1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2013 Steven Hartland. All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2017 Joyent, Inc.
28 */
29
30 /*
31 * The objective of this program is to provide a DMU/ZAP/SPA stress test
32 * that runs entirely in userland, is easy to use, and easy to extend.
33 *
34 * The overall design of the ztest program is as follows:
35 *
36 * (1) For each major functional area (e.g. adding vdevs to a pool,
37 * creating and destroying datasets, reading and writing objects, etc)
38 * we have a simple routine to test that functionality. These
39 * individual routines do not have to do anything "stressful".
40 *
41 * (2) We turn these simple functionality tests into a stress test by
42 * running them all in parallel, with as many threads as desired,
43 * and spread across as many datasets, objects, and vdevs as desired.
44 *
45 * (3) While all this is happening, we inject faults into the pool to
46 * verify that self-healing data really works.
47 *
48 * (4) Every time we open a dataset, we change its checksum and compression
49 * functions. Thus even individual objects vary from block to block
50 * in which checksum they use and whether they're compressed.
51 *
52 * (5) To verify that we never lose on-disk consistency after a crash,
53 * we run the entire test in a child of the main process.
54 * At random times, the child self-immolates with a SIGKILL.
55 * This is the software equivalent of pulling the power cord.
56 * The parent then runs the test again, using the existing
57 * storage pool, as many times as desired. If backwards compatibility
58 * testing is enabled ztest will sometimes run the "older" version
59 * of ztest after a SIGKILL.
60 *
61 * (6) To verify that we don't have future leaks or temporal incursions,
62 * many of the functional tests record the transaction group number
63 * as part of their data. When reading old data, they verify that
64 * the transaction group number is less than the current, open txg.
65 * If you add a new test, please do this if applicable.
66 *
67 * When run with no arguments, ztest runs for about five minutes and
68 * produces no output if successful. To get a little bit of information,
69 * specify -V. To get more information, specify -VV, and so on.
70 *
71 * To turn this into an overnight stress test, use -T to specify run time.
72 *
73 * You can ask more more vdevs [-v], datasets [-d], or threads [-t]
74 * to increase the pool capacity, fanout, and overall stress level.
75 *
76 * Use the -k option to set the desired frequency of kills.
77 *
78 * When ztest invokes itself it passes all relevant information through a
79 * temporary file which is mmap-ed in the child process. This allows shared
80 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
81 * stored at offset 0 of this file and contains information on the size and
82 * number of shared structures in the file. The information stored in this file
83 * must remain backwards compatible with older versions of ztest so that
84 * ztest can invoke them during backwards compatibility testing (-B).
85 */
86
87 #include <sys/zfs_context.h>
88 #include <sys/spa.h>
89 #include <sys/dmu.h>
90 #include <sys/txg.h>
91 #include <sys/dbuf.h>
92 #include <sys/zap.h>
93 #include <sys/dmu_objset.h>
94 #include <sys/poll.h>
95 #include <sys/stat.h>
96 #include <sys/time.h>
97 #include <sys/wait.h>
98 #include <sys/mman.h>
99 #include <sys/resource.h>
100 #include <sys/zio.h>
101 #include <sys/zil.h>
102 #include <sys/zil_impl.h>
103 #include <sys/vdev_impl.h>
104 #include <sys/vdev_file.h>
105 #include <sys/spa_impl.h>
106 #include <sys/metaslab_impl.h>
107 #include <sys/dsl_prop.h>
108 #include <sys/dsl_dataset.h>
109 #include <sys/dsl_destroy.h>
110 #include <sys/dsl_scan.h>
111 #include <sys/zio_checksum.h>
112 #include <sys/refcount.h>
113 #include <sys/zfeature.h>
114 #include <sys/dsl_userhold.h>
115 #include <stdio.h>
116 #include <stdio_ext.h>
117 #include <stdlib.h>
118 #include <unistd.h>
119 #include <signal.h>
120 #include <umem.h>
121 #include <dlfcn.h>
122 #include <ctype.h>
123 #include <math.h>
124 #include <sys/fs/zfs.h>
125 #include <libnvpair.h>
126 #include <libcmdutils.h>
127
128 static int ztest_fd_data = -1;
129 static int ztest_fd_rand = -1;
130
131 typedef struct ztest_shared_hdr {
132 uint64_t zh_hdr_size;
133 uint64_t zh_opts_size;
134 uint64_t zh_size;
135 uint64_t zh_stats_size;
136 uint64_t zh_stats_count;
137 uint64_t zh_ds_size;
138 uint64_t zh_ds_count;
139 } ztest_shared_hdr_t;
140
141 static ztest_shared_hdr_t *ztest_shared_hdr;
142
143 typedef struct ztest_shared_opts {
144 char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
145 char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
146 char zo_alt_ztest[MAXNAMELEN];
147 char zo_alt_libpath[MAXNAMELEN];
148 uint64_t zo_vdevs;
149 uint64_t zo_vdevtime;
150 size_t zo_vdev_size;
151 int zo_ashift;
152 int zo_mirrors;
153 int zo_raidz;
154 int zo_raidz_parity;
155 int zo_datasets;
156 int zo_threads;
157 uint64_t zo_passtime;
158 uint64_t zo_killrate;
159 int zo_verbose;
160 int zo_init;
161 uint64_t zo_time;
162 uint64_t zo_maxloops;
163 uint64_t zo_metaslab_gang_bang;
164 } ztest_shared_opts_t;
165
166 static const ztest_shared_opts_t ztest_opts_defaults = {
167 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' },
168 .zo_dir = { '/', 't', 'm', 'p', '\0' },
169 .zo_alt_ztest = { '\0' },
170 .zo_alt_libpath = { '\0' },
171 .zo_vdevs = 5,
172 .zo_ashift = SPA_MINBLOCKSHIFT,
173 .zo_mirrors = 2,
174 .zo_raidz = 4,
175 .zo_raidz_parity = 1,
176 .zo_vdev_size = SPA_MINDEVSIZE * 2,
177 .zo_datasets = 7,
178 .zo_threads = 23,
179 .zo_passtime = 60, /* 60 seconds */
180 .zo_killrate = 70, /* 70% kill rate */
181 .zo_verbose = 0,
182 .zo_init = 1,
183 .zo_time = 300, /* 5 minutes */
184 .zo_maxloops = 50, /* max loops during spa_freeze() */
185 .zo_metaslab_gang_bang = 32 << 10
186 };
187
188 extern uint64_t metaslab_gang_bang;
189 extern uint64_t metaslab_df_alloc_threshold;
190 extern uint64_t zfs_deadman_synctime_ms;
191 extern int metaslab_preload_limit;
192
193 static ztest_shared_opts_t *ztest_shared_opts;
194 static ztest_shared_opts_t ztest_opts;
195
196 typedef struct ztest_shared_ds {
197 uint64_t zd_seq;
198 } ztest_shared_ds_t;
199
200 static ztest_shared_ds_t *ztest_shared_ds;
201 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
202
203 #define BT_MAGIC 0x123456789abcdefULL
204 #define MAXFAULTS() \
205 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1)
206
207 enum ztest_io_type {
208 ZTEST_IO_WRITE_TAG,
209 ZTEST_IO_WRITE_PATTERN,
210 ZTEST_IO_WRITE_ZEROES,
211 ZTEST_IO_TRUNCATE,
212 ZTEST_IO_SETATTR,
213 ZTEST_IO_REWRITE,
214 ZTEST_IO_TYPES
215 };
216
217 typedef struct ztest_block_tag {
218 uint64_t bt_magic;
219 uint64_t bt_objset;
220 uint64_t bt_object;
221 uint64_t bt_offset;
222 uint64_t bt_gen;
223 uint64_t bt_txg;
224 uint64_t bt_crtxg;
225 } ztest_block_tag_t;
226
227 typedef struct bufwad {
228 uint64_t bw_index;
229 uint64_t bw_txg;
230 uint64_t bw_data;
231 } bufwad_t;
232
233 /*
234 * XXX -- fix zfs range locks to be generic so we can use them here.
235 */
236 typedef enum {
237 RL_READER,
238 RL_WRITER,
239 RL_APPEND
240 } rl_type_t;
241
242 typedef struct rll {
243 void *rll_writer;
244 int rll_readers;
245 mutex_t rll_lock;
246 cond_t rll_cv;
247 } rll_t;
248
249 typedef struct rl {
250 uint64_t rl_object;
251 uint64_t rl_offset;
252 uint64_t rl_size;
253 rll_t *rl_lock;
254 } rl_t;
255
256 #define ZTEST_RANGE_LOCKS 64
257 #define ZTEST_OBJECT_LOCKS 64
258
259 /*
260 * Object descriptor. Used as a template for object lookup/create/remove.
261 */
262 typedef struct ztest_od {
263 uint64_t od_dir;
264 uint64_t od_object;
265 dmu_object_type_t od_type;
266 dmu_object_type_t od_crtype;
267 uint64_t od_blocksize;
268 uint64_t od_crblocksize;
269 uint64_t od_gen;
270 uint64_t od_crgen;
271 char od_name[ZFS_MAX_DATASET_NAME_LEN];
272 } ztest_od_t;
273
274 /*
275 * Per-dataset state.
276 */
277 typedef struct ztest_ds {
278 ztest_shared_ds_t *zd_shared;
279 objset_t *zd_os;
280 rwlock_t zd_zilog_lock;
281 zilog_t *zd_zilog;
282 ztest_od_t *zd_od; /* debugging aid */
283 char zd_name[ZFS_MAX_DATASET_NAME_LEN];
284 mutex_t zd_dirobj_lock;
285 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS];
286 rll_t zd_range_lock[ZTEST_RANGE_LOCKS];
287 } ztest_ds_t;
288
289 /*
290 * Per-iteration state.
291 */
292 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
293
294 typedef struct ztest_info {
295 ztest_func_t *zi_func; /* test function */
296 uint64_t zi_iters; /* iterations per execution */
297 uint64_t *zi_interval; /* execute every <interval> seconds */
298 } ztest_info_t;
299
300 typedef struct ztest_shared_callstate {
301 uint64_t zc_count; /* per-pass count */
302 uint64_t zc_time; /* per-pass time */
303 uint64_t zc_next; /* next time to call this function */
304 } ztest_shared_callstate_t;
305
306 static ztest_shared_callstate_t *ztest_shared_callstate;
307 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
308
309 /*
310 * Note: these aren't static because we want dladdr() to work.
311 */
312 ztest_func_t ztest_dmu_read_write;
313 ztest_func_t ztest_dmu_write_parallel;
314 ztest_func_t ztest_dmu_object_alloc_free;
315 ztest_func_t ztest_dmu_commit_callbacks;
316 ztest_func_t ztest_zap;
317 ztest_func_t ztest_zap_parallel;
318 ztest_func_t ztest_zil_commit;
319 ztest_func_t ztest_zil_remount;
320 ztest_func_t ztest_dmu_read_write_zcopy;
321 ztest_func_t ztest_dmu_objset_create_destroy;
322 ztest_func_t ztest_dmu_prealloc;
323 ztest_func_t ztest_fzap;
324 ztest_func_t ztest_dmu_snapshot_create_destroy;
325 ztest_func_t ztest_dsl_prop_get_set;
326 ztest_func_t ztest_spa_prop_get_set;
327 ztest_func_t ztest_spa_create_destroy;
328 ztest_func_t ztest_fault_inject;
329 ztest_func_t ztest_ddt_repair;
330 ztest_func_t ztest_dmu_snapshot_hold;
331 ztest_func_t ztest_spa_rename;
332 ztest_func_t ztest_scrub;
333 ztest_func_t ztest_dsl_dataset_promote_busy;
334 ztest_func_t ztest_vdev_attach_detach;
335 ztest_func_t ztest_vdev_LUN_growth;
336 ztest_func_t ztest_vdev_add_remove;
337 ztest_func_t ztest_vdev_aux_add_remove;
338 ztest_func_t ztest_split_pool;
339 ztest_func_t ztest_reguid;
340 ztest_func_t ztest_spa_upgrade;
341
342 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */
343 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */
344 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */
345 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */
346 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */
347
348 ztest_info_t ztest_info[] = {
349 { ztest_dmu_read_write, 1, &zopt_always },
350 { ztest_dmu_write_parallel, 10, &zopt_always },
351 { ztest_dmu_object_alloc_free, 1, &zopt_always },
352 { ztest_dmu_commit_callbacks, 1, &zopt_always },
353 { ztest_zap, 30, &zopt_always },
354 { ztest_zap_parallel, 100, &zopt_always },
355 { ztest_split_pool, 1, &zopt_always },
356 { ztest_zil_commit, 1, &zopt_incessant },
357 { ztest_zil_remount, 1, &zopt_sometimes },
358 { ztest_dmu_read_write_zcopy, 1, &zopt_often },
359 { ztest_dmu_objset_create_destroy, 1, &zopt_often },
360 { ztest_dsl_prop_get_set, 1, &zopt_often },
361 { ztest_spa_prop_get_set, 1, &zopt_sometimes },
362 #if 0
363 { ztest_dmu_prealloc, 1, &zopt_sometimes },
364 #endif
365 { ztest_fzap, 1, &zopt_sometimes },
366 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes },
367 { ztest_spa_create_destroy, 1, &zopt_sometimes },
368 { ztest_fault_inject, 1, &zopt_sometimes },
369 { ztest_ddt_repair, 1, &zopt_sometimes },
370 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes },
371 { ztest_reguid, 1, &zopt_rarely },
372 { ztest_spa_rename, 1, &zopt_rarely },
373 { ztest_scrub, 1, &zopt_rarely },
374 { ztest_spa_upgrade, 1, &zopt_rarely },
375 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely },
376 { ztest_vdev_attach_detach, 1, &zopt_sometimes },
377 { ztest_vdev_LUN_growth, 1, &zopt_rarely },
378 { ztest_vdev_add_remove, 1,
379 &ztest_opts.zo_vdevtime },
380 { ztest_vdev_aux_add_remove, 1,
381 &ztest_opts.zo_vdevtime },
382 };
383
384 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
385
386 /*
387 * The following struct is used to hold a list of uncalled commit callbacks.
388 * The callbacks are ordered by txg number.
389 */
390 typedef struct ztest_cb_list {
391 mutex_t zcl_callbacks_lock;
392 list_t zcl_callbacks;
393 } ztest_cb_list_t;
394
395 /*
396 * Stuff we need to share writably between parent and child.
397 */
398 typedef struct ztest_shared {
399 boolean_t zs_do_init;
400 hrtime_t zs_proc_start;
401 hrtime_t zs_proc_stop;
402 hrtime_t zs_thread_start;
403 hrtime_t zs_thread_stop;
404 hrtime_t zs_thread_kill;
405 uint64_t zs_enospc_count;
406 uint64_t zs_vdev_next_leaf;
407 uint64_t zs_vdev_aux;
408 uint64_t zs_alloc;
409 uint64_t zs_space;
410 uint64_t zs_splits;
411 uint64_t zs_mirrors;
412 uint64_t zs_metaslab_sz;
413 uint64_t zs_metaslab_df_alloc_threshold;
414 uint64_t zs_guid;
415 } ztest_shared_t;
416
417 #define ID_PARALLEL -1ULL
418
419 static char ztest_dev_template[] = "%s/%s.%llua";
420 static char ztest_aux_template[] = "%s/%s.%s.%llu";
421 ztest_shared_t *ztest_shared;
422
423 static spa_t *ztest_spa = NULL;
424 static ztest_ds_t *ztest_ds;
425
426 static mutex_t ztest_vdev_lock;
427
428 /*
429 * The ztest_name_lock protects the pool and dataset namespace used by
430 * the individual tests. To modify the namespace, consumers must grab
431 * this lock as writer. Grabbing the lock as reader will ensure that the
432 * namespace does not change while the lock is held.
433 */
434 static rwlock_t ztest_name_lock;
435
436 static boolean_t ztest_dump_core = B_TRUE;
437 static boolean_t ztest_exiting;
438
439 /* Global commit callback list */
440 static ztest_cb_list_t zcl;
441
442 enum ztest_object {
443 ZTEST_META_DNODE = 0,
444 ZTEST_DIROBJ,
445 ZTEST_OBJECTS
446 };
447
448 static void usage(boolean_t) __NORETURN;
449
450 /*
451 * These libumem hooks provide a reasonable set of defaults for the allocator's
452 * debugging facilities.
453 */
454 const char *
_umem_debug_init()455 _umem_debug_init()
456 {
457 return ("default,verbose"); /* $UMEM_DEBUG setting */
458 }
459
460 const char *
_umem_logging_init(void)461 _umem_logging_init(void)
462 {
463 return ("fail,contents"); /* $UMEM_LOGGING setting */
464 }
465
466 #define FATAL_MSG_SZ 1024
467
468 char *fatal_msg;
469
470 static void
fatal(int do_perror,char * message,...)471 fatal(int do_perror, char *message, ...)
472 {
473 va_list args;
474 int save_errno = errno;
475 char buf[FATAL_MSG_SZ];
476
477 (void) fflush(stdout);
478
479 va_start(args, message);
480 (void) sprintf(buf, "ztest: ");
481 /* LINTED */
482 (void) vsprintf(buf + strlen(buf), message, args);
483 va_end(args);
484 if (do_perror) {
485 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
486 ": %s", strerror(save_errno));
487 }
488 (void) fprintf(stderr, "%s\n", buf);
489 fatal_msg = buf; /* to ease debugging */
490 if (ztest_dump_core)
491 abort();
492 exit(3);
493 }
494
495 static int
str2shift(const char * buf)496 str2shift(const char *buf)
497 {
498 const char *ends = "BKMGTPEZ";
499 int i;
500
501 if (buf[0] == '\0')
502 return (0);
503 for (i = 0; i < strlen(ends); i++) {
504 if (toupper(buf[0]) == ends[i])
505 break;
506 }
507 if (i == strlen(ends)) {
508 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
509 buf);
510 usage(B_FALSE);
511 }
512 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
513 return (10*i);
514 }
515 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
516 usage(B_FALSE);
517 /* NOTREACHED */
518 }
519
520 static uint64_t
nicenumtoull(const char * buf)521 nicenumtoull(const char *buf)
522 {
523 char *end;
524 uint64_t val;
525
526 val = strtoull(buf, &end, 0);
527 if (end == buf) {
528 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
529 usage(B_FALSE);
530 } else if (end[0] == '.') {
531 double fval = strtod(buf, &end);
532 fval *= pow(2, str2shift(end));
533 if (fval > UINT64_MAX) {
534 (void) fprintf(stderr, "ztest: value too large: %s\n",
535 buf);
536 usage(B_FALSE);
537 }
538 val = (uint64_t)fval;
539 } else {
540 int shift = str2shift(end);
541 if (shift >= 64 || (val << shift) >> shift != val) {
542 (void) fprintf(stderr, "ztest: value too large: %s\n",
543 buf);
544 usage(B_FALSE);
545 }
546 val <<= shift;
547 }
548 return (val);
549 }
550
551 static void
usage(boolean_t requested)552 usage(boolean_t requested)
553 {
554 const ztest_shared_opts_t *zo = &ztest_opts_defaults;
555
556 char nice_vdev_size[NN_NUMBUF_SZ];
557 char nice_gang_bang[NN_NUMBUF_SZ];
558 FILE *fp = requested ? stdout : stderr;
559
560 nicenum(zo->zo_vdev_size, nice_vdev_size, sizeof (nice_vdev_size));
561 nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang,
562 sizeof (nice_gang_bang));
563
564 (void) fprintf(fp, "Usage: %s\n"
565 "\t[-v vdevs (default: %llu)]\n"
566 "\t[-s size_of_each_vdev (default: %s)]\n"
567 "\t[-a alignment_shift (default: %d)] use 0 for random\n"
568 "\t[-m mirror_copies (default: %d)]\n"
569 "\t[-r raidz_disks (default: %d)]\n"
570 "\t[-R raidz_parity (default: %d)]\n"
571 "\t[-d datasets (default: %d)]\n"
572 "\t[-t threads (default: %d)]\n"
573 "\t[-g gang_block_threshold (default: %s)]\n"
574 "\t[-i init_count (default: %d)] initialize pool i times\n"
575 "\t[-k kill_percentage (default: %llu%%)]\n"
576 "\t[-p pool_name (default: %s)]\n"
577 "\t[-f dir (default: %s)] file directory for vdev files\n"
578 "\t[-V] verbose (use multiple times for ever more blather)\n"
579 "\t[-E] use existing pool instead of creating new one\n"
580 "\t[-T time (default: %llu sec)] total run time\n"
581 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n"
582 "\t[-P passtime (default: %llu sec)] time per pass\n"
583 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n"
584 "\t[-h] (print help)\n"
585 "",
586 zo->zo_pool,
587 (u_longlong_t)zo->zo_vdevs, /* -v */
588 nice_vdev_size, /* -s */
589 zo->zo_ashift, /* -a */
590 zo->zo_mirrors, /* -m */
591 zo->zo_raidz, /* -r */
592 zo->zo_raidz_parity, /* -R */
593 zo->zo_datasets, /* -d */
594 zo->zo_threads, /* -t */
595 nice_gang_bang, /* -g */
596 zo->zo_init, /* -i */
597 (u_longlong_t)zo->zo_killrate, /* -k */
598 zo->zo_pool, /* -p */
599 zo->zo_dir, /* -f */
600 (u_longlong_t)zo->zo_time, /* -T */
601 (u_longlong_t)zo->zo_maxloops, /* -F */
602 (u_longlong_t)zo->zo_passtime);
603 exit(requested ? 0 : 1);
604 }
605
606 static void
process_options(int argc,char ** argv)607 process_options(int argc, char **argv)
608 {
609 char *path;
610 ztest_shared_opts_t *zo = &ztest_opts;
611
612 int opt;
613 uint64_t value;
614 char altdir[MAXNAMELEN] = { 0 };
615
616 bcopy(&ztest_opts_defaults, zo, sizeof (*zo));
617
618 while ((opt = getopt(argc, argv,
619 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:")) != EOF) {
620 value = 0;
621 switch (opt) {
622 case 'v':
623 case 's':
624 case 'a':
625 case 'm':
626 case 'r':
627 case 'R':
628 case 'd':
629 case 't':
630 case 'g':
631 case 'i':
632 case 'k':
633 case 'T':
634 case 'P':
635 case 'F':
636 value = nicenumtoull(optarg);
637 }
638 switch (opt) {
639 case 'v':
640 zo->zo_vdevs = value;
641 break;
642 case 's':
643 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
644 break;
645 case 'a':
646 zo->zo_ashift = value;
647 break;
648 case 'm':
649 zo->zo_mirrors = value;
650 break;
651 case 'r':
652 zo->zo_raidz = MAX(1, value);
653 break;
654 case 'R':
655 zo->zo_raidz_parity = MIN(MAX(value, 1), 3);
656 break;
657 case 'd':
658 zo->zo_datasets = MAX(1, value);
659 break;
660 case 't':
661 zo->zo_threads = MAX(1, value);
662 break;
663 case 'g':
664 zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1,
665 value);
666 break;
667 case 'i':
668 zo->zo_init = value;
669 break;
670 case 'k':
671 zo->zo_killrate = value;
672 break;
673 case 'p':
674 (void) strlcpy(zo->zo_pool, optarg,
675 sizeof (zo->zo_pool));
676 break;
677 case 'f':
678 path = realpath(optarg, NULL);
679 if (path == NULL) {
680 (void) fprintf(stderr, "error: %s: %s\n",
681 optarg, strerror(errno));
682 usage(B_FALSE);
683 } else {
684 (void) strlcpy(zo->zo_dir, path,
685 sizeof (zo->zo_dir));
686 }
687 break;
688 case 'V':
689 zo->zo_verbose++;
690 break;
691 case 'E':
692 zo->zo_init = 0;
693 break;
694 case 'T':
695 zo->zo_time = value;
696 break;
697 case 'P':
698 zo->zo_passtime = MAX(1, value);
699 break;
700 case 'F':
701 zo->zo_maxloops = MAX(1, value);
702 break;
703 case 'B':
704 (void) strlcpy(altdir, optarg, sizeof (altdir));
705 break;
706 case 'h':
707 usage(B_TRUE);
708 break;
709 case '?':
710 default:
711 usage(B_FALSE);
712 break;
713 }
714 }
715
716 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1);
717
718 zo->zo_vdevtime =
719 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
720 UINT64_MAX >> 2);
721
722 if (strlen(altdir) > 0) {
723 char *cmd;
724 char *realaltdir;
725 char *bin;
726 char *ztest;
727 char *isa;
728 int isalen;
729
730 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
731 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
732
733 VERIFY(NULL != realpath(getexecname(), cmd));
734 if (0 != access(altdir, F_OK)) {
735 ztest_dump_core = B_FALSE;
736 fatal(B_TRUE, "invalid alternate ztest path: %s",
737 altdir);
738 }
739 VERIFY(NULL != realpath(altdir, realaltdir));
740
741 /*
742 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest".
743 * We want to extract <isa> to determine if we should use
744 * 32 or 64 bit binaries.
745 */
746 bin = strstr(cmd, "/usr/bin/");
747 ztest = strstr(bin, "/ztest");
748 isa = bin + 9;
749 isalen = ztest - isa;
750 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest),
751 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa);
752 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath),
753 "%s/usr/lib/%.*s", realaltdir, isalen, isa);
754
755 if (0 != access(zo->zo_alt_ztest, X_OK)) {
756 ztest_dump_core = B_FALSE;
757 fatal(B_TRUE, "invalid alternate ztest: %s",
758 zo->zo_alt_ztest);
759 } else if (0 != access(zo->zo_alt_libpath, X_OK)) {
760 ztest_dump_core = B_FALSE;
761 fatal(B_TRUE, "invalid alternate lib directory %s",
762 zo->zo_alt_libpath);
763 }
764
765 umem_free(cmd, MAXPATHLEN);
766 umem_free(realaltdir, MAXPATHLEN);
767 }
768 }
769
770 static void
ztest_kill(ztest_shared_t * zs)771 ztest_kill(ztest_shared_t *zs)
772 {
773 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
774 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
775
776 /*
777 * Before we kill off ztest, make sure that the config is updated.
