xref: /titanic_50/usr/src/cmd/zpool/zpool_vdev.c (revision b58c9703c68c2d59709d0d83191ecab329860b31)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * Functions to convert between a list of vdevs and an nvlist representing the
31  * configuration.  Each entry in the list can be one of:
32  *
33  * 	Device vdevs
34  * 		disk=(path=..., devid=...)
35  * 		file=(path=...)
36  *
37  * 	Group vdevs
38  * 		raidz=(...)
39  * 		mirror=(...)
40  *
41  * While the underlying implementation supports it, group vdevs cannot contain
42  * other group vdevs.  All userland verification of devices is contained within
43  * this file.  If successful, the nvlist returned can be passed directly to the
44  * kernel; we've done as much verification as possible in userland.
45  *
46  * The only function exported by this file is 'get_vdev_spec'.  The function
47  * performs several passes:
48  *
49  * 	1. Construct the vdev specification.  Performs syntax validation and
50  *         makes sure each device is valid.
51  * 	2. Check for devices in use.  Using libdiskmgt, makes sure that no
52  *         devices are also in use.  Some can be overridden using the 'force'
53  *         flag, others cannot.
54  * 	3. Check for replication errors if the 'force' flag is not specified.
55  *         validates that the replication level is consistent across the
56  *         entire pool.
57  * 	4. Label any whole disks with an EFI label.
58  */
59 
60 #include <assert.h>
61 #include <devid.h>
62 #include <errno.h>
63 #include <fcntl.h>
64 #include <libdiskmgt.h>
65 #include <libintl.h>
66 #include <libnvpair.h>
67 #include <stdio.h>
68 #include <string.h>
69 #include <unistd.h>
70 #include <sys/efi_partition.h>
71 #include <sys/stat.h>
72 #include <sys/vtoc.h>
73 #include <sys/mntent.h>
74 
75 #include <libzfs.h>
76 
77 #include "zpool_util.h"
78 
79 #define	DISK_ROOT	"/dev/dsk"
80 #define	RDISK_ROOT	"/dev/rdsk"
81 #define	BACKUP_SLICE	"s2"
82 
83 /*
84  * For any given vdev specification, we can have multiple errors.  The
85  * vdev_error() function keeps track of whether we have seen an error yet, and
86  * prints out a header if its the first error we've seen.
87  */
88 int error_seen;
89 int is_force;
90 
91 void
92 vdev_error(const char *fmt, ...)
93 {
94 	va_list ap;
95 
96 	if (!error_seen) {
97 		(void) fprintf(stderr, gettext("invalid vdev specification\n"));
98 		if (!is_force)
99 			(void) fprintf(stderr, gettext("use '-f' to override "
100 			    "the following errors:\n"));
101 		else
102 			(void) fprintf(stderr, gettext("the following errors "
103 			    "must be manually repaired:\n"));
104 		error_seen = TRUE;
105 	}
106 
107 	va_start(ap, fmt);
108 	(void) vfprintf(stderr, fmt, ap);
109 	va_end(ap);
110 }
111 
112 void
113 _libdskmgt_error(int err, const char *file, int line)
114 {
115 	if (err == 0)
116 		no_memory();
117 
118 	/*
119 	 * Some of the libdiskmgt stuff requires root privileges in order to
120 	 * examine devices.  Bail out gracefully in this case.
121 	 */
122 	if (err == EACCES) {
123 		(void) fprintf(stderr, gettext("cannot determine disk "
124 		    "configuration: permission denied\n"));
125 		exit(1);
126 	}
127 
128 	(void) fprintf(stderr, gettext("internal error: disk configuration "
129 	    "error %d at line %d of file %s\n"), err, line, file);
130 	abort();
131 }
132 
133 #define	libdskmgt_error(err)	(_libdskmgt_error((err), __FILE__, __LINE__))
134 
135 /*
136  * Checks whether a single slice overlaps with any of the slices in the provided
137  * list.  Called by check_overlapping().
138  */
139 int
140 is_overlapping(dm_descriptor_t slice, dm_descriptor_t media,
141 	dm_descriptor_t *slice_list, int *error, char **overlaps_with)
142 {
143 	int 		i = 0;
144 	uint32_t	in_snum;
145 	uint64_t 	start_block = 0;
146 	uint64_t 	end_block = 0;
147 	uint64_t 	media_size = 0;
148 	uint64_t 	size = 0;
149 	nvlist_t 	*media_attrs;
150 	nvlist_t 	*slice_attrs;
151 
152 	media_attrs = dm_get_attributes(media, error);
153 	if (*error != 0) {
154 		return (-1);
155 	}
156 
157 	if (media_attrs == NULL) {
158 		return (0);
159 	}
160 
161 	*error = nvlist_lookup_uint64(media_attrs, DM_NACCESSIBLE, &media_size);
162 	if (*error != 0) {
163 		nvlist_free(media_attrs);
164 		return (-1);
165 	}
166 
167 	slice_attrs = dm_get_attributes(slice, error);
168 	if (*error != 0) {
169 		nvlist_free(media_attrs);
170 		return (-1);
171 	}
172 	/*
173 	 * Not really possible, but the error above would catch any system
174 	 * errors.
