xref: /titanic_50/usr/src/cmd/zpool/zpool_vdev.c (revision 386e9c9ebfe4116f62e7a0950acd30564fc60125)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2013 by Delphix. All rights reserved.
25  */
26 
27 /*
28  * Functions to convert between a list of vdevs and an nvlist representing the
29  * configuration.  Each entry in the list can be one of:
30  *
31  * 	Device vdevs
32  * 		disk=(path=..., devid=...)
33  * 		file=(path=...)
34  *
35  * 	Group vdevs
36  * 		raidz[1|2]=(...)
37  * 		mirror=(...)
38  *
39  * 	Hot spares
40  *
41  * While the underlying implementation supports it, group vdevs cannot contain
42  * other group vdevs.  All userland verification of devices is contained within
43  * this file.  If successful, the nvlist returned can be passed directly to the
44  * kernel; we've done as much verification as possible in userland.
45  *
46  * Hot spares are a special case, and passed down as an array of disk vdevs, at
47  * the same level as the root of the vdev tree.
48  *
49  * The only function exported by this file is 'make_root_vdev'.  The
50  * function performs several passes:
51  *
52  * 	1. Construct the vdev specification.  Performs syntax validation and
53  *         makes sure each device is valid.
54  * 	2. Check for devices in use.  Using libdiskmgt, makes sure that no
55  *         devices are also in use.  Some can be overridden using the 'force'
56  *         flag, others cannot.
57  * 	3. Check for replication errors if the 'force' flag is not specified.
58  *         validates that the replication level is consistent across the
59  *         entire pool.
60  * 	4. Call libzfs to label any whole disks with an EFI label.
61  */
62 
63 #include <assert.h>
64 #include <devid.h>
65 #include <errno.h>
66 #include <fcntl.h>
67 #include <libdiskmgt.h>
68 #include <libintl.h>
69 #include <libnvpair.h>
70 #include <limits.h>
71 #include <stdio.h>
72 #include <string.h>
73 #include <unistd.h>
74 #include <sys/efi_partition.h>
75 #include <sys/stat.h>
76 #include <sys/vtoc.h>
77 #include <sys/mntent.h>
78 
79 #include "zpool_util.h"
80 
81 #define	DISK_ROOT	"/dev/dsk"
82 #define	RDISK_ROOT	"/dev/rdsk"
83 #define	BACKUP_SLICE	"s2"
84 
85 /*
86  * For any given vdev specification, we can have multiple errors.  The
87  * vdev_error() function keeps track of whether we have seen an error yet, and
88  * prints out a header if its the first error we've seen.
89  */
90 boolean_t error_seen;
91 boolean_t is_force;
92 
93 /*PRINTFLIKE1*/
94 static void
95 vdev_error(const char *fmt, ...)
96 {
97 	va_list ap;
98 
99 	if (!error_seen) {
100 		(void) fprintf(stderr, gettext("invalid vdev specification\n"));
101 		if (!is_force)
102 			(void) fprintf(stderr, gettext("use '-f' to override "
103 			    "the following errors:\n"));
104 		else
105 			(void) fprintf(stderr, gettext("the following errors "
106 			    "must be manually repaired:\n"));
107 		error_seen = B_TRUE;
108 	}
109 
110 	va_start(ap, fmt);
111 	(void) vfprintf(stderr, fmt, ap);
112 	va_end(ap);
113 }
114 
115 static void
116 libdiskmgt_error(int error)
117 {
118 	/*
119 	 * ENXIO/ENODEV is a valid error message if the device doesn't live in
120 	 * /dev/dsk.  Don't bother printing an error message in this case.
121 	 */
122 	if (error == ENXIO || error == ENODEV)
123 		return;
124 
125 	(void) fprintf(stderr, gettext("warning: device in use checking "
126 	    "failed: %s\n"), strerror(error));
127 }
128 
129 /*
130  * Validate a device, passing the bulk of the work off to libdiskmgt.