778 * See comment above spa_config_sync().
779 */
780 mutex_enter(&spa_namespace_lock);
781 spa_config_sync(ztest_spa, B_FALSE, B_FALSE);
782 mutex_exit(&spa_namespace_lock);
783
784 zfs_dbgmsg_print(FTAG);
785 (void) kill(getpid(), SIGKILL);
786 }
787
788 static uint64_t
ztest_random(uint64_t range)789 ztest_random(uint64_t range)
790 {
791 uint64_t r;
792
793 ASSERT3S(ztest_fd_rand, >=, 0);
794
795 if (range == 0)
796 return (0);
797
798 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
799 fatal(1, "short read from /dev/urandom");
800
801 return (r % range);
802 }
803
804 /* ARGSUSED */
805 static void
ztest_record_enospc(const char * s)806 ztest_record_enospc(const char *s)
807 {
808 ztest_shared->zs_enospc_count++;
809 }
810
811 static uint64_t
ztest_get_ashift(void)812 ztest_get_ashift(void)
813 {
814 if (ztest_opts.zo_ashift == 0)
815 return (SPA_MINBLOCKSHIFT + ztest_random(5));
816 return (ztest_opts.zo_ashift);
817 }
818
819 static nvlist_t *
make_vdev_file(char * path,char * aux,char * pool,size_t size,uint64_t ashift)820 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift)
821 {
822 char pathbuf[MAXPATHLEN];
823 uint64_t vdev;
824 nvlist_t *file;
825
826 if (ashift == 0)
827 ashift = ztest_get_ashift();
828
829 if (path == NULL) {
830 path = pathbuf;
831
832 if (aux != NULL) {
833 vdev = ztest_shared->zs_vdev_aux;
834 (void) snprintf(path, sizeof (pathbuf),
835 ztest_aux_template, ztest_opts.zo_dir,
836 pool == NULL ? ztest_opts.zo_pool : pool,
837 aux, vdev);
838 } else {
839 vdev = ztest_shared->zs_vdev_next_leaf++;
840 (void) snprintf(path, sizeof (pathbuf),
841 ztest_dev_template, ztest_opts.zo_dir,
842 pool == NULL ? ztest_opts.zo_pool : pool, vdev);
843 }
844 }
845
846 if (size != 0) {
847 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
848 if (fd == -1)
849 fatal(1, "can't open %s", path);
850 if (ftruncate(fd, size) != 0)
851 fatal(1, "can't ftruncate %s", path);
852 (void) close(fd);
853 }
854
855 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
856 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
857 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
858 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
859
860 return (file);
861 }
862
863 static nvlist_t *
make_vdev_raidz(char * path,char * aux,char * pool,size_t size,uint64_t ashift,int r)864 make_vdev_raidz(char *path, char *aux, char *pool, size_t size,
865 uint64_t ashift, int r)
866 {
867 nvlist_t *raidz, **child;
868 int c;
869
870 if (r < 2)
871 return (make_vdev_file(path, aux, pool, size, ashift));
872 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
873
874 for (c = 0; c < r; c++)
875 child[c] = make_vdev_file(path, aux, pool, size, ashift);
876
877 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
878 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
879 VDEV_TYPE_RAIDZ) == 0);
880 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
881 ztest_opts.zo_raidz_parity) == 0);
882 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
883 child, r) == 0);
884
885 for (c = 0; c < r; c++)
886 nvlist_free(child[c]);
887
888 umem_free(child, r * sizeof (nvlist_t *));
889
890 return (raidz);
891 }
892
893 static nvlist_t *
make_vdev_mirror(char * path,char * aux,char * pool,size_t size,uint64_t ashift,int r,int m)894 make_vdev_mirror(char *path, char *aux, char *pool, size_t size,
895 uint64_t ashift, int r, int m)
896 {
897 nvlist_t *mirror, **child;
898 int c;
899
900 if (m < 1)
901 return (make_vdev_raidz(path, aux, pool, size, ashift, r));
902
903 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
904
905 for (c = 0; c < m; c++)
906 child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r);
907
908 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
909 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
910 VDEV_TYPE_MIRROR) == 0);
911 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
912 child, m) == 0);
913
914 for (c = 0; c < m; c++)
915 nvlist_free(child[c]);
916
917 umem_free(child, m * sizeof (nvlist_t *));
918
919 return (mirror);
920 }
921
922 static nvlist_t *
make_vdev_root(char * path,char * aux,char * pool,size_t size,uint64_t ashift,int log,int r,int m,int t)923 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift,
924 int log, int r, int m, int t)
925 {
926 nvlist_t *root, **child;
927 int c;
928
929 ASSERT(t > 0);
930
931 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
932
933 for (c = 0; c < t; c++) {
934 child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
935 r, m);
936 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
937 log) == 0);
938 }
939
940 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
941 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
942 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
943 child, t) == 0);
944
945 for (c = 0; c < t; c++)
946 nvlist_free(child[c]);
947
948 umem_free(child, t * sizeof (nvlist_t *));
949
950 return (root);
951 }
952
953 /*
954 * Find a random spa version. Returns back a random spa version in the
955 * range [initial_version, SPA_VERSION_FEATURES].
956 */
957 static uint64_t
ztest_random_spa_version(uint64_t initial_version)958 ztest_random_spa_version(uint64_t initial_version)
959 {
960 uint64_t version = initial_version;
961
962 if (version <= SPA_VERSION_BEFORE_FEATURES) {
963 version = version +
964 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
965 }
966
967 if (version > SPA_VERSION_BEFORE_FEATURES)
968 version = SPA_VERSION_FEATURES;
969
970 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
971 return (version);
972 }
973
974 static int
ztest_random_blocksize(void)975 ztest_random_blocksize(void)
976 {
977 uint64_t block_shift;
978 /*
979 * Choose a block size >= the ashift.
980 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
981 */
982 int maxbs = SPA_OLD_MAXBLOCKSHIFT;
983 if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
984 maxbs = 20;
985 block_shift = ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
986 return (1 << (SPA_MINBLOCKSHIFT + block_shift));
987 }
988
989 static int
ztest_random_ibshift(void)990 ztest_random_ibshift(void)
991 {
992 return (DN_MIN_INDBLKSHIFT +
993 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
994 }
995
996 static uint64_t
ztest_random_vdev_top(spa_t * spa,boolean_t log_ok)997 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
998 {
999 uint64_t top;
1000 vdev_t *rvd = spa->spa_root_vdev;
1001 vdev_t *tvd;
1002
1003 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1004
1005 do {
1006 top = ztest_random(rvd->vdev_children);
1007 tvd = rvd->vdev_child[top];
1008 } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) ||
1009 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1010
1011 return (top);
1012 }
1013
1014 static uint64_t
ztest_random_dsl_prop(zfs_prop_t prop)1015 ztest_random_dsl_prop(zfs_prop_t prop)
1016 {
1017 uint64_t value;
1018
1019 do {
1020 value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1021 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1022
1023 return (value);
1024 }
1025
1026 static int
ztest_dsl_prop_set_uint64(char * osname,zfs_prop_t prop,uint64_t value,boolean_t inherit)1027 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1028 boolean_t inherit)
1029 {
1030 const char *propname = zfs_prop_to_name(prop);
1031 const char *valname;
1032 char setpoint[MAXPATHLEN];
1033 uint64_t curval;
1034 int error;
1035
1036 error = dsl_prop_set_int(osname, propname,
1037 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1038
1039 if (error == ENOSPC) {
1040 ztest_record_enospc(FTAG);
1041 return (error);
1042 }
1043 ASSERT0(error);
1044
1045 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1046
1047 if (ztest_opts.zo_verbose >= 6) {
1048 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0);
1049 (void) printf("%s %s = %s at '%s'\n",
1050 osname, propname, valname, setpoint);
1051 }
1052
1053 return (error);
1054 }
1055
1056 static int
ztest_spa_prop_set_uint64(zpool_prop_t prop,uint64_t value)1057 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1058 {
1059 spa_t *spa = ztest_spa;
1060 nvlist_t *props = NULL;
1061 int error;
1062
1063 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
1064 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0);
1065
1066 error = spa_prop_set(spa, props);
1067
1068 nvlist_free(props);
1069
1070 if (error == ENOSPC) {
1071 ztest_record_enospc(FTAG);
1072 return (error);
1073 }
1074 ASSERT0(error);
1075
1076 return (error);
1077 }
1078
1079 static void
ztest_rll_init(rll_t * rll)1080 ztest_rll_init(rll_t *rll)
1081 {
1082 rll->rll_writer = NULL;
1083 rll->rll_readers = 0;
1084 VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0);
1085 VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0);
1086 }
1087
1088 static void
ztest_rll_destroy(rll_t * rll)1089 ztest_rll_destroy(rll_t *rll)
1090 {
1091 ASSERT(rll->rll_writer == NULL);
1092 ASSERT(rll->rll_readers == 0);
1093 VERIFY(_mutex_destroy(&rll->rll_lock) == 0);
1094 VERIFY(cond_destroy(&rll->rll_cv) == 0);
1095 }
1096
1097 static void
ztest_rll_lock(rll_t * rll,rl_type_t type)1098 ztest_rll_lock(rll_t *rll, rl_type_t type)
1099 {
1100 VERIFY(mutex_lock(&rll->rll_lock) == 0);
1101
1102 if (type == RL_READER) {
1103 while (rll->rll_writer != NULL)
1104 (void) cond_wait(&rll->rll_cv, &rll->rll_lock);
1105 rll->rll_readers++;
1106 } else {
1107 while (rll->rll_writer != NULL || rll->rll_readers)
1108 (void) cond_wait(&rll->rll_cv, &rll->rll_lock);
1109 rll->rll_writer = curthread;
1110 }
1111
1112 VERIFY(mutex_unlock(&rll->rll_lock) == 0);
1113 }
1114
1115 static void
ztest_rll_unlock(rll_t * rll)1116 ztest_rll_unlock(rll_t *rll)
1117 {
1118 VERIFY(mutex_lock(&rll->rll_lock) == 0);
1119
1120 if (rll->rll_writer) {
1121 ASSERT(rll->rll_readers == 0);
1122 rll->rll_writer = NULL;
1123 } else {
1124 ASSERT(rll->rll_readers != 0);
1125 ASSERT(rll->rll_writer == NULL);
1126 rll->rll_readers--;
1127 }
1128
1129 if (rll->rll_writer == NULL && rll->rll_readers == 0)
1130 VERIFY(cond_broadcast(&rll->rll_cv) == 0);
1131
1132 VERIFY(mutex_unlock(&rll->rll_lock) == 0);
1133 }
1134
1135 static void
ztest_object_lock(ztest_ds_t * zd,uint64_t object,rl_type_t type)1136 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1137 {
1138 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1139
1140 ztest_rll_lock(rll, type);
1141 }
1142
1143 static void
ztest_object_unlock(ztest_ds_t * zd,uint64_t object)1144 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1145 {
1146 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1147
1148 ztest_rll_unlock(rll);
1149 }
1150
1151 static rl_t *
ztest_range_lock(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size,rl_type_t type)1152 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1153 uint64_t size, rl_type_t type)
1154 {
1155 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1156 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1157 rl_t *rl;
1158
1159 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1160 rl->rl_object = object;
1161 rl->rl_offset = offset;
1162 rl->rl_size = size;
1163 rl->rl_lock = rll;
1164
1165 ztest_rll_lock(rll, type);
1166
1167 return (rl);
1168 }
1169
1170 static void
ztest_range_unlock(rl_t * rl)1171 ztest_range_unlock(rl_t *rl)
1172 {
1173 rll_t *rll = rl->rl_lock;
1174
1175 ztest_rll_unlock(rll);
1176
1177 umem_free(rl, sizeof (*rl));
1178 }
1179
1180 static void
ztest_zd_init(ztest_ds_t * zd,ztest_shared_ds_t * szd,objset_t * os)1181 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1182 {
1183 zd->zd_os = os;
1184 zd->zd_zilog = dmu_objset_zil(os);
1185 zd->zd_shared = szd;
1186 dmu_objset_name(os, zd->zd_name);
1187
1188 if (zd->zd_shared != NULL)
1189 zd->zd_shared->zd_seq = 0;
1190
1191 VERIFY(rwlock_init(&zd->zd_zilog_lock, USYNC_THREAD, NULL) == 0);
1192 VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0);
1193
1194 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1195 ztest_rll_init(&zd->zd_object_lock[l]);
1196
1197 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++)
1198 ztest_rll_init(&zd->zd_range_lock[l]);
1199 }
1200
1201 static void
ztest_zd_fini(ztest_ds_t * zd)1202 ztest_zd_fini(ztest_ds_t *zd)
1203 {
1204 VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0);
1205
1206 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1207 ztest_rll_destroy(&zd->zd_object_lock[l]);
1208
1209 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++)
1210 ztest_rll_destroy(&zd->zd_range_lock[l]);
1211 }
1212
1213 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1214
1215 static uint64_t
ztest_tx_assign(dmu_tx_t * tx,uint64_t txg_how,const char * tag)1216 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1217 {
1218 uint64_t txg;
1219 int error;
1220
1221 /*
1222 * Attempt to assign tx to some transaction group.
1223 */
1224 error = dmu_tx_assign(tx, txg_how);
1225 if (error) {
1226 if (error == ERESTART) {
1227 ASSERT(txg_how == TXG_NOWAIT);
1228 dmu_tx_wait(tx);
1229 } else {
1230 ASSERT3U(error, ==, ENOSPC);
1231 ztest_record_enospc(tag);
1232 }
1233 dmu_tx_abort(tx);
1234 return (0);
1235 }
1236 txg = dmu_tx_get_txg(tx);
1237 ASSERT(txg != 0);
1238 return (txg);
1239 }
1240
1241 static void
ztest_pattern_set(void * buf,uint64_t size,uint64_t value)1242 ztest_pattern_set(void *buf, uint64_t size, uint64_t value)
1243 {
1244 uint64_t *ip = buf;
1245 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1246
1247 while (ip < ip_end)
1248 *ip++ = value;
1249 }
1250
1251 static boolean_t
ztest_pattern_match(void * buf,uint64_t size,uint64_t value)1252 ztest_pattern_match(void *buf, uint64_t size, uint64_t value)
1253 {
1254 uint64_t *ip = buf;
1255 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1256 uint64_t diff = 0;
1257
1258 while (ip < ip_end)
1259 diff |= (value - *ip++);
1260
1261 return (diff == 0);
1262 }
1263
1264 static void
ztest_bt_generate(ztest_block_tag_t * bt,objset_t * os,uint64_t object,uint64_t offset,uint64_t gen,uint64_t txg,uint64_t crtxg)1265 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1266 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1267 {
1268 bt->bt_magic = BT_MAGIC;
1269 bt->bt_objset = dmu_objset_id(os);
1270 bt->bt_object = object;
1271 bt->bt_offset = offset;
1272 bt->bt_gen = gen;
1273 bt->bt_txg = txg;
1274 bt->bt_crtxg = crtxg;
1275 }
1276
1277 static void
ztest_bt_verify(ztest_block_tag_t * bt,objset_t * os,uint64_t object,uint64_t offset,uint64_t gen,uint64_t txg,uint64_t crtxg)1278 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1279 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1280 {
1281 ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1282 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1283 ASSERT3U(bt->bt_object, ==, object);
1284 ASSERT3U(bt->bt_offset, ==, offset);
1285 ASSERT3U(bt->bt_gen, <=, gen);
1286 ASSERT3U(bt->bt_txg, <=, txg);
1287 ASSERT3U(bt->bt_crtxg, ==, crtxg);
1288 }
1289
1290 static ztest_block_tag_t *
ztest_bt_bonus(dmu_buf_t * db)1291 ztest_bt_bonus(dmu_buf_t *db)
1292 {
1293 dmu_object_info_t doi;
1294 ztest_block_tag_t *bt;
1295
1296 dmu_object_info_from_db(db, &doi);
1297 ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1298 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1299 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1300
1301 return (bt);
1302 }
1303
1304 /*
1305 * ZIL logging ops
1306 */
1307
1308 #define lrz_type lr_mode
1309 #define lrz_blocksize lr_uid
1310 #define lrz_ibshift lr_gid
1311 #define lrz_bonustype lr_rdev
1312 #define lrz_bonuslen lr_crtime[1]
1313
1314 static void
ztest_log_create(ztest_ds_t * zd,dmu_tx_t * tx,lr_create_t * lr)1315 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1316 {
1317 char *name = (void *)(lr + 1); /* name follows lr */
1318 size_t namesize = strlen(name) + 1;
1319 itx_t *itx;
1320
1321 if (zil_replaying(zd->zd_zilog, tx))
1322 return;
1323
1324 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1325 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1326 sizeof (*lr) + namesize - sizeof (lr_t));
1327
1328 zil_itx_assign(zd->zd_zilog, itx, tx);
1329 }
1330
1331 static void
ztest_log_remove(ztest_ds_t * zd,dmu_tx_t * tx,lr_remove_t * lr,uint64_t object)1332 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1333 {
1334 char *name = (void *)(lr + 1); /* name follows lr */
1335 size_t namesize = strlen(name) + 1;
1336 itx_t *itx;
1337
1338 if (zil_replaying(zd->zd_zilog, tx))
1339 return;
1340
1341 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1342 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1343 sizeof (*lr) + namesize - sizeof (lr_t));
1344
1345 itx->itx_oid = object;
1346 zil_itx_assign(zd->zd_zilog, itx, tx);
1347 }
1348
1349 static void
ztest_log_write(ztest_ds_t * zd,dmu_tx_t * tx,lr_write_t * lr)1350 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1351 {
1352 itx_t *itx;
1353 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1354
1355 if (zil_replaying(zd->zd_zilog, tx))
1356 return;
1357
1358 if (lr->lr_length > ZIL_MAX_LOG_DATA)
1359 write_state = WR_INDIRECT;
1360
1361 itx = zil_itx_create(TX_WRITE,
1362 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1363
1364 if (write_state == WR_COPIED &&
1365 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1366 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1367 zil_itx_destroy(itx);
1368 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1369 write_state = WR_NEED_COPY;
1370 }
1371 itx->itx_private = zd;
1372 itx->itx_wr_state = write_state;
1373 itx->itx_sync = (ztest_random(8) == 0);
1374 itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0);
1375
1376 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1377 sizeof (*lr) - sizeof (lr_t));
1378
1379 zil_itx_assign(zd->zd_zilog, itx, tx);
1380 }
1381
1382 static void
ztest_log_truncate(ztest_ds_t * zd,dmu_tx_t * tx,lr_truncate_t * lr)1383 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
1384 {
1385 itx_t *itx;
1386
1387 if (zil_replaying(zd->zd_zilog, tx))
1388 return;
1389
1390 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
1391 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1392 sizeof (*lr) - sizeof (lr_t));
1393
1394 itx->itx_sync = B_FALSE;
1395 zil_itx_assign(zd->zd_zilog, itx, tx);
1396 }
1397
1398 static void
ztest_log_setattr(ztest_ds_t * zd,dmu_tx_t * tx,lr_setattr_t * lr)1399 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
1400 {
1401 itx_t *itx;
1402
1403 if (zil_replaying(zd->zd_zilog, tx))
1404 return;
1405
1406 itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
1407 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1408 sizeof (*lr) - sizeof (lr_t));
1409
1410 itx->itx_sync = B_FALSE;
1411 zil_itx_assign(zd->zd_zilog, itx, tx);
1412 }
1413
1414 /*
1415 * ZIL replay ops
1416 */
1417 static int
ztest_replay_create(ztest_ds_t * zd,lr_create_t * lr,boolean_t byteswap)1418 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap)
1419 {
1420 char *name = (void *)(lr + 1); /* name follows lr */
1421 objset_t *os = zd->zd_os;
1422 ztest_block_tag_t *bbt;
1423 dmu_buf_t *db;
1424 dmu_tx_t *tx;
1425 uint64_t txg;
1426 int error = 0;
1427
1428 if (byteswap)
1429 byteswap_uint64_array(lr, sizeof (*lr));
1430
1431 ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1432 ASSERT(name[0] != '\0');
1433
1434 tx = dmu_tx_create(os);
1435
1436 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
1437
1438 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1439 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1440 } else {
1441 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1442 }
1443
1444 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1445 if (txg == 0)
1446 return (ENOSPC);
1447
1448 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid);
1449
1450 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1451 if (lr->lr_foid == 0) {
1452 lr->lr_foid = zap_create(os,
1453 lr->lrz_type, lr->lrz_bonustype,
1454 lr->lrz_bonuslen, tx);
1455 } else {
1456 error = zap_create_claim(os, lr->lr_foid,
1457 lr->lrz_type, lr->lrz_bonustype,
1458 lr->lrz_bonuslen, tx);
1459 }
1460 } else {
1461 if (lr->lr_foid == 0) {
1462 lr->lr_foid = dmu_object_alloc(os,
1463 lr->lrz_type, 0, lr->lrz_bonustype,
1464 lr->lrz_bonuslen, tx);
1465 } else {
1466 error = dmu_object_claim(os, lr->lr_foid,
1467 lr->lrz_type, 0, lr->lrz_bonustype,
1468 lr->lrz_bonuslen, tx);
1469 }
1470 }
1471
1472 if (error) {
1473 ASSERT3U(error, ==, EEXIST);
1474 ASSERT(zd->zd_zilog->zl_replay);
1475 dmu_tx_commit(tx);
1476 return (error);
1477 }
1478
1479 ASSERT(lr->lr_foid != 0);
1480
1481 if (lr->lrz_type != DMU_OT_ZAP_OTHER)
1482 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid,
1483 lr->lrz_blocksize, lr->lrz_ibshift, tx));
1484
1485 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1486 bbt = ztest_bt_bonus(db);
1487 dmu_buf_will_dirty(db, tx);
1488 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg);
1489 dmu_buf_rele(db, FTAG);
1490
1491 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
1492 &lr->lr_foid, tx));
1493
1494 (void) ztest_log_create(zd, tx, lr);
1495
1496 dmu_tx_commit(tx);
1497
1498 return (0);
1499 }
1500
1501 static int
ztest_replay_remove(ztest_ds_t * zd,lr_remove_t * lr,boolean_t byteswap)1502 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap)
1503 {
1504 char *name = (void *)(lr + 1); /* name follows lr */
1505 objset_t *os = zd->zd_os;
1506 dmu_object_info_t doi;
1507 dmu_tx_t *tx;
1508 uint64_t object, txg;
1509
1510 if (byteswap)
1511 byteswap_uint64_array(lr, sizeof (*lr));
1512
1513 ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1514 ASSERT(name[0] != '\0');
1515
1516 VERIFY3U(0, ==,
1517 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
1518 ASSERT(object != 0);
1519
1520 ztest_object_lock(zd, object, RL_WRITER);
1521
1522 VERIFY3U(0, ==, dmu_object_info(os, object, &doi));
1523
1524 tx = dmu_tx_create(os);
1525
1526 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
1527 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1528
1529 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1530 if (txg == 0) {
1531 ztest_object_unlock(zd, object);
1532 return (ENOSPC);
1533 }
1534
1535 if (doi.doi_type == DMU_OT_ZAP_OTHER) {
1536 VERIFY3U(0, ==, zap_destroy(os, object, tx));
1537 } else {
1538 VERIFY3U(0, ==, dmu_object_free(os, object, tx));
1539 }
1540
1541 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx));
1542
1543 (void) ztest_log_remove(zd, tx, lr, object);
1544
1545 dmu_tx_commit(tx);
1546
1547 ztest_object_unlock(zd, object);
1548
1549 return (0);
1550 }
1551
1552 static int
ztest_replay_write(ztest_ds_t * zd,lr_write_t * lr,boolean_t byteswap)1553 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap)
1554 {
1555 objset_t *os = zd->zd_os;
1556 void *data = lr + 1; /* data follows lr */
1557 uint64_t offset, length;
1558 ztest_block_tag_t *bt = data;
1559 ztest_block_tag_t *bbt;
1560 uint64_t gen, txg, lrtxg, crtxg;
1561 dmu_object_info_t doi;
1562 dmu_tx_t *tx;
1563 dmu_buf_t *db;
1564 arc_buf_t *abuf = NULL;
1565 rl_t *rl;
1566
1567 if (byteswap)
1568 byteswap_uint64_array(lr, sizeof (*lr));
1569
1570 offset = lr->lr_offset;
1571 length = lr->lr_length;
1572
1573 /* If it's a dmu_sync() block, write the whole block */
1574 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
1575 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
1576 if (length < blocksize) {
1577 offset -= offset % blocksize;
1578 length = blocksize;
1579 }
1580 }
1581
1582 if (bt->bt_magic == BSWAP_64(BT_MAGIC))
1583 byteswap_uint64_array(bt, sizeof (*bt));
1584
1585 if (bt->bt_magic != BT_MAGIC)
1586 bt = NULL;
1587
1588 ztest_object_lock(zd, lr->lr_foid, RL_READER);
1589 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
1590
1591 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1592
1593 dmu_object_info_from_db(db, &doi);
1594
1595 bbt = ztest_bt_bonus(db);
1596 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1597 gen = bbt->bt_gen;
1598 crtxg = bbt->bt_crtxg;
1599 lrtxg = lr->lr_common.lrc_txg;
1600
1601 tx = dmu_tx_create(os);
1602
1603 dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
1604
1605 if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
1606 P2PHASE(offset, length) == 0)
1607 abuf = dmu_request_arcbuf(db, length);
1608
1609 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1610 if (txg == 0) {
1611 if (abuf != NULL)
1612 dmu_return_arcbuf(abuf);
1613 dmu_buf_rele(db, FTAG);
1614 ztest_range_unlock(rl);
1615 ztest_object_unlock(zd, lr->lr_foid);
1616 return (ENOSPC);
1617 }
1618
1619 if (bt != NULL) {
1620 /*
1621 * Usually, verify the old data before writing new data --
1622 * but not always, because we also want to verify correct
1623 * behavior when the data was not recently read into cache.