175 	 */
176 	if (slice_attrs == NULL) {
177 		nvlist_free(media_attrs);
178 		return (0);
179 	}
180 
181 	*error = nvlist_lookup_uint64(slice_attrs, DM_START, &start_block);
182 	if (*error != 0) {
183 		nvlist_free(media_attrs);
184 		nvlist_free(slice_attrs);
185 		return (-1);
186 	}
187 
188 	*error = nvlist_lookup_uint64(slice_attrs, DM_SIZE, &size);
189 	if (*error != 0) {
190 		nvlist_free(media_attrs);
191 		nvlist_free(slice_attrs);
192 		return (-1);
193 	}
194 	*error = nvlist_lookup_uint32(slice_attrs, DM_INDEX, &in_snum);
195 	if (*error != 0) {
196 		nvlist_free(media_attrs);
197 		nvlist_free(slice_attrs);
198 		return (-1);
199 	}
200 
201 	end_block = (start_block + size) - 1;
202 
203 	for (i = 0; slice_list[i]; i ++) {
204 		uint64_t other_start;
205 		uint64_t other_end;
206 		uint64_t other_size;
207 		uint32_t snum;
208 
209 		nvlist_t *other_attrs = dm_get_attributes(slice_list[i], error);
210 		if (*error != 0) {
211 			return (-1);
212 		}
213 
214 		if (other_attrs == NULL)
215 			continue;
216 
217 		*error = nvlist_lookup_uint64(other_attrs, DM_START,
218 			&other_start);
219 		if (*error) {
220 		    nvlist_free(media_attrs);
221 		    nvlist_free(slice_attrs);
222 		    nvlist_free(other_attrs);
223 		    return (-1);
224 		}
225 
226 		*error = nvlist_lookup_uint64(other_attrs, DM_SIZE,
227 			&other_size);
228 
229 		if (*error) {
230 		    nvlist_free(media_attrs);
231 		    nvlist_free(slice_attrs);
232 		    nvlist_free(other_attrs);
233 		    return (-1);
234 		}
235 
236 		other_end = (other_size + other_start) - 1;
237 
238 		*error = nvlist_lookup_uint32(other_attrs, DM_INDEX,
239 			&snum);
240 
241 		if (*error) {
242 		    nvlist_free(media_attrs);
243 		    nvlist_free(slice_attrs);
244 		    nvlist_free(other_attrs);
245 		    return (-1);
246 		}
247 
248 		/*
249 		 * Check to see if there are > 2 overlapping regions
250 		 * on this media in the same region as this slice.
251 		 * This is done by assuming the following:
252 		 *   	Slice 2 is the backup slice if it is the size
253 		 *	of the whole disk
254 		 * If slice 2 is the overlap and slice 2 is the size of
255 		 * the whole disk, continue. If another slice is found
256 		 * that overlaps with our slice, return it.
257 		 * There is the potential that there is more than one slice
258 		 * that our slice overlaps with, however, we only return
259 		 * the first overlapping slice we find.
260 		 *
261 		 */
262 
263 		if (start_block >= other_start && start_block <= other_end) {
264 			if ((snum == 2 && (other_size == media_size)) ||
265 				snum == in_snum) {
266 				continue;
267 			} else {
268 				char *str = dm_get_name(slice_list[i], error);
269 				if (*error != 0) {
270 					nvlist_free(media_attrs);
271 					nvlist_free(slice_attrs);
272 					nvlist_free(other_attrs);
273 					return (-1);
274 				}
275 				*overlaps_with = strdup(str);
276 				dm_free_name(str);
277 				nvlist_free(media_attrs);
278 				nvlist_free(slice_attrs);
279 				nvlist_free(other_attrs);
280 				return (1);
281 			}
282 		} else if (other_start >= start_block &&
283 			other_start <= end_block) {
284 			if ((snum == 2 && (other_size == media_size)) ||
285 				snum == in_snum) {
286 				continue;
287 			} else {
288 				char *str = dm_get_name(slice_list[i], error);
289 				if (*error != 0) {
290 					nvlist_free(media_attrs);
291 					nvlist_free(slice_attrs);
292 					nvlist_free(other_attrs);
293 					return (-1);
294 				}
295 				*overlaps_with = strdup(str);
296 				dm_free_name(str);
297 				nvlist_free(media_attrs);
298 				nvlist_free(slice_attrs);
299 				nvlist_free(other_attrs);
300 				return (1);
301 			}
302 		}
303 		nvlist_free(other_attrs);
304 	}
305 	nvlist_free(media_attrs);
306 	nvlist_free(slice_attrs);
307 	return (0);
308 }
309 
310 /*
311  * Check to see whether the given slice overlaps with any other slices.  Get the
312  * associated slice information and pass on to is_overlapping().
313  */
314 int
315 check_overlapping(const char *slicename, dm_descriptor_t slice)
316 {
317 	dm_descriptor_t *media;
318 	dm_descriptor_t *slices;
319 	int error;
320 	char *overlaps;
321 	int ret = 0;
322 
323 	/*
324 	 * Get the list of slices be fetching the associated media, and then all
325 	 * associated slices.
326 	 */
327 	media = dm_get_associated_descriptors(slice, DM_MEDIA, &error);
328 	if (media == NULL || *media == NULL || error != 0)
329 		libdskmgt_error(error);
330 
331 	slices = dm_get_associated_descriptors(*media, DM_SLICE, &error);
332 	if (slices == NULL || *slices == NULL || error != 0)
333 		libdskmgt_error(error);
334 
335 
336 	overlaps = NULL;
337 	if (is_overlapping(slice, *media, slices, &error, &overlaps)) {
338 		vdev_error(gettext("device '%s' overlaps with '%s'\n"),
339 		    slicename, overlaps);
340 		ret = -1;
341 	}
342 
343 	if (overlaps != NULL)
344 		free(overlaps);
345 	dm_free_descriptors(slices);
346 	dm_free_descriptors(media);
347 
348 	return (ret);
349 }
350 
351 /*
352  * Validate the given slice.  If 'diskname' is non-NULL, then this is a single
353  * slice on a complete disk.  If 'force' is set, then the user specified '-f'
354  * and we only want to report error for completely forbidden uses.
355  */
356 int
357 check_slice(const char *slicename, dm_descriptor_t slice, int force,
358     int overlap)
359 {
360 	nvlist_t *stats;
361 	int err;
362 	nvpair_t *nvwhat, *nvdesc;
363 	char *what, *desc, *name;
364 	int found = FALSE;
365 	int found_zfs = FALSE;
366 	int fd;
367 
368 	if ((stats = dm_get_stats(slice, DM_SLICE_STAT_USE, &err)) == NULL)
369 		libdskmgt_error(err);
370 
371 	/*
372 	 * Always check to see if this is used by an active ZFS pool.
