xref: /titanic_50/usr/src/cmd/zpool/zpool_vdev.c (revision 57b598f5829606393ded70b44d927a5a004392b8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * Functions to convert between a list of vdevs and an nvlist representing the
31  * configuration.  Each entry in the list can be one of:
32  *
33  * 	Device vdevs
34  * 		disk=(path=..., devid=...)
35  * 		file=(path=...)
36  *
37  * 	Group vdevs
38  * 		raidz[1|2]=(...)
39  * 		mirror=(...)
40  *
41  * 	Hot spares
42  *
43  * While the underlying implementation supports it, group vdevs cannot contain
44  * other group vdevs.  All userland verification of devices is contained within
45  * this file.  If successful, the nvlist returned can be passed directly to the
46  * kernel; we've done as much verification as possible in userland.
47  *
48  * Hot spares are a special case, and passed down as an array of disk vdevs, at
49  * the same level as the root of the vdev tree.
50  *
51  * The only function exported by this file is 'make_root_vdev'.  The
52  * function performs several passes:
53  *
54  * 	1. Construct the vdev specification.  Performs syntax validation and
55  *         makes sure each device is valid.
56  * 	2. Check for devices in use.  Using libdiskmgt, makes sure that no
57  *         devices are also in use.  Some can be overridden using the 'force'
58  *         flag, others cannot.
59  * 	3. Check for replication errors if the 'force' flag is not specified.
60  *         validates that the replication level is consistent across the
61  *         entire pool.
62  * 	4. Call libzfs to label any whole disks with an EFI label.
63  */
64 
65 #include <assert.h>
66 #include <devid.h>
67 #include <errno.h>
68 #include <fcntl.h>
69 #include <libdiskmgt.h>
70 #include <libintl.h>
71 #include <libnvpair.h>
72 #include <stdio.h>
73 #include <string.h>
74 #include <unistd.h>
75 #include <sys/efi_partition.h>
76 #include <sys/stat.h>
77 #include <sys/vtoc.h>
78 #include <sys/mntent.h>
79 
80 #include "zpool_util.h"
81 
82 #define	DISK_ROOT	"/dev/dsk"
83 #define	RDISK_ROOT	"/dev/rdsk"
84 #define	BACKUP_SLICE	"s2"
85 
86 /*
87  * For any given vdev specification, we can have multiple errors.  The
88  * vdev_error() function keeps track of whether we have seen an error yet, and
89  * prints out a header if its the first error we've seen.
90  */
91 boolean_t error_seen;
92 boolean_t is_force;
93 
94 /*PRINTFLIKE1*/
95 static void
96 vdev_error(const char *fmt, ...)
97 {
98 	va_list ap;
99 
100 	if (!error_seen) {
101 		(void) fprintf(stderr, gettext("invalid vdev specification\n"));
102 		if (!is_force)
103 			(void) fprintf(stderr, gettext("use '-f' to override "
104 			    "the following errors:\n"));
105 		else
106 			(void) fprintf(stderr, gettext("the following errors "
107 			    "must be manually repaired:\n"));
108 		error_seen = B_TRUE;
109 	}
110 
111 	va_start(ap, fmt);
112 	(void) vfprintf(stderr, fmt, ap);
113 	va_end(ap);
114 }
115 
116 static void
117 libdiskmgt_error(int error)
118 {
119 	/*
120 	 * ENXIO/ENODEV is a valid error message if the device doesn't live in
121 	 * /dev/dsk.  Don't bother printing an error message in this case.
122 	 */
123 	if (error == ENXIO || error == ENODEV)
124 		return;
125 
126 	(void) fprintf(stderr, gettext("warning: device in use checking "
127 	    "failed: %s\n"), strerror(error));
128 }
129 
130 /*
131  * Validate a device, passing the bulk of the work off to libdiskmgt.
132  */
133 static int
134 check_slice(const char *path, int force, boolean_t wholedisk, boolean_t isspare)
135 {
136 	char *msg;
137 	int error = 0;
138 
139 	if (dm_inuse((char *)path, &msg, isspare ? DM_WHO_ZPOOL_SPARE :
140 	    (force ? DM_WHO_ZPOOL_FORCE : DM_WHO_ZPOOL), &error) || error) {
141 		if (error != 0) {
142 			libdiskmgt_error(error);
143 			return (0);
144 		} else {
145 			vdev_error("%s", msg);
146 			free(msg);
147 			return (-1);
148 		}
149 	}
150 
151 	/*
152 	 * If we're given a whole disk, ignore overlapping slices since we're
153 	 * about to label it anyway.
154 	 */
155 	error = 0;
156 	if (!wholedisk && !force &&
157 	    (dm_isoverlapping((char *)path, &msg, &error) || error)) {
158 		if (error == 0) {
159 			/* dm_isoverlapping returned -1 */
160 			vdev_error(gettext("%s overlaps with %s\n"), path, msg);
161 			free(msg);
162 			return (-1);
163 		} else if (error != ENODEV) {
164 			/* libdiskmgt's devcache only handles physical drives */
165 			libdiskmgt_error(error);
166 			return (0);
167 		}
168 	}
169 
170 	return (0);
171 }
172 
173 
174 /*
175  * Validate a whole disk.  Iterate over all slices on the disk and make sure
176  * that none is in use by calling check_slice().
