xref: /titanic_50/usr/src/cmd/zpool/zpool_vdev.c (revision c7d6cfd6e2ae5d7536ef67f65110733890f370a4)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Functions to convert between a list of vdevs and an nvlist representing the
29  * configuration.  Each entry in the list can be one of:
30  *
31  * 	Device vdevs
32  * 		disk=(path=..., devid=...)
33  * 		file=(path=...)
34  *
35  * 	Group vdevs
36  * 		raidz[1|2]=(...)
37  * 		mirror=(...)
38  *
39  * 	Hot spares
40  *
41  * While the underlying implementation supports it, group vdevs cannot contain
42  * other group vdevs.  All userland verification of devices is contained within
43  * this file.  If successful, the nvlist returned can be passed directly to the
44  * kernel; we've done as much verification as possible in userland.
45  *
46  * Hot spares are a special case, and passed down as an array of disk vdevs, at
47  * the same level as the root of the vdev tree.
48  *
49  * The only function exported by this file is 'make_root_vdev'.  The
50  * function performs several passes:
51  *
52  * 	1. Construct the vdev specification.  Performs syntax validation and
53  *         makes sure each device is valid.
54  * 	2. Check for devices in use.  Using libdiskmgt, makes sure that no
55  *         devices are also in use.  Some can be overridden using the 'force'
56  *         flag, others cannot.
57  * 	3. Check for replication errors if the 'force' flag is not specified.
58  *         validates that the replication level is consistent across the
59  *         entire pool.
60  * 	4. Call libzfs to label any whole disks with an EFI label.
61  */
62 
63 #include <assert.h>
64 #include <devid.h>
65 #include <errno.h>
66 #include <fcntl.h>
67 #include <libdiskmgt.h>
68 #include <libintl.h>
69 #include <libnvpair.h>
70 #include <stdio.h>
71 #include <string.h>
72 #include <unistd.h>
73 #include <sys/efi_partition.h>
74 #include <sys/stat.h>
75 #include <sys/vtoc.h>
76 #include <sys/mntent.h>
77 
78 #include "zpool_util.h"
79 
80 #define	DISK_ROOT	"/dev/dsk"
81 #define	RDISK_ROOT	"/dev/rdsk"
82 #define	BACKUP_SLICE	"s2"
83 
84 /*
85  * For any given vdev specification, we can have multiple errors.  The
86  * vdev_error() function keeps track of whether we have seen an error yet, and
87  * prints out a header if its the first error we've seen.
88  */
89 boolean_t error_seen;
90 boolean_t is_force;
91 
92 /*PRINTFLIKE1*/
93 static void
94 vdev_error(const char *fmt, ...)
95 {
96 	va_list ap;
97 
98 	if (!error_seen) {
99 		(void) fprintf(stderr, gettext("invalid vdev specification\n"));
100 		if (!is_force)
101 			(void) fprintf(stderr, gettext("use '-f' to override "
102 			    "the following errors:\n"));
103 		else
104 			(void) fprintf(stderr, gettext("the following errors "
105 			    "must be manually repaired:\n"));
106 		error_seen = B_TRUE;
107 	}
108 
109 	va_start(ap, fmt);
110 	(void) vfprintf(stderr, fmt, ap);
111 	va_end(ap);
112 }
113 
114 static void
115 libdiskmgt_error(int error)
116 {
117 	/*
118 	 * ENXIO/ENODEV is a valid error message if the device doesn't live in
119 	 * /dev/dsk.  Don't bother printing an error message in this case.
120 	 */
121 	if (error == ENXIO || error == ENODEV)
122 		return;
123 
124 	(void) fprintf(stderr, gettext("warning: device in use checking "
125 	    "failed: %s\n"), strerror(error));
126 }
127 
128 /*
129  * Validate a device, passing the bulk of the work off to libdiskmgt.
130  */
131 static int
132 check_slice(const char *path, int force, boolean_t wholedisk, boolean_t isspare)
133 {
134 	char *msg;
135 	int error = 0;
136 	dm_who_type_t who;
137 
138 	if (force)
139 		who = DM_WHO_ZPOOL_FORCE;
140 	else if (isspare)
141 		who = DM_WHO_ZPOOL_SPARE;
142 	else
143 		who = DM_WHO_ZPOOL;
144 
145 	if (dm_inuse((char *)path, &msg, who, &error) || error) {
146 		if (error != 0) {
147 			libdiskmgt_error(error);
148 			return (0);
149 		} else {
150 			vdev_error("%s", msg);
151 			free(msg);
152 			return (-1);
153 		}
154 	}
155 
156 	/*
157 	 * If we're given a whole disk, ignore overlapping slices since we're
158 	 * about to label it anyway.
159 	 */
160 	error = 0;
161 	if (!wholedisk && !force &&
162 	    (dm_isoverlapping((char *)path, &msg, &error) || error)) {
163 		if (error == 0) {
164 			/* dm_isoverlapping returned -1 */
165 			vdev_error(gettext("%s overlaps with %s\n"), path, msg);
166 			free(msg);
167 			return (-1);
168 		} else if (error != ENODEV) {
169 			/* libdiskmgt's devcache only handles physical drives */
170 			libdiskmgt_error(error);
171 			return (0);
172 		}
173 	}
174 
175 	return (0);
176 }
177 
178 
179 /*
180  * Validate a whole disk.  Iterate over all slices on the disk and make sure
181  * that none is in use by calling check_slice().
182  */
183 static int
184 check_disk(const char *name, dm_descriptor_t disk, int force, int isspare)
185 {
186 	dm_descriptor_t *drive, *media, *slice;
187 	int err = 0;
188 	int i;
189 	int ret;
190 
191 	/*
192 	 * Get the drive associated with this disk.  This should never fail,
193 	 * because we already have an alias handle open for the device.