1624 */
1625 ASSERT(offset % doi.doi_data_block_size == 0);
1626 if (ztest_random(4) != 0) {
1627 int prefetch = ztest_random(2) ?
1628 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
1629 ztest_block_tag_t rbt;
1630
1631 VERIFY(dmu_read(os, lr->lr_foid, offset,
1632 sizeof (rbt), &rbt, prefetch) == 0);
1633 if (rbt.bt_magic == BT_MAGIC) {
1634 ztest_bt_verify(&rbt, os, lr->lr_foid,
1635 offset, gen, txg, crtxg);
1636 }
1637 }
1638
1639 /*
1640 * Writes can appear to be newer than the bonus buffer because
1641 * the ztest_get_data() callback does a dmu_read() of the
1642 * open-context data, which may be different than the data
1643 * as it was when the write was generated.
1644 */
1645 if (zd->zd_zilog->zl_replay) {
1646 ztest_bt_verify(bt, os, lr->lr_foid, offset,
1647 MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
1648 bt->bt_crtxg);
1649 }
1650
1651 /*
1652 * Set the bt's gen/txg to the bonus buffer's gen/txg
1653 * so that all of the usual ASSERTs will work.
1654 */
1655 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg);
1656 }
1657
1658 if (abuf == NULL) {
1659 dmu_write(os, lr->lr_foid, offset, length, data, tx);
1660 } else {
1661 bcopy(data, abuf->b_data, length);
1662 dmu_assign_arcbuf(db, offset, abuf, tx);
1663 }
1664
1665 (void) ztest_log_write(zd, tx, lr);
1666
1667 dmu_buf_rele(db, FTAG);
1668
1669 dmu_tx_commit(tx);
1670
1671 ztest_range_unlock(rl);
1672 ztest_object_unlock(zd, lr->lr_foid);
1673
1674 return (0);
1675 }
1676
1677 static int
ztest_replay_truncate(ztest_ds_t * zd,lr_truncate_t * lr,boolean_t byteswap)1678 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap)
1679 {
1680 objset_t *os = zd->zd_os;
1681 dmu_tx_t *tx;
1682 uint64_t txg;
1683 rl_t *rl;
1684
1685 if (byteswap)
1686 byteswap_uint64_array(lr, sizeof (*lr));
1687
1688 ztest_object_lock(zd, lr->lr_foid, RL_READER);
1689 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
1690 RL_WRITER);
1691
1692 tx = dmu_tx_create(os);
1693
1694 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
1695
1696 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1697 if (txg == 0) {
1698 ztest_range_unlock(rl);
1699 ztest_object_unlock(zd, lr->lr_foid);
1700 return (ENOSPC);
1701 }
1702
1703 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
1704 lr->lr_length, tx) == 0);
1705
1706 (void) ztest_log_truncate(zd, tx, lr);
1707
1708 dmu_tx_commit(tx);
1709
1710 ztest_range_unlock(rl);
1711 ztest_object_unlock(zd, lr->lr_foid);
1712
1713 return (0);
1714 }
1715
1716 static int
ztest_replay_setattr(ztest_ds_t * zd,lr_setattr_t * lr,boolean_t byteswap)1717 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap)
1718 {
1719 objset_t *os = zd->zd_os;
1720 dmu_tx_t *tx;
1721 dmu_buf_t *db;
1722 ztest_block_tag_t *bbt;
1723 uint64_t txg, lrtxg, crtxg;
1724
1725 if (byteswap)
1726 byteswap_uint64_array(lr, sizeof (*lr));
1727
1728 ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
1729
1730 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1731
1732 tx = dmu_tx_create(os);
1733 dmu_tx_hold_bonus(tx, lr->lr_foid);
1734
1735 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1736 if (txg == 0) {
1737 dmu_buf_rele(db, FTAG);
1738 ztest_object_unlock(zd, lr->lr_foid);
1739 return (ENOSPC);
1740 }
1741
1742 bbt = ztest_bt_bonus(db);
1743 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1744 crtxg = bbt->bt_crtxg;
1745 lrtxg = lr->lr_common.lrc_txg;
1746
1747 if (zd->zd_zilog->zl_replay) {
1748 ASSERT(lr->lr_size != 0);
1749 ASSERT(lr->lr_mode != 0);
1750 ASSERT(lrtxg != 0);
1751 } else {
1752 /*
1753 * Randomly change the size and increment the generation.
1754 */
1755 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
1756 sizeof (*bbt);
1757 lr->lr_mode = bbt->bt_gen + 1;
1758 ASSERT(lrtxg == 0);
1759 }
1760
1761 /*
1762 * Verify that the current bonus buffer is not newer than our txg.
1763 */
1764 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode,
1765 MAX(txg, lrtxg), crtxg);
1766
1767 dmu_buf_will_dirty(db, tx);
1768
1769 ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
1770 ASSERT3U(lr->lr_size, <=, db->db_size);
1771 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
1772 bbt = ztest_bt_bonus(db);
1773
1774 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg);
1775
1776 dmu_buf_rele(db, FTAG);
1777
1778 (void) ztest_log_setattr(zd, tx, lr);
1779
1780 dmu_tx_commit(tx);
1781
1782 ztest_object_unlock(zd, lr->lr_foid);
1783
1784 return (0);
1785 }
1786
1787 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
1788 NULL, /* 0 no such transaction type */
1789 ztest_replay_create, /* TX_CREATE */
1790 NULL, /* TX_MKDIR */
1791 NULL, /* TX_MKXATTR */
1792 NULL, /* TX_SYMLINK */
1793 ztest_replay_remove, /* TX_REMOVE */
1794 NULL, /* TX_RMDIR */
1795 NULL, /* TX_LINK */
1796 NULL, /* TX_RENAME */
1797 ztest_replay_write, /* TX_WRITE */
1798 ztest_replay_truncate, /* TX_TRUNCATE */
1799 ztest_replay_setattr, /* TX_SETATTR */
1800 NULL, /* TX_ACL */
1801 NULL, /* TX_CREATE_ACL */
1802 NULL, /* TX_CREATE_ATTR */
1803 NULL, /* TX_CREATE_ACL_ATTR */
1804 NULL, /* TX_MKDIR_ACL */
1805 NULL, /* TX_MKDIR_ATTR */
1806 NULL, /* TX_MKDIR_ACL_ATTR */
1807 NULL, /* TX_WRITE2 */
1808 };
1809
1810 /*
1811 * ZIL get_data callbacks
1812 */
1813
1814 static void
ztest_get_done(zgd_t * zgd,int error)1815 ztest_get_done(zgd_t *zgd, int error)
1816 {
1817 ztest_ds_t *zd = zgd->zgd_private;
1818 uint64_t object = zgd->zgd_rl->rl_object;
1819
1820 if (zgd->zgd_db)
1821 dmu_buf_rele(zgd->zgd_db, zgd);
1822
1823 ztest_range_unlock(zgd->zgd_rl);
1824 ztest_object_unlock(zd, object);
1825
1826 if (error == 0 && zgd->zgd_bp)
1827 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1828
1829 umem_free(zgd, sizeof (*zgd));
1830 }
1831
1832 static int
ztest_get_data(void * arg,lr_write_t * lr,char * buf,zio_t * zio)1833 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1834 {
1835 ztest_ds_t *zd = arg;
1836 objset_t *os = zd->zd_os;
1837 uint64_t object = lr->lr_foid;
1838 uint64_t offset = lr->lr_offset;
1839 uint64_t size = lr->lr_length;
1840 blkptr_t *bp = &lr->lr_blkptr;
1841 uint64_t txg = lr->lr_common.lrc_txg;
1842 uint64_t crtxg;
1843 dmu_object_info_t doi;
1844 dmu_buf_t *db;
1845 zgd_t *zgd;
1846 int error;
1847
1848 ztest_object_lock(zd, object, RL_READER);
1849 error = dmu_bonus_hold(os, object, FTAG, &db);
1850 if (error) {
1851 ztest_object_unlock(zd, object);
1852 return (error);
1853 }
1854
1855 crtxg = ztest_bt_bonus(db)->bt_crtxg;
1856
1857 if (crtxg == 0 || crtxg > txg) {
1858 dmu_buf_rele(db, FTAG);
1859 ztest_object_unlock(zd, object);
1860 return (ENOENT);
1861 }
1862
1863 dmu_object_info_from_db(db, &doi);
1864 dmu_buf_rele(db, FTAG);
1865 db = NULL;
1866
1867 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
1868 zgd->zgd_zilog = zd->zd_zilog;
1869 zgd->zgd_private = zd;
1870
1871 if (buf != NULL) { /* immediate write */
1872 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1873 RL_READER);
1874
1875 error = dmu_read(os, object, offset, size, buf,
1876 DMU_READ_NO_PREFETCH);
1877 ASSERT(error == 0);
1878 } else {
1879 size = doi.doi_data_block_size;
1880 if (ISP2(size)) {
1881 offset = P2ALIGN(offset, size);
1882 } else {
1883 ASSERT(offset < size);
1884 offset = 0;
1885 }
1886
1887 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1888 RL_READER);
1889
1890 error = dmu_buf_hold(os, object, offset, zgd, &db,
1891 DMU_READ_NO_PREFETCH);
1892
1893 if (error == 0) {
1894 blkptr_t *obp = dmu_buf_get_blkptr(db);
1895 if (obp) {
1896 ASSERT(BP_IS_HOLE(bp));
1897 *bp = *obp;
1898 }
1899
1900 zgd->zgd_db = db;
1901 zgd->zgd_bp = bp;
1902
1903 ASSERT(db->db_offset == offset);
1904 ASSERT(db->db_size == size);
1905
1906 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1907 ztest_get_done, zgd);
1908
1909 if (error == 0)
1910 return (0);
1911 }
1912 }
1913
1914 ztest_get_done(zgd, error);
1915
1916 return (error);
1917 }
1918
1919 static void *
ztest_lr_alloc(size_t lrsize,char * name)1920 ztest_lr_alloc(size_t lrsize, char *name)
1921 {
1922 char *lr;
1923 size_t namesize = name ? strlen(name) + 1 : 0;
1924
1925 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
1926
1927 if (name)
1928 bcopy(name, lr + lrsize, namesize);
1929
1930 return (lr);
1931 }
1932
1933 void
ztest_lr_free(void * lr,size_t lrsize,char * name)1934 ztest_lr_free(void *lr, size_t lrsize, char *name)
1935 {
1936 size_t namesize = name ? strlen(name) + 1 : 0;
1937
1938 umem_free(lr, lrsize + namesize);
1939 }
1940
1941 /*
1942 * Lookup a bunch of objects. Returns the number of objects not found.
1943 */
1944 static int
ztest_lookup(ztest_ds_t * zd,ztest_od_t * od,int count)1945 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
1946 {
1947 int missing = 0;
1948 int error;
1949
1950 ASSERT(_mutex_held(&zd->zd_dirobj_lock));
1951
1952 for (int i = 0; i < count; i++, od++) {
1953 od->od_object = 0;
1954 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
1955 sizeof (uint64_t), 1, &od->od_object);
1956 if (error) {
1957 ASSERT(error == ENOENT);
1958 ASSERT(od->od_object == 0);
1959 missing++;
1960 } else {
1961 dmu_buf_t *db;
1962 ztest_block_tag_t *bbt;
1963 dmu_object_info_t doi;
1964
1965 ASSERT(od->od_object != 0);
1966 ASSERT(missing == 0); /* there should be no gaps */
1967
1968 ztest_object_lock(zd, od->od_object, RL_READER);
1969 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os,
1970 od->od_object, FTAG, &db));
1971 dmu_object_info_from_db(db, &doi);
1972 bbt = ztest_bt_bonus(db);
1973 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1974 od->od_type = doi.doi_type;
1975 od->od_blocksize = doi.doi_data_block_size;
1976 od->od_gen = bbt->bt_gen;
1977 dmu_buf_rele(db, FTAG);
1978 ztest_object_unlock(zd, od->od_object);
1979 }
1980 }
1981
1982 return (missing);
1983 }
1984
1985 static int
ztest_create(ztest_ds_t * zd,ztest_od_t * od,int count)1986 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
1987 {
1988 int missing = 0;
1989
1990 ASSERT(_mutex_held(&zd->zd_dirobj_lock));
1991
1992 for (int i = 0; i < count; i++, od++) {
1993 if (missing) {
1994 od->od_object = 0;
1995 missing++;
1996 continue;
1997 }
1998
1999 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2000
2001 lr->lr_doid = od->od_dir;
2002 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */
2003 lr->lrz_type = od->od_crtype;
2004 lr->lrz_blocksize = od->od_crblocksize;
2005 lr->lrz_ibshift = ztest_random_ibshift();
2006 lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2007 lr->lrz_bonuslen = dmu_bonus_max();
2008 lr->lr_gen = od->od_crgen;
2009 lr->lr_crtime[0] = time(NULL);
2010
2011 if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2012 ASSERT(missing == 0);
2013 od->od_object = 0;
2014 missing++;
2015 } else {
2016 od->od_object = lr->lr_foid;
2017 od->od_type = od->od_crtype;
2018 od->od_blocksize = od->od_crblocksize;
2019 od->od_gen = od->od_crgen;
2020 ASSERT(od->od_object != 0);
2021 }
2022
2023 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2024 }
2025
2026 return (missing);
2027 }
2028
2029 static int
ztest_remove(ztest_ds_t * zd,ztest_od_t * od,int count)2030 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2031 {
2032 int missing = 0;
2033 int error;
2034
2035 ASSERT(_mutex_held(&zd->zd_dirobj_lock));
2036
2037 od += count - 1;
2038
2039 for (int i = count - 1; i >= 0; i--, od--) {
2040 if (missing) {
2041 missing++;
2042 continue;
2043 }
2044
2045 /*
2046 * No object was found.
2047 */
2048 if (od->od_object == 0)
2049 continue;
2050
2051 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2052
2053 lr->lr_doid = od->od_dir;
2054
2055 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2056 ASSERT3U(error, ==, ENOSPC);
2057 missing++;
2058 } else {
2059 od->od_object = 0;
2060 }
2061 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2062 }
2063
2064 return (missing);
2065 }
2066
2067 static int
ztest_write(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size,void * data)2068 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2069 void *data)
2070 {
2071 lr_write_t *lr;
2072 int error;
2073
2074 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2075
2076 lr->lr_foid = object;
2077 lr->lr_offset = offset;
2078 lr->lr_length = size;
2079 lr->lr_blkoff = 0;
2080 BP_ZERO(&lr->lr_blkptr);
2081
2082 bcopy(data, lr + 1, size);
2083
2084 error = ztest_replay_write(zd, lr, B_FALSE);
2085
2086 ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2087
2088 return (error);
2089 }
2090
2091 static int
ztest_truncate(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size)2092 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2093 {
2094 lr_truncate_t *lr;
2095 int error;
2096
2097 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2098
2099 lr->lr_foid = object;
2100 lr->lr_offset = offset;
2101 lr->lr_length = size;
2102
2103 error = ztest_replay_truncate(zd, lr, B_FALSE);
2104
2105 ztest_lr_free(lr, sizeof (*lr), NULL);
2106
2107 return (error);
2108 }
2109
2110 static int
ztest_setattr(ztest_ds_t * zd,uint64_t object)2111 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2112 {
2113 lr_setattr_t *lr;
2114 int error;
2115
2116 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2117
2118 lr->lr_foid = object;
2119 lr->lr_size = 0;
2120 lr->lr_mode = 0;
2121
2122 error = ztest_replay_setattr(zd, lr, B_FALSE);
2123
2124 ztest_lr_free(lr, sizeof (*lr), NULL);
2125
2126 return (error);
2127 }
2128
2129 static void
ztest_prealloc(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size)2130 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2131 {
2132 objset_t *os = zd->zd_os;
2133 dmu_tx_t *tx;
2134 uint64_t txg;
2135 rl_t *rl;
2136
2137 txg_wait_synced(dmu_objset_pool(os), 0);
2138
2139 ztest_object_lock(zd, object, RL_READER);
2140 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
2141
2142 tx = dmu_tx_create(os);
2143
2144 dmu_tx_hold_write(tx, object, offset, size);
2145
2146 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2147
2148 if (txg != 0) {
2149 dmu_prealloc(os, object, offset, size, tx);
2150 dmu_tx_commit(tx);
2151 txg_wait_synced(dmu_objset_pool(os), txg);
2152 } else {
2153 (void) dmu_free_long_range(os, object, offset, size);
2154 }
2155
2156 ztest_range_unlock(rl);
2157 ztest_object_unlock(zd, object);
2158 }
2159
2160 static void
ztest_io(ztest_ds_t * zd,uint64_t object,uint64_t offset)2161 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2162 {
2163 int err;
2164 ztest_block_tag_t wbt;
2165 dmu_object_info_t doi;
2166 enum ztest_io_type io_type;
2167 uint64_t blocksize;
2168 void *data;
2169
2170 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0);
2171 blocksize = doi.doi_data_block_size;
2172 data = umem_alloc(blocksize, UMEM_NOFAIL);
2173
2174 /*
2175 * Pick an i/o type at random, biased toward writing block tags.
2176 */
2177 io_type = ztest_random(ZTEST_IO_TYPES);
2178 if (ztest_random(2) == 0)
2179 io_type = ZTEST_IO_WRITE_TAG;
2180
2181 (void) rw_rdlock(&zd->zd_zilog_lock);
2182
2183 switch (io_type) {
2184
2185 case ZTEST_IO_WRITE_TAG:
2186 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0);
2187 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2188 break;
2189
2190 case ZTEST_IO_WRITE_PATTERN:
2191 (void) memset(data, 'a' + (object + offset) % 5, blocksize);
2192 if (ztest_random(2) == 0) {
2193 /*
2194 * Induce fletcher2 collisions to ensure that
2195 * zio_ddt_collision() detects and resolves them
2196 * when using fletcher2-verify for deduplication.
2197 */
2198 ((uint64_t *)data)[0] ^= 1ULL << 63;
2199 ((uint64_t *)data)[4] ^= 1ULL << 63;
2200 }
2201 (void) ztest_write(zd, object, offset, blocksize, data);
2202 break;
2203
2204 case ZTEST_IO_WRITE_ZEROES:
2205 bzero(data, blocksize);
2206 (void) ztest_write(zd, object, offset, blocksize, data);
2207 break;
2208
2209 case ZTEST_IO_TRUNCATE:
2210 (void) ztest_truncate(zd, object, offset, blocksize);
2211 break;
2212
2213 case ZTEST_IO_SETATTR:
2214 (void) ztest_setattr(zd, object);
2215 break;
2216
2217 case ZTEST_IO_REWRITE:
2218 (void) rw_rdlock(&ztest_name_lock);
2219 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2220 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2221 B_FALSE);
2222 VERIFY(err == 0 || err == ENOSPC);
2223 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2224 ZFS_PROP_COMPRESSION,
2225 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2226 B_FALSE);
2227 VERIFY(err == 0 || err == ENOSPC);
2228 (void) rw_unlock(&ztest_name_lock);
2229
2230 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2231 DMU_READ_NO_PREFETCH));
2232
2233 (void) ztest_write(zd, object, offset, blocksize, data);
2234 break;
2235 }
2236
2237 (void) rw_unlock(&zd->zd_zilog_lock);
2238
2239 umem_free(data, blocksize);
2240 }
2241
2242 /*
2243 * Initialize an object description template.
2244 */
2245 static void
ztest_od_init(ztest_od_t * od,uint64_t id,char * tag,uint64_t index,dmu_object_type_t type,uint64_t blocksize,uint64_t gen)2246 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index,
2247 dmu_object_type_t type, uint64_t blocksize, uint64_t gen)
2248 {
2249 od->od_dir = ZTEST_DIROBJ;
2250 od->od_object = 0;
2251
2252 od->od_crtype = type;
2253 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2254 od->od_crgen = gen;
2255
2256 od->od_type = DMU_OT_NONE;
2257 od->od_blocksize = 0;
2258 od->od_gen = 0;
2259
2260 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]",
2261 tag, (int64_t)id, index);
2262 }
2263
2264 /*
2265 * Lookup or create the objects for a test using the od template.
2266 * If the objects do not all exist, or if 'remove' is specified,
2267 * remove any existing objects and create new ones. Otherwise,
2268 * use the existing objects.
2269 */
2270 static int
ztest_object_init(ztest_ds_t * zd,ztest_od_t * od,size_t size,boolean_t remove)2271 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2272 {
2273 int count = size / sizeof (*od);
2274 int rv = 0;
2275
2276 VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0);
2277 if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2278 (ztest_remove(zd, od, count) != 0 ||
2279 ztest_create(zd, od, count) != 0))
2280 rv = -1;
2281 zd->zd_od = od;
2282 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0);
2283
2284 return (rv);
2285 }
2286
2287 /* ARGSUSED */
2288 void
ztest_zil_commit(ztest_ds_t * zd,uint64_t id)2289 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2290 {
2291 zilog_t *zilog = zd->zd_zilog;
2292
2293 (void) rw_rdlock(&zd->zd_zilog_lock);
2294
2295 zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2296
2297 /*
2298 * Remember the committed values in zd, which is in parent/child
2299 * shared memory. If we die, the next iteration of ztest_run()
2300 * will verify that the log really does contain this record.
2301 */
2302 mutex_enter(&zilog->zl_lock);
2303 ASSERT(zd->zd_shared != NULL);
2304 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2305 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2306 mutex_exit(&zilog->zl_lock);
2307
2308 (void) rw_unlock(&zd->zd_zilog_lock);
2309 }
2310
2311 /*
2312 * This function is designed to simulate the operations that occur during a
2313 * mount/unmount operation. We hold the dataset across these operations in an
2314 * attempt to expose any implicit assumptions about ZIL management.
2315 */
2316 /* ARGSUSED */
2317 void
ztest_zil_remount(ztest_ds_t * zd,uint64_t id)2318 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2319 {
2320 objset_t *os = zd->zd_os;
2321
2322 /*
2323 * We grab the zd_dirobj_lock to ensure that no other thread is
2324 * updating the zil (i.e. adding in-memory log records) and the
2325 * zd_zilog_lock to block any I/O.
2326 */
2327 VERIFY0(mutex_lock(&zd->zd_dirobj_lock));
2328 (void) rw_wrlock(&zd->zd_zilog_lock);
2329
2330 /* zfsvfs_teardown() */
2331 zil_close(zd->zd_zilog);
2332
2333 /* zfsvfs_setup() */
2334 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog);
2335 zil_replay(os, zd, ztest_replay_vector);
2336
2337 (void) rw_unlock(&zd->zd_zilog_lock);
2338 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0);
2339 }
2340
2341 /*
2342 * Verify that we can't destroy an active pool, create an existing pool,
2343 * or create a pool with a bad vdev spec.
2344 */
2345 /* ARGSUSED */
2346 void
ztest_spa_create_destroy(ztest_ds_t * zd,uint64_t id)2347 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
2348 {
2349 ztest_shared_opts_t *zo = &ztest_opts;
2350 spa_t *spa;
2351 nvlist_t *nvroot;
2352
2353 /*
2354 * Attempt to create using a bad file.
2355 */
2356 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1);
2357 VERIFY3U(ENOENT, ==,
2358 spa_create("ztest_bad_file", nvroot, NULL, NULL));
2359 nvlist_free(nvroot);
2360
2361 /*
2362 * Attempt to create using a bad mirror.
2363 */
2364 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1);
2365 VERIFY3U(ENOENT, ==,
2366 spa_create("ztest_bad_mirror", nvroot, NULL, NULL));
2367 nvlist_free(nvroot);
2368
2369 /*
2370 * Attempt to create an existing pool. It shouldn't matter
2371 * what's in the nvroot; we should fail with EEXIST.
2372 */
2373 (void) rw_rdlock(&ztest_name_lock);
2374 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1);
2375 VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL));
2376 nvlist_free(nvroot);
2377 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG));
2378 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool));
2379 spa_close(spa, FTAG);
2380
2381 (void) rw_unlock(&ztest_name_lock);
2382 }
2383
2384 /* ARGSUSED */
2385 void
ztest_spa_upgrade(ztest_ds_t * zd,uint64_t id)2386 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
2387 {
2388 spa_t *spa;
2389 uint64_t initial_version = SPA_VERSION_INITIAL;
2390 uint64_t version, newversion;
2391 nvlist_t *nvroot, *props;
2392 char *name;
2393
2394 VERIFY0(mutex_lock(&ztest_vdev_lock));
2395 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
2396
2397 /*
2398 * Clean up from previous runs.
2399 */
2400 (void) spa_destroy(name);
2401
2402 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
2403 0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1);
2404
2405 /*
2406 * If we're configuring a RAIDZ device then make sure that the
2407 * the initial version is capable of supporting that feature.