177  */
178 static int
179 check_disk(const char *name, dm_descriptor_t disk, int force, int isspare)
180 {
181 	dm_descriptor_t *drive, *media, *slice;
182 	int err = 0;
183 	int i;
184 	int ret;
185 
186 	/*
187 	 * Get the drive associated with this disk.  This should never fail,
188 	 * because we already have an alias handle open for the device.
189 	 */
190 	if ((drive = dm_get_associated_descriptors(disk, DM_DRIVE,
191 	    &err)) == NULL || *drive == NULL) {
192 		if (err)
193 			libdiskmgt_error(err);
194 		return (0);
195 	}
196 
197 	if ((media = dm_get_associated_descriptors(*drive, DM_MEDIA,
198 	    &err)) == NULL) {
199 		dm_free_descriptors(drive);
200 		if (err)
201 			libdiskmgt_error(err);
202 		return (0);
203 	}
204 
205 	dm_free_descriptors(drive);
206 
207 	/*
208 	 * It is possible that the user has specified a removable media drive,
209 	 * and the media is not present.
210 	 */
211 	if (*media == NULL) {
212 		dm_free_descriptors(media);
213 		vdev_error(gettext("'%s' has no media in drive\n"), name);
214 		return (-1);
215 	}
216 
217 	if ((slice = dm_get_associated_descriptors(*media, DM_SLICE,
218 	    &err)) == NULL) {
219 		dm_free_descriptors(media);
220 		if (err)
221 			libdiskmgt_error(err);
222 		return (0);
223 	}
224 
225 	dm_free_descriptors(media);
226 
227 	ret = 0;
228 
229 	/*
230 	 * Iterate over all slices and report any errors.  We don't care about
231 	 * overlapping slices because we are using the whole disk.
232 	 */
233 	for (i = 0; slice[i] != NULL; i++) {
234 		char *name = dm_get_name(slice[i], &err);
235 
236 		if (check_slice(name, force, B_TRUE, isspare) != 0)
237 			ret = -1;
238 
239 		dm_free_name(name);
240 	}
241 
242 	dm_free_descriptors(slice);
243 	return (ret);
244 }
245 
246 /*
247  * Validate a device.
248  */
249 static int
250 check_device(const char *path, boolean_t force, boolean_t isspare)
251 {
252 	dm_descriptor_t desc;
253 	int err;
254 	char *dev;
255 
256 	/*
257 	 * For whole disks, libdiskmgt does not include the leading dev path.
258 	 */
259 	dev = strrchr(path, '/');
260 	assert(dev != NULL);
261 	dev++;
262 	if ((desc = dm_get_descriptor_by_name(DM_ALIAS, dev, &err)) != NULL) {
263 		err = check_disk(path, desc, force, isspare);
264 		dm_free_descriptor(desc);
265 		return (err);
266 	}
267 
268 	return (check_slice(path, force, B_FALSE, isspare));
269 }
270 
271 /*
272  * Check that a file is valid.  All we can do in this case is check that it's
273  * not in use by another pool, and not in use by swap.
274  */
275 static int
276 check_file(const char *file, boolean_t force, boolean_t isspare)
277 {
278 	char  *name;
279 	int fd;
280 	int ret = 0;
281 	int err;
282 	pool_state_t state;
283 	boolean_t inuse;
284 
285 	if (dm_inuse_swap(file, &err)) {
286 		if (err)
287 			libdiskmgt_error(err);
288 		else
289 			vdev_error(gettext("%s is currently used by swap. "
290 			    "Please see swap(1M).\n"), file);
291 		return (-1);
292 	}
293 
294 	if ((fd = open(file, O_RDONLY)) < 0)
295 		return (0);
296 
297 	if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) {
298 		const char *desc;
299 
300 		switch (state) {
301 		case POOL_STATE_ACTIVE:
302 			desc = gettext("active");
303 			break;
304 
305 		case POOL_STATE_EXPORTED:
306 			desc = gettext("exported");
307 			break;
308 
309 		case POOL_STATE_POTENTIALLY_ACTIVE:
310 			desc = gettext("potentially active");
311 			break;
312 
313 		default:
314 			desc = gettext("unknown");
315 			break;
316 		}
317 
318 		/*
319 		 * Allow hot spares to be shared between pools.
320 		 */
321 		if (state == POOL_STATE_SPARE && isspare)
322 			return (0);
323 
324 		if (state == POOL_STATE_ACTIVE ||
325 		    state == POOL_STATE_SPARE || !force) {
326 			switch (state) {
327 			case POOL_STATE_SPARE:
328 				vdev_error(gettext("%s is reserved as a hot "
329 				    "spare for pool %s\n"), file, name);
330 				break;
331 			default:
332 				vdev_error(gettext("%s is part of %s pool "
333 				    "'%s'\n"), file, desc, name);
334 				break;
335 			}
336 			ret = -1;
337 		}
338 
339 		free(name);
340 	}
341 
342 	(void) close(fd);
343 	return (ret);
344 }
345 
346 
347 /*
348  * By "whole disk" we mean an entire physical disk (something we can
349  * label, toggle the write cache on, etc.) as opposed to the full
350  * capacity of a pseudo-device such as lofi or did.  We act as if we
351  * are labeling the disk, which should be a pretty good test of whether
352  * it's a viable device or not.  Returns B_TRUE if it is and B_FALSE if
353  * it isn't.