194 	 */
195 	if ((drive = dm_get_associated_descriptors(disk, DM_DRIVE,
196 	    &err)) == NULL || *drive == NULL) {
197 		if (err)
198 			libdiskmgt_error(err);
199 		return (0);
200 	}
201 
202 	if ((media = dm_get_associated_descriptors(*drive, DM_MEDIA,
203 	    &err)) == NULL) {
204 		dm_free_descriptors(drive);
205 		if (err)
206 			libdiskmgt_error(err);
207 		return (0);
208 	}
209 
210 	dm_free_descriptors(drive);
211 
212 	/*
213 	 * It is possible that the user has specified a removable media drive,
214 	 * and the media is not present.
215 	 */
216 	if (*media == NULL) {
217 		dm_free_descriptors(media);
218 		vdev_error(gettext("'%s' has no media in drive\n"), name);
219 		return (-1);
220 	}
221 
222 	if ((slice = dm_get_associated_descriptors(*media, DM_SLICE,
223 	    &err)) == NULL) {
224 		dm_free_descriptors(media);
225 		if (err)
226 			libdiskmgt_error(err);
227 		return (0);
228 	}
229 
230 	dm_free_descriptors(media);
231 
232 	ret = 0;
233 
234 	/*
235 	 * Iterate over all slices and report any errors.  We don't care about
236 	 * overlapping slices because we are using the whole disk.
237 	 */
238 	for (i = 0; slice[i] != NULL; i++) {
239 		char *name = dm_get_name(slice[i], &err);
240 
241 		if (check_slice(name, force, B_TRUE, isspare) != 0)
242 			ret = -1;
243 
244 		dm_free_name(name);
245 	}
246 
247 	dm_free_descriptors(slice);
248 	return (ret);
249 }
250 
251 /*
252  * Validate a device.
253  */
254 static int
255 check_device(const char *path, boolean_t force, boolean_t isspare)
256 {
257 	dm_descriptor_t desc;
258 	int err;
259 	char *dev;
260 
261 	/*
262 	 * For whole disks, libdiskmgt does not include the leading dev path.
263 	 */
264 	dev = strrchr(path, '/');
265 	assert(dev != NULL);
266 	dev++;
267 	if ((desc = dm_get_descriptor_by_name(DM_ALIAS, dev, &err)) != NULL) {
268 		err = check_disk(path, desc, force, isspare);
269 		dm_free_descriptor(desc);
270 		return (err);
271 	}
272 
273 	return (check_slice(path, force, B_FALSE, isspare));
274 }
275 
276 /*
277  * Check that a file is valid.  All we can do in this case is check that it's
278  * not in use by another pool, and not in use by swap.
279  */
280 static int
281 check_file(const char *file, boolean_t force, boolean_t isspare)
282 {
283 	char  *name;
284 	int fd;
285 	int ret = 0;
286 	int err;
287 	pool_state_t state;
288 	boolean_t inuse;
289 
290 	if (dm_inuse_swap(file, &err)) {
291 		if (err)
292 			libdiskmgt_error(err);
293 		else
294 			vdev_error(gettext("%s is currently used by swap. "
295 			    "Please see swap(1M).\n"), file);
296 		return (-1);
297 	}
298 
299 	if ((fd = open(file, O_RDONLY)) < 0)
300 		return (0);
301 
302 	if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) {
303 		const char *desc;
304 
305 		switch (state) {
306 		case POOL_STATE_ACTIVE:
307 			desc = gettext("active");
308 			break;
309 
310 		case POOL_STATE_EXPORTED:
311 			desc = gettext("exported");
312 			break;
313 
314 		case POOL_STATE_POTENTIALLY_ACTIVE:
315 			desc = gettext("potentially active");
316 			break;
317 
318 		default:
319 			desc = gettext("unknown");
320 			break;
321 		}
322 
323 		/*
324 		 * Allow hot spares to be shared between pools.
325 		 */
326 		if (state == POOL_STATE_SPARE && isspare)
327 			return (0);
328 
329 		if (state == POOL_STATE_ACTIVE ||
330 		    state == POOL_STATE_SPARE || !force) {
331 			switch (state) {
332 			case POOL_STATE_SPARE:
333 				vdev_error(gettext("%s is reserved as a hot "
334 				    "spare for pool %s\n"), file, name);
335 				break;
336 			default:
337 				vdev_error(gettext("%s is part of %s pool "
338 				    "'%s'\n"), file, desc, name);
339 				break;
340 			}
341 			ret = -1;
342 		}
343 
344 		free(name);
345 	}
346 
347 	(void) close(fd);
348 	return (ret);
349 }
350 
351 
352 /*
353  * By "whole disk" we mean an entire physical disk (something we can
354  * label, toggle the write cache on, etc.) as opposed to the full
355  * capacity of a pseudo-device such as lofi or did.  We act as if we
356  * are labeling the disk, which should be a pretty good test of whether
357  * it's a viable device or not.  Returns B_TRUE if it is and B_FALSE if
358  * it isn't.
359  */
360 static boolean_t
361 is_whole_disk(const char *arg)
362 {
363 	struct dk_gpt *label;
364 	int	fd;
365 	char	path[MAXPATHLEN];
366 
367 	(void) snprintf(path, sizeof (path), "%s%s%s",
368 	    RDISK_ROOT, strrchr(arg, '/'), BACKUP_SLICE);
369 	if ((fd = open(path, O_RDWR | O_NDELAY)) < 0)
370 		return (B_FALSE);
371 	if (efi_alloc_and_init(fd, EFI_NUMPAR, &label) != 0) {
372 		(void) close(fd);
373 		return (B_FALSE);
374 	}
375 	efi_free(label);
376 	(void) close(fd);
377 	return (B_TRUE);
378 }
379 
380 /*
381  * Create a leaf vdev.  Determine if this is a file or a device.  If it's a
382  * device, fill in the device id to make a complete nvlist.  Valid forms for a
383  * leaf vdev are:
384  *
385  * 	/dev/dsk/xxx	Complete disk path
386  * 	/xxx		Full path to file
387  * 	xxx		Shorthand for /dev/dsk/xxx
388  */
389 static nvlist_t *
390 make_leaf_vdev(const char *arg, uint64_t is_log)
391 {
392 	char path[MAXPATHLEN];
393 	struct stat64 statbuf;
394 	nvlist_t *vdev = NULL;
395 	char *type = NULL;
396 	boolean_t wholedisk = B_FALSE;
397 
398 	/*
399 	 * Determine what type of vdev this is, and put the full path into
400 	 * 'path'.  We detect whether this is a device of file afterwards by
401 	 * checking the st_mode of the file.