131  */
132 static int
133 check_slice(const char *path, int force, boolean_t wholedisk, boolean_t isspare)
134 {
135 	char *msg;
136 	int error = 0;
137 	dm_who_type_t who;
138 
139 	if (force)
140 		who = DM_WHO_ZPOOL_FORCE;
141 	else if (isspare)
142 		who = DM_WHO_ZPOOL_SPARE;
143 	else
144 		who = DM_WHO_ZPOOL;
145 
146 	if (dm_inuse((char *)path, &msg, who, &error) || error) {
147 		if (error != 0) {
148 			libdiskmgt_error(error);
149 			return (0);
150 		} else {
151 			vdev_error("%s", msg);
152 			free(msg);
153 			return (-1);
154 		}
155 	}
156 
157 	/*
158 	 * If we're given a whole disk, ignore overlapping slices since we're
159 	 * about to label it anyway.
160 	 */
161 	error = 0;
162 	if (!wholedisk && !force &&
163 	    (dm_isoverlapping((char *)path, &msg, &error) || error)) {
164 		if (error == 0) {
165 			/* dm_isoverlapping returned -1 */
166 			vdev_error(gettext("%s overlaps with %s\n"), path, msg);
167 			free(msg);
168 			return (-1);
169 		} else if (error != ENODEV) {
170 			/* libdiskmgt's devcache only handles physical drives */
171 			libdiskmgt_error(error);
172 			return (0);
173 		}
174 	}
175 
176 	return (0);
177 }
178 
179 
180 /*
181  * Validate a whole disk.  Iterate over all slices on the disk and make sure
182  * that none is in use by calling check_slice().
183  */
184 static int
185 check_disk(const char *name, dm_descriptor_t disk, int force, int isspare)
186 {
187 	dm_descriptor_t *drive, *media, *slice;
188 	int err = 0;
189 	int i;
190 	int ret;
191 
192 	/*
193 	 * Get the drive associated with this disk.  This should never fail,
194 	 * because we already have an alias handle open for the device.
195 	 */
196 	if ((drive = dm_get_associated_descriptors(disk, DM_DRIVE,
197 	    &err)) == NULL || *drive == NULL) {
198 		if (err)
199 			libdiskmgt_error(err);
200 		return (0);
201 	}
202 
203 	if ((media = dm_get_associated_descriptors(*drive, DM_MEDIA,
204 	    &err)) == NULL) {
205 		dm_free_descriptors(drive);
206 		if (err)
207 			libdiskmgt_error(err);
208 		return (0);
209 	}
210 
211 	dm_free_descriptors(drive);
212 
213 	/*
214 	 * It is possible that the user has specified a removable media drive,
215 	 * and the media is not present.
216 	 */
217 	if (*media == NULL) {
218 		dm_free_descriptors(media);
219 		vdev_error(gettext("'%s' has no media in drive\n"), name);
220 		return (-1);
221 	}
222 
223 	if ((slice = dm_get_associated_descriptors(*media, DM_SLICE,
224 	    &err)) == NULL) {
225 		dm_free_descriptors(media);
226 		if (err)
227 			libdiskmgt_error(err);
228 		return (0);
229 	}
230 
231 	dm_free_descriptors(media);
232 
233 	ret = 0;
234 
235 	/*
236 	 * Iterate over all slices and report any errors.  We don't care about
237 	 * overlapping slices because we are using the whole disk.
238 	 */
239 	for (i = 0; slice[i] != NULL; i++) {
240 		char *name = dm_get_name(slice[i], &err);
241 
242 		if (check_slice(name, force, B_TRUE, isspare) != 0)
243 			ret = -1;
244 
245 		dm_free_name(name);
246 	}
247 
248 	dm_free_descriptors(slice);
249 	return (ret);
250 }
251 
252 /*
253  * Validate a device.
254  */
255 static int
256 check_device(const char *path, boolean_t force, boolean_t isspare)
257 {
258 	dm_descriptor_t desc;
259 	int err;
260 	char *dev;
261 
262 	/*
263 	 * For whole disks, libdiskmgt does not include the leading dev path.
264 	 */
265 	dev = strrchr(path, '/');
266 	assert(dev != NULL);
267 	dev++;
268 	if ((desc = dm_get_descriptor_by_name(DM_ALIAS, dev, &err)) != NULL) {
269 		err = check_disk(path, desc, force, isspare);
270 		dm_free_descriptor(desc);
271 		return (err);
272 	}
273 
274 	return (check_slice(path, force, B_FALSE, isspare));
275 }
276 
277 /*
278  * Check that a file is valid.  All we can do in this case is check that it's
279  * not in use by another pool, and not in use by swap.