2408 */
2409 switch (ztest_opts.zo_raidz_parity) {
2410 case 0:
2411 case 1:
2412 initial_version = SPA_VERSION_INITIAL;
2413 break;
2414 case 2:
2415 initial_version = SPA_VERSION_RAIDZ2;
2416 break;
2417 case 3:
2418 initial_version = SPA_VERSION_RAIDZ3;
2419 break;
2420 }
2421
2422 /*
2423 * Create a pool with a spa version that can be upgraded. Pick
2424 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
2425 */
2426 do {
2427 version = ztest_random_spa_version(initial_version);
2428 } while (version > SPA_VERSION_BEFORE_FEATURES);
2429
2430 props = fnvlist_alloc();
2431 fnvlist_add_uint64(props,
2432 zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
2433 VERIFY0(spa_create(name, nvroot, props, NULL));
2434 fnvlist_free(nvroot);
2435 fnvlist_free(props);
2436
2437 VERIFY0(spa_open(name, &spa, FTAG));
2438 VERIFY3U(spa_version(spa), ==, version);
2439 newversion = ztest_random_spa_version(version + 1);
2440
2441 if (ztest_opts.zo_verbose >= 4) {
2442 (void) printf("upgrading spa version from %llu to %llu\n",
2443 (u_longlong_t)version, (u_longlong_t)newversion);
2444 }
2445
2446 spa_upgrade(spa, newversion);
2447 VERIFY3U(spa_version(spa), >, version);
2448 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
2449 zpool_prop_to_name(ZPOOL_PROP_VERSION)));
2450 spa_close(spa, FTAG);
2451
2452 strfree(name);
2453 VERIFY0(mutex_unlock(&ztest_vdev_lock));
2454 }
2455
2456 static vdev_t *
vdev_lookup_by_path(vdev_t * vd,const char * path)2457 vdev_lookup_by_path(vdev_t *vd, const char *path)
2458 {
2459 vdev_t *mvd;
2460
2461 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
2462 return (vd);
2463
2464 for (int c = 0; c < vd->vdev_children; c++)
2465 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
2466 NULL)
2467 return (mvd);
2468
2469 return (NULL);
2470 }
2471
2472 /*
2473 * Find the first available hole which can be used as a top-level.
2474 */
2475 int
find_vdev_hole(spa_t * spa)2476 find_vdev_hole(spa_t *spa)
2477 {
2478 vdev_t *rvd = spa->spa_root_vdev;
2479 int c;
2480
2481 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV);
2482
2483 for (c = 0; c < rvd->vdev_children; c++) {
2484 vdev_t *cvd = rvd->vdev_child[c];
2485
2486 if (cvd->vdev_ishole)
2487 break;
2488 }
2489 return (c);
2490 }
2491
2492 /*
2493 * Verify that vdev_add() works as expected.
2494 */
2495 /* ARGSUSED */
2496 void
ztest_vdev_add_remove(ztest_ds_t * zd,uint64_t id)2497 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
2498 {
2499 ztest_shared_t *zs = ztest_shared;
2500 spa_t *spa = ztest_spa;
2501 uint64_t leaves;
2502 uint64_t guid;
2503 nvlist_t *nvroot;
2504 int error;
2505
2506 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2507 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz;
2508
2509 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2510
2511 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves;
2512
2513 /*
2514 * If we have slogs then remove them 1/4 of the time.
2515 */
2516 if (spa_has_slogs(spa) && ztest_random(4) == 0) {
2517 /*
2518 * Grab the guid from the head of the log class rotor.
2519 */
2520 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid;
2521
2522 spa_config_exit(spa, SCL_VDEV, FTAG);
2523
2524 /*
2525 * We have to grab the zs_name_lock as writer to
2526 * prevent a race between removing a slog (dmu_objset_find)
2527 * and destroying a dataset. Removing the slog will
2528 * grab a reference on the dataset which may cause
2529 * dmu_objset_destroy() to fail with EBUSY thus
2530 * leaving the dataset in an inconsistent state.
2531 */
2532 VERIFY(rw_wrlock(&ztest_name_lock) == 0);
2533 error = spa_vdev_remove(spa, guid, B_FALSE);
2534 VERIFY(rw_unlock(&ztest_name_lock) == 0);
2535
2536 if (error && error != EEXIST)
2537 fatal(0, "spa_vdev_remove() = %d", error);
2538 } else {
2539 spa_config_exit(spa, SCL_VDEV, FTAG);
2540
2541 /*
2542 * Make 1/4 of the devices be log devices.
2543 */
2544 nvroot = make_vdev_root(NULL, NULL, NULL,
2545 ztest_opts.zo_vdev_size, 0,
2546 ztest_random(4) == 0, ztest_opts.zo_raidz,
2547 zs->zs_mirrors, 1);
2548
2549 error = spa_vdev_add(spa, nvroot);
2550 nvlist_free(nvroot);
2551
2552 if (error == ENOSPC)
2553 ztest_record_enospc("spa_vdev_add");
2554 else if (error != 0)
2555 fatal(0, "spa_vdev_add() = %d", error);
2556 }
2557
2558 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2559 }
2560
2561 /*
2562 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
2563 */
2564 /* ARGSUSED */
2565 void
ztest_vdev_aux_add_remove(ztest_ds_t * zd,uint64_t id)2566 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
2567 {
2568 ztest_shared_t *zs = ztest_shared;
2569 spa_t *spa = ztest_spa;
2570 vdev_t *rvd = spa->spa_root_vdev;
2571 spa_aux_vdev_t *sav;
2572 char *aux;
2573 uint64_t guid = 0;
2574 int error;
2575
2576 if (ztest_random(2) == 0) {
2577 sav = &spa->spa_spares;
2578 aux = ZPOOL_CONFIG_SPARES;
2579 } else {
2580 sav = &spa->spa_l2cache;
2581 aux = ZPOOL_CONFIG_L2CACHE;
2582 }
2583
2584 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2585
2586 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2587
2588 if (sav->sav_count != 0 && ztest_random(4) == 0) {
2589 /*
2590 * Pick a random device to remove.
2591 */
2592 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
2593 } else {
2594 /*
2595 * Find an unused device we can add.
2596 */
2597 zs->zs_vdev_aux = 0;
2598 for (;;) {
2599 char path[MAXPATHLEN];
2600 int c;
2601 (void) snprintf(path, sizeof (path), ztest_aux_template,
2602 ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
2603 zs->zs_vdev_aux);
2604 for (c = 0; c < sav->sav_count; c++)
2605 if (strcmp(sav->sav_vdevs[c]->vdev_path,
2606 path) == 0)
2607 break;
2608 if (c == sav->sav_count &&
2609 vdev_lookup_by_path(rvd, path) == NULL)
2610 break;
2611 zs->zs_vdev_aux++;
2612 }
2613 }
2614
2615 spa_config_exit(spa, SCL_VDEV, FTAG);
2616
2617 if (guid == 0) {
2618 /*
2619 * Add a new device.
2620 */
2621 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
2622 (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1);
2623 error = spa_vdev_add(spa, nvroot);
2624 if (error != 0)
2625 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
2626 nvlist_free(nvroot);
2627 } else {
2628 /*
2629 * Remove an existing device. Sometimes, dirty its
2630 * vdev state first to make sure we handle removal
2631 * of devices that have pending state changes.
2632 */
2633 if (ztest_random(2) == 0)
2634 (void) vdev_online(spa, guid, 0, NULL);
2635
2636 error = spa_vdev_remove(spa, guid, B_FALSE);
2637 if (error != 0 && error != EBUSY)
2638 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
2639 }
2640
2641 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2642 }
2643
2644 /*
2645 * split a pool if it has mirror tlvdevs
2646 */
2647 /* ARGSUSED */
2648 void
ztest_split_pool(ztest_ds_t * zd,uint64_t id)2649 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
2650 {
2651 ztest_shared_t *zs = ztest_shared;
2652 spa_t *spa = ztest_spa;
2653 vdev_t *rvd = spa->spa_root_vdev;
2654 nvlist_t *tree, **child, *config, *split, **schild;
2655 uint_t c, children, schildren = 0, lastlogid = 0;
2656 int error = 0;
2657
2658 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2659
2660 /* ensure we have a useable config; mirrors of raidz aren't supported */
2661 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) {
2662 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2663 return;
2664 }
2665
2666 /* clean up the old pool, if any */
2667 (void) spa_destroy("splitp");
2668
2669 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2670
2671 /* generate a config from the existing config */
2672 mutex_enter(&spa->spa_props_lock);
2673 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE,
2674 &tree) == 0);
2675 mutex_exit(&spa->spa_props_lock);
2676
2677 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child,
2678 &children) == 0);
2679
2680 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *));
2681 for (c = 0; c < children; c++) {
2682 vdev_t *tvd = rvd->vdev_child[c];
2683 nvlist_t **mchild;
2684 uint_t mchildren;
2685
2686 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
2687 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME,
2688 0) == 0);
2689 VERIFY(nvlist_add_string(schild[schildren],
2690 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0);
2691 VERIFY(nvlist_add_uint64(schild[schildren],
2692 ZPOOL_CONFIG_IS_HOLE, 1) == 0);
2693 if (lastlogid == 0)
2694 lastlogid = schildren;
2695 ++schildren;
2696 continue;
2697 }
2698 lastlogid = 0;
2699 VERIFY(nvlist_lookup_nvlist_array(child[c],
2700 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0);
2701 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0);
2702 }
2703
2704 /* OK, create a config that can be used to split */
2705 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0);
2706 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE,
2707 VDEV_TYPE_ROOT) == 0);
2708 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild,
2709 lastlogid != 0 ? lastlogid : schildren) == 0);
2710
2711 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0);
2712 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0);
2713
2714 for (c = 0; c < schildren; c++)
2715 nvlist_free(schild[c]);
2716 free(schild);
2717 nvlist_free(split);
2718
2719 spa_config_exit(spa, SCL_VDEV, FTAG);
2720
2721 (void) rw_wrlock(&ztest_name_lock);
2722 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
2723 (void) rw_unlock(&ztest_name_lock);
2724
2725 nvlist_free(config);
2726
2727 if (error == 0) {
2728 (void) printf("successful split - results:\n");
2729 mutex_enter(&spa_namespace_lock);
2730 show_pool_stats(spa);
2731 show_pool_stats(spa_lookup("splitp"));
2732 mutex_exit(&spa_namespace_lock);
2733 ++zs->zs_splits;
2734 --zs->zs_mirrors;
2735 }
2736 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2737
2738 }
2739
2740 /*
2741 * Verify that we can attach and detach devices.
2742 */
2743 /* ARGSUSED */
2744 void
ztest_vdev_attach_detach(ztest_ds_t * zd,uint64_t id)2745 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
2746 {
2747 ztest_shared_t *zs = ztest_shared;
2748 spa_t *spa = ztest_spa;
2749 spa_aux_vdev_t *sav = &spa->spa_spares;
2750 vdev_t *rvd = spa->spa_root_vdev;
2751 vdev_t *oldvd, *newvd, *pvd;
2752 nvlist_t *root;
2753 uint64_t leaves;
2754 uint64_t leaf, top;
2755 uint64_t ashift = ztest_get_ashift();
2756 uint64_t oldguid, pguid;
2757 uint64_t oldsize, newsize;
2758 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN];
2759 int replacing;
2760 int oldvd_has_siblings = B_FALSE;
2761 int newvd_is_spare = B_FALSE;
2762 int oldvd_is_log;
2763 int error, expected_error;
2764
2765 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2766 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
2767
2768 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2769
2770 /*
2771 * Decide whether to do an attach or a replace.
2772 */
2773 replacing = ztest_random(2);
2774
2775 /*
2776 * Pick a random top-level vdev.
2777 */
2778 top = ztest_random_vdev_top(spa, B_TRUE);
2779
2780 /*
2781 * Pick a random leaf within it.
2782 */
2783 leaf = ztest_random(leaves);
2784
2785 /*
2786 * Locate this vdev.
2787 */
2788 oldvd = rvd->vdev_child[top];
2789 if (zs->zs_mirrors >= 1) {
2790 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops);
2791 ASSERT(oldvd->vdev_children >= zs->zs_mirrors);
2792 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz];
2793 }
2794 if (ztest_opts.zo_raidz > 1) {
2795 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops);
2796 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz);
2797 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz];
2798 }
2799
2800 /*
2801 * If we're already doing an attach or replace, oldvd may be a
2802 * mirror vdev -- in which case, pick a random child.
2803 */
2804 while (oldvd->vdev_children != 0) {
2805 oldvd_has_siblings = B_TRUE;
2806 ASSERT(oldvd->vdev_children >= 2);
2807 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
2808 }
2809
2810 oldguid = oldvd->vdev_guid;
2811 oldsize = vdev_get_min_asize(oldvd);
2812 oldvd_is_log = oldvd->vdev_top->vdev_islog;
2813 (void) strcpy(oldpath, oldvd->vdev_path);
2814 pvd = oldvd->vdev_parent;
2815 pguid = pvd->vdev_guid;
2816
2817 /*
2818 * If oldvd has siblings, then half of the time, detach it.
2819 */
2820 if (oldvd_has_siblings && ztest_random(2) == 0) {
2821 spa_config_exit(spa, SCL_VDEV, FTAG);
2822 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
2823 if (error != 0 && error != ENODEV && error != EBUSY &&
2824 error != ENOTSUP)
2825 fatal(0, "detach (%s) returned %d", oldpath, error);
2826 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2827 return;
2828 }
2829
2830 /*
2831 * For the new vdev, choose with equal probability between the two
2832 * standard paths (ending in either 'a' or 'b') or a random hot spare.
2833 */
2834 if (sav->sav_count != 0 && ztest_random(3) == 0) {
2835 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
2836 newvd_is_spare = B_TRUE;
2837 (void) strcpy(newpath, newvd->vdev_path);
2838 } else {
2839 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template,
2840 ztest_opts.zo_dir, ztest_opts.zo_pool,
2841 top * leaves + leaf);
2842 if (ztest_random(2) == 0)
2843 newpath[strlen(newpath) - 1] = 'b';
2844 newvd = vdev_lookup_by_path(rvd, newpath);
2845 }
2846
2847 if (newvd) {
2848 newsize = vdev_get_min_asize(newvd);
2849 } else {
2850 /*
2851 * Make newsize a little bigger or smaller than oldsize.
2852 * If it's smaller, the attach should fail.
2853 * If it's larger, and we're doing a replace,
2854 * we should get dynamic LUN growth when we're done.
2855 */
2856 newsize = 10 * oldsize / (9 + ztest_random(3));
2857 }
2858
2859 /*
2860 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
2861 * unless it's a replace; in that case any non-replacing parent is OK.
2862 *
2863 * If newvd is already part of the pool, it should fail with EBUSY.
2864 *
2865 * If newvd is too small, it should fail with EOVERFLOW.
2866 */
2867 if (pvd->vdev_ops != &vdev_mirror_ops &&
2868 pvd->vdev_ops != &vdev_root_ops && (!replacing ||
2869 pvd->vdev_ops == &vdev_replacing_ops ||
2870 pvd->vdev_ops == &vdev_spare_ops))
2871 expected_error = ENOTSUP;
2872 else if (newvd_is_spare && (!replacing || oldvd_is_log))
2873 expected_error = ENOTSUP;
2874 else if (newvd == oldvd)
2875 expected_error = replacing ? 0 : EBUSY;
2876 else if (vdev_lookup_by_path(rvd, newpath) != NULL)
2877 expected_error = EBUSY;
2878 else if (newsize < oldsize)
2879 expected_error = EOVERFLOW;
2880 else if (ashift > oldvd->vdev_top->vdev_ashift)
2881 expected_error = EDOM;
2882 else
2883 expected_error = 0;
2884
2885 spa_config_exit(spa, SCL_VDEV, FTAG);
2886
2887 /*
2888 * Build the nvlist describing newpath.
2889 */
2890 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
2891 ashift, 0, 0, 0, 1);
2892
2893 error = spa_vdev_attach(spa, oldguid, root, replacing);
2894
2895 nvlist_free(root);
2896
2897 /*
2898 * If our parent was the replacing vdev, but the replace completed,
2899 * then instead of failing with ENOTSUP we may either succeed,
2900 * fail with ENODEV, or fail with EOVERFLOW.
2901 */
2902 if (expected_error == ENOTSUP &&
2903 (error == 0 || error == ENODEV || error == EOVERFLOW))
2904 expected_error = error;
2905
2906 /*
2907 * If someone grew the LUN, the replacement may be too small.
2908 */
2909 if (error == EOVERFLOW || error == EBUSY)
2910 expected_error = error;
2911
2912 /* XXX workaround 6690467 */
2913 if (error != expected_error && expected_error != EBUSY) {
2914 fatal(0, "attach (%s %llu, %s %llu, %d) "
2915 "returned %d, expected %d",
2916 oldpath, oldsize, newpath,
2917 newsize, replacing, error, expected_error);
2918 }
2919
2920 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2921 }
2922
2923 /*
2924 * Callback function which expands the physical size of the vdev.
2925 */
2926 vdev_t *
grow_vdev(vdev_t * vd,void * arg)2927 grow_vdev(vdev_t *vd, void *arg)
2928 {
2929 spa_t *spa = vd->vdev_spa;
2930 size_t *newsize = arg;
2931 size_t fsize;
2932 int fd;
2933
2934 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
2935 ASSERT(vd->vdev_ops->vdev_op_leaf);
2936
2937 if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
2938 return (vd);
2939
2940 fsize = lseek(fd, 0, SEEK_END);
2941 (void) ftruncate(fd, *newsize);
2942
2943 if (ztest_opts.zo_verbose >= 6) {
2944 (void) printf("%s grew from %lu to %lu bytes\n",
2945 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
2946 }
2947 (void) close(fd);
2948 return (NULL);
2949 }
2950
2951 /*
2952 * Callback function which expands a given vdev by calling vdev_online().
2953 */
2954 /* ARGSUSED */
2955 vdev_t *
online_vdev(vdev_t * vd,void * arg)2956 online_vdev(vdev_t *vd, void *arg)
2957 {
2958 spa_t *spa = vd->vdev_spa;
2959 vdev_t *tvd = vd->vdev_top;
2960 uint64_t guid = vd->vdev_guid;
2961 uint64_t generation = spa->spa_config_generation + 1;
2962 vdev_state_t newstate = VDEV_STATE_UNKNOWN;
2963 int error;
2964
2965 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
2966 ASSERT(vd->vdev_ops->vdev_op_leaf);
2967
2968 /* Calling vdev_online will initialize the new metaslabs */
2969 spa_config_exit(spa, SCL_STATE, spa);
2970 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
2971 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
2972
2973 /*
2974 * If vdev_online returned an error or the underlying vdev_open
2975 * failed then we abort the expand. The only way to know that
2976 * vdev_open fails is by checking the returned newstate.
2977 */
2978 if (error || newstate != VDEV_STATE_HEALTHY) {
2979 if (ztest_opts.zo_verbose >= 5) {
2980 (void) printf("Unable to expand vdev, state %llu, "
2981 "error %d\n", (u_longlong_t)newstate, error);
2982 }
2983 return (vd);
2984 }
2985 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
2986
2987 /*
2988 * Since we dropped the lock we need to ensure that we're
2989 * still talking to the original vdev. It's possible this
2990 * vdev may have been detached/replaced while we were
2991 * trying to online it.
2992 */
2993 if (generation != spa->spa_config_generation) {
2994 if (ztest_opts.zo_verbose >= 5) {
2995 (void) printf("vdev configuration has changed, "
2996 "guid %llu, state %llu, expected gen %llu, "
2997 "got gen %llu\n",
2998 (u_longlong_t)guid,
2999 (u_longlong_t)tvd->vdev_state,
3000 (u_longlong_t)generation,
3001 (u_longlong_t)spa->spa_config_generation);
3002 }
3003 return (vd);
3004 }
3005 return (NULL);
3006 }
3007
3008 /*
3009 * Traverse the vdev tree calling the supplied function.
3010 * We continue to walk the tree until we either have walked all
3011 * children or we receive a non-NULL return from the callback.
3012 * If a NULL callback is passed, then we just return back the first
3013 * leaf vdev we encounter.
3014 */
3015 vdev_t *
vdev_walk_tree(vdev_t * vd,vdev_t * (* func)(vdev_t *,void *),void * arg)3016 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
3017 {
3018 if (vd->vdev_ops->vdev_op_leaf) {
3019 if (func == NULL)
3020 return (vd);
3021 else
3022 return (func(vd, arg));
3023 }
3024
3025 for (uint_t c = 0; c < vd->vdev_children; c++) {
3026 vdev_t *cvd = vd->vdev_child[c];
3027 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
3028 return (cvd);
3029 }
3030 return (NULL);
3031 }
3032
3033 /*
3034 * Verify that dynamic LUN growth works as expected.
3035 */
3036 /* ARGSUSED */
3037 void
ztest_vdev_LUN_growth(ztest_ds_t * zd,uint64_t id)3038 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
3039 {
3040 spa_t *spa = ztest_spa;
3041 vdev_t *vd, *tvd;
3042 metaslab_class_t *mc;
3043 metaslab_group_t *mg;
3044 size_t psize, newsize;
3045 uint64_t top;
3046 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
3047
3048 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
3049 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3050
3051 top = ztest_random_vdev_top(spa, B_TRUE);
3052
3053 tvd = spa->spa_root_vdev->vdev_child[top];
3054 mg = tvd->vdev_mg;
3055 mc = mg->mg_class;
3056 old_ms_count = tvd->vdev_ms_count;
3057 old_class_space = metaslab_class_get_space(mc);
3058
3059 /*
3060 * Determine the size of the first leaf vdev associated with
3061 * our top-level device.
3062 */
3063 vd = vdev_walk_tree(tvd, NULL, NULL);
3064 ASSERT3P(vd, !=, NULL);
3065 ASSERT(vd->vdev_ops->vdev_op_leaf);
3066
3067 psize = vd->vdev_psize;
3068
3069 /*
3070 * We only try to expand the vdev if it's healthy, less than 4x its
3071 * original size, and it has a valid psize.
3072 */
3073 if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
3074 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
3075 spa_config_exit(spa, SCL_STATE, spa);
3076 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3077 return;
3078 }
3079 ASSERT(psize > 0);
3080 newsize = psize + psize / 8;
3081 ASSERT3U(newsize, >, psize);
3082
3083 if (ztest_opts.zo_verbose >= 6) {
3084 (void) printf("Expanding LUN %s from %lu to %lu\n",
3085 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
3086 }
3087
3088 /*
3089 * Growing the vdev is a two step process:
3090 * 1). expand the physical size (i.e. relabel)
3091 * 2). online the vdev to create the new metaslabs
3092 */
3093 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
3094 vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
3095 tvd->vdev_state != VDEV_STATE_HEALTHY) {
3096 if (ztest_opts.zo_verbose >= 5) {
3097 (void) printf("Could not expand LUN because "
3098 "the vdev configuration changed.\n");
3099 }
3100 spa_config_exit(spa, SCL_STATE, spa);
3101 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3102 return;
3103 }
3104
3105 spa_config_exit(spa, SCL_STATE, spa);
3106
3107 /*
3108 * Expanding the LUN will update the config asynchronously,
3109 * thus we must wait for the async thread to complete any
3110 * pending tasks before proceeding.
3111 */
3112 for (;;) {
3113 boolean_t done;
3114 mutex_enter(&spa->spa_async_lock);
3115 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
3116 mutex_exit(&spa->spa_async_lock);
3117 if (done)
3118 break;
3119 txg_wait_synced(spa_get_dsl(spa), 0);
3120 (void) poll(NULL, 0, 100);
3121 }
3122
3123 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3124
3125 tvd = spa->spa_root_vdev->vdev_child[top];
3126 new_ms_count = tvd->vdev_ms_count;
3127 new_class_space = metaslab_class_get_space(mc);
3128
3129 if (tvd->vdev_mg != mg || mg->mg_class != mc) {
3130 if (ztest_opts.zo_verbose >= 5) {
3131 (void) printf("Could not verify LUN expansion due to "
3132 "intervening vdev offline or remove.\n");
3133 }
3134 spa_config_exit(spa, SCL_STATE, spa);
3135 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3136 return;
3137 }
3138
3139 /*
3140 * Make sure we were able to grow the vdev.
3141 */
3142 if (new_ms_count <= old_ms_count)
3143 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n",
3144 old_ms_count, new_ms_count);
3145
3146 /*
3147 * Make sure we were able to grow the pool.
3148 */
3149 if (new_class_space <= old_class_space)
3150 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n",
3151 old_class_space, new_class_space);
3152
3153 if (ztest_opts.zo_verbose >= 5) {
3154 char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ];
3155
3156 nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf));
3157 nicenum(new_class_space, newnumbuf, sizeof (newnumbuf));
3158 (void) printf("%s grew from %s to %s\n",
3159 spa->spa_name, oldnumbuf, newnumbuf);
3160 }
3161
3162 spa_config_exit(spa, SCL_STATE, spa);
3163 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3164 }
3165
3166 /*
3167 * Verify that dmu_objset_{create,destroy,open,close} work as expected.
3168 */
3169 /* ARGSUSED */
3170 static void
ztest_objset_create_cb(objset_t * os,void * arg,cred_t * cr,dmu_tx_t * tx)3171 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
3172 {
3173 /*
3174 * Create the objects common to all ztest datasets.
3175 */
3176 VERIFY(zap_create_claim(os, ZTEST_DIROBJ,
3177 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
3178 }
3179
3180 static int
ztest_dataset_create(char * dsname)3181 ztest_dataset_create(char *dsname)
3182 {
3183 uint64_t zilset = ztest_random(100);
3184 int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0,
3185 ztest_objset_create_cb, NULL);
3186
3187 if (err || zilset < 80)
3188 return (err);
3189
3190 if (ztest_opts.zo_verbose >= 6)
3191 (void) printf("Setting dataset %s to sync always\n", dsname);
3192 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
3193 ZFS_SYNC_ALWAYS, B_FALSE));
3194 }
3195
3196 /* ARGSUSED */
3197 static int
ztest_objset_destroy_cb(const char * name,void * arg)3198 ztest_objset_destroy_cb(const char *name, void *arg)
3199 {
3200 objset_t *os;
3201 dmu_object_info_t doi;
3202 int error;
3203
3204 /*
3205 * Verify that the dataset contains a directory object.
