump_core = B_FALSE; 5921 fatal(B_TRUE, "exec failed: %s", cmd); 5922 } 5923 5924 if (cmdbuf != NULL) { 5925 umem_free(cmdbuf, MAXPATHLEN); 5926 cmd = NULL; 5927 } 5928 5929 while (waitpid(pid, &status, 0) != pid) 5930 continue; 5931 if (statusp != NULL) 5932 *statusp = status; 5933 5934 if (WIFEXITED(status)) { 5935 if (WEXITSTATUS(status) != 0) { 5936 (void) fprintf(stderr, "child exited with code %d\n", 5937 WEXITSTATUS(status)); 5938 exit(2); 5939 } 5940 return (B_FALSE); 5941 } else if (WIFSIGNALED(status)) { 5942 if (!ignorekill || WTERMSIG(status) != SIGKILL) { 5943 (void) fprintf(stderr, "child died with signal %d\n", 5944 WTERMSIG(status)); 5945 exit(3); 5946 } 5947 return (B_TRUE); 5948 } else { 5949 (void) fprintf(stderr, "something strange happened to child\n"); 5950 exit(4); 5951 /* NOTREACHED */ 5952 } 5953 } 5954 5955 static void 5956 ztest_run_init(void) 5957 { 5958 ztest_shared_t *zs = ztest_shared; 5959 5960 ASSERT(ztest_opts.zo_init != 0); 5961 5962 /* 5963 * Blow away any existing copy of zpool.cache 5964 */ 5965 (void) remove(spa_config_path); 5966 5967 /* 5968 * Create and initialize our storage pool. 5969 */ 5970 for (int i = 1; i <= ztest_opts.zo_init; i++) { 5971 bzero(zs, sizeof (ztest_shared_t)); 5972 if (ztest_opts.zo_verbose >= 3 && 5973 ztest_opts.zo_init != 1) { 5974 (void) printf("ztest_init(), pass %d\n", i); 5975 } 5976 ztest_init(zs); 5977 } 5978 } 5979 5980 int 5981 main(int argc, char **argv) 5982 { 5983 int kills = 0; 5984 int iters = 0; 5985 int older = 0; 5986 int newer = 0; 5987 ztest_shared_t *zs; 5988 ztest_info_t *zi; 5989 ztest_shared_callstate_t *zc; 5990 char timebuf[100]; 5991 char numbuf[6]; 5992 spa_t *spa; 5993 char *cmd; 5994 boolean_t hasalt; 5995 char *fd_data_str = getenv("ZTEST_FD_DATA"); 5996 5997 (void) setvbuf(stdout, NULL, _IOLBF, 0); 5998 5999 dprintf_setup(&argc, argv); 6000 6001 ztest_fd_rand = open("/dev/urandom", O_RDONLY); 6002 ASSERT3S(ztest_fd_rand, >=, 0); 6003 6004 if (!fd_data_str) { 6005 process_options(argc, argv); 6006 6007 setup_data_fd(); 6008 setup_hdr(); 6009 setup_data(); 6010 bcopy(&ztest_opts, ztest_shared_opts, 6011 sizeof (*ztest_shared_opts)); 6012 } else { 6013 ztest_fd_data = atoi(fd_data_str); 6014 setup_data(); 6015 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts)); 6016 } 6017 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count); 6018 6019 /* Override location of zpool.cache */ 6020 VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache", 6021 ztest_opts.zo_dir), !=, -1); 6022 6023 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t), 6024 UMEM_NOFAIL); 6025 zs = ztest_shared; 6026 6027 if (fd_data_str) { 6028 metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang; 6029 metaslab_df_alloc_threshold = 6030 zs->zs_metaslab_df_alloc_threshold; 6031 6032 if (zs->zs_do_init) 6033 ztest_run_init(); 6034 else 6035 ztest_run(zs); 6036 exit(0); 6037 } 6038 6039 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0); 6040 6041 if (ztest_opts.zo_verbose >= 1) { 6042 (void) printf("%llu vdevs, %d datasets, %d threads," 6043 " %llu seconds...\n", 6044 (u_longlong_t)ztest_opts.zo_vdevs, 6045 ztest_opts.zo_datasets, 6046 ztest_opts.zo_threads, 6047 (u_longlong_t)ztest_opts.zo_time); 6048 } 6049 6050 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL); 6051 (void) strlcpy(cmd, getexecname(), MAXNAMELEN); 6052 6053 zs->zs_do_init = B_TRUE; 6054 if (strlen(ztest_opts.zo_alt_ztest) != 0) { 6055 if (ztest_opts.zo_verbose >= 1) { 6056 (void) printf("Executing older ztest for " 6057 "initialization: %s\n", ztest_opts.zo_alt_ztest); 6058 } 6059 VERIFY(!exec_child(ztest_opts.zo_alt_ztest, 6060 ztest_opts.zo_alt_libpath, B_FALSE, NULL)); 6061 } else { 6062 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL)); 6063 } 6064 zs->zs_do_init = B_FALSE; 6065 6066 zs->zs_proc_start = gethrtime(); 6067 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC; 6068 6069 for (int f = 0; f < ZTEST_FUNCS; f++) { 6070 zi = &ztest_info[f]; 6071 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6072 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) 6073 zc->zc_next = UINT64_MAX; 6074 else 6075 zc->zc_next = zs->zs_proc_start + 6076 ztest_random(2 * zi->zi_interval[0] + 1); 6077 } 6078 6079 /* 6080 * Run the tests in a loop. These tests include fault injection 6081 * to verify that self-healing data works, and forced crashes 6082 * to verify that we never lose on-disk consistency. 