402 	 */
403 	if (arg[0] == '/') {
404 		/*
405 		 * Complete device or file path.  Exact type is determined by
406 		 * examining the file descriptor afterwards.
407 		 */
408 		wholedisk = is_whole_disk(arg);
409 		if (!wholedisk && (stat64(arg, &statbuf) != 0)) {
410 			(void) fprintf(stderr,
411 			    gettext("cannot open '%s': %s\n"),
412 			    arg, strerror(errno));
413 			return (NULL);
414 		}
415 
416 		(void) strlcpy(path, arg, sizeof (path));
417 	} else {
418 		/*
419 		 * This may be a short path for a device, or it could be total
420 		 * gibberish.  Check to see if it's a known device in
421 		 * /dev/dsk/.  As part of this check, see if we've been given a
422 		 * an entire disk (minus the slice number).
423 		 */
424 		(void) snprintf(path, sizeof (path), "%s/%s", DISK_ROOT,
425 		    arg);
426 		wholedisk = is_whole_disk(path);
427 		if (!wholedisk && (stat64(path, &statbuf) != 0)) {
428 			/*
429 			 * If we got ENOENT, then the user gave us
430 			 * gibberish, so try to direct them with a
431 			 * reasonable error message.  Otherwise,
432 			 * regurgitate strerror() since it's the best we
433 			 * can do.
434 			 */
435 			if (errno == ENOENT) {
436 				(void) fprintf(stderr,
437 				    gettext("cannot open '%s': no such "
438 				    "device in %s\n"), arg, DISK_ROOT);
439 				(void) fprintf(stderr,
440 				    gettext("must be a full path or "
441 				    "shorthand device name\n"));
442 				return (NULL);
443 			} else {
444 				(void) fprintf(stderr,
445 				    gettext("cannot open '%s': %s\n"),
446 				    path, strerror(errno));
447 				return (NULL);
448 			}
449 		}
450 	}
451 
452 	/*
453 	 * Determine whether this is a device or a file.
454 	 */
455 	if (wholedisk || S_ISBLK(statbuf.st_mode)) {
456 		type = VDEV_TYPE_DISK;
457 	} else if (S_ISREG(statbuf.st_mode)) {
458 		type = VDEV_TYPE_FILE;
459 	} else {
460 		(void) fprintf(stderr, gettext("cannot use '%s': must be a "
461 		    "block device or regular file\n"), path);
462 		return (NULL);
463 	}
464 
465 	/*
466 	 * Finally, we have the complete device or file, and we know that it is
467 	 * acceptable to use.  Construct the nvlist to describe this vdev.  All
468 	 * vdevs have a 'path' element, and devices also have a 'devid' element.
469 	 */
470 	verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
471 	verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
472 	verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
473 	verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_IS_LOG, is_log) == 0);
474 	if (strcmp(type, VDEV_TYPE_DISK) == 0)
475 		verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
476 		    (uint64_t)wholedisk) == 0);
477 
478 	/*
479 	 * For a whole disk, defer getting its devid until after labeling it.
480 	 */
481 	if (S_ISBLK(statbuf.st_mode) && !wholedisk) {
482 		/*
483 		 * Get the devid for the device.
484 		 */
485 		int fd;
486 		ddi_devid_t devid;
487 		char *minor = NULL, *devid_str = NULL;
488 
489 		if ((fd = open(path, O_RDONLY)) < 0) {
490 			(void) fprintf(stderr, gettext("cannot open '%s': "
491 			    "%s\n"), path, strerror(errno));
492 			nvlist_free(vdev);
493 			return (NULL);
494 		}
495 
496 		if (devid_get(fd, &devid) == 0) {
497 			if (devid_get_minor_name(fd, &minor) == 0 &&
498 			    (devid_str = devid_str_encode(devid, minor)) !=
499 			    NULL) {
500 				verify(nvlist_add_string(vdev,
501 				    ZPOOL_CONFIG_DEVID, devid_str) == 0);
502 			}
503 			if (devid_str != NULL)
504 				devid_str_free(devid_str);
505 			if (minor != NULL)
506 				devid_str_free(minor);
507 			devid_free(devid);
508 		}
509 
510 		(void) close(fd);
511 	}
512 
513 	return (vdev);
514 }
515 
516 /*
517  * Go through and verify the replication level of the pool is consistent.
518  * Performs the following checks:
519  *
520  * 	For the new spec, verifies that devices in mirrors and raidz are the
521  * 	same size.
522  *
523  * 	If the current configuration already has inconsistent replication
524  * 	levels, ignore any other potential problems in the new spec.
525  *
526  * 	Otherwise, make sure that the current spec (if there is one) and the new
527  * 	spec have consistent replication levels.
528  */
529 typedef struct replication_level {
530 	char *zprl_type;
531 	uint64_t zprl_children;
532 	uint64_t zprl_parity;
533 } replication_level_t;
534 
535 #define	ZPOOL_FUZZ	(16 * 1024 * 1024)
536 
537 /*
538  * Given a list of toplevel vdevs, return the current replication level.  If
539  * the config is inconsistent, then NULL is returned.  If 'fatal' is set, then
540  * an error message will be displayed for each self-inconsistent vdev.