354  */
355 static boolean_t
356 is_whole_disk(const char *arg)
357 {
358 	struct dk_gpt *label;
359 	int	fd;
360 	char	path[MAXPATHLEN];
361 
362 	(void) snprintf(path, sizeof (path), "%s%s%s",
363 	    RDISK_ROOT, strrchr(arg, '/'), BACKUP_SLICE);
364 	if ((fd = open(path, O_RDWR | O_NDELAY)) < 0)
365 		return (B_FALSE);
366 	if (efi_alloc_and_init(fd, EFI_NUMPAR, &label) != 0) {
367 		(void) close(fd);
368 		return (B_FALSE);
369 	}
370 	efi_free(label);
371 	(void) close(fd);
372 	return (B_TRUE);
373 }
374 
375 /*
376  * Create a leaf vdev.  Determine if this is a file or a device.  If it's a
377  * device, fill in the device id to make a complete nvlist.  Valid forms for a
378  * leaf vdev are:
379  *
380  * 	/dev/dsk/xxx	Complete disk path
381  * 	/xxx		Full path to file
382  * 	xxx		Shorthand for /dev/dsk/xxx
383  */
384 static nvlist_t *
385 make_leaf_vdev(const char *arg)
386 {
387 	char path[MAXPATHLEN];
388 	struct stat64 statbuf;
389 	nvlist_t *vdev = NULL;
390 	char *type = NULL;
391 	boolean_t wholedisk = B_FALSE;
392 
393 	/*
394 	 * Determine what type of vdev this is, and put the full path into
395 	 * 'path'.  We detect whether this is a device of file afterwards by
396 	 * checking the st_mode of the file.
397 	 */
398 	if (arg[0] == '/') {
399 		/*
400 		 * Complete device or file path.  Exact type is determined by
401 		 * examining the file descriptor afterwards.
402 		 */
403 		wholedisk = is_whole_disk(arg);
404 		if (!wholedisk && (stat64(arg, &statbuf) != 0)) {
405 			(void) fprintf(stderr,
406 			    gettext("cannot open '%s': %s\n"),
407 			    arg, strerror(errno));
408 			return (NULL);
409 		}
410 
411 		(void) strlcpy(path, arg, sizeof (path));
412 	} else {
413 		/*
414 		 * This may be a short path for a device, or it could be total
415 		 * gibberish.  Check to see if it's a known device in
416 		 * /dev/dsk/.  As part of this check, see if we've been given a
417 		 * an entire disk (minus the slice number).
418 		 */
419 		(void) snprintf(path, sizeof (path), "%s/%s", DISK_ROOT,
420 		    arg);
421 		wholedisk = is_whole_disk(path);
422 		if (!wholedisk && (stat64(path, &statbuf) != 0)) {
423 			/*
424 			 * If we got ENOENT, then the user gave us
425 			 * gibberish, so try to direct them with a
426 			 * reasonable error message.  Otherwise,
427 			 * regurgitate strerror() since it's the best we
428 			 * can do.
429 			 */
430 			if (errno == ENOENT) {
431 				(void) fprintf(stderr,
432 				    gettext("cannot open '%s': no such "
433 				    "device in %s\n"), arg, DISK_ROOT);
434 				(void) fprintf(stderr,
435 				    gettext("must be a full path or "
436 				    "shorthand device name\n"));
437 				return (NULL);
438 			} else {
439 				(void) fprintf(stderr,
440 				    gettext("cannot open '%s': %s\n"),
441 				    path, strerror(errno));
442 				return (NULL);
443 			}
444 		}
445 	}
446 
447 	/*
448 	 * Determine whether this is a device or a file.
449 	 */
450 	if (wholedisk || S_ISBLK(statbuf.st_mode)) {
451 		type = VDEV_TYPE_DISK;
452 	} else if (S_ISREG(statbuf.st_mode)) {
453 		type = VDEV_TYPE_FILE;
454 	} else {
455 		(void) fprintf(stderr, gettext("cannot use '%s': must be a "
456 		    "block device or regular file\n"), path);
457 		return (NULL);
458 	}
459 
460 	/*
461 	 * Finally, we have the complete device or file, and we know that it is
462 	 * acceptable to use.  Construct the nvlist to describe this vdev.  All
463 	 * vdevs have a 'path' element, and devices also have a 'devid' element.
464 	 */
465 	verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
466 	verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
467 	verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
468 	if (strcmp(type, VDEV_TYPE_DISK) == 0)
469 		verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
470 		    (uint64_t)wholedisk) == 0);
471 
472 	/*
473 	 * For a whole disk, defer getting its devid until after labeling it.
474 	 */
475 	if (S_ISBLK(statbuf.st_mode) && !wholedisk) {
476 		/*
477 		 * Get the devid for the device.