280  */
281 static int
282 check_file(const char *file, boolean_t force, boolean_t isspare)
283 {
284 	char  *name;
285 	int fd;
286 	int ret = 0;
287 	int err;
288 	pool_state_t state;
289 	boolean_t inuse;
290 
291 	if (dm_inuse_swap(file, &err)) {
292 		if (err)
293 			libdiskmgt_error(err);
294 		else
295 			vdev_error(gettext("%s is currently used by swap. "
296 			    "Please see swap(1M).\n"), file);
297 		return (-1);
298 	}
299 
300 	if ((fd = open(file, O_RDONLY)) < 0)
301 		return (0);
302 
303 	if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) {
304 		const char *desc;
305 
306 		switch (state) {
307 		case POOL_STATE_ACTIVE:
308 			desc = gettext("active");
309 			break;
310 
311 		case POOL_STATE_EXPORTED:
312 			desc = gettext("exported");
313 			break;
314 
315 		case POOL_STATE_POTENTIALLY_ACTIVE:
316 			desc = gettext("potentially active");
317 			break;
318 
319 		default:
320 			desc = gettext("unknown");
321 			break;
322 		}
323 
324 		/*
325 		 * Allow hot spares to be shared between pools.
326 		 */
327 		if (state == POOL_STATE_SPARE && isspare)
328 			return (0);
329 
330 		if (state == POOL_STATE_ACTIVE ||
331 		    state == POOL_STATE_SPARE || !force) {
332 			switch (state) {
333 			case POOL_STATE_SPARE:
334 				vdev_error(gettext("%s is reserved as a hot "
335 				    "spare for pool %s\n"), file, name);
336 				break;
337 			default:
338 				vdev_error(gettext("%s is part of %s pool "
339 				    "'%s'\n"), file, desc, name);
340 				break;
341 			}
342 			ret = -1;
343 		}
344 
345 		free(name);
346 	}
347 
348 	(void) close(fd);
349 	return (ret);
350 }
351 
352 
353 /*
354  * By "whole disk" we mean an entire physical disk (something we can
355  * label, toggle the write cache on, etc.) as opposed to the full
356  * capacity of a pseudo-device such as lofi or did.  We act as if we
357  * are labeling the disk, which should be a pretty good test of whether
358  * it's a viable device or not.  Returns B_TRUE if it is and B_FALSE if
359  * it isn't.
360  */
361 static boolean_t
362 is_whole_disk(const char *arg)
363 {
364 	struct dk_gpt *label;
365 	int	fd;
366 	char	path[MAXPATHLEN];
367 
368 	(void) snprintf(path, sizeof (path), "%s%s%s",
369 	    RDISK_ROOT, strrchr(arg, '/'), BACKUP_SLICE);
370 	if ((fd = open(path, O_RDWR | O_NDELAY)) < 0)
371 		return (B_FALSE);
372 	if (efi_alloc_and_init(fd, EFI_NUMPAR, &label) != 0) {
373 		(void) close(fd);
374 		return (B_FALSE);
375 	}
376 	efi_free(label);
377 	(void) close(fd);
378 	return (B_TRUE);
379 }
380 
381 /*
382  * Create a leaf vdev.  Determine if this is a file or a device.  If it's a
383  * device, fill in the device id to make a complete nvlist.  Valid forms for a
384  * leaf vdev are:
385  *
386  * 	/dev/dsk/xxx	Complete disk path
387  * 	/xxx		Full path to file
388  * 	xxx		Shorthand for /dev/dsk/xxx
389  */
390 static nvlist_t *
391 make_leaf_vdev(const char *arg, uint64_t is_log)
392 {
393 	char path[MAXPATHLEN];
394 	struct stat64 statbuf;
395 	nvlist_t *vdev = NULL;
396 	char *type = NULL;
397 	boolean_t wholedisk = B_FALSE;
398 
399 	/*
400 	 * Determine what type of vdev this is, and put the full path into
401 	 * 'path'.  We detect whether this is a device of file afterwards by
402 	 * checking the st_mode of the file.