541  */
542 static replication_level_t *
543 get_replication(nvlist_t *nvroot, boolean_t fatal)
544 {
545 	nvlist_t **top;
546 	uint_t t, toplevels;
547 	nvlist_t **child;
548 	uint_t c, children;
549 	nvlist_t *nv;
550 	char *type;
551 	replication_level_t lastrep, rep, *ret;
552 	boolean_t dontreport;
553 
554 	ret = safe_malloc(sizeof (replication_level_t));
555 
556 	verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
557 	    &top, &toplevels) == 0);
558 
559 	lastrep.zprl_type = NULL;
560 	for (t = 0; t < toplevels; t++) {
561 		uint64_t is_log = B_FALSE;
562 
563 		nv = top[t];
564 
565 		/*
566 		 * For separate logs we ignore the top level vdev replication
567 		 * constraints.
568 		 */
569 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log);
570 		if (is_log)
571 			continue;
572 
573 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE,
574 		    &type) == 0);
575 		if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
576 		    &child, &children) != 0) {
577 			/*
578 			 * This is a 'file' or 'disk' vdev.
579 			 */
580 			rep.zprl_type = type;
581 			rep.zprl_children = 1;
582 			rep.zprl_parity = 0;
583 		} else {
584 			uint64_t vdev_size;
585 
586 			/*
587 			 * This is a mirror or RAID-Z vdev.  Go through and make
588 			 * sure the contents are all the same (files vs. disks),
589 			 * keeping track of the number of elements in the
590 			 * process.
591 			 *
592 			 * We also check that the size of each vdev (if it can
593 			 * be determined) is the same.
594 			 */
595 			rep.zprl_type = type;
596 			rep.zprl_children = 0;
597 
598 			if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
599 				verify(nvlist_lookup_uint64(nv,
600 				    ZPOOL_CONFIG_NPARITY,
601 				    &rep.zprl_parity) == 0);
602 				assert(rep.zprl_parity != 0);
603 			} else {
604 				rep.zprl_parity = 0;
605 			}
606 
607 			/*
608 			 * The 'dontreport' variable indicates that we've
609 			 * already reported an error for this spec, so don't
610 			 * bother doing it again.
611 			 */
612 			type = NULL;
613 			dontreport = 0;
614 			vdev_size = -1ULL;
615 			for (c = 0; c < children; c++) {
616 				nvlist_t *cnv = child[c];
617 				char *path;
618 				struct stat64 statbuf;
619 				uint64_t size = -1ULL;
620 				char *childtype;
621 				int fd, err;
622 
623 				rep.zprl_children++;
624 
625 				verify(nvlist_lookup_string(cnv,
626 				    ZPOOL_CONFIG_TYPE, &childtype) == 0);
627 
628 				/*
629 				 * If this is a replacing or spare vdev, then
630 				 * get the real first child of the vdev.
631 				 */
632 				if (strcmp(childtype,
633 				    VDEV_TYPE_REPLACING) == 0 ||
634 				    strcmp(childtype, VDEV_TYPE_SPARE) == 0) {
635 					nvlist_t **rchild;
636 					uint_t rchildren;
637 
638 					verify(nvlist_lookup_nvlist_array(cnv,
639 					    ZPOOL_CONFIG_CHILDREN, &rchild,
640 					    &rchildren) == 0);
641 					assert(rchildren == 2);
642 					cnv = rchild[0];
643 
644 					verify(nvlist_lookup_string(cnv,
645 					    ZPOOL_CONFIG_TYPE,
646 					    &childtype) == 0);
647 				}
648 
649 				verify(nvlist_lookup_string(cnv,
650 				    ZPOOL_CONFIG_PATH, &path) == 0);
651 
652 				/*
653 				 * If we have a raidz/mirror that combines disks
654 				 * with files, report it as an error.
655 				 */
656 				if (!dontreport && type != NULL &&
657 				    strcmp(type, childtype) != 0) {
658 					if (ret != NULL)
659 						free(ret);
660 					ret = NULL;
661 					if (fatal)
662 						vdev_error(gettext(
663 						    "mismatched replication "
664 						    "level: %s contains both "
665 						    "files and devices\n"),
666 						    rep.zprl_type);
667 					else
668 						return (NULL);
669 					dontreport = B_TRUE;
670 				}
671 
672 				/*
673 				 * According to stat(2), the value of 'st_size'
674 				 * is undefined for block devices and character
675 				 * devices.  But there is no effective way to
676 				 * determine the real size in userland.
677 				 *
678 				 * Instead, we'll take advantage of an
679 				 * implementation detail of spec_size().  If the
680 				 * device is currently open, then we (should)
681 				 * return a valid size.
682 				 *
683 				 * If we still don't get a valid size (indicated
684 				 * by a size of 0 or MAXOFFSET_T), then ignore
685 				 * this device altogether.
686 				 */
687 				if ((fd = open(path, O_RDONLY)) >= 0) {
688 					err = fstat64(fd, &statbuf);
689 					(void) close(fd);
690 				} else {
691 					err = stat64(path, &statbuf);
692 				}
693 
694 				if (err != 0 ||
695 				    statbuf.st_size == 0 ||
696 				    statbuf.st_size == MAXOFFSET_T)
697 					continue;
698 
699 				size = statbuf.st_size;
700 
701 				/*
702 				 * Also make sure that devices and
703 				 * slices have a consistent size.  If
704 				 * they differ by a significant amount
705 				 * (~16MB) then report an error.