373 	 */
374 	if ((fd = open(slicename, O_RDONLY)) > 0) {
375 		if (zpool_in_use(fd, &desc, &name)) {
376 
377 			if (!force) {
378 				vdev_error(gettext("%s is part of %s pool "
379 				    "'%s'\n"), slicename, desc, name);
380 				found = found_zfs = TRUE;
381 			}
382 
383 			free(desc);
384 			free(name);
385 		}
386 
387 		(void) close(fd);
388 	}
389 
390 	/*
391 	 * This slice is in use.  Print out a descriptive message describing who
392 	 * is using it.  The 'used_by' nvlist is formatted as:
393 	 *
394 	 * 	(used_by=what, used_name=desc, ...)
395 	 *
396 	 * Each 'used_by' must be accompanied by a 'used_name'.
397 	 */
398 	nvdesc = NULL;
399 	for (;;) {
400 		nvwhat = nvlist_next_nvpair(stats, nvdesc);
401 		nvdesc = nvlist_next_nvpair(stats, nvwhat);
402 
403 		if (nvwhat == NULL || nvdesc == NULL)
404 			break;
405 
406 		assert(strcmp(nvpair_name(nvwhat), DM_USED_BY) == 0);
407 		assert(strcmp(nvpair_name(nvdesc), DM_USED_NAME) == 0);
408 
409 		verify(nvpair_value_string(nvwhat, &what) == 0);
410 		verify(nvpair_value_string(nvdesc, &desc) == 0);
411 
412 		/*
413 		 * For currently mounted filesystems, filesystems in
414 		 * /etc/vfstab, or dedicated dump devices, we can never use
415 		 * them, even if '-f' is specified.  The rest of the errors
416 		 * indicate that a filesystem was detected on disk, which can be
417 		 * overridden with '-f'.
418 		 */
419 		if (strcmp(what, DM_USE_MOUNT) == 0 ||
420 		    strcmp(what, DM_USE_VFSTAB) == 0 ||
421 		    strcmp(what, DM_USE_DUMP) == 0) {
422 			found = TRUE;
423 			if (strcmp(what, DM_USE_MOUNT) == 0) {
424 				vdev_error(gettext("%s is "
425 				    "currently mounted on %s\n"),
426 				    slicename, desc);
427 			} else if (strcmp(what, DM_USE_VFSTAB) == 0) {
428 				vdev_error(gettext("%s is usually "
429 				    "mounted at %s in /etc/vfstab\n"),
430 				    slicename, desc);
431 			} else if (strcmp(what, DM_USE_DUMP) == 0) {
432 				vdev_error(gettext("%s is the "
433 				    "dedicated dump device\n"), slicename);
434 			}
435 		} else if (!force) {
436 			found = TRUE;
437 			if (strcmp(what, DM_USE_SVM) == 0) {
438 				vdev_error(gettext("%s is part of "
439 				    "SVM volume %s\n"), slicename, desc);
440 			} else if (strcmp(what, DM_USE_LU) == 0) {
441 				vdev_error(gettext("%s is in use "
442 				    "for live upgrade %s\n"), slicename, desc);
443 			} else if (strcmp(what, DM_USE_VXVM) == 0) {
444 				vdev_error(gettext("%s is part of "
445 				    "VxVM volume %s\n"), slicename, desc);
446 			} else if (strcmp(what, DM_USE_FS) == 0) {
447 				/*
448 				 * We should have already caught ZFS in-use
449 				 * filesystems above.  If the ZFS version is
450 				 * different, or there was some other critical
451 				 * failure, it's possible for fstyp to report it
452 				 * as in-use, but zpool_open_by_dev() to fail.
453 				 */
454 				if (strcmp(desc, MNTTYPE_ZFS) != 0)
455 					vdev_error(gettext("%s contains a %s "
456 					    "filesystem\n"), slicename, desc);
457 				else if (!found_zfs)
458 					vdev_error(gettext("%s is part of an "
459 					    "outdated or damaged ZFS "
460 					    "pool\n"), slicename);
461 			} else {
462 				vdev_error(gettext("is used by %s as %s\n"),
463 				    slicename, what, desc);
464 			}
465 		} else {
466 			found = FALSE;
467 		}
468 	}
469 
470 	/*
471 	 * Perform any overlap checking if requested to do so.
472 	 */
473 	if (overlap && !force)
474 		found |= (check_overlapping(slicename, slice) != 0);
475 
476 	return (found ? -1 : 0);
477 }
478 
479 /*
480  * Validate a whole disk.  Iterate over all slices on the disk and make sure
481  * that none is in use by calling check_slice().
482  */
483 /* ARGSUSED */
484 int
485 check_disk(const char *name, dm_descriptor_t disk, int force)
486 {
487 	dm_descriptor_t *drive, *media, *slice;
488 	int err = 0;
489 	int i;
490 	int ret;
491 
492 	/*
493 	 * Get the drive associated with this disk.  This should never fail,
494 	 * because we already have an alias handle open for the device.
495 	 */
496 	if ((drive = dm_get_associated_descriptors(disk, DM_DRIVE,
497 	    &err)) == NULL || *drive == NULL)
498 		libdskmgt_error(err);
499 
500 	if ((media = dm_get_associated_descriptors(*drive, DM_MEDIA,
501 	    &err)) == NULL)
502 		libdskmgt_error(err);
503 
504 	dm_free_descriptors(drive);
505 
506 	/*
507 	 * It is possible that the user has specified a removable media drive,
508 	 * and the media is not present.
509 	 */
510 	if (*media == NULL) {
511 		vdev_error(gettext("'%s' has no media in drive\n"), name);
512 		dm_free_descriptors(media);
513 		return (-1);
514 	}
515 
516 	if ((slice = dm_get_associated_descriptors(*media, DM_SLICE,
517 	    &err)) == NULL)
518 		libdskmgt_error(err);
519 
520 	dm_free_descriptors(media);
521 
522 	ret = 0;
523 
524 	/*
525 	 * Iterate over all slices and report any errors.  We don't care about
526 	 * overlapping slices because we are using the whole disk.