403 	 */
404 	if (arg[0] == '/') {
405 		/*
406 		 * Complete device or file path.  Exact type is determined by
407 		 * examining the file descriptor afterwards.
408 		 */
409 		wholedisk = is_whole_disk(arg);
410 		if (!wholedisk && (stat64(arg, &statbuf) != 0)) {
411 			(void) fprintf(stderr,
412 			    gettext("cannot open '%s': %s\n"),
413 			    arg, strerror(errno));
414 			return (NULL);
415 		}
416 
417 		(void) strlcpy(path, arg, sizeof (path));
418 	} else {
419 		/*
420 		 * This may be a short path for a device, or it could be total
421 		 * gibberish.  Check to see if it's a known device in
422 		 * /dev/dsk/.  As part of this check, see if we've been given a
423 		 * an entire disk (minus the slice number).
424 		 */
425 		(void) snprintf(path, sizeof (path), "%s/%s", DISK_ROOT,
426 		    arg);
427 		wholedisk = is_whole_disk(path);
428 		if (!wholedisk && (stat64(path, &statbuf) != 0)) {
429 			/*
430 			 * If we got ENOENT, then the user gave us
431 			 * gibberish, so try to direct them with a
432 			 * reasonable error message.  Otherwise,
433 			 * regurgitate strerror() since it's the best we
434 			 * can do.
435 			 */
436 			if (errno == ENOENT) {
437 				(void) fprintf(stderr,
438 				    gettext("cannot open '%s': no such "
439 				    "device in %s\n"), arg, DISK_ROOT);
440 				(void) fprintf(stderr,
441 				    gettext("must be a full path or "
442 				    "shorthand device name\n"));
443 				return (NULL);
444 			} else {
445 				(void) fprintf(stderr,
446 				    gettext("cannot open '%s': %s\n"),
447 				    path, strerror(errno));
448 				return (NULL);
449 			}
450 		}
451 	}
452 
453 	/*
454 	 * Determine whether this is a device or a file.
455 	 */
456 	if (wholedisk || S_ISBLK(statbuf.st_mode)) {
457 		type = VDEV_TYPE_DISK;
458 	} else if (S_ISREG(statbuf.st_mode)) {
459 		type = VDEV_TYPE_FILE;
460 	} else {
461 		(void) fprintf(stderr, gettext("cannot use '%s': must be a "
462 		    "block device or regular file\n"), path);
463 		return (NULL);
464 	}
465 
466 	/*
467 	 * Finally, we have the complete device or file, and we know that it is
468 	 * acceptable to use.  Construct the nvlist to describe this vdev.  All
469 	 * vdevs have a 'path' element, and devices also have a 'devid' element.
470 	 */
471 	verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
472 	verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
473 	verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
474 	verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_IS_LOG, is_log) == 0);
475 	if (strcmp(type, VDEV_TYPE_DISK) == 0)
476 		verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
477 		    (uint64_t)wholedisk) == 0);
478 
479 	/*
480 	 * For a whole disk, defer getting its devid until after labeling it.
481 	 */
482 	if (S_ISBLK(statbuf.st_mode) && !wholedisk) {
483 		/*
484 		 * Get the devid for the device.
485 		 */
486 		int fd;
487 		ddi_devid_t devid;
488 		char *minor = NULL, *devid_str = NULL;
489 
490 		if ((fd = open(path, O_RDONLY)) < 0) {
491 			(void) fprintf(stderr, gettext("cannot open '%s': "
492 			    "%s\n"), path, strerror(errno));
493 			nvlist_free(vdev);
494 			return (NULL);
495 		}
496 
497 		if (devid_get(fd, &devid) == 0) {
498 			if (devid_get_minor_name(fd, &minor) == 0 &&
499 			    (devid_str = devid_str_encode(devid, minor)) !=
500 			    NULL) {
501 				verify(nvlist_add_string(vdev,
502 				    ZPOOL_CONFIG_DEVID, devid_str) == 0);
503 			}
504 			if (devid_str != NULL)
505 				devid_str_free(devid_str);
506 			if (minor != NULL)
507 				devid_str_free(minor);
508 			devid_free(devid);
509 		}
510 
511 		(void) close(fd);
512 	}
513 
514 	return (vdev);
515 }
516 
517 /*
518  * Go through and verify the replication level of the pool is consistent.