478 		 */
479 		int fd;
480 		ddi_devid_t devid;
481 		char *minor = NULL, *devid_str = NULL;
482 
483 		if ((fd = open(path, O_RDONLY)) < 0) {
484 			(void) fprintf(stderr, gettext("cannot open '%s': "
485 			    "%s\n"), path, strerror(errno));
486 			nvlist_free(vdev);
487 			return (NULL);
488 		}
489 
490 		if (devid_get(fd, &devid) == 0) {
491 			if (devid_get_minor_name(fd, &minor) == 0 &&
492 			    (devid_str = devid_str_encode(devid, minor)) !=
493 			    NULL) {
494 				verify(nvlist_add_string(vdev,
495 				    ZPOOL_CONFIG_DEVID, devid_str) == 0);
496 			}
497 			if (devid_str != NULL)
498 				devid_str_free(devid_str);
499 			if (minor != NULL)
500 				devid_str_free(minor);
501 			devid_free(devid);
502 		}
503 
504 		(void) close(fd);
505 	}
506 
507 	return (vdev);
508 }
509 
510 /*
511  * Go through and verify the replication level of the pool is consistent.
512  * Performs the following checks:
513  *
514  * 	For the new spec, verifies that devices in mirrors and raidz are the
515  * 	same size.
516  *
517  * 	If the current configuration already has inconsistent replication
518  * 	levels, ignore any other potential problems in the new spec.
519  *
520  * 	Otherwise, make sure that the current spec (if there is one) and the new
521  * 	spec have consistent replication levels.
522  */
523 typedef struct replication_level {
524 	char *zprl_type;
525 	uint64_t zprl_children;
526 	uint64_t zprl_parity;
527 } replication_level_t;
528 
529 #define	ZPOOL_FUZZ	(16 * 1024 * 1024)
530 
531 /*
532  * Given a list of toplevel vdevs, return the current replication level.  If
533  * the config is inconsistent, then NULL is returned.  If 'fatal' is set, then
534  * an error message will be displayed for each self-inconsistent vdev.
535  */
536 static replication_level_t *
537 get_replication(nvlist_t *nvroot, boolean_t fatal)
538 {
539 	nvlist_t **top;
540 	uint_t t, toplevels;
541 	nvlist_t **child;
542 	uint_t c, children;
543 	nvlist_t *nv;
544 	char *type;
545 	replication_level_t lastrep, rep, *ret;
546 	boolean_t dontreport;
547 
548 	ret = safe_malloc(sizeof (replication_level_t));
549 
550 	verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
551 	    &top, &toplevels) == 0);
552 
553 	lastrep.zprl_type = NULL;
554 	for (t = 0; t < toplevels; t++) {
555 		nv = top[t];
556 
557 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
558 		if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
559 		    &child, &children) != 0) {
560 			/*
561 			 * This is a 'file' or 'disk' vdev.
562 			 */
563 			rep.zprl_type = type;
564 			rep.zprl_children = 1;
565 			rep.zprl_parity = 0;
566 		} else {
567 			uint64_t vdev_size;
568 
569 			/*
570 			 * This is a mirror or RAID-Z vdev.  Go through and make
571 			 * sure the contents are all the same (files vs. disks),
572 			 * keeping track of the number of elements in the
573 			 * process.
574 			 *
575 			 * We also check that the size of each vdev (if it can
576 			 * be determined) is the same.
577 			 */
578 			rep.zprl_type = type;
579 			rep.zprl_children = 0;
580 
581 			if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
582 				verify(nvlist_lookup_uint64(nv,
583 				    ZPOOL_CONFIG_NPARITY,
584 				    &rep.zprl_parity) == 0);
585 				assert(rep.zprl_parity != 0);
586 			} else {
587 				rep.zprl_parity = 0;
588 			}
589 
590 			/*
591 			 * The 'dontreport' variable indicatest that we've
592 			 * already reported an error for this spec, so don't
593 			 * bother doing it again.
594 			 */
595 			type = NULL;
596 			dontreport = 0;
597 			vdev_size = -1ULL;
598 			for (c = 0; c < children; c++) {
599 				nvlist_t *cnv = child[c];
600 				char *path;
601 				struct stat64 statbuf;
602 				uint64_t size = -1ULL;
603 				char *childtype;
604 				int fd, err;
605 
606 				rep.zprl_children++;
607 
608 				verify(nvlist_lookup_string(cnv,
609 				    ZPOOL_CONFIG_TYPE, &childtype) == 0);
610 
611 				/*
612 				 * If this is a a replacing or spare vdev, then
613 				 * get the real first child of the vdev.
614 				 */
615 				if (strcmp(childtype,
616 				    VDEV_TYPE_REPLACING) == 0 ||
617 				    strcmp(childtype, VDEV_TYPE_SPARE) == 0) {
618 					nvlist_t **rchild;
619 					uint_t rchildren;
620 
621 					verify(nvlist_lookup_nvlist_array(cnv,
622 					    ZPOOL_CONFIG_CHILDREN, &rchild,
623 					    &rchildren) == 0);
624 					assert(rchildren == 2);
625 					cnv = rchild[0];
626 
627 					verify(nvlist_lookup_string(cnv,
628 					    ZPOOL_CONFIG_TYPE,
629 					    &childtype) == 0);
630 				}
631 
632 				verify(nvlist_lookup_string(cnv,
633 				    ZPOOL_CONFIG_PATH, &path) == 0);
634 
635 				/*
636 				 * If we have a raidz/mirror that combines disks
637 				 * with files, report it as an error.