527 	 */
528 	for (i = 0; slice[i] != NULL; i++) {
529 		if (check_slice(dm_get_name(slice[i], &err), slice[i],
530 		    force, FALSE) != 0)
531 			ret = -1;
532 	}
533 
534 	dm_free_descriptors(slice);
535 	return (ret);
536 }
537 
538 
539 /*
540  * Validate a device.  Determines whether the device is a disk, slice, or
541  * partition, and passes it off to an appropriate function.
542  */
543 int
544 check_device(const char *path, int force)
545 {
546 	dm_descriptor_t desc;
547 	int err;
548 	char *dev, rpath[MAXPATHLEN];
549 
550 	/*
551 	 * For whole disks, libdiskmgt does not include the leading dev path.
552 	 */
553 	dev = strrchr(path, '/');
554 	assert(dev != NULL);
555 	dev++;
556 	if ((desc = dm_get_descriptor_by_name(DM_ALIAS, dev, &err)) != NULL)
557 		return (check_disk(path, desc, force));
558 
559 	/*
560 	 * If 'err' is not ENODEV, then we've had an unexpected error from
561 	 * libdiskmgt.  The only explanation is that we ran out of memory.
562 	 */
563 	if (err != ENODEV)
564 		libdskmgt_error(err);
565 
566 	/*
567 	 * Determine if this is a slice.
568 	 */
569 	if ((desc = dm_get_descriptor_by_name(DM_SLICE, (char *)path, &err))
570 	    != NULL)
571 		return (check_slice(path, desc, force, TRUE));
572 
573 	if (err != ENODEV)
574 		libdskmgt_error(err);
575 
576 	/*
577 	 * Check for a partition.  libdiskmgt expects path of /dev/rdsk when
578 	 * dealing with partitions, so convert it.
579 	 */
580 	(void) snprintf(rpath, sizeof (rpath), "/dev/rdsk/%s", dev);
581 	if ((desc = dm_get_descriptor_by_name(DM_PARTITION, rpath, &err))
582 	    != NULL) {
583 		/* XXZFS perform checking on partitions */
584 		return (0);
585 	}
586 
587 	if (err != ENODEV)
588 		libdskmgt_error(err);
589 
590 	/*
591 	 * At this point, libdiskmgt failed to find the device as either a whole
592 	 * disk or a slice.  Ignore these errors, as we know that it at least a
593 	 * block device.  The user may have provided us with some unknown device
594 	 * that libdiskmgt doesn't know about.
595 	 */
596 	return (0);
597 }
598 
599 /*
600  * Check that a file is valid.  All we can do in this case is check that it's
601  * not in use by another pool.
602  */
603 int
604 check_file(const char *file, int force)
605 {
606 	char *desc, *name;
607 	int fd;
608 	int ret = 0;
609 
610 	if ((fd = open(file, O_RDONLY)) < 0)
611 		return (0);
612 
613 	if (zpool_in_use(fd, &desc, &name)) {
614 		if (strcmp(desc, gettext("active")) == 0 ||
615 		    !force) {
616 			vdev_error(gettext("%s is part of %s pool '%s'\n"),
617 			    file, desc, name);
618 			ret = -1;
619 		}
620 
621 		free(desc);
622 		free(name);
623 	}
624 
625 	(void) close(fd);
626 	return (ret);
627 }
628 
629 static int
630 is_whole_disk(const char *arg, struct stat64 *statbuf)
631 {
632 	char path[MAXPATHLEN];
633 
634 	(void) snprintf(path, sizeof (path), "%s%s", arg, BACKUP_SLICE);
635 	if (stat64(path, statbuf) == 0)
636 		return (TRUE);
637 
638 	return (FALSE);
639 }
640 
641 /*
642  * Create a leaf vdev.  Determine if this is a file or a device.  If it's a
643  * device, fill in the device id to make a complete nvlist.  Valid forms for a
644  * leaf vdev are:
645  *
646  * 	/dev/dsk/xxx	Complete disk path
647  * 	/xxx		Full path to file
648  * 	xxx		Shorthand for /dev/dsk/xxx
649  */
650 nvlist_t *
651 make_leaf_vdev(const char *arg)
652 {
653 	char path[MAXPATHLEN];
654 	struct stat64 statbuf;
655 	nvlist_t *vdev = NULL;
656 	char *type = NULL;
657 	int wholedisk = FALSE;
658 
659 	/*
660 	 * Determine what type of vdev this is, and put the full path into
661 	 * 'path'.  We detect whether this is a device of file afterwards by
662 	 * checking the st_mode of the file.
663 	 */
664 	if (arg[0] == '/') {
665 		/*
666 		 * Complete device or file path.  Exact type is determined by
667 		 * examining the file descriptor afterwards.
668 		 */
669 		if (is_whole_disk(arg, &statbuf)) {
670 			wholedisk = TRUE;
671 		} else if (stat64(arg, &statbuf) != 0) {
672 			(void) fprintf(stderr,
673 			    gettext("cannot open '%s': %s\n"),
674 			    arg, strerror(errno));
675 			return (NULL);
676 		}
677 
678 		(void) strlcpy(path, arg, sizeof (path));
679 	} else {
680 		/*
681 		 * This may be a short path for a device, or it could be total
682 		 * gibberish.  Check to see if it's a known device in
683 		 * /dev/dsk/.  As part of this check, see if we've been given a
684 		 * an entire disk (minus the slice number).
685 		 */
686 		(void) snprintf(path, sizeof (path), "%s/%s", DISK_ROOT,
687 		    arg);
688 		if (is_whole_disk(path, &statbuf)) {
689 			wholedisk = TRUE;
690 		} else if (stat64(path, &statbuf) != 0) {
691 			/*
692 			 * If we got ENOENT, then the user gave us
693 			 * gibberish, so try to direct them with a
694 			 * reasonable error message.  Otherwise,
695 			 * regurgitate strerror() since it's the best we
696 			 * can do.