3206 */
3207 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os));
3208 error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
3209 if (error != ENOENT) {
3210 /* We could have crashed in the middle of destroying it */
3211 ASSERT0(error);
3212 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
3213 ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
3214 }
3215 dmu_objset_disown(os, FTAG);
3216
3217 /*
3218 * Destroy the dataset.
3219 */
3220 if (strchr(name, '@') != NULL) {
3221 VERIFY0(dsl_destroy_snapshot(name, B_FALSE));
3222 } else {
3223 VERIFY0(dsl_destroy_head(name));
3224 }
3225 return (0);
3226 }
3227
3228 static boolean_t
ztest_snapshot_create(char * osname,uint64_t id)3229 ztest_snapshot_create(char *osname, uint64_t id)
3230 {
3231 char snapname[ZFS_MAX_DATASET_NAME_LEN];
3232 int error;
3233
3234 (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id);
3235
3236 error = dmu_objset_snapshot_one(osname, snapname);
3237 if (error == ENOSPC) {
3238 ztest_record_enospc(FTAG);
3239 return (B_FALSE);
3240 }
3241 if (error != 0 && error != EEXIST) {
3242 fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname,
3243 snapname, error);
3244 }
3245 return (B_TRUE);
3246 }
3247
3248 static boolean_t
ztest_snapshot_destroy(char * osname,uint64_t id)3249 ztest_snapshot_destroy(char *osname, uint64_t id)
3250 {
3251 char snapname[ZFS_MAX_DATASET_NAME_LEN];
3252 int error;
3253
3254 (void) snprintf(snapname, sizeof (snapname), "%s@%llu", osname,
3255 (u_longlong_t)id);
3256
3257 error = dsl_destroy_snapshot(snapname, B_FALSE);
3258 if (error != 0 && error != ENOENT)
3259 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error);
3260 return (B_TRUE);
3261 }
3262
3263 /* ARGSUSED */
3264 void
ztest_dmu_objset_create_destroy(ztest_ds_t * zd,uint64_t id)3265 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
3266 {
3267 ztest_ds_t zdtmp;
3268 int iters;
3269 int error;
3270 objset_t *os, *os2;
3271 char name[ZFS_MAX_DATASET_NAME_LEN];
3272 zilog_t *zilog;
3273
3274 (void) rw_rdlock(&ztest_name_lock);
3275
3276 (void) snprintf(name, sizeof (name), "%s/temp_%llu",
3277 ztest_opts.zo_pool, (u_longlong_t)id);
3278
3279 /*
3280 * If this dataset exists from a previous run, process its replay log
3281 * half of the time. If we don't replay it, then dmu_objset_destroy()
3282 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
3283 */
3284 if (ztest_random(2) == 0 &&
3285 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) {
3286 ztest_zd_init(&zdtmp, NULL, os);
3287 zil_replay(os, &zdtmp, ztest_replay_vector);
3288 ztest_zd_fini(&zdtmp);
3289 dmu_objset_disown(os, FTAG);
3290 }
3291
3292 /*
3293 * There may be an old instance of the dataset we're about to
3294 * create lying around from a previous run. If so, destroy it
3295 * and all of its snapshots.
3296 */
3297 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
3298 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
3299
3300 /*
3301 * Verify that the destroyed dataset is no longer in the namespace.
3302 */
3303 VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
3304 FTAG, &os));
3305
3306 /*
3307 * Verify that we can create a new dataset.
3308 */
3309 error = ztest_dataset_create(name);
3310 if (error) {
3311 if (error == ENOSPC) {
3312 ztest_record_enospc(FTAG);
3313 (void) rw_unlock(&ztest_name_lock);
3314 return;
3315 }
3316 fatal(0, "dmu_objset_create(%s) = %d", name, error);
3317 }
3318
3319 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os));
3320
3321 ztest_zd_init(&zdtmp, NULL, os);
3322
3323 /*
3324 * Open the intent log for it.
3325 */
3326 zilog = zil_open(os, ztest_get_data);
3327
3328 /*
3329 * Put some objects in there, do a little I/O to them,
3330 * and randomly take a couple of snapshots along the way.
3331 */
3332 iters = ztest_random(5);
3333 for (int i = 0; i < iters; i++) {
3334 ztest_dmu_object_alloc_free(&zdtmp, id);
3335 if (ztest_random(iters) == 0)
3336 (void) ztest_snapshot_create(name, i);
3337 }
3338
3339 /*
3340 * Verify that we cannot create an existing dataset.
3341 */
3342 VERIFY3U(EEXIST, ==,
3343 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL));
3344
3345 /*
3346 * Verify that we can hold an objset that is also owned.
3347 */
3348 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2));
3349 dmu_objset_rele(os2, FTAG);
3350
3351 /*
3352 * Verify that we cannot own an objset that is already owned.
3353 */
3354 VERIFY3U(EBUSY, ==,
3355 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2));
3356
3357 zil_close(zilog);
3358 dmu_objset_disown(os, FTAG);
3359 ztest_zd_fini(&zdtmp);
3360
3361 (void) rw_unlock(&ztest_name_lock);
3362 }
3363
3364 /*
3365 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
3366 */
3367 void
ztest_dmu_snapshot_create_destroy(ztest_ds_t * zd,uint64_t id)3368 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
3369 {
3370 (void) rw_rdlock(&ztest_name_lock);
3371 (void) ztest_snapshot_destroy(zd->zd_name, id);
3372 (void) ztest_snapshot_create(zd->zd_name, id);
3373 (void) rw_unlock(&ztest_name_lock);
3374 }
3375
3376 /*
3377 * Cleanup non-standard snapshots and clones.
3378 */
3379 void
ztest_dsl_dataset_cleanup(char * osname,uint64_t id)3380 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
3381 {
3382 char snap1name[ZFS_MAX_DATASET_NAME_LEN];
3383 char clone1name[ZFS_MAX_DATASET_NAME_LEN];
3384 char snap2name[ZFS_MAX_DATASET_NAME_LEN];
3385 char clone2name[ZFS_MAX_DATASET_NAME_LEN];
3386 char snap3name[ZFS_MAX_DATASET_NAME_LEN];
3387 int error;
3388
3389 (void) snprintf(snap1name, sizeof (snap1name),
3390 "%s@s1_%llu", osname, id);
3391 (void) snprintf(clone1name, sizeof (clone1name),
3392 "%s/c1_%llu", osname, id);
3393 (void) snprintf(snap2name, sizeof (snap2name),
3394 "%s@s2_%llu", clone1name, id);
3395 (void) snprintf(clone2name, sizeof (clone2name),
3396 "%s/c2_%llu", osname, id);
3397 (void) snprintf(snap3name, sizeof (snap3name),
3398 "%s@s3_%llu", clone1name, id);
3399
3400 error = dsl_destroy_head(clone2name);
3401 if (error && error != ENOENT)
3402 fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error);
3403 error = dsl_destroy_snapshot(snap3name, B_FALSE);
3404 if (error && error != ENOENT)
3405 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error);
3406 error = dsl_destroy_snapshot(snap2name, B_FALSE);
3407 if (error && error != ENOENT)
3408 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error);
3409 error = dsl_destroy_head(clone1name);
3410 if (error && error != ENOENT)
3411 fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error);
3412 error = dsl_destroy_snapshot(snap1name, B_FALSE);
3413 if (error && error != ENOENT)
3414 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error);
3415 }
3416
3417 /*
3418 * Verify dsl_dataset_promote handles EBUSY
3419 */
3420 void
ztest_dsl_dataset_promote_busy(ztest_ds_t * zd,uint64_t id)3421 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
3422 {
3423 objset_t *os;
3424 char snap1name[ZFS_MAX_DATASET_NAME_LEN];
3425 char clone1name[ZFS_MAX_DATASET_NAME_LEN];
3426 char snap2name[ZFS_MAX_DATASET_NAME_LEN];
3427 char clone2name[ZFS_MAX_DATASET_NAME_LEN];
3428 char snap3name[ZFS_MAX_DATASET_NAME_LEN];
3429 char *osname = zd->zd_name;
3430 int error;
3431
3432 (void) rw_rdlock(&ztest_name_lock);
3433
3434 ztest_dsl_dataset_cleanup(osname, id);
3435
3436 (void) snprintf(snap1name, sizeof (snap1name),
3437 "%s@s1_%llu", osname, id);
3438 (void) snprintf(clone1name, sizeof (clone1name),
3439 "%s/c1_%llu", osname, id);
3440 (void) snprintf(snap2name, sizeof (snap2name),
3441 "%s@s2_%llu", clone1name, id);
3442 (void) snprintf(clone2name, sizeof (clone2name),
3443 "%s/c2_%llu", osname, id);
3444 (void) snprintf(snap3name, sizeof (snap3name),
3445 "%s@s3_%llu", clone1name, id);
3446
3447 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
3448 if (error && error != EEXIST) {
3449 if (error == ENOSPC) {
3450 ztest_record_enospc(FTAG);
3451 goto out;
3452 }
3453 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error);
3454 }
3455
3456 error = dmu_objset_clone(clone1name, snap1name);
3457 if (error) {
3458 if (error == ENOSPC) {
3459 ztest_record_enospc(FTAG);
3460 goto out;
3461 }
3462 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error);
3463 }
3464
3465 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
3466 if (error && error != EEXIST) {
3467 if (error == ENOSPC) {
3468 ztest_record_enospc(FTAG);
3469 goto out;
3470 }
3471 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error);
3472 }
3473
3474 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
3475 if (error && error != EEXIST) {
3476 if (error == ENOSPC) {
3477 ztest_record_enospc(FTAG);
3478 goto out;
3479 }
3480 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
3481 }
3482
3483 error = dmu_objset_clone(clone2name, snap3name);
3484 if (error) {
3485 if (error == ENOSPC) {
3486 ztest_record_enospc(FTAG);
3487 goto out;
3488 }
3489 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error);
3490 }
3491
3492 error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os);
3493 if (error)
3494 fatal(0, "dmu_objset_own(%s) = %d", snap2name, error);
3495 error = dsl_dataset_promote(clone2name, NULL);
3496 if (error == ENOSPC) {
3497 dmu_objset_disown(os, FTAG);
3498 ztest_record_enospc(FTAG);
3499 goto out;
3500 }
3501 if (error != EBUSY)
3502 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name,
3503 error);
3504 dmu_objset_disown(os, FTAG);
3505
3506 out:
3507 ztest_dsl_dataset_cleanup(osname, id);
3508
3509 (void) rw_unlock(&ztest_name_lock);
3510 }
3511
3512 /*
3513 * Verify that dmu_object_{alloc,free} work as expected.
3514 */
3515 void
ztest_dmu_object_alloc_free(ztest_ds_t * zd,uint64_t id)3516 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
3517 {
3518 ztest_od_t od[4];
3519 int batchsize = sizeof (od) / sizeof (od[0]);
3520
3521 for (int b = 0; b < batchsize; b++)
3522 ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0);
3523
3524 /*
3525 * Destroy the previous batch of objects, create a new batch,
3526 * and do some I/O on the new objects.
3527 */
3528 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0)
3529 return;
3530
3531 while (ztest_random(4 * batchsize) != 0)
3532 ztest_io(zd, od[ztest_random(batchsize)].od_object,
3533 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
3534 }
3535
3536 /*
3537 * Verify that dmu_{read,write} work as expected.
3538 */
3539 void
ztest_dmu_read_write(ztest_ds_t * zd,uint64_t id)3540 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
3541 {
3542 objset_t *os = zd->zd_os;
3543 ztest_od_t od[2];
3544 dmu_tx_t *tx;
3545 int i, freeit, error;
3546 uint64_t n, s, txg;
3547 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
3548 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3549 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
3550 uint64_t regions = 997;
3551 uint64_t stride = 123456789ULL;
3552 uint64_t width = 40;
3553 int free_percent = 5;
3554
3555 /*
3556 * This test uses two objects, packobj and bigobj, that are always
3557 * updated together (i.e. in the same tx) so that their contents are
3558 * in sync and can be compared. Their contents relate to each other
3559 * in a simple way: packobj is a dense array of 'bufwad' structures,
3560 * while bigobj is a sparse array of the same bufwads. Specifically,
3561 * for any index n, there are three bufwads that should be identical:
3562 *
3563 * packobj, at offset n * sizeof (bufwad_t)
3564 * bigobj, at the head of the nth chunk
3565 * bigobj, at the tail of the nth chunk
3566 *
3567 * The chunk size is arbitrary. It doesn't have to be a power of two,
3568 * and it doesn't have any relation to the object blocksize.
3569 * The only requirement is that it can hold at least two bufwads.
3570 *
3571 * Normally, we write the bufwad to each of these locations.
3572 * However, free_percent of the time we instead write zeroes to
3573 * packobj and perform a dmu_free_range() on bigobj. By comparing
3574 * bigobj to packobj, we can verify that the DMU is correctly
3575 * tracking which parts of an object are allocated and free,
3576 * and that the contents of the allocated blocks are correct.
3577 */
3578
3579 /*
3580 * Read the directory info. If it's the first time, set things up.
3581 */
3582 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize);
3583 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3584
3585 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
3586 return;
3587
3588 bigobj = od[0].od_object;
3589 packobj = od[1].od_object;
3590 chunksize = od[0].od_gen;
3591 ASSERT(chunksize == od[1].od_gen);
3592
3593 /*
3594 * Prefetch a random chunk of the big object.
3595 * Our aim here is to get some async reads in flight
3596 * for blocks that we may free below; the DMU should
3597 * handle this race correctly.
3598 */
3599 n = ztest_random(regions) * stride + ztest_random(width);
3600 s = 1 + ztest_random(2 * width - 1);
3601 dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
3602 ZIO_PRIORITY_SYNC_READ);
3603
3604 /*
3605 * Pick a random index and compute the offsets into packobj and bigobj.
3606 */
3607 n = ztest_random(regions) * stride + ztest_random(width);
3608 s = 1 + ztest_random(width - 1);
3609
3610 packoff = n * sizeof (bufwad_t);
3611 packsize = s * sizeof (bufwad_t);
3612
3613 bigoff = n * chunksize;
3614 bigsize = s * chunksize;
3615
3616 packbuf = umem_alloc(packsize, UMEM_NOFAIL);
3617 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
3618
3619 /*
3620 * free_percent of the time, free a range of bigobj rather than
3621 * overwriting it.
3622 */
3623 freeit = (ztest_random(100) < free_percent);
3624
3625 /*
3626 * Read the current contents of our objects.
3627 */
3628 error = dmu_read(os, packobj, packoff, packsize, packbuf,
3629 DMU_READ_PREFETCH);
3630 ASSERT0(error);
3631 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
3632 DMU_READ_PREFETCH);
3633 ASSERT0(error);
3634
3635 /*
3636 * Get a tx for the mods to both packobj and bigobj.
3637 */
3638 tx = dmu_tx_create(os);
3639
3640 dmu_tx_hold_write(tx, packobj, packoff, packsize);
3641
3642 if (freeit)
3643 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
3644 else
3645 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
3646
3647 /* This accounts for setting the checksum/compression. */
3648 dmu_tx_hold_bonus(tx, bigobj);
3649
3650 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3651 if (txg == 0) {
3652 umem_free(packbuf, packsize);
3653 umem_free(bigbuf, bigsize);
3654 return;
3655 }
3656
3657 enum zio_checksum cksum;
3658 do {
3659 cksum = (enum zio_checksum)
3660 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
3661 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
3662 dmu_object_set_checksum(os, bigobj, cksum, tx);
3663
3664 enum zio_compress comp;
3665 do {
3666 comp = (enum zio_compress)
3667 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
3668 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
3669 dmu_object_set_compress(os, bigobj, comp, tx);
3670
3671 /*
3672 * For each index from n to n + s, verify that the existing bufwad
3673 * in packobj matches the bufwads at the head and tail of the
3674 * corresponding chunk in bigobj. Then update all three bufwads
3675 * with the new values we want to write out.
3676 */
3677 for (i = 0; i < s; i++) {
3678 /* LINTED */
3679 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3680 /* LINTED */
3681 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3682 /* LINTED */
3683 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3684
3685 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3686 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3687
3688 if (pack->bw_txg > txg)
3689 fatal(0, "future leak: got %llx, open txg is %llx",
3690 pack->bw_txg, txg);
3691
3692 if (pack->bw_data != 0 && pack->bw_index != n + i)
3693 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3694 pack->bw_index, n, i);
3695
3696 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3697 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3698
3699 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3700 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3701
3702 if (freeit) {
3703 bzero(pack, sizeof (bufwad_t));
3704 } else {
3705 pack->bw_index = n + i;
3706 pack->bw_txg = txg;
3707 pack->bw_data = 1 + ztest_random(-2ULL);
3708 }
3709 *bigH = *pack;
3710 *bigT = *pack;
3711 }
3712
3713 /*
3714 * We've verified all the old bufwads, and made new ones.
3715 * Now write them out.
3716 */
3717 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
3718
3719 if (freeit) {
3720 if (ztest_opts.zo_verbose >= 7) {
3721 (void) printf("freeing offset %llx size %llx"
3722 " txg %llx\n",
3723 (u_longlong_t)bigoff,
3724 (u_longlong_t)bigsize,
3725 (u_longlong_t)txg);
3726 }
3727 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx));
3728 } else {
3729 if (ztest_opts.zo_verbose >= 7) {
3730 (void) printf("writing offset %llx size %llx"
3731 " txg %llx\n",
3732 (u_longlong_t)bigoff,
3733 (u_longlong_t)bigsize,
3734 (u_longlong_t)txg);
3735 }
3736 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
3737 }
3738
3739 dmu_tx_commit(tx);
3740
3741 /*
3742 * Sanity check the stuff we just wrote.
3743 */
3744 {
3745 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
3746 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
3747
3748 VERIFY(0 == dmu_read(os, packobj, packoff,
3749 packsize, packcheck, DMU_READ_PREFETCH));
3750 VERIFY(0 == dmu_read(os, bigobj, bigoff,
3751 bigsize, bigcheck, DMU_READ_PREFETCH));
3752
3753 ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
3754 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
3755
3756 umem_free(packcheck, packsize);
3757 umem_free(bigcheck, bigsize);
3758 }
3759
3760 umem_free(packbuf, packsize);
3761 umem_free(bigbuf, bigsize);
3762 }
3763
3764 void
compare_and_update_pbbufs(uint64_t s,bufwad_t * packbuf,bufwad_t * bigbuf,uint64_t bigsize,uint64_t n,uint64_t chunksize,uint64_t txg)3765 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
3766 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
3767 {
3768 uint64_t i;
3769 bufwad_t *pack;
3770 bufwad_t *bigH;
3771 bufwad_t *bigT;
3772
3773 /*
3774 * For each index from n to n + s, verify that the existing bufwad
3775 * in packobj matches the bufwads at the head and tail of the
3776 * corresponding chunk in bigobj. Then update all three bufwads
3777 * with the new values we want to write out.
3778 */
3779 for (i = 0; i < s; i++) {
3780 /* LINTED */
3781 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3782 /* LINTED */
3783 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3784 /* LINTED */
3785 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3786
3787 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3788 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3789
3790 if (pack->bw_txg > txg)
3791 fatal(0, "future leak: got %llx, open txg is %llx",
3792 pack->bw_txg, txg);
3793
3794 if (pack->bw_data != 0 && pack->bw_index != n + i)
3795 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3796 pack->bw_index, n, i);
3797
3798 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3799 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3800
3801 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3802 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3803
3804 pack->bw_index = n + i;
3805 pack->bw_txg = txg;
3806 pack->bw_data = 1 + ztest_random(-2ULL);
3807
3808 *bigH = *pack;
3809 *bigT = *pack;
3810 }
3811 }
3812
3813 void
ztest_dmu_read_write_zcopy(ztest_ds_t * zd,uint64_t id)3814 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
3815 {
3816 objset_t *os = zd->zd_os;
3817 ztest_od_t od[2];
3818 dmu_tx_t *tx;
3819 uint64_t i;
3820 int error;
3821 uint64_t n, s, txg;
3822 bufwad_t *packbuf, *bigbuf;
3823 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3824 uint64_t blocksize = ztest_random_blocksize();
3825 uint64_t chunksize = blocksize;
3826 uint64_t regions = 997;
3827 uint64_t stride = 123456789ULL;
3828 uint64_t width = 9;
3829 dmu_buf_t *bonus_db;
3830 arc_buf_t **bigbuf_arcbufs;
3831 dmu_object_info_t doi;
3832
3833 /*
3834 * This test uses two objects, packobj and bigobj, that are always
3835 * updated together (i.e. in the same tx) so that their contents are
3836 * in sync and can be compared. Their contents relate to each other
3837 * in a simple way: packobj is a dense array of 'bufwad' structures,
3838 * while bigobj is a sparse array of the same bufwads. Specifically,
3839 * for any index n, there are three bufwads that should be identical:
3840 *
3841 * packobj, at offset n * sizeof (bufwad_t)
3842 * bigobj, at the head of the nth chunk
3843 * bigobj, at the tail of the nth chunk
3844 *
3845 * The chunk size is set equal to bigobj block size so that
3846 * dmu_assign_arcbuf() can be tested for object updates.
3847 */
3848
3849 /*
3850 * Read the directory info. If it's the first time, set things up.
3851 */
3852 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
3853 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3854
3855 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
3856 return;
3857
3858 bigobj = od[0].od_object;
3859 packobj = od[1].od_object;
3860 blocksize = od[0].od_blocksize;
3861 chunksize = blocksize;
3862 ASSERT(chunksize == od[1].od_gen);
3863
3864 VERIFY(dmu_object_info(os, bigobj, &doi) == 0);
3865 VERIFY(ISP2(doi.doi_data_block_size));
3866 VERIFY(chunksize == doi.doi_data_block_size);
3867 VERIFY(chunksize >= 2 * sizeof (bufwad_t));
3868
3869 /*
3870 * Pick a random index and compute the offsets into packobj and bigobj.
3871 */
3872 n = ztest_random(regions) * stride + ztest_random(width);
3873 s = 1 + ztest_random(width - 1);
3874
3875 packoff = n * sizeof (bufwad_t);
3876 packsize = s * sizeof (bufwad_t);
3877
3878 bigoff = n * chunksize;
3879 bigsize = s * chunksize;
3880
3881 packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
3882 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
3883
3884 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
3885
3886 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
3887
3888 /*
3889 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
3890 * Iteration 1 test zcopy to already referenced dbufs.
3891 * Iteration 2 test zcopy to dirty dbuf in the same txg.
3892 * Iteration 3 test zcopy to dbuf dirty in previous txg.
3893 * Iteration 4 test zcopy when dbuf is no longer dirty.
3894 * Iteration 5 test zcopy when it can't be done.
3895 * Iteration 6 one more zcopy write.
3896 */
3897 for (i = 0; i < 7; i++) {
3898 uint64_t j;
3899 uint64_t off;
3900
3901 /*
3902 * In iteration 5 (i == 5) use arcbufs
3903 * that don't match bigobj blksz to test
3904 * dmu_assign_arcbuf() when it can't directly
3905 * assign an arcbuf to a dbuf.
3906 */
3907 for (j = 0; j < s; j++) {
3908 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
3909 bigbuf_arcbufs[j] =
3910 dmu_request_arcbuf(bonus_db, chunksize);
3911 } else {
3912 bigbuf_arcbufs[2 * j] =
3913 dmu_request_arcbuf(bonus_db, chunksize / 2);
3914 bigbuf_arcbufs[2 * j + 1] =
3915 dmu_request_arcbuf(bonus_db, chunksize / 2);
3916 }
3917 }
3918
3919 /*
3920 * Get a tx for the mods to both packobj and bigobj.
3921 */
3922 tx = dmu_tx_create(os);
3923
3924 dmu_tx_hold_write(tx, packobj, packoff, packsize);
3925 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
3926
3927 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3928 if (txg == 0) {
3929 umem_free(packbuf, packsize);
3930 umem_free(bigbuf, bigsize);
3931 for (j = 0; j < s; j++) {
3932 if (i != 5 ||
3933 chunksize < (SPA_MINBLOCKSIZE * 2)) {
3934 dmu_return_arcbuf(bigbuf_arcbufs[j]);
3935 } else {
3936 dmu_return_arcbuf(
3937 bigbuf_arcbufs[2 * j]);
3938 dmu_return_arcbuf(
3939 bigbuf_arcbufs[2 * j + 1]);
3940 }
3941 }
3942 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
3943 dmu_buf_rele(bonus_db, FTAG);
3944 return;
3945 }
3946
3947 /*
3948 * 50% of the time don't read objects in the 1st iteration to
3949 * test dmu_assign_arcbuf() for the case when there're no
3950 * existing dbufs for the specified offsets.
3951 */
3952 if (i != 0 || ztest_random(2) != 0) {
3953 error = dmu_read(os, packobj, packoff,
3954 packsize, packbuf, DMU_READ_PREFETCH);
3955 ASSERT0(error);
3956 error = dmu_read(os, bigobj, bigoff, bigsize,
3957 bigbuf, DMU_READ_PREFETCH);
3958 ASSERT0(error);
3959 }
3960 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
3961 n, chunksize, txg);
3962
3963 /*
3964 * We've verified all the old bufwads, and made new ones.
3965 * Now write them out.