638 				 */
639 				if (!dontreport && type != NULL &&
640 				    strcmp(type, childtype) != 0) {
641 					if (ret != NULL)
642 						free(ret);
643 					ret = NULL;
644 					if (fatal)
645 						vdev_error(gettext(
646 						    "mismatched replication "
647 						    "level: %s contains both "
648 						    "files and devices\n"),
649 						    rep.zprl_type);
650 					else
651 						return (NULL);
652 					dontreport = B_TRUE;
653 				}
654 
655 				/*
656 				 * According to stat(2), the value of 'st_size'
657 				 * is undefined for block devices and character
658 				 * devices.  But there is no effective way to
659 				 * determine the real size in userland.
660 				 *
661 				 * Instead, we'll take advantage of an
662 				 * implementation detail of spec_size().  If the
663 				 * device is currently open, then we (should)
664 				 * return a valid size.
665 				 *
666 				 * If we still don't get a valid size (indicated
667 				 * by a size of 0 or MAXOFFSET_T), then ignore
668 				 * this device altogether.
669 				 */
670 				if ((fd = open(path, O_RDONLY)) >= 0) {
671 					err = fstat64(fd, &statbuf);
672 					(void) close(fd);
673 				} else {
674 					err = stat64(path, &statbuf);
675 				}
676 
677 				if (err != 0 ||
678 				    statbuf.st_size == 0 ||
679 				    statbuf.st_size == MAXOFFSET_T)
680 					continue;
681 
682 				size = statbuf.st_size;
683 
684 				/*
685 				 * Also make sure that devices and
686 				 * slices have a consistent size.  If
687 				 * they differ by a significant amount
688 				 * (~16MB) then report an error.
689 				 */
690 				if (!dontreport &&
691 				    (vdev_size != -1ULL &&
692 				    (labs(size - vdev_size) >
693 				    ZPOOL_FUZZ))) {
694 					if (ret != NULL)
695 						free(ret);
696 					ret = NULL;
697 					if (fatal)
698 						vdev_error(gettext(
699 						    "%s contains devices of "
700 						    "different sizes\n"),
701 						    rep.zprl_type);
702 					else
703 						return (NULL);
704 					dontreport = B_TRUE;
705 				}
706 
707 				type = childtype;
708 				vdev_size = size;
709 			}
710 		}
711 
712 		/*
713 		 * At this point, we have the replication of the last toplevel
714 		 * vdev in 'rep'.  Compare it to 'lastrep' to see if its
715 		 * different.
716 		 */
717 		if (lastrep.zprl_type != NULL) {
718 			if (strcmp(lastrep.zprl_type, rep.zprl_type) != 0) {
719 				if (ret != NULL)
720 					free(ret);
721 				ret = NULL;
722 				if (fatal)
723 					vdev_error(gettext(
724 					    "mismatched replication level: "
725 					    "both %s and %s vdevs are "
726 					    "present\n"),
727 					    lastrep.zprl_type, rep.zprl_type);
728 				else
729 					return (NULL);
730 			} else if (lastrep.zprl_parity != rep.zprl_parity) {
731 				if (ret)
732 					free(ret);
733 				ret = NULL;
734 				if (fatal)
735 					vdev_error(gettext(
736 					    "mismatched replication level: "
737 					    "both %llu and %llu device parity "
738 					    "%s vdevs are present\n"),
739 					    lastrep.zprl_parity,
740 					    rep.zprl_parity,
741 					    rep.zprl_type);
742 				else
743 					return (NULL);
744 			} else if (lastrep.zprl_children != rep.zprl_children) {
745 				if (ret)
746 					free(ret);
747 				ret = NULL;
748 				if (fatal)
749 					vdev_error(gettext(
750 					    "mismatched replication level: "
751 					    "both %llu-way and %llu-way %s "
752 					    "vdevs are present\n"),
753 					    lastrep.zprl_children,
754 					    rep.zprl_children,
755 					    rep.zprl_type);
756 				else
757 					return (NULL);
758 			}
759 		}
760 		lastrep = rep;
761 	}
762 
763 	if (ret != NULL)
764 		*ret = rep;
765 
766 	return (ret);
767 }
768 
769 /*
770  * Check the replication level of the vdev spec against the current pool.  Calls
771  * get_replication() to make sure the new spec is self-consistent.  If the pool
772  * has a consistent replication level, then we ignore any errors.  Otherwise,
773  * report any difference between the two.
774  */
775 static int
776 check_replication(nvlist_t *config, nvlist_t *newroot)
777 {
778 	nvlist_t **child;
779 	uint_t	children;
780 	replication_level_t *current = NULL, *new;
781 	int ret;
782 
783 	/*
784 	 * If we have a current pool configuration, check to see if it's
785 	 * self-consistent.  If not, simply return success.
786 	 */
787 	if (config != NULL) {
788 		nvlist_t *nvroot;
789 
790 		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
791 		    &nvroot) == 0);
792 		if ((current = get_replication(nvroot, B_FALSE)) == NULL)
793 			return (0);
794 	}
795 	/*
796 	 * for spares there may be no children, and therefore no
797 	 * replication level to check
798 	 */
799 	if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN,
800 	    &child, &children) != 0) || (children == 0)) {
801 		free(current);
802 		return (0);
803 	}
804 
805 	/*
806 	 * Get the replication level of the new vdev spec, reporting any
807 	 * inconsistencies found.
808 	 */
809 	if ((new = get_replication(newroot, B_TRUE)) == NULL) {
810 		free(current);
811 		return (-1);
812 	}
813 
814 	/*
815 	 * Check to see if the new vdev spec matches the replication level of
816 	 * the current pool.