697 			 */
698 			if (errno == ENOENT) {
699 				(void) fprintf(stderr,
700 				    gettext("cannot open '%s': no such "
701 				    "device in %s\n"), arg, DISK_ROOT);
702 				(void) fprintf(stderr,
703 				    gettext("must be a full path or "
704 				    "shorthand device name\n"));
705 				return (NULL);
706 			} else {
707 				(void) fprintf(stderr,
708 				    gettext("cannot open '%s': %s\n"),
709 				    path, strerror(errno));
710 				return (NULL);
711 			}
712 		}
713 	}
714 
715 	/*
716 	 * Determine whether this is a device or a file.
717 	 */
718 	if (S_ISBLK(statbuf.st_mode)) {
719 		type = VDEV_TYPE_DISK;
720 	} else if (S_ISREG(statbuf.st_mode)) {
721 		type = VDEV_TYPE_FILE;
722 	} else {
723 		(void) fprintf(stderr, gettext("cannot use '%s': must be a "
724 		    "block device or regular file\n"), path);
725 		return (NULL);
726 	}
727 
728 	/*
729 	 * Finally, we have the complete device or file, and we know that it is
730 	 * acceptable to use.  Construct the nvlist to describe this vdev.  All
731 	 * vdevs have a 'path' element, and devices also have a 'devid' element.
732 	 */
733 	verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
734 	verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
735 	verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
736 	if (strcmp(type, VDEV_TYPE_DISK) == 0)
737 		verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
738 		    (uint64_t)wholedisk) == 0);
739 
740 	/*
741 	 * For a whole disk, defer getting its devid until after labeling it.
742 	 */
743 	if (S_ISBLK(statbuf.st_mode) && !wholedisk) {
744 		/*
745 		 * Get the devid for the device.
746 		 */
747 		int fd;
748 		ddi_devid_t devid;
749 		char *minor = NULL, *devid_str = NULL;
750 
751 		if ((fd = open(path, O_RDONLY)) < 0) {
752 			(void) fprintf(stderr, gettext("cannot open '%s': "
753 			    "%s\n"), path, strerror(errno));
754 			nvlist_free(vdev);
755 			return (NULL);
756 		}
757 
758 		if (devid_get(fd, &devid) == 0) {
759 			if (devid_get_minor_name(fd, &minor) == 0 &&
760 			    (devid_str = devid_str_encode(devid, minor)) !=
761 			    NULL) {
762 				verify(nvlist_add_string(vdev,
763 				    ZPOOL_CONFIG_DEVID, devid_str) == 0);
764 			}
765 			if (devid_str != NULL)
766 				devid_str_free(devid_str);
767 			if (minor != NULL)
768 				devid_str_free(minor);
769 			devid_free(devid);
770 		}
771 
772 		(void) close(fd);
773 	}
774 
775 	return (vdev);
776 }
777 
778 /*
779  * Go through and verify the replication level of the pool is consistent.
780  * Performs the following checks:
781  *
782  * 	For the new spec, verifies that devices in mirrors and raidz are the
783  * 	same size.
784  *
785  * 	If the current configuration already has inconsistent replication
786  * 	levels, ignore any other potential problems in the new spec.
787  *
788  * 	Otherwise, make sure that the current spec (if there is one) and the new
789  * 	spec have consistent replication levels.
790  */
791 typedef struct replication_level {
792 	char	*type;
793 	int	level;
794 } replication_level_t;
795 
796 /*
797  * Given a list of toplevel vdevs, return the current replication level.  If
798  * the config is inconsistent, then NULL is returned.  If 'fatal' is set, then
799  * an error message will be displayed for each self-inconsistent vdev.
800  */
801 replication_level_t *
802 get_replication(nvlist_t *nvroot, int fatal)
803 {
804 	nvlist_t **top;
805 	uint_t t, toplevels;
806 	nvlist_t **child;
807 	uint_t c, children;
808 	nvlist_t *nv;
809 	char *type;
810 	replication_level_t lastrep, rep, *ret;
811 	int dontreport;
812 
813 	ret = safe_malloc(sizeof (replication_level_t));
814 
815 	verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
816 	    &top, &toplevels) == 0);
817 
818 	lastrep.type = NULL;
819 	for (t = 0; t < toplevels; t++) {
820 		nv = top[t];
821 
822 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
823 
824 		if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
825 		    &child, &children) != 0) {
826 			/*
827 			 * This is a 'file' or 'disk' vdev.
828 			 */
829 			rep.type = type;
830 			rep.level = 1;
831 		} else {
832 			uint64_t vdev_size;
833 
834 			/*
835 			 * This is a mirror or RAID-Z vdev.  Go through and make
836 			 * sure the contents are all the same (files vs. disks),
837 			 * keeping track of the number of elements in the
838 			 * process.
839 			 *
840 			 * We also check that the size of each vdev (if it can
841 			 * be determined) is the same.
842 			 */
843 			rep.type = type;
844 			rep.level = 0;
845 
846 			/*
847 			 * The 'dontreport' variable indicatest that we've
848 			 * already reported an error for this spec, so don't
849 			 * bother doing it again.
850 			 */
851 			type = NULL;
852 			dontreport = 0;
853 			vdev_size = -1ULL;
854 			for (c = 0; c < children; c++) {
855 				nvlist_t *cnv = child[c];
856 				char *path;
857 				struct stat64 statbuf;
858 				uint64_t size = -1ULL;
859 				char *childtype;
860 				int fd, err;
861 
862 				rep.level++;
863 
864 				verify(nvlist_lookup_string(cnv,
865 				    ZPOOL_CONFIG_TYPE, &childtype) == 0);
866 				verify(nvlist_lookup_string(cnv,
867 				    ZPOOL_CONFIG_PATH, &path) == 0);
868 
869 				/*
870 				 * If we have a raidz/mirror that combines disks
871 				 * with files, report it as an error.
872 				 */
873 				if (!dontreport && type != NULL &&
874 				    strcmp(type, childtype) != 0) {
875 					if (ret != NULL)
876 						free(ret);
877 					ret = NULL;
878 					if (fatal)
879 						vdev_error(gettext(
880 						    "mismatched replication "
881 						    "level: %s contains both "
882 						    "files and devices\n"),
883 						    rep.type);
884 					else
885 						return (NULL);
886 					dontreport = TRUE;
887 				}
888 
889 				/*
890 				 * According to stat(2), the value of 'st_size'
891 				 * is undefined for block devices and character
892 				 * devices.  But there is no effective way to
893 				 * determine the real size in userland.