3966 */
3967 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
3968 if (ztest_opts.zo_verbose >= 7) {
3969 (void) printf("writing offset %llx size %llx"
3970 " txg %llx\n",
3971 (u_longlong_t)bigoff,
3972 (u_longlong_t)bigsize,
3973 (u_longlong_t)txg);
3974 }
3975 for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
3976 dmu_buf_t *dbt;
3977 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
3978 bcopy((caddr_t)bigbuf + (off - bigoff),
3979 bigbuf_arcbufs[j]->b_data, chunksize);
3980 } else {
3981 bcopy((caddr_t)bigbuf + (off - bigoff),
3982 bigbuf_arcbufs[2 * j]->b_data,
3983 chunksize / 2);
3984 bcopy((caddr_t)bigbuf + (off - bigoff) +
3985 chunksize / 2,
3986 bigbuf_arcbufs[2 * j + 1]->b_data,
3987 chunksize / 2);
3988 }
3989
3990 if (i == 1) {
3991 VERIFY(dmu_buf_hold(os, bigobj, off,
3992 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
3993 }
3994 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
3995 dmu_assign_arcbuf(bonus_db, off,
3996 bigbuf_arcbufs[j], tx);
3997 } else {
3998 dmu_assign_arcbuf(bonus_db, off,
3999 bigbuf_arcbufs[2 * j], tx);
4000 dmu_assign_arcbuf(bonus_db,
4001 off + chunksize / 2,
4002 bigbuf_arcbufs[2 * j + 1], tx);
4003 }
4004 if (i == 1) {
4005 dmu_buf_rele(dbt, FTAG);
4006 }
4007 }
4008 dmu_tx_commit(tx);
4009
4010 /*
4011 * Sanity check the stuff we just wrote.
4012 */
4013 {
4014 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
4015 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
4016
4017 VERIFY(0 == dmu_read(os, packobj, packoff,
4018 packsize, packcheck, DMU_READ_PREFETCH));
4019 VERIFY(0 == dmu_read(os, bigobj, bigoff,
4020 bigsize, bigcheck, DMU_READ_PREFETCH));
4021
4022 ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
4023 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
4024
4025 umem_free(packcheck, packsize);
4026 umem_free(bigcheck, bigsize);
4027 }
4028 if (i == 2) {
4029 txg_wait_open(dmu_objset_pool(os), 0);
4030 } else if (i == 3) {
4031 txg_wait_synced(dmu_objset_pool(os), 0);
4032 }
4033 }
4034
4035 dmu_buf_rele(bonus_db, FTAG);
4036 umem_free(packbuf, packsize);
4037 umem_free(bigbuf, bigsize);
4038 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
4039 }
4040
4041 /* ARGSUSED */
4042 void
ztest_dmu_write_parallel(ztest_ds_t * zd,uint64_t id)4043 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
4044 {
4045 ztest_od_t od[1];
4046 uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
4047 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4048
4049 /*
4050 * Have multiple threads write to large offsets in an object
4051 * to verify that parallel writes to an object -- even to the
4052 * same blocks within the object -- doesn't cause any trouble.
4053 */
4054 ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
4055
4056 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4057 return;
4058
4059 while (ztest_random(10) != 0)
4060 ztest_io(zd, od[0].od_object, offset);
4061 }
4062
4063 void
ztest_dmu_prealloc(ztest_ds_t * zd,uint64_t id)4064 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
4065 {
4066 ztest_od_t od[1];
4067 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
4068 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4069 uint64_t count = ztest_random(20) + 1;
4070 uint64_t blocksize = ztest_random_blocksize();
4071 void *data;
4072
4073 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
4074
4075 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4076 return;
4077
4078 if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0)
4079 return;
4080
4081 ztest_prealloc(zd, od[0].od_object, offset, count * blocksize);
4082
4083 data = umem_zalloc(blocksize, UMEM_NOFAIL);
4084
4085 while (ztest_random(count) != 0) {
4086 uint64_t randoff = offset + (ztest_random(count) * blocksize);
4087 if (ztest_write(zd, od[0].od_object, randoff, blocksize,
4088 data) != 0)
4089 break;
4090 while (ztest_random(4) != 0)
4091 ztest_io(zd, od[0].od_object, randoff);
4092 }
4093
4094 umem_free(data, blocksize);
4095 }
4096
4097 /*
4098 * Verify that zap_{create,destroy,add,remove,update} work as expected.
4099 */
4100 #define ZTEST_ZAP_MIN_INTS 1
4101 #define ZTEST_ZAP_MAX_INTS 4
4102 #define ZTEST_ZAP_MAX_PROPS 1000
4103
4104 void
ztest_zap(ztest_ds_t * zd,uint64_t id)4105 ztest_zap(ztest_ds_t *zd, uint64_t id)
4106 {
4107 objset_t *os = zd->zd_os;
4108 ztest_od_t od[1];
4109 uint64_t object;
4110 uint64_t txg, last_txg;
4111 uint64_t value[ZTEST_ZAP_MAX_INTS];
4112 uint64_t zl_ints, zl_intsize, prop;
4113 int i, ints;
4114 dmu_tx_t *tx;
4115 char propname[100], txgname[100];
4116 int error;
4117 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
4118
4119 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
4120
4121 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4122 return;
4123
4124 object = od[0].od_object;
4125
4126 /*
4127 * Generate a known hash collision, and verify that
4128 * we can lookup and remove both entries.
4129 */
4130 tx = dmu_tx_create(os);
4131 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4132 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4133 if (txg == 0)
4134 return;
4135 for (i = 0; i < 2; i++) {
4136 value[i] = i;
4137 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t),
4138 1, &value[i], tx));
4139 }
4140 for (i = 0; i < 2; i++) {
4141 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
4142 sizeof (uint64_t), 1, &value[i], tx));
4143 VERIFY3U(0, ==,
4144 zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
4145 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4146 ASSERT3U(zl_ints, ==, 1);
4147 }
4148 for (i = 0; i < 2; i++) {
4149 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx));
4150 }
4151 dmu_tx_commit(tx);
4152
4153 /*
4154 * Generate a buch of random entries.
4155 */
4156 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
4157
4158 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4159 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4160 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4161 bzero(value, sizeof (value));
4162 last_txg = 0;
4163
4164 /*
4165 * If these zap entries already exist, validate their contents.
4166 */
4167 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4168 if (error == 0) {
4169 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4170 ASSERT3U(zl_ints, ==, 1);
4171
4172 VERIFY(zap_lookup(os, object, txgname, zl_intsize,
4173 zl_ints, &last_txg) == 0);
4174
4175 VERIFY(zap_length(os, object, propname, &zl_intsize,
4176 &zl_ints) == 0);
4177
4178 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4179 ASSERT3U(zl_ints, ==, ints);
4180
4181 VERIFY(zap_lookup(os, object, propname, zl_intsize,
4182 zl_ints, value) == 0);
4183
4184 for (i = 0; i < ints; i++) {
4185 ASSERT3U(value[i], ==, last_txg + object + i);
4186 }
4187 } else {
4188 ASSERT3U(error, ==, ENOENT);
4189 }
4190
4191 /*
4192 * Atomically update two entries in our zap object.
4193 * The first is named txg_%llu, and contains the txg
4194 * in which the property was last updated. The second
4195 * is named prop_%llu, and the nth element of its value
4196 * should be txg + object + n.
4197 */
4198 tx = dmu_tx_create(os);
4199 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4200 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4201 if (txg == 0)
4202 return;
4203
4204 if (last_txg > txg)
4205 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
4206
4207 for (i = 0; i < ints; i++)
4208 value[i] = txg + object + i;
4209
4210 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t),
4211 1, &txg, tx));
4212 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t),
4213 ints, value, tx));
4214
4215 dmu_tx_commit(tx);
4216
4217 /*
4218 * Remove a random pair of entries.
4219 */
4220 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4221 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4222 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4223
4224 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4225
4226 if (error == ENOENT)
4227 return;
4228
4229 ASSERT0(error);
4230
4231 tx = dmu_tx_create(os);
4232 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4233 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4234 if (txg == 0)
4235 return;
4236 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx));
4237 VERIFY3U(0, ==, zap_remove(os, object, propname, tx));
4238 dmu_tx_commit(tx);
4239 }
4240
4241 /*
4242 * Testcase to test the upgrading of a microzap to fatzap.
4243 */
4244 void
ztest_fzap(ztest_ds_t * zd,uint64_t id)4245 ztest_fzap(ztest_ds_t *zd, uint64_t id)
4246 {
4247 objset_t *os = zd->zd_os;
4248 ztest_od_t od[1];
4249 uint64_t object, txg;
4250
4251 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
4252
4253 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4254 return;
4255
4256 object = od[0].od_object;
4257
4258 /*
4259 * Add entries to this ZAP and make sure it spills over
4260 * and gets upgraded to a fatzap. Also, since we are adding
4261 * 2050 entries we should see ptrtbl growth and leaf-block split.
4262 */
4263 for (int i = 0; i < 2050; i++) {
4264 char name[ZFS_MAX_DATASET_NAME_LEN];
4265 uint64_t value = i;
4266 dmu_tx_t *tx;
4267 int error;
4268
4269 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu",
4270 id, value);
4271
4272 tx = dmu_tx_create(os);
4273 dmu_tx_hold_zap(tx, object, B_TRUE, name);
4274 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4275 if (txg == 0)
4276 return;
4277 error = zap_add(os, object, name, sizeof (uint64_t), 1,
4278 &value, tx);
4279 ASSERT(error == 0 || error == EEXIST);
4280 dmu_tx_commit(tx);
4281 }
4282 }
4283
4284 /* ARGSUSED */
4285 void
ztest_zap_parallel(ztest_ds_t * zd,uint64_t id)4286 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
4287 {
4288 objset_t *os = zd->zd_os;
4289 ztest_od_t od[1];
4290 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
4291 dmu_tx_t *tx;
4292 int i, namelen, error;
4293 int micro = ztest_random(2);
4294 char name[20], string_value[20];
4295 void *data;
4296
4297 ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0);
4298
4299 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4300 return;
4301
4302 object = od[0].od_object;
4303
4304 /*
4305 * Generate a random name of the form 'xxx.....' where each
4306 * x is a random printable character and the dots are dots.
4307 * There are 94 such characters, and the name length goes from
4308 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
4309 */
4310 namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
4311
4312 for (i = 0; i < 3; i++)
4313 name[i] = '!' + ztest_random('~' - '!' + 1);
4314 for (; i < namelen - 1; i++)
4315 name[i] = '.';
4316 name[i] = '\0';
4317
4318 if ((namelen & 1) || micro) {
4319 wsize = sizeof (txg);
4320 wc = 1;
4321 data = &txg;
4322 } else {
4323 wsize = 1;
4324 wc = namelen;
4325 data = string_value;
4326 }
4327
4328 count = -1ULL;
4329 VERIFY0(zap_count(os, object, &count));
4330 ASSERT(count != -1ULL);
4331
4332 /*
4333 * Select an operation: length, lookup, add, update, remove.
4334 */
4335 i = ztest_random(5);
4336
4337 if (i >= 2) {
4338 tx = dmu_tx_create(os);
4339 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4340 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4341 if (txg == 0)
4342 return;
4343 bcopy(name, string_value, namelen);
4344 } else {
4345 tx = NULL;
4346 txg = 0;
4347 bzero(string_value, namelen);
4348 }
4349
4350 switch (i) {
4351
4352 case 0:
4353 error = zap_length(os, object, name, &zl_wsize, &zl_wc);
4354 if (error == 0) {
4355 ASSERT3U(wsize, ==, zl_wsize);
4356 ASSERT3U(wc, ==, zl_wc);
4357 } else {
4358 ASSERT3U(error, ==, ENOENT);
4359 }
4360 break;
4361
4362 case 1:
4363 error = zap_lookup(os, object, name, wsize, wc, data);
4364 if (error == 0) {
4365 if (data == string_value &&
4366 bcmp(name, data, namelen) != 0)
4367 fatal(0, "name '%s' != val '%s' len %d",
4368 name, data, namelen);
4369 } else {
4370 ASSERT3U(error, ==, ENOENT);
4371 }
4372 break;
4373
4374 case 2:
4375 error = zap_add(os, object, name, wsize, wc, data, tx);
4376 ASSERT(error == 0 || error == EEXIST);
4377 break;
4378
4379 case 3:
4380 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
4381 break;
4382
4383 case 4:
4384 error = zap_remove(os, object, name, tx);
4385 ASSERT(error == 0 || error == ENOENT);
4386 break;
4387 }
4388
4389 if (tx != NULL)
4390 dmu_tx_commit(tx);
4391 }
4392
4393 /*
4394 * Commit callback data.
4395 */
4396 typedef struct ztest_cb_data {
4397 list_node_t zcd_node;
4398 uint64_t zcd_txg;
4399 int zcd_expected_err;
4400 boolean_t zcd_added;
4401 boolean_t zcd_called;
4402 spa_t *zcd_spa;
4403 } ztest_cb_data_t;
4404
4405 /* This is the actual commit callback function */
4406 static void
ztest_commit_callback(void * arg,int error)4407 ztest_commit_callback(void *arg, int error)
4408 {
4409 ztest_cb_data_t *data = arg;
4410 uint64_t synced_txg;
4411
4412 VERIFY(data != NULL);
4413 VERIFY3S(data->zcd_expected_err, ==, error);
4414 VERIFY(!data->zcd_called);
4415
4416 synced_txg = spa_last_synced_txg(data->zcd_spa);
4417 if (data->zcd_txg > synced_txg)
4418 fatal(0, "commit callback of txg %" PRIu64 " called prematurely"
4419 ", last synced txg = %" PRIu64 "\n", data->zcd_txg,
4420 synced_txg);
4421
4422 data->zcd_called = B_TRUE;
4423
4424 if (error == ECANCELED) {
4425 ASSERT0(data->zcd_txg);
4426 ASSERT(!data->zcd_added);
4427
4428 /*
4429 * The private callback data should be destroyed here, but
4430 * since we are going to check the zcd_called field after
4431 * dmu_tx_abort(), we will destroy it there.
4432 */
4433 return;
4434 }
4435
4436 /* Was this callback added to the global callback list? */
4437 if (!data->zcd_added)
4438 goto out;
4439
4440 ASSERT3U(data->zcd_txg, !=, 0);
4441
4442 /* Remove our callback from the list */
4443 (void) mutex_lock(&zcl.zcl_callbacks_lock);
4444 list_remove(&zcl.zcl_callbacks, data);
4445 (void) mutex_unlock(&zcl.zcl_callbacks_lock);
4446
4447 out:
4448 umem_free(data, sizeof (ztest_cb_data_t));
4449 }
4450
4451 /* Allocate and initialize callback data structure */
4452 static ztest_cb_data_t *
ztest_create_cb_data(objset_t * os,uint64_t txg)4453 ztest_create_cb_data(objset_t *os, uint64_t txg)
4454 {
4455 ztest_cb_data_t *cb_data;
4456
4457 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
4458
4459 cb_data->zcd_txg = txg;
4460 cb_data->zcd_spa = dmu_objset_spa(os);
4461
4462 return (cb_data);
4463 }
4464
4465 /*
4466 * If a number of txgs equal to this threshold have been created after a commit
4467 * callback has been registered but not called, then we assume there is an
4468 * implementation bug.
4469 */
4470 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2)
4471
4472 /*
4473 * Commit callback test.
4474 */
4475 void
ztest_dmu_commit_callbacks(ztest_ds_t * zd,uint64_t id)4476 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
4477 {
4478 objset_t *os = zd->zd_os;
4479 ztest_od_t od[1];
4480 dmu_tx_t *tx;
4481 ztest_cb_data_t *cb_data[3], *tmp_cb;
4482 uint64_t old_txg, txg;
4483 int i, error;
4484
4485 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
4486
4487 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4488 return;
4489
4490 tx = dmu_tx_create(os);
4491
4492 cb_data[0] = ztest_create_cb_data(os, 0);
4493 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
4494
4495 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t));
4496
4497 /* Every once in a while, abort the transaction on purpose */
4498 if (ztest_random(100) == 0)
4499 error = -1;
4500
4501 if (!error)
4502 error = dmu_tx_assign(tx, TXG_NOWAIT);
4503
4504 txg = error ? 0 : dmu_tx_get_txg(tx);
4505
4506 cb_data[0]->zcd_txg = txg;
4507 cb_data[1] = ztest_create_cb_data(os, txg);
4508 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
4509
4510 if (error) {
4511 /*
4512 * It's not a strict requirement to call the registered
4513 * callbacks from inside dmu_tx_abort(), but that's what
4514 * it's supposed to happen in the current implementation
4515 * so we will check for that.
4516 */
4517 for (i = 0; i < 2; i++) {
4518 cb_data[i]->zcd_expected_err = ECANCELED;
4519 VERIFY(!cb_data[i]->zcd_called);
4520 }
4521
4522 dmu_tx_abort(tx);
4523
4524 for (i = 0; i < 2; i++) {
4525 VERIFY(cb_data[i]->zcd_called);
4526 umem_free(cb_data[i], sizeof (ztest_cb_data_t));
4527 }
4528
4529 return;
4530 }
4531
4532 cb_data[2] = ztest_create_cb_data(os, txg);
4533 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
4534
4535 /*
4536 * Read existing data to make sure there isn't a future leak.
4537 */
4538 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t),
4539 &old_txg, DMU_READ_PREFETCH));
4540
4541 if (old_txg > txg)
4542 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64,
4543 old_txg, txg);
4544
4545 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx);
4546
4547 (void) mutex_lock(&zcl.zcl_callbacks_lock);
4548
4549 /*
4550 * Since commit callbacks don't have any ordering requirement and since
4551 * it is theoretically possible for a commit callback to be called
4552 * after an arbitrary amount of time has elapsed since its txg has been
4553 * synced, it is difficult to reliably determine whether a commit
4554 * callback hasn't been called due to high load or due to a flawed
4555 * implementation.
4556 *
4557 * In practice, we will assume that if after a certain number of txgs a
4558 * commit callback hasn't been called, then most likely there's an
4559 * implementation bug..
4560 */
4561 tmp_cb = list_head(&zcl.zcl_callbacks);
4562 if (tmp_cb != NULL &&
4563 (txg - ZTEST_COMMIT_CALLBACK_THRESH) > tmp_cb->zcd_txg) {
4564 fatal(0, "Commit callback threshold exceeded, oldest txg: %"
4565 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg);
4566 }
4567
4568 /*
4569 * Let's find the place to insert our callbacks.
4570 *
4571 * Even though the list is ordered by txg, it is possible for the
4572 * insertion point to not be the end because our txg may already be
4573 * quiescing at this point and other callbacks in the open txg
4574 * (from other objsets) may have sneaked in.
4575 */
4576 tmp_cb = list_tail(&zcl.zcl_callbacks);
4577 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
4578 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
4579
4580 /* Add the 3 callbacks to the list */
4581 for (i = 0; i < 3; i++) {
4582 if (tmp_cb == NULL)
4583 list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
4584 else
4585 list_insert_after(&zcl.zcl_callbacks, tmp_cb,
4586 cb_data[i]);
4587
4588 cb_data[i]->zcd_added = B_TRUE;
4589 VERIFY(!cb_data[i]->zcd_called);
4590
4591 tmp_cb = cb_data[i];
4592 }
4593
4594 (void) mutex_unlock(&zcl.zcl_callbacks_lock);
4595
4596 dmu_tx_commit(tx);
4597 }
4598
4599 /* ARGSUSED */
4600 void
ztest_dsl_prop_get_set(ztest_ds_t * zd,uint64_t id)4601 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
4602 {
4603 zfs_prop_t proplist[] = {
4604 ZFS_PROP_CHECKSUM,
4605 ZFS_PROP_COMPRESSION,
4606 ZFS_PROP_COPIES,
4607 ZFS_PROP_DEDUP
4608 };
4609
4610 (void) rw_rdlock(&ztest_name_lock);
4611
4612 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
4613 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
4614 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
4615
4616 (void) rw_unlock(&ztest_name_lock);
4617 }
4618
4619 /* ARGSUSED */
4620 void
ztest_spa_prop_get_set(ztest_ds_t * zd,uint64_t id)4621 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
4622 {
4623 nvlist_t *props = NULL;
4624
4625 (void) rw_rdlock(&ztest_name_lock);
4626
4627 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO,
4628 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN));
4629
4630 VERIFY0(spa_prop_get(ztest_spa, &props));
4631
4632 if (ztest_opts.zo_verbose >= 6)
4633 dump_nvlist(props, 4);
4634
4635 nvlist_free(props);
4636
4637 (void) rw_unlock(&ztest_name_lock);
4638 }
4639
4640 static int
user_release_one(const char * snapname,const char * holdname)4641 user_release_one(const char *snapname, const char *holdname)
4642 {
4643 nvlist_t *snaps, *holds;
4644 int error;
4645
4646 snaps = fnvlist_alloc();
4647 holds = fnvlist_alloc();
4648 fnvlist_add_boolean(holds, holdname);
4649 fnvlist_add_nvlist(snaps, snapname, holds);
4650 fnvlist_free(holds);
4651 error = dsl_dataset_user_release(snaps, NULL);
4652 fnvlist_free(snaps);
4653 return (error);
4654 }
4655
4656 /*
4657 * Test snapshot hold/release and deferred destroy.
4658 */
4659 void
ztest_dmu_snapshot_hold(ztest_ds_t * zd,uint64_t id)4660 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
4661 {
4662 int error;
4663 objset_t *os = zd->zd_os;
4664 objset_t *origin;
4665 char snapname[100];
4666 char fullname[100];
4667 char clonename[100];
4668 char tag[100];
4669 char osname[ZFS_MAX_DATASET_NAME_LEN];
4670 nvlist_t *holds;
4671
4672 (void) rw_rdlock(&ztest_name_lock);
4673
4674 dmu_objset_name(os, osname);
4675
4676 (void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id);
4677 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
4678 (void) snprintf(clonename, sizeof (clonename),
4679 "%s/ch1_%llu", osname, id);
4680 (void) snprintf(tag, sizeof (tag), "tag_%llu", id);
4681
4682 /*
4683 * Clean up from any previous run.
4684 */
4685 error = dsl_destroy_head(clonename);
4686 if (error != ENOENT)
4687 ASSERT0(error);
4688 error = user_release_one(fullname, tag);
4689 if (error != ESRCH && error != ENOENT)
4690 ASSERT0(error);
4691 error = dsl_destroy_snapshot(fullname, B_FALSE);
4692 if (error != ENOENT)
4693 ASSERT0(error);
4694
4695 /*
4696 * Create snapshot, clone it, mark snap for deferred destroy,
4697 * destroy clone, verify snap was also destroyed.
4698 */
4699 error = dmu_objset_snapshot_one(osname, snapname);
4700 if (error) {
4701 if (error == ENOSPC) {
4702 ztest_record_enospc("dmu_objset_snapshot");
4703 goto out;
4704 }
4705 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4706 }
4707
4708 error = dmu_objset_clone(clonename, fullname);
4709 if (error) {
4710 if (error == ENOSPC) {
4711 ztest_record_enospc("dmu_objset_clone");
4712 goto out;
4713 }
4714 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error);
4715 }
4716
4717 error = dsl_destroy_snapshot(fullname, B_TRUE);
4718 if (error) {
4719 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
4720 fullname, error);
4721 }
4722
4723 error = dsl_destroy_head(clonename);
4724 if (error)
4725 fatal(0, "dsl_destroy_head(%s) = %d", clonename, error);
4726
4727 error = dmu_objset_hold(fullname, FTAG, &origin);
4728 if (error != ENOENT)
4729 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
4730
4731 /*
4732 * Create snapshot, add temporary hold, verify that we can't
4733 * destroy a held snapshot, mark for deferred destroy,
4734 * release hold, verify snapshot was destroyed.
4735 */
4736 error = dmu_objset_snapshot_one(osname, snapname);
4737 if (error) {
4738 if (error == ENOSPC) {
4739 ztest_record_enospc("dmu_objset_snapshot");
4740 goto out;
4741 }
4742 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4743 }
4744
4745 holds = fnvlist_alloc();
4746 fnvlist_add_string(holds, fullname, tag);
4747 error = dsl_dataset_user_hold(holds, 0, NULL);
4748 fnvlist_free(holds);
4749
4750 if (error == ENOSPC) {
4751 ztest_record_enospc("dsl_dataset_user_hold");
4752 goto out;
4753 } else if (error) {
4754 fatal(0, "dsl_dataset_user_hold(%s, %s) = %u",
4755 fullname, tag, error);
4756 }
4757
4758 error = dsl_destroy_snapshot(fullname, B_FALSE);
4759 if (error != EBUSY) {
4760 fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
4761 fullname, error);
4762 }
4763
4764 error = dsl_destroy_snapshot(fullname, B_TRUE);
4765 if (error) {
4766 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
4767 fullname, error);
4768 }
4769
4770 error = user_release_one(fullname, tag);
4771 if (error)
4772 fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error);
4773
4774 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
4775
4776 out:
4777 (void) rw_unlock(&ztest_name_lock);
4778 }
4779
4780 /*
4781 * Inject random faults into the on-disk data.
4782 */
4783 /* ARGSUSED */
4784 void
ztest_fault_inject(ztest_ds_t * zd,uint64_t id)4785 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
4786 {
4787 ztest_shared_t *zs = ztest_shared;
4788 spa_t *spa = ztest_spa;
4789 int fd;
4790 uint64_t offset;
4791 uint64_t leaves;
4792 uint64_t bad = 0x1990c0ffeedecade;
4793 uint64_t top, leaf;
4794 char path0[MAXPATHLEN];
4795 char pathrand[MAXPATHLEN];
4796 size_t fsize;
4797 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */
4798 int iters = 1000;
4799 int maxfaults;
4800 int mirror_save;
4801 vdev_t *vd0 = NULL;
4802 uint64_t guid0 = 0;
4803 boolean_t islog = B_FALSE;
4804
4805 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
4806 maxfaults = MAXFAULTS();
4807 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
4808 mirror_save = zs->zs_mirrors;
4809 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
4810
4811 ASSERT(leaves >= 1);
4812
4813 /*
4814 * Grab the name lock as reader. There are some operations
4815 * which don't like to have their vdevs changed while
4816 * they are in progress (i.e. spa_change_guid). Those
4817 * operations will have grabbed the name lock as writer.