6083 */ 6084 while (gethrtime() < zs->zs_proc_stop) { 6085 int status; 6086 boolean_t killed; 6087 6088 /* 6089 * Initialize the workload counters for each function. 6090 */ 6091 for (int f = 0; f < ZTEST_FUNCS; f++) { 6092 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6093 zc->zc_count = 0; 6094 zc->zc_time = 0; 6095 } 6096 6097 /* Set the allocation switch size */ 6098 zs->zs_metaslab_df_alloc_threshold = 6099 ztest_random(zs->zs_metaslab_sz / 4) + 1; 6100 6101 if (!hasalt || ztest_random(2) == 0) { 6102 if (hasalt && ztest_opts.zo_verbose >= 1) { 6103 (void) printf("Executing newer ztest: %s\n", 6104 cmd); 6105 } 6106 newer++; 6107 killed = exec_child(cmd, NULL, B_TRUE, &status); 6108 } else { 6109 if (hasalt && ztest_opts.zo_verbose >= 1) { 6110 (void) printf("Executing older ztest: %s\n", 6111 ztest_opts.zo_alt_ztest); 6112 } 6113 older++; 6114 killed = exec_child(ztest_opts.zo_alt_ztest, 6115 ztest_opts.zo_alt_libpath, B_TRUE, &status); 6116 } 6117 6118 if (killed) 6119 kills++; 6120 iters++; 6121 6122 if (ztest_opts.zo_verbose >= 1) { 6123 hrtime_t now = gethrtime(); 6124 6125 now = MIN(now, zs->zs_proc_stop); 6126 print_time(zs->zs_proc_stop - now, timebuf); 6127 nicenum(zs->zs_space, numbuf); 6128 6129 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 6130 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 6131 iters, 6132 WIFEXITED(status) ? "Complete" : "SIGKILL", 6133 (u_longlong_t)zs->zs_enospc_count, 6134 100.0 * zs->zs_alloc / zs->zs_space, 6135 numbuf, 6136 100.0 * (now - zs->zs_proc_start) / 6137 (ztest_opts.zo_time * NANOSEC), timebuf); 6138 } 6139 6140 if (ztest_opts.zo_verbose >= 2) { 6141 (void) printf("\nWorkload summary:\n\n"); 6142 (void) printf("%7s %9s %s\n", 6143 "Calls", "Time", "Function"); 6144 (void) printf("%7s %9s %s\n", 6145 "-----", "----", "--------"); 6146 for (int f = 0; f < ZTEST_FUNCS; f++) { 6147 Dl_info dli; 6148 6149 zi = &ztest_info[f]; 6150 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6151 print_time(zc->zc_time, timebuf); 6152 (void) dladdr((void *)zi->zi_func, &dli); 6153 (void) printf("%7llu %9s %s\n", 6154 (u_longlong_t)zc->zc_count, timebuf, 6155 dli.dli_sname); 6156 } 6157 (void) printf("\n"); 6158 } 6159 6160 /* 6161 * It's possible that we killed a child during a rename test, 6162 * in which case we'll have a 'ztest_tmp' pool lying around 6163 * instead of 'ztest'. Do a blind rename in case this happened. 6164 */ 6165 kernel_init(FREAD); 6166 if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) { 6167 spa_close(spa, FTAG); 6168 } else { 6169 char tmpname[MAXNAMELEN]; 6170 kernel_fini(); 6171 kernel_init(FREAD | FWRITE); 6172 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp", 6173 ztest_opts.zo_pool); 6174 (void) spa_rename(tmpname, ztest_opts.zo_pool); 6175 } 6176 kernel_fini(); 6177 6178 ztest_run_zdb(ztest_opts.zo_pool); 6179 } 6180 6181 if (ztest_opts.zo_verbose >= 1) { 6182 if (hasalt) { 6183 (void) printf("%d runs of older ztest: %s\n", older, 6184 ztest_opts.zo_alt_ztest); 6185 (void) printf("%d runs of newer ztest: %s\n", newer, 6186 cmd); 6187 } 6188 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 6189 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 6190 } 6191 6192 umem_free(cmd, MAXNAMELEN); 6193 6194 return (0); 6195 } 6196