894 				 *
895 				 * Instead, we'll take advantage of an
896 				 * implementation detail of spec_size().  If the
897 				 * device is currently open, then we (should)
898 				 * return a valid size.
899 				 *
900 				 * If we still don't get a valid size (indicated
901 				 * by a size of 0 or MAXOFFSET_T), then ignore
902 				 * this device altogether.
903 				 */
904 				if ((fd = open(path, O_RDONLY)) >= 0) {
905 					err = fstat64(fd, &statbuf);
906 					(void) close(fd);
907 				} else {
908 					err = stat64(path, &statbuf);
909 				}
910 
911 				if (err != 0 ||
912 				    statbuf.st_size == 0 ||
913 				    statbuf.st_size == MAXOFFSET_T)
914 					continue;
915 
916 				size = statbuf.st_size;
917 
918 				/*
919 				 * Also check the size of each device.  If they
920 				 * differ, then report an error.
921 				 */
922 				if (!dontreport && vdev_size != -1ULL &&
923 				    size != vdev_size) {
924 					if (ret != NULL)
925 						free(ret);
926 					ret = NULL;
927 					if (fatal)
928 						vdev_error(gettext(
929 						    "%s contains devices of "
930 						    "different sizes\n"),
931 						    rep.type);
932 					else
933 						return (NULL);
934 					dontreport = TRUE;
935 				}
936 
937 				type = childtype;
938 				vdev_size = size;
939 			}
940 		}
941 
942 		/*
943 		 * At this point, we have the replication of the last toplevel
944 		 * vdev in 'rep'.  Compare it to 'lastrep' to see if its
945 		 * different.
946 		 */
947 		if (lastrep.type != NULL) {
948 			if (strcmp(lastrep.type, rep.type) != 0) {
949 				if (ret != NULL)
950 					free(ret);
951 				ret = NULL;
952 				if (fatal)
953 					vdev_error(gettext(
954 					    "mismatched replication "
955 					    "level: both %s and %s vdevs are "
956 					    "present\n"),
957 					    lastrep.type, rep.type);
958 				else
959 					return (NULL);
960 			} else if (lastrep.level != rep.level) {
961 				if (ret)
962 					free(ret);
963 				ret = NULL;
964 				if (fatal)
965 					vdev_error(gettext(
966 					    "mismatched replication "
967 					    "level: %d-way %s and %d-way %s "
968 					    "vdevs are present\n"),
969 					    lastrep.level, lastrep.type,
970 					    rep.level, rep.type);
971 				else
972 					return (NULL);
973 			}
974 		}
975 		lastrep = rep;
976 	}
977 
978 	if (ret != NULL) {
979 		ret->type = rep.type;
980 		ret->level = rep.level;
981 	}
982 
983 	return (ret);
984 }
985 
986 /*
987  * Check the replication level of the vdev spec against the current pool.  Calls
988  * get_replication() to make sure the new spec is self-consistent.  If the pool
989  * has a consistent replication level, then we ignore any errors.  Otherwise,
990  * report any difference between the two.
991  */
992 int
993 check_replication(nvlist_t *config, nvlist_t *newroot)
994 {
995 	replication_level_t *current = NULL, *new;
996 	int ret;
997 
998 	/*
999 	 * If we have a current pool configuration, check to see if it's
1000 	 * self-consistent.  If not, simply return success.
1001 	 */
1002 	if (config != NULL) {
1003 		nvlist_t *nvroot;
1004 
1005 		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1006 		    &nvroot) == 0);
1007 		if ((current = get_replication(nvroot, FALSE)) == NULL)
1008 			return (0);
1009 	}
1010 
1011 	/*
1012 	 * Get the replication level of the new vdev spec, reporting any
1013 	 * inconsistencies found.
1014 	 */
1015 	if ((new = get_replication(newroot, TRUE)) == NULL) {
1016 		free(current);
1017 		return (-1);
1018 	}
1019 
1020 	/*
1021 	 * Check to see if the new vdev spec matches the replication level of
1022 	 * the current pool.
1023 	 */
1024 	ret = 0;
1025 	if (current != NULL) {
1026 		if (strcmp(current->type, new->type) != 0 ||
1027 		    current->level != new->level) {
1028 			vdev_error(gettext(
1029 			    "mismatched replication level: pool uses %d-way %s "
1030 			    "and new vdev uses %d-way %s\n"),
1031 			    current->level, current->type, new->level,
1032 			    new->type);
1033 			ret = -1;
1034 		}
1035 	}
1036 
1037 	free(new);
1038 	if (current != NULL)
1039 		free(current);
1040 
1041 	return (ret);
1042 }
1043 
1044 /*
1045  * Label an individual disk.  The name provided is the short name, stripped of
1046  * any leading /dev path.
1047  */
1048 int
1049 label_disk(char *name)
1050 {
1051 	char path[MAXPATHLEN];
1052 	struct dk_gpt *vtoc;
1053 	int fd;
1054 	size_t resv = 16384;
1055 
1056 	(void) snprintf(path, sizeof (path), "%s/%s%s", RDISK_ROOT, name,
1057 	    BACKUP_SLICE);
1058 
1059 	if ((fd = open(path, O_RDWR | O_NDELAY)) < 0) {
1060 		/*
1061 		 * This shouldn't happen.  We've long since verified that this
1062 		 * is a valid device.
1063 		 */
1064 		(void) fprintf(stderr, gettext("cannot open '%s': %s\n"),
1065 		    path, strerror(errno));
1066 		return (-1);
1067 	}
1068 
1069 
1070 	if (efi_alloc_and_init(fd, 9, &vtoc) != 0) {
1071 		/*
1072 		 * The only way this can fail is if we run out of memory, or we
1073 		 * were unable to read the disk geometry.