817 	 */
818 	ret = 0;
819 	if (current != NULL) {
820 		if (strcmp(current->zprl_type, new->zprl_type) != 0) {
821 			vdev_error(gettext(
822 			    "mismatched replication level: pool uses %s "
823 			    "and new vdev is %s\n"),
824 			    current->zprl_type, new->zprl_type);
825 			ret = -1;
826 		} else if (current->zprl_parity != new->zprl_parity) {
827 			vdev_error(gettext(
828 			    "mismatched replication level: pool uses %llu "
829 			    "device parity and new vdev uses %llu\n"),
830 			    current->zprl_parity, new->zprl_parity);
831 			ret = -1;
832 		} else if (current->zprl_children != new->zprl_children) {
833 			vdev_error(gettext(
834 			    "mismatched replication level: pool uses %llu-way "
835 			    "%s and new vdev uses %llu-way %s\n"),
836 			    current->zprl_children, current->zprl_type,
837 			    new->zprl_children, new->zprl_type);
838 			ret = -1;
839 		}
840 	}
841 
842 	free(new);
843 	if (current != NULL)
844 		free(current);
845 
846 	return (ret);
847 }
848 
849 /*
850  * Go through and find any whole disks in the vdev specification, labelling them
851  * as appropriate.  When constructing the vdev spec, we were unable to open this
852  * device in order to provide a devid.  Now that we have labelled the disk and
853  * know that slice 0 is valid, we can construct the devid now.
854  *
855  * If the disk was already labeled with an EFI label, we will have gotten the
856  * devid already (because we were able to open the whole disk).  Otherwise, we
857  * need to get the devid after we label the disk.
858  */
859 static int
860 make_disks(zpool_handle_t *zhp, nvlist_t *nv)
861 {
862 	nvlist_t **child;
863 	uint_t c, children;
864 	char *type, *path, *diskname;
865 	char buf[MAXPATHLEN];
866 	uint64_t wholedisk;
867 	int fd;
868 	int ret;
869 	ddi_devid_t devid;
870 	char *minor = NULL, *devid_str = NULL;
871 
872 	verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
873 
874 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
875 	    &child, &children) != 0) {
876 
877 		if (strcmp(type, VDEV_TYPE_DISK) != 0)
878 			return (0);
879 
880 		/*
881 		 * We have a disk device.  Get the path to the device
882 		 * and see if it's a whole disk by appending the backup
883 		 * slice and stat()ing the device.
884 		 */
885 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0);
886 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
887 		    &wholedisk) != 0 || !wholedisk)
888 			return (0);
889 
890 		diskname = strrchr(path, '/');
891 		assert(diskname != NULL);
892 		diskname++;
893 		if (zpool_label_disk(g_zfs, zhp, diskname) == -1)
894 			return (-1);
895 
896 		/*
897 		 * Fill in the devid, now that we've labeled the disk.
898 		 */
899 		(void) snprintf(buf, sizeof (buf), "%ss0", path);
900 		if ((fd = open(buf, O_RDONLY)) < 0) {
901 			(void) fprintf(stderr,
902 			    gettext("cannot open '%s': %s\n"),
903 			    buf, strerror(errno));
904 			return (-1);
905 		}
906 
907 		if (devid_get(fd, &devid) == 0) {
908 			if (devid_get_minor_name(fd, &minor) == 0 &&
909 			    (devid_str = devid_str_encode(devid, minor)) !=
910 			    NULL) {
911 				verify(nvlist_add_string(nv,
912 				    ZPOOL_CONFIG_DEVID, devid_str) == 0);
913 			}
914 			if (devid_str != NULL)
915 				devid_str_free(devid_str);
916 			if (minor != NULL)
917 				devid_str_free(minor);
918 			devid_free(devid);
919 		}
920 
921 		/*
922 		 * Update the path to refer to the 's0' slice.  The presence of
923 		 * the 'whole_disk' field indicates to the CLI that we should
924 		 * chop off the slice number when displaying the device in
925 		 * future output.
926 		 */
927 		verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, buf) == 0);
928 
929 		(void) close(fd);
930 
931 		return (0);
932 	}
933 
934 	for (c = 0; c < children; c++)
935 		if ((ret = make_disks(zhp, child[c])) != 0)
936 			return (ret);
937 
938 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
939 	    &child, &children) == 0)
940 		for (c = 0; c < children; c++)
941 			if ((ret = make_disks(zhp, child[c])) != 0)
942 				return (ret);
943 
944 	return (0);
945 }
946 
947 /*
948  * Determine if the given path is a hot spare within the given configuration.
949  */
950 static boolean_t
951 is_spare(nvlist_t *config, const char *path)
952 {
953 	int fd;
954 	pool_state_t state;
955 	char *name = NULL;
956 	nvlist_t *label;
957 	uint64_t guid, spareguid;
958 	nvlist_t *nvroot;
959 	nvlist_t **spares;
960 	uint_t i, nspares;
961 	boolean_t inuse;
962 
963 	if ((fd = open(path, O_RDONLY)) < 0)
964 		return (B_FALSE);
965 
966 	if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 ||
967 	    !inuse ||
968 	    state != POOL_STATE_SPARE ||
969 	    zpool_read_label(fd, &label) != 0) {
970 		free(name);
971 		(void) close(fd);
972 		return (B_FALSE);
973 	}
974 	free(name);
975 
976 	(void) close(fd);
977 	verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0);
978 	nvlist_free(label);
979 
980 	verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
981 	    &nvroot) == 0);
982 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
983 	    &spares, &nspares) == 0) {
984 		for (i = 0; i < nspares; i++) {
985 			verify(nvlist_lookup_uint64(spares[i],
986 			    ZPOOL_CONFIG_GUID, &spareguid) == 0);
987 			if (spareguid == guid)
988 				return (B_TRUE);
989 		}
990 	}
991 
992 	return (B_FALSE);
993 }
994 
995 /*
996  * Go through and find any devices that are in use.  We rely on libdiskmgt for
997  * the majority of this task.