706 				 */
707 				if (!dontreport &&
708 				    (vdev_size != -1ULL &&
709 				    (labs(size - vdev_size) >
710 				    ZPOOL_FUZZ))) {
711 					if (ret != NULL)
712 						free(ret);
713 					ret = NULL;
714 					if (fatal)
715 						vdev_error(gettext(
716 						    "%s contains devices of "
717 						    "different sizes\n"),
718 						    rep.zprl_type);
719 					else
720 						return (NULL);
721 					dontreport = B_TRUE;
722 				}
723 
724 				type = childtype;
725 				vdev_size = size;
726 			}
727 		}
728 
729 		/*
730 		 * At this point, we have the replication of the last toplevel
731 		 * vdev in 'rep'.  Compare it to 'lastrep' to see if its
732 		 * different.
733 		 */
734 		if (lastrep.zprl_type != NULL) {
735 			if (strcmp(lastrep.zprl_type, rep.zprl_type) != 0) {
736 				if (ret != NULL)
737 					free(ret);
738 				ret = NULL;
739 				if (fatal)
740 					vdev_error(gettext(
741 					    "mismatched replication level: "
742 					    "both %s and %s vdevs are "
743 					    "present\n"),
744 					    lastrep.zprl_type, rep.zprl_type);
745 				else
746 					return (NULL);
747 			} else if (lastrep.zprl_parity != rep.zprl_parity) {
748 				if (ret)
749 					free(ret);
750 				ret = NULL;
751 				if (fatal)
752 					vdev_error(gettext(
753 					    "mismatched replication level: "
754 					    "both %llu and %llu device parity "
755 					    "%s vdevs are present\n"),
756 					    lastrep.zprl_parity,
757 					    rep.zprl_parity,
758 					    rep.zprl_type);
759 				else
760 					return (NULL);
761 			} else if (lastrep.zprl_children != rep.zprl_children) {
762 				if (ret)
763 					free(ret);
764 				ret = NULL;
765 				if (fatal)
766 					vdev_error(gettext(
767 					    "mismatched replication level: "
768 					    "both %llu-way and %llu-way %s "
769 					    "vdevs are present\n"),
770 					    lastrep.zprl_children,
771 					    rep.zprl_children,
772 					    rep.zprl_type);
773 				else
774 					return (NULL);
775 			}
776 		}
777 		lastrep = rep;
778 	}
779 
780 	if (ret != NULL)
781 		*ret = rep;
782 
783 	return (ret);
784 }
785 
786 /*
787  * Check the replication level of the vdev spec against the current pool.  Calls
788  * get_replication() to make sure the new spec is self-consistent.  If the pool
789  * has a consistent replication level, then we ignore any errors.  Otherwise,
790  * report any difference between the two.
791  */
792 static int
793 check_replication(nvlist_t *config, nvlist_t *newroot)
794 {
795 	nvlist_t **child;
796 	uint_t	children;
797 	replication_level_t *current = NULL, *new;
798 	int ret;
799 
800 	/*
801 	 * If we have a current pool configuration, check to see if it's
802 	 * self-consistent.  If not, simply return success.
803 	 */
804 	if (config != NULL) {
805 		nvlist_t *nvroot;
806 
807 		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
808 		    &nvroot) == 0);
809 		if ((current = get_replication(nvroot, B_FALSE)) == NULL)
810 			return (0);
811 	}
812 	/*
813 	 * for spares there may be no children, and therefore no
814 	 * replication level to check
815 	 */
816 	if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN,
817 	    &child, &children) != 0) || (children == 0)) {
818 		free(current);
819 		return (0);
820 	}
821 
822 	/*
823 	 * If all we have is logs then there's no replication level to check.
824 	 */
825 	if (num_logs(newroot) == children) {
826 		free(current);
827 		return (0);
828 	}
829 
830 	/*
831 	 * Get the replication level of the new vdev spec, reporting any
832 	 * inconsistencies found.
833 	 */
834 	if ((new = get_replication(newroot, B_TRUE)) == NULL) {
835 		free(current);
836 		return (-1);
837 	}
838 
839 	/*
840 	 * Check to see if the new vdev spec matches the replication level of
841 	 * the current pool.
842 	 */
843 	ret = 0;
844 	if (current != NULL) {
845 		if (strcmp(current->zprl_type, new->zprl_type) != 0) {
846 			vdev_error(gettext(
847 			    "mismatched replication level: pool uses %s "
848 			    "and new vdev is %s\n"),
849 			    current->zprl_type, new->zprl_type);
850 			ret = -1;
851 		} else if (current->zprl_parity != new->zprl_parity) {
852 			vdev_error(gettext(
853 			    "mismatched replication level: pool uses %llu "
854 			    "device parity and new vdev uses %llu\n"),
855 			    current->zprl_parity, new->zprl_parity);
856 			ret = -1;
857 		} else if (current->zprl_children != new->zprl_children) {
858 			vdev_error(gettext(
859 			    "mismatched replication level: pool uses %llu-way "
860 			    "%s and new vdev uses %llu-way %s\n"),
861 			    current->zprl_children, current->zprl_type,
862 			    new->zprl_children, new->zprl_type);
863 			ret = -1;
864 		}
865 	}
866 
867 	free(new);
868 	if (current != NULL)
869 		free(current);
870 
871 	return (ret);
872 }
873 
874 /*
875  * Go through and find any whole disks in the vdev specification, labelling them
876  * as appropriate.  When constructing the vdev spec, we were unable to open this
877  * device in order to provide a devid.  Now that we have labelled the disk and
878  * know that slice 0 is valid, we can construct the devid now.
879  *
880  * If the disk was already labeled with an EFI label, we will have gotten the
881  * devid already (because we were able to open the whole disk).  Otherwise, we
882  * need to get the devid after we label the disk.