1074 		 */
1075 		if (errno == ENOMEM)
1076 			no_memory();
1077 
1078 		(void) fprintf(stderr, gettext("cannot label '%s': unable to "
1079 		    "read disk geometry\n"), name);
1080 		(void) close(fd);
1081 		return (-1);
1082 	}
1083 
1084 	vtoc->efi_parts[0].p_start = vtoc->efi_first_u_lba;
1085 	vtoc->efi_parts[0].p_size = vtoc->efi_last_u_lba + 1 -
1086 	    vtoc->efi_first_u_lba - resv;
1087 
1088 	/*
1089 	 * Why we use V_USR: V_BACKUP confuses users, and is considered
1090 	 * disposable by some EFI utilities (since EFI doesn't have a backup
1091 	 * slice).  V_UNASSIGNED is supposed to be used only for zero size
1092 	 * partitions, and efi_write() will fail if we use it.  V_ROOT, V_BOOT,
1093 	 * etc. were all pretty specific.  V_USR is as close to reality as we
1094 	 * can get, in the absence of V_OTHER.
1095 	 */
1096 	vtoc->efi_parts[0].p_tag = V_USR;
1097 	(void) strcpy(vtoc->efi_parts[0].p_name, "zfs");
1098 
1099 	vtoc->efi_parts[8].p_start = vtoc->efi_last_u_lba + 1 - resv;
1100 	vtoc->efi_parts[8].p_size = resv;
1101 	vtoc->efi_parts[8].p_tag = V_RESERVED;
1102 
1103 	if (efi_write(fd, vtoc) != 0) {
1104 		/*
1105 		 * Currently, EFI labels are not supported for IDE disks, and it
1106 		 * is likely that they will not be supported on other drives for
1107 		 * some time.  Print out a helpful error message directing the
1108 		 * user to manually label the disk and give a specific slice.
1109 		 */
1110 		(void) fprintf(stderr, gettext("cannot label '%s': failed to "
1111 		    "write EFI label\n"), name);
1112 		(void) fprintf(stderr, gettext("use fdisk(1M) to partition "
1113 		    "the disk, and provide a specific slice\n"));
1114 		(void) close(fd);
1115 		return (-1);
1116 	}
1117 
1118 	(void) close(fd);
1119 	return (0);
1120 }
1121 
1122 /*
1123  * Go through and find any whole disks in the vdev specification, labelling them
1124  * as appropriate.  When constructing the vdev spec, we were unable to open this
1125  * device in order to provide a devid.  Now that we have labelled the disk and
1126  * know that slice 0 is valid, we can construct the devid now.
1127  *
1128  * If the disk was already labelled with an EFI label, we will have gotten the
1129  * devid already (because we were able to open the whole disk).  Otherwise, we
1130  * need to get the devid after we label the disk.
1131  */
1132 int
1133 make_disks(nvlist_t *nv)
1134 {
1135 	nvlist_t **child;
1136 	uint_t c, children;
1137 	char *type, *path, *diskname;
1138 	char buf[MAXPATHLEN];
1139 	uint64_t wholedisk;
1140 	int fd;
1141 	int ret;
1142 	ddi_devid_t devid;
1143 	char *minor = NULL, *devid_str = NULL;
1144 
1145 	verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
1146 
1147 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1148 	    &child, &children) != 0) {
1149 
1150 		if (strcmp(type, VDEV_TYPE_DISK) != 0)
1151 			return (0);
1152 
1153 		/*
1154 		 * We have a disk device.  Get the path to the device
1155 		 * and see if its a whole disk by appending the backup
1156 		 * slice and stat()ing the device.
1157 		 */
1158 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0);
1159 
1160 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
1161 		    &wholedisk) != 0 || !wholedisk)
1162 			return (0);
1163 
1164 		diskname = strrchr(path, '/');
1165 		assert(diskname != NULL);
1166 		diskname++;
1167 		if (label_disk(diskname) != 0)
1168 			return (-1);
1169 
1170 		/*
1171 		 * Fill in the devid, now that we've labeled the disk.
1172 		 */
1173 		(void) snprintf(buf, sizeof (buf), "%ss0", path);
1174 		if ((fd = open(buf, O_RDONLY)) < 0) {
1175 			(void) fprintf(stderr,
1176 			    gettext("cannot open '%s': %s\n"),
1177 			    buf, strerror(errno));
1178 			return (-1);
1179 		}
1180 
1181 		if (devid_get(fd, &devid) == 0) {
1182 			if (devid_get_minor_name(fd, &minor) == 0 &&
1183 			    (devid_str = devid_str_encode(devid, minor)) !=
1184 			    NULL) {
1185 				verify(nvlist_add_string(nv,
1186 				    ZPOOL_CONFIG_DEVID, devid_str) == 0);
1187 			}
1188 			if (devid_str != NULL)
1189 				devid_str_free(devid_str);
1190 			if (minor != NULL)
1191 				devid_str_free(minor);
1192 			devid_free(devid);
1193 		}
1194 
1195 		/*
1196 		 * Update the path to refer to the 's0' slice.  The presence of
1197 		 * the 'whole_disk' field indicates to the CLI that we should
1198 		 * chop off the slice number when displaying the device in
1199 		 * future output.
1200 		 */
1201 		verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, buf) == 0);
1202 
1203 		(void) close(fd);
1204 
1205 		return (0);
1206 	}
1207 
1208 	for (c = 0; c < children; c++)
1209 		if ((ret = make_disks(child[c])) != 0)
1210 			return (ret);
1211 
1212 	return (0);
1213 }
1214 
1215 /*
1216  * Go through and find any devices that are in use.  We rely on libdiskmgt for
1217  * the majority of this task.
1218  */
1219 int
1220 check_in_use(nvlist_t *nv, int force)
1221 {
1222 	nvlist_t **child;
1223 	uint_t c, children;
1224 	char *type, *path;
1225 	int ret;
1226 
1227 	verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
1228 
1229 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1230 	    &child, &children) != 0) {
1231 
1232 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0);
1233 
1234 		if (strcmp(type, VDEV_TYPE_DISK) == 0)
1235 			ret = check_device(path, force);
1236 
1237 		if (strcmp(type, VDEV_TYPE_FILE) == 0)
1238 			ret = check_file(path, force);
1239 
1240 		return (ret);
1241 	}
1242 
1243 	for (c = 0; c < children; c++)
1244 		if ((ret = check_in_use(child[c], force)) != 0)
1245 			return (ret);
1246 
1247 	return (0);
1248 }
1249 
1250 /*
1251  * Construct a syntactically valid vdev specification,
1252  * and ensure that all devices and files exist and can be opened.