4818 */
4819 (void) rw_rdlock(&ztest_name_lock);
4820
4821 /*
4822 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
4823 */
4824 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4825
4826 if (ztest_random(2) == 0) {
4827 /*
4828 * Inject errors on a normal data device or slog device.
4829 */
4830 top = ztest_random_vdev_top(spa, B_TRUE);
4831 leaf = ztest_random(leaves) + zs->zs_splits;
4832
4833 /*
4834 * Generate paths to the first leaf in this top-level vdev,
4835 * and to the random leaf we selected. We'll induce transient
4836 * write failures and random online/offline activity on leaf 0,
4837 * and we'll write random garbage to the randomly chosen leaf.
4838 */
4839 (void) snprintf(path0, sizeof (path0), ztest_dev_template,
4840 ztest_opts.zo_dir, ztest_opts.zo_pool,
4841 top * leaves + zs->zs_splits);
4842 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template,
4843 ztest_opts.zo_dir, ztest_opts.zo_pool,
4844 top * leaves + leaf);
4845
4846 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
4847 if (vd0 != NULL && vd0->vdev_top->vdev_islog)
4848 islog = B_TRUE;
4849
4850 /*
4851 * If the top-level vdev needs to be resilvered
4852 * then we only allow faults on the device that is
4853 * resilvering.
4854 */
4855 if (vd0 != NULL && maxfaults != 1 &&
4856 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
4857 vd0->vdev_resilver_txg != 0)) {
4858 /*
4859 * Make vd0 explicitly claim to be unreadable,
4860 * or unwriteable, or reach behind its back
4861 * and close the underlying fd. We can do this if
4862 * maxfaults == 0 because we'll fail and reexecute,
4863 * and we can do it if maxfaults >= 2 because we'll
4864 * have enough redundancy. If maxfaults == 1, the
4865 * combination of this with injection of random data
4866 * corruption below exceeds the pool's fault tolerance.
4867 */
4868 vdev_file_t *vf = vd0->vdev_tsd;
4869
4870 if (vf != NULL && ztest_random(3) == 0) {
4871 (void) close(vf->vf_vnode->v_fd);
4872 vf->vf_vnode->v_fd = -1;
4873 } else if (ztest_random(2) == 0) {
4874 vd0->vdev_cant_read = B_TRUE;
4875 } else {
4876 vd0->vdev_cant_write = B_TRUE;
4877 }
4878 guid0 = vd0->vdev_guid;
4879 }
4880 } else {
4881 /*
4882 * Inject errors on an l2cache device.
4883 */
4884 spa_aux_vdev_t *sav = &spa->spa_l2cache;
4885
4886 if (sav->sav_count == 0) {
4887 spa_config_exit(spa, SCL_STATE, FTAG);
4888 (void) rw_unlock(&ztest_name_lock);
4889 return;
4890 }
4891 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
4892 guid0 = vd0->vdev_guid;
4893 (void) strcpy(path0, vd0->vdev_path);
4894 (void) strcpy(pathrand, vd0->vdev_path);
4895
4896 leaf = 0;
4897 leaves = 1;
4898 maxfaults = INT_MAX; /* no limit on cache devices */
4899 }
4900
4901 spa_config_exit(spa, SCL_STATE, FTAG);
4902 (void) rw_unlock(&ztest_name_lock);
4903
4904 /*
4905 * If we can tolerate two or more faults, or we're dealing
4906 * with a slog, randomly online/offline vd0.
4907 */
4908 if ((maxfaults >= 2 || islog) && guid0 != 0) {
4909 if (ztest_random(10) < 6) {
4910 int flags = (ztest_random(2) == 0 ?
4911 ZFS_OFFLINE_TEMPORARY : 0);
4912
4913 /*
4914 * We have to grab the zs_name_lock as writer to
4915 * prevent a race between offlining a slog and
4916 * destroying a dataset. Offlining the slog will
4917 * grab a reference on the dataset which may cause
4918 * dmu_objset_destroy() to fail with EBUSY thus
4919 * leaving the dataset in an inconsistent state.
4920 */
4921 if (islog)
4922 (void) rw_wrlock(&ztest_name_lock);
4923
4924 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY);
4925
4926 if (islog)
4927 (void) rw_unlock(&ztest_name_lock);
4928 } else {
4929 /*
4930 * Ideally we would like to be able to randomly
4931 * call vdev_[on|off]line without holding locks
4932 * to force unpredictable failures but the side
4933 * effects of vdev_[on|off]line prevent us from
4934 * doing so. We grab the ztest_vdev_lock here to
4935 * prevent a race between injection testing and
4936 * aux_vdev removal.
4937 */
4938 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
4939 (void) vdev_online(spa, guid0, 0, NULL);
4940 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
4941 }
4942 }
4943
4944 if (maxfaults == 0)
4945 return;
4946
4947 /*
4948 * We have at least single-fault tolerance, so inject data corruption.
4949 */
4950 fd = open(pathrand, O_RDWR);
4951
4952 if (fd == -1) /* we hit a gap in the device namespace */
4953 return;
4954
4955 fsize = lseek(fd, 0, SEEK_END);
4956
4957 while (--iters != 0) {
4958 /*
4959 * The offset must be chosen carefully to ensure that
4960 * we do not inject a given logical block with errors
4961 * on two different leaf devices, because ZFS can not
4962 * tolerate that (if maxfaults==1).
4963 *
4964 * We divide each leaf into chunks of size
4965 * (# leaves * SPA_MAXBLOCKSIZE * 4). Within each chunk
4966 * there is a series of ranges to which we can inject errors.
4967 * Each range can accept errors on only a single leaf vdev.
4968 * The error injection ranges are separated by ranges
4969 * which we will not inject errors on any device (DMZs).
4970 * Each DMZ must be large enough such that a single block
4971 * can not straddle it, so that a single block can not be
4972 * a target in two different injection ranges (on different
4973 * leaf vdevs).
4974 *
4975 * For example, with 3 leaves, each chunk looks like:
4976 * 0 to 32M: injection range for leaf 0
4977 * 32M to 64M: DMZ - no injection allowed
4978 * 64M to 96M: injection range for leaf 1
4979 * 96M to 128M: DMZ - no injection allowed
4980 * 128M to 160M: injection range for leaf 2
4981 * 160M to 192M: DMZ - no injection allowed
4982 */
4983 offset = ztest_random(fsize / (leaves << bshift)) *
4984 (leaves << bshift) + (leaf << bshift) +
4985 (ztest_random(1ULL << (bshift - 1)) & -8ULL);
4986
4987 if (offset >= fsize)
4988 continue;
4989
4990 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
4991 if (mirror_save != zs->zs_mirrors) {
4992 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
4993 (void) close(fd);
4994 return;
4995 }
4996
4997 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
4998 fatal(1, "can't inject bad word at 0x%llx in %s",
4999 offset, pathrand);
5000
5001 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
5002
5003 if (ztest_opts.zo_verbose >= 7)
5004 (void) printf("injected bad word into %s,"
5005 " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
5006 }
5007
5008 (void) close(fd);
5009 }
5010
5011 /*
5012 * Verify that DDT repair works as expected.
5013 */
5014 void
ztest_ddt_repair(ztest_ds_t * zd,uint64_t id)5015 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id)
5016 {
5017 ztest_shared_t *zs = ztest_shared;
5018 spa_t *spa = ztest_spa;
5019 objset_t *os = zd->zd_os;
5020 ztest_od_t od[1];
5021 uint64_t object, blocksize, txg, pattern, psize;
5022 enum zio_checksum checksum = spa_dedup_checksum(spa);
5023 dmu_buf_t *db;
5024 dmu_tx_t *tx;
5025 void *buf;
5026 blkptr_t blk;
5027 int copies = 2 * ZIO_DEDUPDITTO_MIN;
5028
5029 blocksize = ztest_random_blocksize();
5030 blocksize = MIN(blocksize, 2048); /* because we write so many */
5031
5032 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
5033
5034 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
5035 return;
5036
5037 /*
5038 * Take the name lock as writer to prevent anyone else from changing
5039 * the pool and dataset properies we need to maintain during this test.
5040 */
5041 (void) rw_wrlock(&ztest_name_lock);
5042
5043 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum,
5044 B_FALSE) != 0 ||
5045 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1,
5046 B_FALSE) != 0) {
5047 (void) rw_unlock(&ztest_name_lock);
5048 return;
5049 }
5050
5051 object = od[0].od_object;
5052 blocksize = od[0].od_blocksize;
5053 pattern = zs->zs_guid ^ dmu_objset_fsid_guid(os);
5054
5055 ASSERT(object != 0);
5056
5057 tx = dmu_tx_create(os);
5058 dmu_tx_hold_write(tx, object, 0, copies * blocksize);
5059 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
5060 if (txg == 0) {
5061 (void) rw_unlock(&ztest_name_lock);
5062 return;
5063 }
5064
5065 /*
5066 * Write all the copies of our block.
5067 */
5068 for (int i = 0; i < copies; i++) {
5069 uint64_t offset = i * blocksize;
5070 int error = dmu_buf_hold(os, object, offset, FTAG, &db,
5071 DMU_READ_NO_PREFETCH);
5072 if (error != 0) {
5073 fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u",
5074 os, (long long)object, (long long) offset, error);
5075 }
5076 ASSERT(db->db_offset == offset);
5077 ASSERT(db->db_size == blocksize);
5078 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) ||
5079 ztest_pattern_match(db->db_data, db->db_size, 0ULL));
5080 dmu_buf_will_fill(db, tx);
5081 ztest_pattern_set(db->db_data, db->db_size, pattern);
5082 dmu_buf_rele(db, FTAG);
5083 }
5084
5085 dmu_tx_commit(tx);
5086 txg_wait_synced(spa_get_dsl(spa), txg);
5087
5088 /*
5089 * Find out what block we got.
5090 */
5091 VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db,
5092 DMU_READ_NO_PREFETCH));
5093 blk = *((dmu_buf_impl_t *)db)->db_blkptr;
5094 dmu_buf_rele(db, FTAG);
5095
5096 /*
5097 * Damage the block. Dedup-ditto will save us when we read it later.
5098 */
5099 psize = BP_GET_PSIZE(&blk);
5100 buf = zio_buf_alloc(psize);
5101 ztest_pattern_set(buf, psize, ~pattern);
5102
5103 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk,
5104 buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE,
5105 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL));
5106
5107 zio_buf_free(buf, psize);
5108
5109 (void) rw_unlock(&ztest_name_lock);
5110 }
5111
5112 /*
5113 * Scrub the pool.
5114 */
5115 /* ARGSUSED */
5116 void
ztest_scrub(ztest_ds_t * zd,uint64_t id)5117 ztest_scrub(ztest_ds_t *zd, uint64_t id)
5118 {
5119 spa_t *spa = ztest_spa;
5120
5121 (void) spa_scan(spa, POOL_SCAN_SCRUB);
5122 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */
5123 (void) spa_scan(spa, POOL_SCAN_SCRUB);
5124 }
5125
5126 /*
5127 * Change the guid for the pool.
5128 */
5129 /* ARGSUSED */
5130 void
ztest_reguid(ztest_ds_t * zd,uint64_t id)5131 ztest_reguid(ztest_ds_t *zd, uint64_t id)
5132 {
5133 spa_t *spa = ztest_spa;
5134 uint64_t orig, load;
5135 int error;
5136
5137 orig = spa_guid(spa);
5138 load = spa_load_guid(spa);
5139
5140 (void) rw_wrlock(&ztest_name_lock);
5141 error = spa_change_guid(spa);
5142 (void) rw_unlock(&ztest_name_lock);
5143
5144 if (error != 0)
5145 return;
5146
5147 if (ztest_opts.zo_verbose >= 4) {
5148 (void) printf("Changed guid old %llu -> %llu\n",
5149 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa));
5150 }
5151
5152 VERIFY3U(orig, !=, spa_guid(spa));
5153 VERIFY3U(load, ==, spa_load_guid(spa));
5154 }
5155
5156 /*
5157 * Rename the pool to a different name and then rename it back.
5158 */
5159 /* ARGSUSED */
5160 void
ztest_spa_rename(ztest_ds_t * zd,uint64_t id)5161 ztest_spa_rename(ztest_ds_t *zd, uint64_t id)
5162 {
5163 char *oldname, *newname;
5164 spa_t *spa;
5165
5166 (void) rw_wrlock(&ztest_name_lock);
5167
5168 oldname = ztest_opts.zo_pool;
5169 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL);
5170 (void) strcpy(newname, oldname);
5171 (void) strcat(newname, "_tmp");
5172
5173 /*
5174 * Do the rename
5175 */
5176 VERIFY3U(0, ==, spa_rename(oldname, newname));
5177
5178 /*
5179 * Try to open it under the old name, which shouldn't exist
5180 */
5181 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5182
5183 /*
5184 * Open it under the new name and make sure it's still the same spa_t.
5185 */
5186 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5187
5188 ASSERT(spa == ztest_spa);
5189 spa_close(spa, FTAG);
5190
5191 /*
5192 * Rename it back to the original
5193 */
5194 VERIFY3U(0, ==, spa_rename(newname, oldname));
5195
5196 /*
5197 * Make sure it can still be opened
5198 */
5199 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
5200
5201 ASSERT(spa == ztest_spa);
5202 spa_close(spa, FTAG);
5203
5204 umem_free(newname, strlen(newname) + 1);
5205
5206 (void) rw_unlock(&ztest_name_lock);
5207 }
5208
5209 /*
5210 * Verify pool integrity by running zdb.
5211 */
5212 static void
ztest_run_zdb(char * pool)5213 ztest_run_zdb(char *pool)
5214 {
5215 int status;
5216 char zdb[MAXPATHLEN + MAXNAMELEN + 20];
5217 char zbuf[1024];
5218 char *bin;
5219 char *ztest;
5220 char *isa;
5221 int isalen;
5222 FILE *fp;
5223
5224 (void) realpath(getexecname(), zdb);
5225
5226 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */
5227 bin = strstr(zdb, "/usr/bin/");
5228 ztest = strstr(bin, "/ztest");
5229 isa = bin + 8;
5230 isalen = ztest - isa;
5231 isa = strdup(isa);
5232 /* LINTED */
5233 (void) sprintf(bin,
5234 "/usr/sbin%.*s/zdb -bcc%s%s -d -U %s %s",
5235 isalen,
5236 isa,
5237 ztest_opts.zo_verbose >= 3 ? "s" : "",
5238 ztest_opts.zo_verbose >= 4 ? "v" : "",
5239 spa_config_path,
5240 pool);
5241 free(isa);
5242
5243 if (ztest_opts.zo_verbose >= 5)
5244 (void) printf("Executing %s\n", strstr(zdb, "zdb "));
5245
5246 fp = popen(zdb, "r");
5247
5248 while (fgets(zbuf, sizeof (zbuf), fp) != NULL)
5249 if (ztest_opts.zo_verbose >= 3)
5250 (void) printf("%s", zbuf);
5251
5252 status = pclose(fp);
5253
5254 if (status == 0)
5255 return;
5256
5257 ztest_dump_core = 0;
5258 if (WIFEXITED(status))
5259 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
5260 else
5261 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
5262 }
5263
5264 static void
ztest_walk_pool_directory(char * header)5265 ztest_walk_pool_directory(char *header)
5266 {
5267 spa_t *spa = NULL;
5268
5269 if (ztest_opts.zo_verbose >= 6)
5270 (void) printf("%s\n", header);
5271
5272 mutex_enter(&spa_namespace_lock);
5273 while ((spa = spa_next(spa)) != NULL)
5274 if (ztest_opts.zo_verbose >= 6)
5275 (void) printf("\t%s\n", spa_name(spa));
5276 mutex_exit(&spa_namespace_lock);
5277 }
5278
5279 static void
ztest_spa_import_export(char * oldname,char * newname)5280 ztest_spa_import_export(char *oldname, char *newname)
5281 {
5282 nvlist_t *config, *newconfig;
5283 uint64_t pool_guid;
5284 spa_t *spa;
5285 int error;
5286
5287 if (ztest_opts.zo_verbose >= 4) {
5288 (void) printf("import/export: old = %s, new = %s\n",
5289 oldname, newname);
5290 }
5291
5292 /*
5293 * Clean up from previous runs.
5294 */
5295 (void) spa_destroy(newname);
5296
5297 /*
5298 * Get the pool's configuration and guid.
5299 */
5300 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
5301
5302 /*
5303 * Kick off a scrub to tickle scrub/export races.
5304 */
5305 if (ztest_random(2) == 0)
5306 (void) spa_scan(spa, POOL_SCAN_SCRUB);
5307
5308 pool_guid = spa_guid(spa);
5309 spa_close(spa, FTAG);
5310
5311 ztest_walk_pool_directory("pools before export");
5312
5313 /*
5314 * Export it.
5315 */
5316 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE));
5317
5318 ztest_walk_pool_directory("pools after export");
5319
5320 /*
5321 * Try to import it.
5322 */
5323 newconfig = spa_tryimport(config);
5324 ASSERT(newconfig != NULL);
5325 nvlist_free(newconfig);
5326
5327 /*
5328 * Import it under the new name.
5329 */
5330 error = spa_import(newname, config, NULL, 0);
5331 if (error != 0) {
5332 dump_nvlist(config, 0);
5333 fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
5334 oldname, newname, error);
5335 }
5336
5337 ztest_walk_pool_directory("pools after import");
5338
5339 /*
5340 * Try to import it again -- should fail with EEXIST.
5341 */
5342 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
5343
5344 /*
5345 * Try to import it under a different name -- should fail with EEXIST.
5346 */
5347 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
5348
5349 /*
5350 * Verify that the pool is no longer visible under the old name.
5351 */
5352 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5353
5354 /*
5355 * Verify that we can open and close the pool using the new name.
5356 */
5357 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5358 ASSERT(pool_guid == spa_guid(spa));
5359 spa_close(spa, FTAG);
5360
5361 nvlist_free(config);
5362 }
5363
5364 static void
ztest_resume(spa_t * spa)5365 ztest_resume(spa_t *spa)
5366 {
5367 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
5368 (void) printf("resuming from suspended state\n");
5369 spa_vdev_state_enter(spa, SCL_NONE);
5370 vdev_clear(spa, NULL);
5371 (void) spa_vdev_state_exit(spa, NULL, 0);
5372 (void) zio_resume(spa);
5373 }
5374
5375 static void *
ztest_resume_thread(void * arg)5376 ztest_resume_thread(void *arg)
5377 {
5378 spa_t *spa = arg;
5379
5380 while (!ztest_exiting) {
5381 if (spa_suspended(spa))
5382 ztest_resume(spa);
5383 (void) poll(NULL, 0, 100);
5384 }
5385 return (NULL);
5386 }
5387
5388 static void *
ztest_deadman_thread(void * arg)5389 ztest_deadman_thread(void *arg)
5390 {
5391 ztest_shared_t *zs = arg;
5392 spa_t *spa = ztest_spa;
5393 hrtime_t delta, total = 0;
5394
5395 for (;;) {
5396 delta = zs->zs_thread_stop - zs->zs_thread_start +
5397 MSEC2NSEC(zfs_deadman_synctime_ms);
5398
5399 (void) poll(NULL, 0, (int)NSEC2MSEC(delta));
5400
5401 /*
5402 * If the pool is suspended then fail immediately. Otherwise,
5403 * check to see if the pool is making any progress. If
5404 * vdev_deadman() discovers that there hasn't been any recent
5405 * I/Os then it will end up aborting the tests.
5406 */
5407 if (spa_suspended(spa) || spa->spa_root_vdev == NULL) {
5408 fatal(0, "aborting test after %llu seconds because "
5409 "pool has transitioned to a suspended state.",
5410 zfs_deadman_synctime_ms / 1000);
5411 return (NULL);
5412 }
5413 vdev_deadman(spa->spa_root_vdev);
5414
5415 total += zfs_deadman_synctime_ms/1000;
5416 (void) printf("ztest has been running for %lld seconds\n",
5417 total);
5418 }
5419 }
5420
5421 static void
ztest_execute(int test,ztest_info_t * zi,uint64_t id)5422 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
5423 {
5424 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
5425 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
5426 hrtime_t functime = gethrtime();
5427
5428 for (int i = 0; i < zi->zi_iters; i++)
5429 zi->zi_func(zd, id);
5430
5431 functime = gethrtime() - functime;
5432
5433 atomic_add_64(&zc->zc_count, 1);
5434 atomic_add_64(&zc->zc_time, functime);
5435
5436 if (ztest_opts.zo_verbose >= 4) {
5437 Dl_info dli;
5438 (void) dladdr((void *)zi->zi_func, &dli);
5439 (void) printf("%6.2f sec in %s\n",
5440 (double)functime / NANOSEC, dli.dli_sname);
5441 }
5442 }
5443
5444 static void *
ztest_thread(void * arg)5445 ztest_thread(void *arg)
5446 {
5447 int rand;
5448 uint64_t id = (uintptr_t)arg;
5449 ztest_shared_t *zs = ztest_shared;
5450 uint64_t call_next;
5451 hrtime_t now;
5452 ztest_info_t *zi;
5453 ztest_shared_callstate_t *zc;
5454
5455 while ((now = gethrtime()) < zs->zs_thread_stop) {
5456 /*
5457 * See if it's time to force a crash.
5458 */
5459 if (now > zs->zs_thread_kill)
5460 ztest_kill(zs);
5461
5462 /*
5463 * If we're getting ENOSPC with some regularity, stop.
5464 */
5465 if (zs->zs_enospc_count > 10)
5466 break;
5467
5468 /*
5469 * Pick a random function to execute.
5470 */
5471 rand = ztest_random(ZTEST_FUNCS);
5472 zi = &ztest_info[rand];
5473 zc = ZTEST_GET_SHARED_CALLSTATE(rand);
5474 call_next = zc->zc_next;
5475
5476 if (now >= call_next &&
5477 atomic_cas_64(&zc->zc_next, call_next, call_next +
5478 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
5479 ztest_execute(rand, zi, id);
5480 }
5481 }
5482
5483 return (NULL);
5484 }
5485
5486 static void
ztest_dataset_name(char * dsname,char * pool,int d)5487 ztest_dataset_name(char *dsname, char *pool, int d)
5488 {
5489 (void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
5490 }
5491
5492 static void
ztest_dataset_destroy(int d)5493 ztest_dataset_destroy(int d)
5494 {
5495 char name[ZFS_MAX_DATASET_NAME_LEN];
5496
5497 ztest_dataset_name(name, ztest_opts.zo_pool, d);
5498
5499 if (ztest_opts.zo_verbose >= 3)
5500 (void) printf("Destroying %s to free up space\n", name);
5501
5502 /*
5503 * Cleanup any non-standard clones and snapshots. In general,
5504 * ztest thread t operates on dataset (t % zopt_datasets),
5505 * so there may be more than one thing to clean up.
5506 */
5507 for (int t = d; t < ztest_opts.zo_threads;
5508 t += ztest_opts.zo_datasets) {
5509 ztest_dsl_dataset_cleanup(name, t);
5510 }
5511
5512 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
5513 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
5514 }
5515
5516 static void
ztest_dataset_dirobj_verify(ztest_ds_t * zd)5517 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
5518 {
5519 uint64_t usedobjs, dirobjs, scratch;
5520
5521 /*
5522 * ZTEST_DIROBJ is the object directory for the entire dataset.
5523 * Therefore, the number of objects in use should equal the
5524 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
5525 * If not, we have an object leak.
5526 *
5527 * Note that we can only check this in ztest_dataset_open(),
5528 * when the open-context and syncing-context values agree.
5529 * That's because zap_count() returns the open-context value,
5530 * while dmu_objset_space() returns the rootbp fill count.
5531 */
5532 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
5533 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
5534 ASSERT3U(dirobjs + 1, ==, usedobjs);
5535 }
5536
5537 static int
ztest_dataset_open(int d)5538 ztest_dataset_open(int d)
5539 {
5540 ztest_ds_t *zd = &ztest_ds[d];
5541 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
5542 objset_t *os;
5543 zilog_t *zilog;
5544 char name[ZFS_MAX_DATASET_NAME_LEN];
5545 int error;
5546
5547 ztest_dataset_name(name, ztest_opts.zo_pool, d);
5548
5549 (void) rw_rdlock(&ztest_name_lock);
5550
5551 error = ztest_dataset_create(name);
5552 if (error == ENOSPC) {
5553 (void) rw_unlock(&ztest_name_lock);
5554 ztest_record_enospc(FTAG);
5555 return (error);
5556 }
5557 ASSERT(error == 0 || error == EEXIST);
5558
5559 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os));
5560 (void) rw_unlock(&ztest_name_lock);
5561
5562 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
5563
5564 zilog = zd->zd_zilog;
5565
5566 if (zilog->zl_header->zh_claim_lr_seq != 0 &&
5567 zilog->zl_header->zh_claim_lr_seq < committed_seq)
5568 fatal(0, "missing log records: claimed %llu < committed %llu",
5569 zilog->zl_header->zh_claim_lr_seq, committed_seq);
5570
5571 ztest_dataset_dirobj_verify(zd);
5572
5573 zil_replay(os, zd, ztest_replay_vector);
5574
5575 ztest_dataset_dirobj_verify(zd);
5576
5577 if (ztest_opts.zo_verbose >= 6)
5578 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
5579 zd->zd_name,
5580 (u_longlong_t)zilog->zl_parse_blk_count,
5581 (u_longlong_t)zilog->zl_parse_lr_count,
5582 (u_longlong_t)zilog->zl_replaying_seq);
5583
5584 zilog = zil_open(os, ztest_get_data);
5585
5586 if (zilog->zl_replaying_seq != 0 &&
5587 zilog->zl_replaying_seq < committed_seq)
5588 fatal(0, "missing log records: replayed %llu < committed %llu",
5589 zilog->zl_replaying_seq, committed_seq);
5590
5591 return (0);
5592 }
5593
5594 static void
ztest_dataset_close(int d)5595 ztest_dataset_close(int d)
5596 {
5597 ztest_ds_t *zd = &ztest_ds[d];
5598
5599 zil_close(zd->zd_zilog);
5600 dmu_objset_disown(zd->zd_os, zd);
5601
5602 ztest_zd_fini(zd);
5603 }
5604
5605 /*
5606 * Kick off threads to run tests on all datasets in parallel.