883  */
884 static int
885 make_disks(zpool_handle_t *zhp, nvlist_t *nv)
886 {
887 	nvlist_t **child;
888 	uint_t c, children;
889 	char *type, *path, *diskname;
890 	char buf[MAXPATHLEN];
891 	uint64_t wholedisk;
892 	int fd;
893 	int ret;
894 	ddi_devid_t devid;
895 	char *minor = NULL, *devid_str = NULL;
896 
897 	verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
898 
899 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
900 	    &child, &children) != 0) {
901 
902 		if (strcmp(type, VDEV_TYPE_DISK) != 0)
903 			return (0);
904 
905 		/*
906 		 * We have a disk device.  Get the path to the device
907 		 * and see if it's a whole disk by appending the backup
908 		 * slice and stat()ing the device.
909 		 */
910 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0);
911 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
912 		    &wholedisk) != 0 || !wholedisk)
913 			return (0);
914 
915 		diskname = strrchr(path, '/');
916 		assert(diskname != NULL);
917 		diskname++;
918 		if (zpool_label_disk(g_zfs, zhp, diskname) == -1)
919 			return (-1);
920 
921 		/*
922 		 * Fill in the devid, now that we've labeled the disk.
923 		 */
924 		(void) snprintf(buf, sizeof (buf), "%ss0", path);
925 		if ((fd = open(buf, O_RDONLY)) < 0) {
926 			(void) fprintf(stderr,
927 			    gettext("cannot open '%s': %s\n"),
928 			    buf, strerror(errno));
929 			return (-1);
930 		}
931 
932 		if (devid_get(fd, &devid) == 0) {
933 			if (devid_get_minor_name(fd, &minor) == 0 &&
934 			    (devid_str = devid_str_encode(devid, minor)) !=
935 			    NULL) {
936 				verify(nvlist_add_string(nv,
937 				    ZPOOL_CONFIG_DEVID, devid_str) == 0);
938 			}
939 			if (devid_str != NULL)
940 				devid_str_free(devid_str);
941 			if (minor != NULL)
942 				devid_str_free(minor);
943 			devid_free(devid);
944 		}
945 
946 		/*
947 		 * Update the path to refer to the 's0' slice.  The presence of
948 		 * the 'whole_disk' field indicates to the CLI that we should
949 		 * chop off the slice number when displaying the device in
950 		 * future output.
951 		 */
952 		verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, buf) == 0);
953 
954 		(void) close(fd);
955 
956 		return (0);
957 	}
958 
959 	for (c = 0; c < children; c++)
960 		if ((ret = make_disks(zhp, child[c])) != 0)
961 			return (ret);
962 
963 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
964 	    &child, &children) == 0)
965 		for (c = 0; c < children; c++)
966 			if ((ret = make_disks(zhp, child[c])) != 0)
967 				return (ret);
968 
969 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
970 	    &child, &children) == 0)
971 		for (c = 0; c < children; c++)
972 			if ((ret = make_disks(zhp, child[c])) != 0)
973 				return (ret);
974 
975 	return (0);
976 }
977 
978 /*
979  * Determine if the given path is a hot spare within the given configuration.
980  */
981 static boolean_t
982 is_spare(nvlist_t *config, const char *path)
983 {
984 	int fd;
985 	pool_state_t state;
986 	char *name = NULL;
987 	nvlist_t *label;
988 	uint64_t guid, spareguid;
989 	nvlist_t *nvroot;
990 	nvlist_t **spares;
991 	uint_t i, nspares;
992 	boolean_t inuse;
993 
994 	if ((fd = open(path, O_RDONLY)) < 0)
995 		return (B_FALSE);
996 
997 	if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 ||
998 	    !inuse ||
999 	    state != POOL_STATE_SPARE ||
1000 	    zpool_read_label(fd, &label) != 0) {
1001 		free(name);
1002 		(void) close(fd);
1003 		return (B_FALSE);
1004 	}
1005 	free(name);
1006 
1007 	(void) close(fd);
1008 	verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0);
1009 	nvlist_free(label);
1010 
1011 	verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1012 	    &nvroot) == 0);
1013 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1014 	    &spares, &nspares) == 0) {
1015 		for (i = 0; i < nspares; i++) {
1016 			verify(nvlist_lookup_uint64(spares[i],
1017 			    ZPOOL_CONFIG_GUID, &spareguid) == 0);
1018 			if (spareguid == guid)
1019 				return (B_TRUE);
1020 		}
1021 	}
1022 
1023 	return (B_FALSE);
1024 }
1025 
1026 /*
1027  * Go through and find any devices that are in use.  We rely on libdiskmgt for
1028  * the majority of this task.
1029  */
1030 static int
1031 check_in_use(nvlist_t *config, nvlist_t *nv, int force, int isreplacing,
1032     int isspare)
1033 {
1034 	nvlist_t **child;
1035 	uint_t c, children;
1036 	char *type, *path;
1037 	int ret;
1038 	char buf[MAXPATHLEN];
1039 	uint64_t wholedisk;
1040 
1041 	verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
1042 
1043 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1044 	    &child, &children) != 0) {
1045 
1046 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0);
1047 
1048 		/*
1049 		 * As a generic check, we look to see if this is a replace of a
1050 		 * hot spare within the same pool.  If so, we allow it
1051 		 * regardless of what libdiskmgt or zpool_in_use() says.