998  */
999 static int
1000 check_in_use(nvlist_t *config, nvlist_t *nv, int force, int isreplacing,
1001     int isspare)
1002 {
1003 	nvlist_t **child;
1004 	uint_t c, children;
1005 	char *type, *path;
1006 	int ret;
1007 	char buf[MAXPATHLEN];
1008 	uint64_t wholedisk;
1009 
1010 	verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
1011 
1012 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1013 	    &child, &children) != 0) {
1014 
1015 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0);
1016 
1017 		/*
1018 		 * As a generic check, we look to see if this is a replace of a
1019 		 * hot spare within the same pool.  If so, we allow it
1020 		 * regardless of what libdiskmgt or zpool_in_use() says.
1021 		 */
1022 		if (isreplacing) {
1023 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
1024 			    &wholedisk) == 0 && wholedisk)
1025 				(void) snprintf(buf, sizeof (buf), "%ss0",
1026 				    path);
1027 			else
1028 				(void) strlcpy(buf, path, sizeof (buf));
1029 			if (is_spare(config, buf))
1030 				return (0);
1031 		}
1032 
1033 		if (strcmp(type, VDEV_TYPE_DISK) == 0)
1034 			ret = check_device(path, force, isspare);
1035 
1036 		if (strcmp(type, VDEV_TYPE_FILE) == 0)
1037 			ret = check_file(path, force, isspare);
1038 
1039 		return (ret);
1040 	}
1041 
1042 	for (c = 0; c < children; c++)
1043 		if ((ret = check_in_use(config, child[c], force,
1044 		    isreplacing, B_FALSE)) != 0)
1045 			return (ret);
1046 
1047 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1048 	    &child, &children) == 0)
1049 		for (c = 0; c < children; c++)
1050 			if ((ret = check_in_use(config, child[c], force,
1051 			    isreplacing, B_TRUE)) != 0)
1052 				return (ret);
1053 
1054 	return (0);
1055 }
1056 
1057 static const char *
1058 is_grouping(const char *type, int *mindev)
1059 {
1060 	if (strcmp(type, "raidz") == 0 || strcmp(type, "raidz1") == 0) {
1061 		if (mindev != NULL)
1062 			*mindev = 2;
1063 		return (VDEV_TYPE_RAIDZ);
1064 	}
1065 
1066 	if (strcmp(type, "raidz2") == 0) {
1067 		if (mindev != NULL)
1068 			*mindev = 3;
1069 		return (VDEV_TYPE_RAIDZ);
1070 	}
1071 
1072 	if (strcmp(type, "mirror") == 0) {
1073 		if (mindev != NULL)
1074 			*mindev = 2;
1075 		return (VDEV_TYPE_MIRROR);
1076 	}
1077 
1078 	if (strcmp(type, "spare") == 0) {
1079 		if (mindev != NULL)
1080 			*mindev = 1;
1081 		return (VDEV_TYPE_SPARE);
1082 	}
1083 
1084 	return (NULL);
1085 }
1086 
1087 /*
1088  * Construct a syntactically valid vdev specification,
1089  * and ensure that all devices and files exist and can be opened.
1090  * Note: we don't bother freeing anything in the error paths
1091  * because the program is just going to exit anyway.
1092  */
1093 nvlist_t *
1094 construct_spec(int argc, char **argv)
1095 {
1096 	nvlist_t *nvroot, *nv, **top, **spares;
1097 	int t, toplevels, mindev, nspares;
1098 	const char *type;
1099 
1100 	top = NULL;
1101 	toplevels = 0;
1102 	spares = NULL;
1103 	nspares = 0;
1104 
1105 	while (argc > 0) {
1106 		nv = NULL;
1107 
1108 		/*
1109 		 * If it's a mirror or raidz, the subsequent arguments are
1110 		 * its leaves -- until we encounter the next mirror or raidz.