519  * Performs the following checks:
520  *
521  * 	For the new spec, verifies that devices in mirrors and raidz are the
522  * 	same size.
523  *
524  * 	If the current configuration already has inconsistent replication
525  * 	levels, ignore any other potential problems in the new spec.
526  *
527  * 	Otherwise, make sure that the current spec (if there is one) and the new
528  * 	spec have consistent replication levels.
529  */
530 typedef struct replication_level {
531 	char *zprl_type;
532 	uint64_t zprl_children;
533 	uint64_t zprl_parity;
534 } replication_level_t;
535 
536 #define	ZPOOL_FUZZ	(16 * 1024 * 1024)
537 
538 /*
539  * Given a list of toplevel vdevs, return the current replication level.  If
540  * the config is inconsistent, then NULL is returned.  If 'fatal' is set, then
541  * an error message will be displayed for each self-inconsistent vdev.
542  */
543 static replication_level_t *
544 get_replication(nvlist_t *nvroot, boolean_t fatal)
545 {
546 	nvlist_t **top;
547 	uint_t t, toplevels;
548 	nvlist_t **child;
549 	uint_t c, children;
550 	nvlist_t *nv;
551 	char *type;
552 	replication_level_t lastrep, rep, *ret;
553 	boolean_t dontreport;
554 
555 	ret = safe_malloc(sizeof (replication_level_t));
556 
557 	verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
558 	    &top, &toplevels) == 0);
559 
560 	lastrep.zprl_type = NULL;
561 	for (t = 0; t < toplevels; t++) {
562 		uint64_t is_log = B_FALSE;
563 
564 		nv = top[t];
565 
566 		/*
567 		 * For separate logs we ignore the top level vdev replication
568 		 * constraints.
569 		 */
570 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log);
571 		if (is_log)
572 			continue;
573 
574 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE,
575 		    &type) == 0);
576 		if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
577 		    &child, &children) != 0) {
578 			/*
579 			 * This is a 'file' or 'disk' vdev.
580 			 */
581 			rep.zprl_type = type;
582 			rep.zprl_children = 1;
583 			rep.zprl_parity = 0;
584 		} else {
585 			uint64_t vdev_size;
586 
587 			/*
588 			 * This is a mirror or RAID-Z vdev.  Go through and make
589 			 * sure the contents are all the same (files vs. disks),
590 			 * keeping track of the number of elements in the
591 			 * process.
592 			 *
593 			 * We also check that the size of each vdev (if it can
594 			 * be determined) is the same.
595 			 */
596 			rep.zprl_type = type;
597 			rep.zprl_children = 0;
598 
599 			if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
600 				verify(nvlist_lookup_uint64(nv,
601 				    ZPOOL_CONFIG_NPARITY,
602 				    &rep.zprl_parity) == 0);
603 				assert(rep.zprl_parity != 0);
604 			} else {
605 				rep.zprl_parity = 0;
606 			}
607 
608 			/*
609 			 * The 'dontreport' variable indicates that we've
610 			 * already reported an error for this spec, so don't
611 			 * bother doing it again.
612 			 */
613 			type = NULL;
614 			dontreport = 0;
615 			vdev_size = -1ULL;
616 			for (c = 0; c < children; c++) {
617 				nvlist_t *cnv = child[c];
618 				char *path;
619 				struct stat64 statbuf;
620 				uint64_t size = -1ULL;
621 				char *childtype;
622 				int fd, err;
623 
624 				rep.zprl_children++;
625 
626 				verify(nvlist_lookup_string(cnv,
627 				    ZPOOL_CONFIG_TYPE, &childtype) == 0);
628 
629 				/*
630 				 * If this is a replacing or spare vdev, then
631 				 * get the real first child of the vdev.