1052 		 */
1053 		if (isreplacing) {
1054 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
1055 			    &wholedisk) == 0 && wholedisk)
1056 				(void) snprintf(buf, sizeof (buf), "%ss0",
1057 				    path);
1058 			else
1059 				(void) strlcpy(buf, path, sizeof (buf));
1060 			if (is_spare(config, buf))
1061 				return (0);
1062 		}
1063 
1064 		if (strcmp(type, VDEV_TYPE_DISK) == 0)
1065 			ret = check_device(path, force, isspare);
1066 
1067 		if (strcmp(type, VDEV_TYPE_FILE) == 0)
1068 			ret = check_file(path, force, isspare);
1069 
1070 		return (ret);
1071 	}
1072 
1073 	for (c = 0; c < children; c++)
1074 		if ((ret = check_in_use(config, child[c], force,
1075 		    isreplacing, B_FALSE)) != 0)
1076 			return (ret);
1077 
1078 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1079 	    &child, &children) == 0)
1080 		for (c = 0; c < children; c++)
1081 			if ((ret = check_in_use(config, child[c], force,
1082 			    isreplacing, B_TRUE)) != 0)
1083 				return (ret);
1084 
1085 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1086 	    &child, &children) == 0)
1087 		for (c = 0; c < children; c++)
1088 			if ((ret = check_in_use(config, child[c], force,
1089 			    isreplacing, B_FALSE)) != 0)
1090 				return (ret);
1091 
1092 	return (0);
1093 }
1094 
1095 static const char *
1096 is_grouping(const char *type, int *mindev)
1097 {
1098 	if (strcmp(type, "raidz") == 0 || strcmp(type, "raidz1") == 0) {
1099 		if (mindev != NULL)
1100 			*mindev = 2;
1101 		return (VDEV_TYPE_RAIDZ);
1102 	}
1103 
1104 	if (strcmp(type, "raidz2") == 0) {
1105 		if (mindev != NULL)
1106 			*mindev = 3;
1107 		return (VDEV_TYPE_RAIDZ);
1108 	}
1109 
1110 	if (strcmp(type, "mirror") == 0) {
1111 		if (mindev != NULL)
1112 			*mindev = 2;
1113 		return (VDEV_TYPE_MIRROR);
1114 	}
1115 
1116 	if (strcmp(type, "spare") == 0) {
1117 		if (mindev != NULL)
1118 			*mindev = 1;
1119 		return (VDEV_TYPE_SPARE);
1120 	}
1121 
1122 	if (strcmp(type, "log") == 0) {
1123 		if (mindev != NULL)
1124 			*mindev = 1;
1125 		return (VDEV_TYPE_LOG);
1126 	}
1127 
1128 	if (strcmp(type, "cache") == 0) {
1129 		if (mindev != NULL)
1130 			*mindev = 1;
1131 		return (VDEV_TYPE_L2CACHE);
1132 	}
1133 
1134 	return (NULL);
1135 }
1136 
1137 /*
1138  * Construct a syntactically valid vdev specification,
1139  * and ensure that all devices and files exist and can be opened.
1140  * Note: we don't bother freeing anything in the error paths
1141  * because the program is just going to exit anyway.
1142  */
1143 nvlist_t *
1144 construct_spec(int argc, char **argv)
1145 {
1146 	nvlist_t *nvroot, *nv, **top, **spares, **l2cache;
1147 	int t, toplevels, mindev, nspares, nlogs, nl2cache;
1148 	const char *type;
1149 	uint64_t is_log;
1150 	boolean_t seen_logs;
1151 
1152 	top = NULL;
1153 	toplevels = 0;
1154 	spares = NULL;
1155 	l2cache = NULL;
1156 	nspares = 0;
1157 	nlogs = 0;
1158 	nl2cache = 0;
1159 	is_log = B_FALSE;
1160 	seen_logs = B_FALSE;
1161 
1162 	while (argc > 0) {
1163 		nv = NULL;
1164 
1165 		/*
1166 		 * If it's a mirror or raidz, the subsequent arguments are
1167 		 * its leaves -- until we encounter the next mirror or raidz.
1168 		 */
1169 		if ((type = is_grouping(argv[0], &mindev)) != NULL) {
1170 			nvlist_t **child = NULL;
1171 			int c, children = 0;
1172 
1173 			if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1174 				if (spares != NULL) {
1175 					(void) fprintf(stderr,
1176 					    gettext("invalid vdev "
1177 					    "specification: 'spare' can be "
1178 					    "specified only once\n"));
1179 					return (NULL);
1180 				}
1181 				is_log = B_FALSE;
1182 			}
1183 
1184 			if (strcmp(type, VDEV_TYPE_LOG) == 0) {
1185 				if (seen_logs) {
1186 					(void) fprintf(stderr,
1187 					    gettext("invalid vdev "
1188 					    "specification: 'log' can be "
1189 					    "specified only once\n"));
1190 					return (NULL);
1191 				}
1192 				seen_logs = B_TRUE;
1193 				is_log = B_TRUE;
1194 				argc--;
1195 				argv++;
1196 				/*
1197 				 * A log is not a real grouping device.
1198 				 * We just set is_log and continue.
1199 				 */
1200 				continue;
1201 			}
1202 
1203 			if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1204 				if (l2cache != NULL) {
1205 					(void) fprintf(stderr,
1206 					    gettext("invalid vdev "
1207 					    "specification: 'cache' can be "
1208 					    "specified only once\n"));
1209 					return (NULL);
1210 				}
1211 				is_log = B_FALSE;
1212 			}
1213 
1214 			if (is_log) {
1215 				if (strcmp(type, VDEV_TYPE_MIRROR) != 0) {
1216 					(void) fprintf(stderr,
1217 					    gettext("invalid vdev "
1218 					    "specification: unsupported 'log' "
1219 					    "device: %s\n"), type);
1220 					return (NULL);
1221 				}
1222 				nlogs++;
1223 			}
1224 
1225 			for (c = 1; c < argc; c++) {
1226 				if (is_grouping(argv[c], NULL) != NULL)
1227 					break;
1228 				children++;
1229 				child = realloc(child,
1230 				    children * sizeof (nvlist_t *));
1231 				if (child == NULL)
1232 					zpool_no_memory();
1233 				if ((nv = make_leaf_vdev(argv[c], B_FALSE))
1234 				    == NULL)
1235 					return (NULL);
1236 				child[children - 1] = nv;
1237 			}
1238 
1239 			if (children < mindev) {
1240 				(void) fprintf(stderr, gettext("invalid vdev "
1241 				    "specification: %s requires at least %d "
1242 				    "devices\n"), argv[0], mindev);
1243 				return (NULL);
1244 			}
1245 
1246 			argc -= c;
1247 			argv += c;
1248 
1249 			if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1250 				spares = child;
1251 				nspares = children;
1252 				continue;
1253 			} else if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1254 				l2cache = child;
1255 				nl2cache = children;
1256 				continue;
1257 			} else {
1258 				verify(nvlist_alloc(&nv, NV_UNIQUE_NAME,
1259 				    0) == 0);
1260 				verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
1261 				    type) == 0);
1262 				verify(nvlist_add_uint64(nv,
1263 				    ZPOOL_CONFIG_IS_LOG, is_log) == 0);
1264 				if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
1265 					verify(nvlist_add_uint64(nv,
1266 					    ZPOOL_CONFIG_NPARITY,
1267 					    mindev - 1) == 0);
1268 				}
1269 				verify(nvlist_add_nvlist_array(nv,
1270 				    ZPOOL_CONFIG_CHILDREN, child,
1271 				    children) == 0);
1272 
1273 				for (c = 0; c < children; c++)
1274 					nvlist_free(child[c]);
1275 				free(child);
1276 			}
1277 		} else {
1278 			/*
1279 			 * We have a device.  Pass off to make_leaf_vdev() to
1280 			 * construct the appropriate nvlist describing the vdev.