5607 */
5608 static void
ztest_run(ztest_shared_t * zs)5609 ztest_run(ztest_shared_t *zs)
5610 {
5611 thread_t *tid;
5612 spa_t *spa;
5613 objset_t *os;
5614 thread_t resume_tid;
5615 int error;
5616
5617 ztest_exiting = B_FALSE;
5618
5619 /*
5620 * Initialize parent/child shared state.
5621 */
5622 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0);
5623 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0);
5624
5625 zs->zs_thread_start = gethrtime();
5626 zs->zs_thread_stop =
5627 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
5628 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
5629 zs->zs_thread_kill = zs->zs_thread_stop;
5630 if (ztest_random(100) < ztest_opts.zo_killrate) {
5631 zs->zs_thread_kill -=
5632 ztest_random(ztest_opts.zo_passtime * NANOSEC);
5633 }
5634
5635 (void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL);
5636
5637 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
5638 offsetof(ztest_cb_data_t, zcd_node));
5639
5640 /*
5641 * Open our pool.
5642 */
5643 kernel_init(FREAD | FWRITE);
5644 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
5645 spa->spa_debug = B_TRUE;
5646 metaslab_preload_limit = ztest_random(20) + 1;
5647 ztest_spa = spa;
5648
5649 VERIFY0(dmu_objset_own(ztest_opts.zo_pool,
5650 DMU_OST_ANY, B_TRUE, FTAG, &os));
5651 zs->zs_guid = dmu_objset_fsid_guid(os);
5652 dmu_objset_disown(os, FTAG);
5653
5654 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN;
5655
5656 /*
5657 * We don't expect the pool to suspend unless maxfaults == 0,
5658 * in which case ztest_fault_inject() temporarily takes away
5659 * the only valid replica.
5660 */
5661 if (MAXFAULTS() == 0)
5662 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT;
5663 else
5664 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
5665
5666 /*
5667 * Create a thread to periodically resume suspended I/O.
5668 */
5669 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND,
5670 &resume_tid) == 0);
5671
5672 /*
5673 * Create a deadman thread to abort() if we hang.
5674 */
5675 VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND,
5676 NULL) == 0);
5677
5678 /*
5679 * Verify that we can safely inquire about about any object,
5680 * whether it's allocated or not. To make it interesting,
5681 * we probe a 5-wide window around each power of two.
5682 * This hits all edge cases, including zero and the max.
5683 */
5684 for (int t = 0; t < 64; t++) {
5685 for (int d = -5; d <= 5; d++) {
5686 error = dmu_object_info(spa->spa_meta_objset,
5687 (1ULL << t) + d, NULL);
5688 ASSERT(error == 0 || error == ENOENT ||
5689 error == EINVAL);
5690 }
5691 }
5692
5693 /*
5694 * If we got any ENOSPC errors on the previous run, destroy something.
5695 */
5696 if (zs->zs_enospc_count != 0) {
5697 int d = ztest_random(ztest_opts.zo_datasets);
5698 ztest_dataset_destroy(d);
5699 }
5700 zs->zs_enospc_count = 0;
5701
5702 tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t),
5703 UMEM_NOFAIL);
5704
5705 if (ztest_opts.zo_verbose >= 4)
5706 (void) printf("starting main threads...\n");
5707
5708 /*
5709 * Kick off all the tests that run in parallel.
5710 */
5711 for (int t = 0; t < ztest_opts.zo_threads; t++) {
5712 if (t < ztest_opts.zo_datasets &&
5713 ztest_dataset_open(t) != 0)
5714 return;
5715 VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t,
5716 THR_BOUND, &tid[t]) == 0);
5717 }
5718
5719 /*
5720 * Wait for all of the tests to complete. We go in reverse order
5721 * so we don't close datasets while threads are still using them.
5722 */
5723 for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) {
5724 VERIFY(thr_join(tid[t], NULL, NULL) == 0);
5725 if (t < ztest_opts.zo_datasets)
5726 ztest_dataset_close(t);
5727 }
5728
5729 txg_wait_synced(spa_get_dsl(spa), 0);
5730
5731 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
5732 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
5733 zfs_dbgmsg_print(FTAG);
5734
5735 umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t));
5736
5737 /* Kill the resume thread */
5738 ztest_exiting = B_TRUE;
5739 VERIFY(thr_join(resume_tid, NULL, NULL) == 0);
5740 ztest_resume(spa);
5741
5742 /*
5743 * Right before closing the pool, kick off a bunch of async I/O;
5744 * spa_close() should wait for it to complete.
5745 */
5746 for (uint64_t object = 1; object < 50; object++) {
5747 dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
5748 ZIO_PRIORITY_SYNC_READ);
5749 }
5750
5751 spa_close(spa, FTAG);
5752
5753 /*
5754 * Verify that we can loop over all pools.
5755 */
5756 mutex_enter(&spa_namespace_lock);
5757 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
5758 if (ztest_opts.zo_verbose > 3)
5759 (void) printf("spa_next: found %s\n", spa_name(spa));
5760 mutex_exit(&spa_namespace_lock);
5761
5762 /*
5763 * Verify that we can export the pool and reimport it under a
5764 * different name.
5765 */
5766 if (ztest_random(2) == 0) {
5767 char name[ZFS_MAX_DATASET_NAME_LEN];
5768 (void) snprintf(name, sizeof (name), "%s_import",
5769 ztest_opts.zo_pool);
5770 ztest_spa_import_export(ztest_opts.zo_pool, name);
5771 ztest_spa_import_export(name, ztest_opts.zo_pool);
5772 }
5773
5774 kernel_fini();
5775
5776 list_destroy(&zcl.zcl_callbacks);
5777
5778 (void) _mutex_destroy(&zcl.zcl_callbacks_lock);
5779
5780 (void) rwlock_destroy(&ztest_name_lock);
5781 (void) _mutex_destroy(&ztest_vdev_lock);
5782 }
5783
5784 static void
ztest_freeze(void)5785 ztest_freeze(void)
5786 {
5787 ztest_ds_t *zd = &ztest_ds[0];
5788 spa_t *spa;
5789 int numloops = 0;
5790
5791 if (ztest_opts.zo_verbose >= 3)
5792 (void) printf("testing spa_freeze()...\n");
5793
5794 kernel_init(FREAD | FWRITE);
5795 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
5796 VERIFY3U(0, ==, ztest_dataset_open(0));
5797 spa->spa_debug = B_TRUE;
5798 ztest_spa = spa;
5799
5800 /*
5801 * Force the first log block to be transactionally allocated.
5802 * We have to do this before we freeze the pool -- otherwise
5803 * the log chain won't be anchored.
5804 */
5805 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
5806 ztest_dmu_object_alloc_free(zd, 0);
5807 zil_commit(zd->zd_zilog, 0);
5808 }
5809
5810 txg_wait_synced(spa_get_dsl(spa), 0);
5811
5812 /*
5813 * Freeze the pool. This stops spa_sync() from doing anything,
5814 * so that the only way to record changes from now on is the ZIL.
5815 */
5816 spa_freeze(spa);
5817
5818 /*
5819 * Because it is hard to predict how much space a write will actually
5820 * require beforehand, we leave ourselves some fudge space to write over
5821 * capacity.
5822 */
5823 uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
5824
5825 /*
5826 * Run tests that generate log records but don't alter the pool config
5827 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
5828 * We do a txg_wait_synced() after each iteration to force the txg
5829 * to increase well beyond the last synced value in the uberblock.
5830 * The ZIL should be OK with that.
5831 *
5832 * Run a random number of times less than zo_maxloops and ensure we do
5833 * not run out of space on the pool.
5834 */
5835 while (ztest_random(10) != 0 &&
5836 numloops++ < ztest_opts.zo_maxloops &&
5837 metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
5838 ztest_od_t od;
5839 ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
5840 VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
5841 ztest_io(zd, od.od_object,
5842 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5843 txg_wait_synced(spa_get_dsl(spa), 0);
5844 }
5845
5846 /*
5847 * Commit all of the changes we just generated.
5848 */
5849 zil_commit(zd->zd_zilog, 0);
5850 txg_wait_synced(spa_get_dsl(spa), 0);
5851
5852 /*
5853 * Close our dataset and close the pool.
5854 */
5855 ztest_dataset_close(0);
5856 spa_close(spa, FTAG);
5857 kernel_fini();
5858
5859 /*
5860 * Open and close the pool and dataset to induce log replay.
5861 */
5862 kernel_init(FREAD | FWRITE);
5863 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
5864 ASSERT(spa_freeze_txg(spa) == UINT64_MAX);
5865 VERIFY3U(0, ==, ztest_dataset_open(0));
5866 ztest_dataset_close(0);
5867
5868 spa->spa_debug = B_TRUE;
5869 ztest_spa = spa;
5870 txg_wait_synced(spa_get_dsl(spa), 0);
5871 ztest_reguid(NULL, 0);
5872
5873 spa_close(spa, FTAG);
5874 kernel_fini();
5875 }
5876
5877 void
print_time(hrtime_t t,char * timebuf)5878 print_time(hrtime_t t, char *timebuf)
5879 {
5880 hrtime_t s = t / NANOSEC;
5881 hrtime_t m = s / 60;
5882 hrtime_t h = m / 60;
5883 hrtime_t d = h / 24;
5884
5885 s -= m * 60;
5886 m -= h * 60;
5887 h -= d * 24;
5888
5889 timebuf[0] = '\0';
5890
5891 if (d)
5892 (void) sprintf(timebuf,
5893 "%llud%02lluh%02llum%02llus", d, h, m, s);
5894 else if (h)
5895 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
5896 else if (m)
5897 (void) sprintf(timebuf, "%llum%02llus", m, s);
5898 else
5899 (void) sprintf(timebuf, "%llus", s);
5900 }
5901
5902 static nvlist_t *
make_random_props()5903 make_random_props()
5904 {
5905 nvlist_t *props;
5906
5907 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
5908 if (ztest_random(2) == 0)
5909 return (props);
5910 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0);
5911
5912 return (props);
5913 }
5914
5915 /*
5916 * Create a storage pool with the given name and initial vdev size.
5917 * Then test spa_freeze() functionality.
5918 */
5919 static void
ztest_init(ztest_shared_t * zs)5920 ztest_init(ztest_shared_t *zs)
5921 {
5922 spa_t *spa;
5923 nvlist_t *nvroot, *props;
5924
5925 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0);
5926 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0);
5927
5928 kernel_init(FREAD | FWRITE);
5929
5930 /*
5931 * Create the storage pool.
5932 */
5933 (void) spa_destroy(ztest_opts.zo_pool);
5934 ztest_shared->zs_vdev_next_leaf = 0;
5935 zs->zs_splits = 0;
5936 zs->zs_mirrors = ztest_opts.zo_mirrors;
5937 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
5938 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
5939 props = make_random_props();
5940 for (int i = 0; i < SPA_FEATURES; i++) {
5941 char buf[1024];
5942 (void) snprintf(buf, sizeof (buf), "feature@%s",
5943 spa_feature_table[i].fi_uname);
5944 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0));
5945 }
5946 VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL));
5947 nvlist_free(nvroot);
5948 nvlist_free(props);
5949
5950 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
5951 zs->zs_metaslab_sz =
5952 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
5953
5954 spa_close(spa, FTAG);
5955
5956 kernel_fini();
5957
5958 ztest_run_zdb(ztest_opts.zo_pool);
5959
5960 ztest_freeze();
5961
5962 ztest_run_zdb(ztest_opts.zo_pool);
5963
5964 (void) rwlock_destroy(&ztest_name_lock);
5965 (void) _mutex_destroy(&ztest_vdev_lock);
5966 }
5967
5968 static void
setup_data_fd(void)5969 setup_data_fd(void)
5970 {
5971 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
5972
5973 ztest_fd_data = mkstemp(ztest_name_data);
5974 ASSERT3S(ztest_fd_data, >=, 0);
5975 (void) unlink(ztest_name_data);
5976 }
5977
5978
5979 static int
shared_data_size(ztest_shared_hdr_t * hdr)5980 shared_data_size(ztest_shared_hdr_t *hdr)
5981 {
5982 int size;
5983
5984 size = hdr->zh_hdr_size;
5985 size += hdr->zh_opts_size;
5986 size += hdr->zh_size;
5987 size += hdr->zh_stats_size * hdr->zh_stats_count;
5988 size += hdr->zh_ds_size * hdr->zh_ds_count;
5989
5990 return (size);
5991 }
5992
5993 static void
setup_hdr(void)5994 setup_hdr(void)
5995 {
5996 int size;
5997 ztest_shared_hdr_t *hdr;
5998
5999 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
6000 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
6001 ASSERT(hdr != MAP_FAILED);
6002
6003 VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
6004
6005 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
6006 hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
6007 hdr->zh_size = sizeof (ztest_shared_t);
6008 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
6009 hdr->zh_stats_count = ZTEST_FUNCS;
6010 hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
6011 hdr->zh_ds_count = ztest_opts.zo_datasets;
6012
6013 size = shared_data_size(hdr);
6014 VERIFY3U(0, ==, ftruncate(ztest_fd_data, size));
6015
6016 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
6017 }
6018
6019 static void
setup_data(void)6020 setup_data(void)
6021 {
6022 int size, offset;
6023 ztest_shared_hdr_t *hdr;
6024 uint8_t *buf;
6025
6026 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
6027 PROT_READ, MAP_SHARED, ztest_fd_data, 0);
6028 ASSERT(hdr != MAP_FAILED);
6029
6030 size = shared_data_size(hdr);
6031
6032 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
6033 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
6034 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
6035 ASSERT(hdr != MAP_FAILED);
6036 buf = (uint8_t *)hdr;
6037
6038 offset = hdr->zh_hdr_size;
6039 ztest_shared_opts = (void *)&buf[offset];
6040 offset += hdr->zh_opts_size;
6041 ztest_shared = (void *)&buf[offset];
6042 offset += hdr->zh_size;
6043 ztest_shared_callstate = (void *)&buf[offset];
6044 offset += hdr->zh_stats_size * hdr->zh_stats_count;
6045 ztest_shared_ds = (void *)&buf[offset];
6046 }
6047
6048 static boolean_t
exec_child(char * cmd,char * libpath,boolean_t ignorekill,int * statusp)6049 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
6050 {
6051 pid_t pid;
6052 int status;
6053 char *cmdbuf = NULL;
6054
6055 pid = fork();
6056
6057 if (cmd == NULL) {
6058 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6059 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
6060 cmd = cmdbuf;
6061 }
6062
6063 if (pid == -1)
6064 fatal(1, "fork failed");
6065
6066 if (pid == 0) { /* child */
6067 char *emptyargv[2] = { cmd, NULL };
6068 char fd_data_str[12];
6069
6070 struct rlimit rl = { 1024, 1024 };
6071 (void) setrlimit(RLIMIT_NOFILE, &rl);
6072
6073 (void) close(ztest_fd_rand);
6074 VERIFY3U(11, >=,
6075 snprintf(fd_data_str, 12, "%d", ztest_fd_data));
6076 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1));
6077
6078 (void) enable_extended_FILE_stdio(-1, -1);
6079 if (libpath != NULL)
6080 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1));
6081 (void) execv(cmd, emptyargv);
6082 ztest_dump_core = B_FALSE;
6083 fatal(B_TRUE, "exec failed: %s", cmd);
6084 }
6085
6086 if (cmdbuf != NULL) {
6087 umem_free(cmdbuf, MAXPATHLEN);
6088 cmd = NULL;
6089 }
6090
6091 while (waitpid(pid, &status, 0) != pid)
6092 continue;
6093 if (statusp != NULL)
6094 *statusp = status;
6095
6096 if (WIFEXITED(status)) {
6097 if (WEXITSTATUS(status) != 0) {
6098 (void) fprintf(stderr, "child exited with code %d\n",
6099 WEXITSTATUS(status));
6100 exit(2);
6101 }
6102 return (B_FALSE);
6103 } else if (WIFSIGNALED(status)) {
6104 if (!ignorekill || WTERMSIG(status) != SIGKILL) {
6105 (void) fprintf(stderr, "child died with signal %d\n",
6106 WTERMSIG(status));
6107 exit(3);
6108 }
6109 return (B_TRUE);
6110 } else {
6111 (void) fprintf(stderr, "something strange happened to child\n");
6112 exit(4);
6113 /* NOTREACHED */
6114 }
6115 }
6116
6117 static void
ztest_run_init(void)6118 ztest_run_init(void)
6119 {
6120 ztest_shared_t *zs = ztest_shared;
6121
6122 ASSERT(ztest_opts.zo_init != 0);
6123
6124 /*
6125 * Blow away any existing copy of zpool.cache
6126 */
6127 (void) remove(spa_config_path);
6128
6129 /*
6130 * Create and initialize our storage pool.
6131 */
6132 for (int i = 1; i <= ztest_opts.zo_init; i++) {
6133 bzero(zs, sizeof (ztest_shared_t));
6134 if (ztest_opts.zo_verbose >= 3 &&
6135 ztest_opts.zo_init != 1) {
6136 (void) printf("ztest_init(), pass %d\n", i);
6137 }
6138 ztest_init(zs);
6139 }
6140 }
6141
6142 int
main(int argc,char ** argv)6143 main(int argc, char **argv)
6144 {
6145 int kills = 0;
6146 int iters = 0;
6147 int older = 0;
6148 int newer = 0;
6149 ztest_shared_t *zs;
6150 ztest_info_t *zi;
6151 ztest_shared_callstate_t *zc;
6152 char timebuf[100];
6153 char numbuf[NN_NUMBUF_SZ];
6154 spa_t *spa;
6155 char *cmd;
6156 boolean_t hasalt;
6157 char *fd_data_str = getenv("ZTEST_FD_DATA");
6158
6159 (void) setvbuf(stdout, NULL, _IOLBF, 0);
6160
6161 dprintf_setup(&argc, argv);
6162 zfs_deadman_synctime_ms = 300000;
6163
6164 ztest_fd_rand = open("/dev/urandom", O_RDONLY);
6165 ASSERT3S(ztest_fd_rand, >=, 0);
6166
6167 if (!fd_data_str) {
6168 process_options(argc, argv);
6169
6170 setup_data_fd();
6171 setup_hdr();
6172 setup_data();
6173 bcopy(&ztest_opts, ztest_shared_opts,
6174 sizeof (*ztest_shared_opts));
6175 } else {
6176 ztest_fd_data = atoi(fd_data_str);
6177 setup_data();
6178 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts));
6179 }
6180 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
6181
6182 /* Override location of zpool.cache */
6183 VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache",
6184 ztest_opts.zo_dir), !=, -1);
6185
6186 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
6187 UMEM_NOFAIL);
6188 zs = ztest_shared;
6189
6190 if (fd_data_str) {
6191 metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang;
6192 metaslab_df_alloc_threshold =
6193 zs->zs_metaslab_df_alloc_threshold;
6194
6195 if (zs->zs_do_init)
6196 ztest_run_init();
6197 else
6198 ztest_run(zs);
6199 exit(0);
6200 }
6201
6202 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
6203
6204 if (ztest_opts.zo_verbose >= 1) {
6205 (void) printf("%llu vdevs, %d datasets, %d threads,"
6206 " %llu seconds...\n",
6207 (u_longlong_t)ztest_opts.zo_vdevs,
6208 ztest_opts.zo_datasets,
6209 ztest_opts.zo_threads,
6210 (u_longlong_t)ztest_opts.zo_time);
6211 }
6212
6213 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
6214 (void) strlcpy(cmd, getexecname(), MAXNAMELEN);
6215
6216 zs->zs_do_init = B_TRUE;
6217 if (strlen(ztest_opts.zo_alt_ztest) != 0) {
6218 if (ztest_opts.zo_verbose >= 1) {
6219 (void) printf("Executing older ztest for "
6220 "initialization: %s\n", ztest_opts.zo_alt_ztest);
6221 }
6222 VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
6223 ztest_opts.zo_alt_libpath, B_FALSE, NULL));
6224 } else {
6225 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
6226 }
6227 zs->zs_do_init = B_FALSE;
6228
6229 zs->zs_proc_start = gethrtime();
6230 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
6231
6232 for (int f = 0; f < ZTEST_FUNCS; f++) {
6233 zi = &ztest_info[f];
6234 zc = ZTEST_GET_SHARED_CALLSTATE(f);
6235 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
6236 zc->zc_next = UINT64_MAX;
6237 else
6238 zc->zc_next = zs->zs_proc_start +
6239 ztest_random(2 * zi->zi_interval[0] + 1);
6240 }
6241
6242 /*
6243 * Run the tests in a loop. These tests include fault injection
6244 * to verify that self-healing data works, and forced crashes
6245 * to verify that we never lose on-disk consistency.
6246 */
6247 while (gethrtime() < zs->zs_proc_stop) {
6248 int status;
6249 boolean_t killed;
6250
6251 /*
6252 * Initialize the workload counters for each function.
6253 */
6254 for (int f = 0; f < ZTEST_FUNCS; f++) {
6255 zc = ZTEST_GET_SHARED_CALLSTATE(f);
6256 zc->zc_count = 0;
6257 zc->zc_time = 0;
6258 }
6259
6260 /* Set the allocation switch size */
6261 zs->zs_metaslab_df_alloc_threshold =
6262 ztest_random(zs->zs_metaslab_sz / 4) + 1;
6263
6264 if (!hasalt || ztest_random(2) == 0) {
6265 if (hasalt && ztest_opts.zo_verbose >= 1) {
6266 (void) printf("Executing newer ztest: %s\n",
6267 cmd);
6268 }
6269 newer++;
6270 killed = exec_child(cmd, NULL, B_TRUE, &status);
6271 } else {
6272 if (hasalt && ztest_opts.zo_verbose >= 1) {
6273 (void) printf("Executing older ztest: %s\n",
6274 ztest_opts.zo_alt_ztest);
6275 }
6276 older++;
6277 killed = exec_child(ztest_opts.zo_alt_ztest,
6278 ztest_opts.zo_alt_libpath, B_TRUE, &status);
6279 }
6280
6281 if (killed)
6282 kills++;
6283 iters++;
6284
6285 if (ztest_opts.zo_verbose >= 1) {
6286 hrtime_t now = gethrtime();
6287
6288 now = MIN(now, zs->zs_proc_stop);
6289 print_time(zs->zs_proc_stop - now, timebuf);
6290 nicenum(zs->zs_space, numbuf, sizeof (numbuf));
6291
6292 (void) printf("Pass %3d, %8s, %3llu ENOSPC, "
6293 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
6294 iters,
6295 WIFEXITED(status) ? "Complete" : "SIGKILL",
6296 (u_longlong_t)zs->zs_enospc_count,
6297 100.0 * zs->zs_alloc / zs->zs_space,
6298 numbuf,
6299 100.0 * (now - zs->zs_proc_start) /
6300 (ztest_opts.zo_time * NANOSEC), timebuf);
6301 }
6302
6303 if (ztest_opts.zo_verbose >= 2) {
6304 (void) printf("\nWorkload summary:\n\n");
6305 (void) printf("%7s %9s %s\n",
6306 "Calls", "Time", "Function");
6307 (void) printf("%7s %9s %s\n",
6308 "-----", "----", "--------");
6309 for (int f = 0; f < ZTEST_FUNCS; f++) {
6310 Dl_info dli;
6311
6312 zi = &ztest_info[f];
6313 zc = ZTEST_GET_SHARED_CALLSTATE(f);
6314 print_time(zc->zc_time, timebuf);
6315 (void) dladdr((void *)zi->zi_func, &dli);
6316 (void) printf("%7llu %9s %s\n",
6317 (u_longlong_t)zc->zc_count, timebuf,
6318 dli.dli_sname);
6319 }
6320 (void) printf("\n");
6321 }
6322
6323 /*
6324 * It's possible that we killed a child during a rename test,
6325 * in which case we'll have a 'ztest_tmp' pool lying around
6326 * instead of 'ztest'. Do a blind rename in case this happened.
6327 */
6328 kernel_init(FREAD);
6329 if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) {
6330 spa_close(spa, FTAG);
6331 } else {
6332 char tmpname[ZFS_MAX_DATASET_NAME_LEN];
6333 kernel_fini();
6334 kernel_init(FREAD | FWRITE);
6335 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp",
6336 ztest_opts.zo_pool);
6337 (void) spa_rename(tmpname, ztest_opts.zo_pool);
6338 }
6339 kernel_fini();
6340
6341 ztest_run_zdb(ztest_opts.zo_pool);
6342 }
6343
6344 if (ztest_opts.zo_verbose >= 1) {
6345 if (hasalt) {
6346 (void) printf("%d runs of older ztest: %s\n", older,
6347 ztest_opts.zo_alt_ztest);
6348 (void) printf("%d runs of newer ztest: %s\n", newer,
6349 cmd);
6350 }
6351 (void) printf("%d killed, %d completed, %.0f%% kill rate\n",
6352 kills, iters - kills, (100.0 * kills) / MAX(1, iters));
6353 }
6354
6355 umem_free(cmd, MAXNAMELEN);
6356
6357 return (0);
6358 }
6359