632 				 */
633 				if (strcmp(childtype,
634 				    VDEV_TYPE_REPLACING) == 0 ||
635 				    strcmp(childtype, VDEV_TYPE_SPARE) == 0) {
636 					nvlist_t **rchild;
637 					uint_t rchildren;
638 
639 					verify(nvlist_lookup_nvlist_array(cnv,
640 					    ZPOOL_CONFIG_CHILDREN, &rchild,
641 					    &rchildren) == 0);
642 					assert(rchildren == 2);
643 					cnv = rchild[0];
644 
645 					verify(nvlist_lookup_string(cnv,
646 					    ZPOOL_CONFIG_TYPE,
647 					    &childtype) == 0);
648 				}
649 
650 				verify(nvlist_lookup_string(cnv,
651 				    ZPOOL_CONFIG_PATH, &path) == 0);
652 
653 				/*
654 				 * If we have a raidz/mirror that combines disks
655 				 * with files, report it as an error.
656 				 */
657 				if (!dontreport && type != NULL &&
658 				    strcmp(type, childtype) != 0) {
659 					if (ret != NULL)
660 						free(ret);
661 					ret = NULL;
662 					if (fatal)
663 						vdev_error(gettext(
664 						    "mismatched replication "
665 						    "level: %s contains both "
666 						    "files and devices\n"),
667 						    rep.zprl_type);
668 					else
669 						return (NULL);
670 					dontreport = B_TRUE;
671 				}
672 
673 				/*
674 				 * According to stat(2), the value of 'st_size'
675 				 * is undefined for block devices and character
676 				 * devices.  But there is no effective way to
677 				 * determine the real size in userland.
678 				 *
679 				 * Instead, we'll take advantage of an
680 				 * implementation detail of spec_size().  If the
681 				 * device is currently open, then we (should)
682 				 * return a valid size.
683 				 *
684 				 * If we still don't get a valid size (indicated
685 				 * by a size of 0 or MAXOFFSET_T), then ignore
686 				 * this device altogether.
687 				 */
688 				if ((fd = open(path, O_RDONLY)) >= 0) {
689 					err = fstat64(fd, &statbuf);
690 					(void) close(fd);
691 				} else {
692 					err = stat64(path, &statbuf);
693 				}
694 
695 				if (err != 0 ||
696 				    statbuf.st_size == 0 ||
697 				    statbuf.st_size == MAXOFFSET_T)
698 					continue;
699 
700 				size = statbuf.st_size;
701 
702 				/*
703 				 * Also make sure that devices and
704 				 * slices have a consistent size.  If
705 				 * they differ by a significant amount
706 				 * (~16MB) then report an error.
707 				 */
708 				if (!dontreport &&
709 				    (vdev_size != -1ULL &&
710 				    (labs(size - vdev_size) >
711 				    ZPOOL_FUZZ))) {
712 					if (ret != NULL)
713 						free(ret);
714 					ret = NULL;
715 					if (fatal)
716 						vdev_error(gettext(
717 						    "%s contains devices of "
718 						    "different sizes\n"),
719 						    rep.zprl_type);
720 					else
721 						return (NULL);
722 					dontreport = B_TRUE;
723 				}
724 
725 				type = childtype;
726 				vdev_size = size;
727 			}
728 		}
729 
730 		/*
731 		 * At this point, we have the replication of the last toplevel
732 		 * vdev in 'rep'.  Compare it to 'lastrep' to see if its
733 		 * different.