1281 			 */
1282 			if ((nv = make_leaf_vdev(argv[0], is_log)) == NULL)
1283 				return (NULL);
1284 			if (is_log)
1285 				nlogs++;
1286 			argc--;
1287 			argv++;
1288 		}
1289 
1290 		toplevels++;
1291 		top = realloc(top, toplevels * sizeof (nvlist_t *));
1292 		if (top == NULL)
1293 			zpool_no_memory();
1294 		top[toplevels - 1] = nv;
1295 	}
1296 
1297 	if (toplevels == 0 && nspares == 0 && nl2cache == 0) {
1298 		(void) fprintf(stderr, gettext("invalid vdev "
1299 		    "specification: at least one toplevel vdev must be "
1300 		    "specified\n"));
1301 		return (NULL);
1302 	}
1303 
1304 	if (seen_logs && nlogs == 0) {
1305 		(void) fprintf(stderr, gettext("invalid vdev specification: "
1306 		    "log requires at least 1 device\n"));
1307 		return (NULL);
1308 	}
1309 
1310 	/*
1311 	 * Finally, create nvroot and add all top-level vdevs to it.
1312 	 */
1313 	verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0);
1314 	verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
1315 	    VDEV_TYPE_ROOT) == 0);
1316 	verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1317 	    top, toplevels) == 0);
1318 	if (nspares != 0)
1319 		verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1320 		    spares, nspares) == 0);
1321 	if (nl2cache != 0)
1322 		verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
1323 		    l2cache, nl2cache) == 0);
1324 
1325 	for (t = 0; t < toplevels; t++)
1326 		nvlist_free(top[t]);
1327 	for (t = 0; t < nspares; t++)
1328 		nvlist_free(spares[t]);
1329 	for (t = 0; t < nl2cache; t++)
1330 		nvlist_free(l2cache[t]);
1331 	if (spares)
1332 		free(spares);
1333 	if (l2cache)
1334 		free(l2cache);
1335 	free(top);
1336 
1337 	return (nvroot);
1338 }
1339 
1340 
1341 /*
1342  * Get and validate the contents of the given vdev specification.  This ensures
1343  * that the nvlist returned is well-formed, that all the devices exist, and that
1344  * they are not currently in use by any other known consumer.  The 'poolconfig'
1345  * parameter is the current configuration of the pool when adding devices
1346  * existing pool, and is used to perform additional checks, such as changing the
1347  * replication level of the pool.  It can be 'NULL' to indicate that this is a
1348  * new pool.  The 'force' flag controls whether devices should be forcefully
1349  * added, even if they appear in use.
1350  */
1351 nvlist_t *
1352 make_root_vdev(zpool_handle_t *zhp, int force, int check_rep,
1353     boolean_t isreplacing, boolean_t dryrun, int argc, char **argv)
1354 {
1355 	nvlist_t *newroot;
1356 	nvlist_t *poolconfig = NULL;
1357 	is_force = force;
1358 
1359 	/*
1360 	 * Construct the vdev specification.  If this is successful, we know
1361 	 * that we have a valid specification, and that all devices can be
1362 	 * opened.
1363 	 */
1364 	if ((newroot = construct_spec(argc, argv)) == NULL)
1365 		return (NULL);
1366 
1367 	if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL))
1368 		return (NULL);
1369 
1370 	/*
1371 	 * Validate each device to make sure that its not shared with another
1372 	 * subsystem.  We do this even if 'force' is set, because there are some
1373 	 * uses (such as a dedicated dump device) that even '-f' cannot
1374 	 * override.
1375 	 */
1376 	if (check_in_use(poolconfig, newroot, force, isreplacing,
1377 	    B_FALSE) != 0) {
1378 		nvlist_free(newroot);
1379 		return (NULL);
1380 	}
1381 
1382 	/*
1383 	 * Check the replication level of the given vdevs and report any errors
1384 	 * found.  We include the existing pool spec, if any, as we need to
1385 	 * catch changes against the existing replication level.
1386 	 */
1387 	if (check_rep && check_replication(poolconfig, newroot) != 0) {
1388 		nvlist_free(newroot);
1389 		return (NULL);
1390 	}
1391 
1392 	/*
1393 	 * Run through the vdev specification and label any whole disks found.
1394 	 */
1395 	if (!dryrun && make_disks(zhp, newroot) != 0) {
1396 		nvlist_free(newroot);
1397 		return (NULL);
1398 	}
1399 
1400 	return (newroot);
1401 }
1402