1111 		 */
1112 		if ((type = is_grouping(argv[0], &mindev)) != NULL) {
1113 			nvlist_t **child = NULL;
1114 			int c, children = 0;
1115 
1116 			if (strcmp(type, VDEV_TYPE_SPARE) == 0 &&
1117 			    spares != NULL) {
1118 				(void) fprintf(stderr, gettext("invalid vdev "
1119 				    "specification: 'spare' can be "
1120 				    "specified only once\n"));
1121 				return (NULL);
1122 			}
1123 
1124 			for (c = 1; c < argc; c++) {
1125 				if (is_grouping(argv[c], NULL) != NULL)
1126 					break;
1127 				children++;
1128 				child = realloc(child,
1129 				    children * sizeof (nvlist_t *));
1130 				if (child == NULL)
1131 					zpool_no_memory();
1132 				if ((nv = make_leaf_vdev(argv[c])) == NULL)
1133 					return (NULL);
1134 				child[children - 1] = nv;
1135 			}
1136 
1137 			if (children < mindev) {
1138 				(void) fprintf(stderr, gettext("invalid vdev "
1139 				    "specification: %s requires at least %d "
1140 				    "devices\n"), argv[0], mindev);
1141 				return (NULL);
1142 			}
1143 
1144 			argc -= c;
1145 			argv += c;
1146 
1147 			if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1148 				spares = child;
1149 				nspares = children;
1150 				continue;
1151 			} else {
1152 				verify(nvlist_alloc(&nv, NV_UNIQUE_NAME,
1153 				    0) == 0);
1154 				verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
1155 				    type) == 0);
1156 				if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
1157 					verify(nvlist_add_uint64(nv,
1158 					    ZPOOL_CONFIG_NPARITY,
1159 					    mindev - 1) == 0);
1160 				}
1161 				verify(nvlist_add_nvlist_array(nv,
1162 				    ZPOOL_CONFIG_CHILDREN, child,
1163 				    children) == 0);
1164 
1165 				for (c = 0; c < children; c++)
1166 					nvlist_free(child[c]);
1167 				free(child);
1168 			}
1169 		} else {
1170 			/*
1171 			 * We have a device.  Pass off to make_leaf_vdev() to
1172 			 * construct the appropriate nvlist describing the vdev.
1173 			 */
1174 			if ((nv = make_leaf_vdev(argv[0])) == NULL)
1175 				return (NULL);
1176 			argc--;
1177 			argv++;
1178 		}
1179 
1180 		toplevels++;
1181 		top = realloc(top, toplevels * sizeof (nvlist_t *));
1182 		if (top == NULL)
1183 			zpool_no_memory();
1184 		top[toplevels - 1] = nv;
1185 	}
1186 
1187 	if (toplevels == 0 && nspares == 0) {
1188 		(void) fprintf(stderr, gettext("invalid vdev "
1189 		    "specification: at least one toplevel vdev must be "
1190 		    "specified\n"));
1191 		return (NULL);
1192 	}
1193 
1194 	/*
1195 	 * Finally, create nvroot and add all top-level vdevs to it.
1196 	 */
1197 	verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0);
1198 	verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
1199 	    VDEV_TYPE_ROOT) == 0);
1200 	verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1201 	    top, toplevels) == 0);
1202 	if (nspares != 0)
1203 		verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1204 		    spares, nspares) == 0);
1205 
1206 	for (t = 0; t < toplevels; t++)
1207 		nvlist_free(top[t]);
1208 	for (t = 0; t < nspares; t++)
1209 		nvlist_free(spares[t]);
1210 	if (spares)
1211 		free(spares);
1212 	free(top);
1213 
1214 	return (nvroot);
1215 }
1216 
1217 
1218 /*
1219  * Get and validate the contents of the given vdev specification.  This ensures
1220  * that the nvlist returned is well-formed, that all the devices exist, and that
1221  * they are not currently in use by any other known consumer.  The 'poolconfig'
1222  * parameter is the current configuration of the pool when adding devices
1223  * existing pool, and is used to perform additional checks, such as changing the
1224  * replication level of the pool.  It can be 'NULL' to indicate that this is a
1225  * new pool.  The 'force' flag controls whether devices should be forcefully
1226  * added, even if they appear in use.
1227  */
1228 nvlist_t *
1229 make_root_vdev(zpool_handle_t *zhp, int force, int check_rep,
1230     boolean_t isreplacing, int argc, char **argv)
1231 {
1232 	nvlist_t *newroot;
1233 	nvlist_t *poolconfig = NULL;
1234 	is_force = force;
1235 
1236 	/*
1237 	 * Construct the vdev specification.  If this is successful, we know
1238 	 * that we have a valid specification, and that all devices can be
1239 	 * opened.
1240 	 */
1241 	if ((newroot = construct_spec(argc, argv)) == NULL)
1242 		return (NULL);
1243 
1244 	if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL))
1245 		return (NULL);
1246 
1247 	/*
1248 	 * Validate each device to make sure that its not shared with another
1249 	 * subsystem.  We do this even if 'force' is set, because there are some
1250 	 * uses (such as a dedicated dump device) that even '-f' cannot
1251 	 * override.
1252 	 */
1253 	if (check_in_use(poolconfig, newroot, force, isreplacing,
1254 	    B_FALSE) != 0) {
1255 		nvlist_free(newroot);
1256 		return (NULL);
1257 	}
1258 
1259 	/*
1260 	 * Check the replication level of the given vdevs and report any errors
1261 	 * found.  We include the existing pool spec, if any, as we need to
1262 	 * catch changes against the existing replication level.
1263 	 */
1264 	if (check_rep && check_replication(poolconfig, newroot) != 0) {
1265 		nvlist_free(newroot);
1266 		return (NULL);
1267 	}
1268 
1269 	/*
1270 	 * Run through the vdev specification and label any whole disks found.
1271 	 */
1272 	if (make_disks(zhp, newroot) != 0) {
1273 		nvlist_free(newroot);
1274 		return (NULL);
1275 	}
1276 
1277 	return (newroot);
1278 }
1279