1253  * Note: we don't bother freeing anything in the error paths
1254  * because the program is just going to exit anyway.
1255  */
1256 nvlist_t *
1257 construct_spec(int argc, char **argv)
1258 {
1259 	nvlist_t *nvroot, *nv, **top;
1260 	int t, toplevels;
1261 
1262 	top = NULL;
1263 	toplevels = 0;
1264 
1265 	while (argc > 0) {
1266 		nv = NULL;
1267 
1268 		/*
1269 		 * If it's a mirror or raidz, the subsequent arguments are
1270 		 * its leaves -- until we encounter the next mirror or raidz.
1271 		 */
1272 		if (strcmp(argv[0], VDEV_TYPE_MIRROR) == 0 ||
1273 		    strcmp(argv[0], VDEV_TYPE_RAIDZ) == 0) {
1274 
1275 			char *type = argv[0];
1276 			nvlist_t **child = NULL;
1277 			int children = 0;
1278 			int c;
1279 
1280 			for (c = 1; c < argc; c++) {
1281 				if (strcmp(argv[c], VDEV_TYPE_MIRROR) == 0 ||
1282 				    strcmp(argv[c], VDEV_TYPE_RAIDZ) == 0)
1283 					break;
1284 				children++;
1285 				child = realloc(child,
1286 				    children * sizeof (nvlist_t *));
1287 				if (child == NULL)
1288 					no_memory();
1289 				if ((nv = make_leaf_vdev(argv[c])) == NULL)
1290 					return (NULL);
1291 				child[children - 1] = nv;
1292 			}
1293 
1294 			argc -= c;
1295 			argv += c;
1296 
1297 			/*
1298 			 * Mirrors and RAID-Z devices require at least
1299 			 * two components.
1300 			 */
1301 			if (children < 2) {
1302 				(void) fprintf(stderr,
1303 				    gettext("invalid vdev specification: "
1304 				    "%s requires at least 2 devices\n"), type);
1305 				return (NULL);
1306 			}
1307 
1308 			verify(nvlist_alloc(&nv, NV_UNIQUE_NAME, 0) == 0);
1309 			verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
1310 			    type) == 0);
1311 			verify(nvlist_add_nvlist_array(nv,
1312 			    ZPOOL_CONFIG_CHILDREN, child, children) == 0);
1313 
1314 			for (c = 0; c < children; c++)
1315 				nvlist_free(child[c]);
1316 			free(child);
1317 		} else {
1318 			/*
1319 			 * We have a device.  Pass off to make_leaf_vdev() to
1320 			 * construct the appropriate nvlist describing the vdev.
1321 			 */
1322 			if ((nv = make_leaf_vdev(argv[0])) == NULL)
1323 				return (NULL);
1324 			argc--;
1325 			argv++;
1326 		}
1327 
1328 		toplevels++;
1329 		top = realloc(top, toplevels * sizeof (nvlist_t *));
1330 		if (top == NULL)
1331 			no_memory();
1332 		top[toplevels - 1] = nv;
1333 	}
1334 
1335 	/*
1336 	 * Finally, create nvroot and add all top-level vdevs to it.
1337 	 */
1338 	verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0);
1339 	verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
1340 	    VDEV_TYPE_ROOT) == 0);
1341 	verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1342 	    top, toplevels) == 0);
1343 
1344 	for (t = 0; t < toplevels; t++)
1345 		nvlist_free(top[t]);
1346 	free(top);
1347 
1348 	return (nvroot);
1349 }
1350 
1351 /*
1352  * Get and validate the contents of the given vdev specification.  This ensures
1353  * that the nvlist returned is well-formed, that all the devices exist, and that
1354  * they are not currently in use by any other known consumer.  The 'poolconfig'
1355  * parameter is the current configuration of the pool when adding devices
1356  * existing pool, and is used to perform additional checks, such as changing the
1357  * replication level of the pool.  It can be 'NULL' to indicate that this is a
1358  * new pool.  The 'force' flag controls whether devices should be forcefully
1359  * added, even if they appear in use.
1360  */
1361 nvlist_t *
1362 make_root_vdev(nvlist_t *poolconfig, int force, int check_rep,
1363     int argc, char **argv)
1364 {
1365 	nvlist_t *newroot;
1366 
1367 	is_force = force;
1368 
1369 	/*
1370 	 * Construct the vdev specification.  If this is successful, we know
1371 	 * that we have a valid specification, and that all devices can be
1372 	 * opened.
1373 	 */
1374 	if ((newroot = construct_spec(argc, argv)) == NULL)
1375 		return (NULL);
1376 
1377 	/*
1378 	 * Validate each device to make sure that its not shared with another
1379 	 * subsystem.  We do this even if 'force' is set, because there are some
1380 	 * uses (such as a dedicated dump device) that even '-f' cannot
1381 	 * override.
1382 	 */
1383 	if (check_in_use(newroot, force) != 0) {
1384 		nvlist_free(newroot);
1385 		return (NULL);
1386 	}
1387 
1388 	/*
1389 	 * Check the replication level of the given vdevs and report any errors
1390 	 * found.  We include the existing pool spec, if any, as we need to
1391 	 * catch changes against the existing replication level.
1392 	 */
1393 	if (check_rep && check_replication(poolconfig, newroot) != 0) {
1394 		nvlist_free(newroot);
1395 		return (NULL);
1396 	}
1397 
1398 	/*
1399 	 * Run through the vdev specification and label any whole disks found.
1400 	 */
1401 	if (make_disks(newroot) != 0) {
1402 		nvlist_free(newroot);
1403 		return (NULL);
1404 	}
1405 
1406 	return (newroot);
1407 }
1408