734 		 */
735 		if (lastrep.zprl_type != NULL) {
736 			if (strcmp(lastrep.zprl_type, rep.zprl_type) != 0) {
737 				if (ret != NULL)
738 					free(ret);
739 				ret = NULL;
740 				if (fatal)
741 					vdev_error(gettext(
742 					    "mismatched replication level: "
743 					    "both %s and %s vdevs are "
744 					    "present\n"),
745 					    lastrep.zprl_type, rep.zprl_type);
746 				else
747 					return (NULL);
748 			} else if (lastrep.zprl_parity != rep.zprl_parity) {
749 				if (ret)
750 					free(ret);
751 				ret = NULL;
752 				if (fatal)
753 					vdev_error(gettext(
754 					    "mismatched replication level: "
755 					    "both %llu and %llu device parity "
756 					    "%s vdevs are present\n"),
757 					    lastrep.zprl_parity,
758 					    rep.zprl_parity,
759 					    rep.zprl_type);
760 				else
761 					return (NULL);
762 			} else if (lastrep.zprl_children != rep.zprl_children) {
763 				if (ret)
764 					free(ret);
765 				ret = NULL;
766 				if (fatal)
767 					vdev_error(gettext(
768 					    "mismatched replication level: "
769 					    "both %llu-way and %llu-way %s "
770 					    "vdevs are present\n"),
771 					    lastrep.zprl_children,
772 					    rep.zprl_children,
773 					    rep.zprl_type);
774 				else
775 					return (NULL);
776 			}
777 		}
778 		lastrep = rep;
779 	}
780 
781 	if (ret != NULL)
782 		*ret = rep;
783 
784 	return (ret);
785 }
786 
787 /*
788  * Check the replication level of the vdev spec against the current pool.  Calls
789  * get_replication() to make sure the new spec is self-consistent.  If the pool
790  * has a consistent replication level, then we ignore any errors.  Otherwise,
791  * report any difference between the two.
792  */
793 static int
794 check_replication(nvlist_t *config, nvlist_t *newroot)
795 {
796 	nvlist_t **child;
797 	uint_t	children;
798 	replication_level_t *current = NULL, *new;
799 	int ret;
800 
801 	/*
802 	 * If we have a current pool configuration, check to see if it's
803 	 * self-consistent.  If not, simply return success.
804 	 */
805 	if (config != NULL) {
806 		nvlist_t *nvroot;
807 
808 		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
809 		    &nvroot) == 0);
810 		if ((current = get_replication(nvroot, B_FALSE)) == NULL)
811 			return (0);
812 	}
813 	/*
814 	 * for spares there may be no children, and therefore no
815 	 * replication level to check
816 	 */
817 	if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN,
818 	    &child, &children) != 0) || (children == 0)) {
819 		free(current);
820 		return (0);
821 	}
822 
823 	/*
824 	 * If all we have is logs then there's no replication level to check.
825 	 */
826 	if (num_logs(newroot) == children) {
827 		free(current);
828 		return (0);
829 	}
830 
831 	/*
832 	 * Get the replication level of the new vdev spec, reporting any
833 	 * inconsistencies found.
834 	 */
835 	if ((new = get_replication(newroot, B_TRUE)) == NULL) {
836 		free(current);
837 		return (-1);
838 	}
839 
840 	/*
841 	 * Check to see if the new vdev spec matches the replication level of
842 	 * the current pool.
843 	 */
844 	ret = 0;
845 	if (current != NULL) {
846 		if (strcmp(current->zprl_type, new->zprl_type) != 0) {
847 			vdev_error(gettext(
848 			    "mismatched replication level: pool uses %s "
849 			    "and new vdev is %s\n"),
850 			    current->zprl_type, new->zprl_type);
851 			ret = -1;
852 		} else if (current->zprl_parity != new->zprl_parity) {
853 			vdev_error(gettext(
854 			    "mismatched replication level: pool uses %llu "
855 			    "device parity and new vdev uses %llu\n"),
856 			    current->zprl_parity, new->zprl_parity);
857 			ret = -1;
858 		} else if (current->zprl_children != new->zprl_children) {
859 			vdev_error(gettext(
860 			    "mismatched replication level: pool uses %llu-way "
861 			    "%s and new vdev uses %llu-way %s\n"),
862 			    current->zprl_children, current->zprl_type,
863 			    new->zprl_children, new->zprl_type);
864 			ret = -1;
865 		}
866 	}
867 
868 	free(new);
869 	if (current != NULL)
870 		free(current);
871 
872 	return (ret);
873 }
874 
875 /*
876  * Go through and find any whole disks in the vdev specification, labelling them
877  * as appropriate.  When constructing the vdev spec, we were unable to open this
878  * device in order to provide a devid.  Now that we have labelled the disk and
879  * know that slice 0 is valid, we can construct the devid now.
880  *
881  * If the disk was already labeled with an EFI label, we will have gotten the
882  * devid already (because we were able to open the whole disk).  Otherwise, we
883  * need to get the devid after we label the disk.
884  */
885 static int
886 make_disks(zpool_handle_t *zhp, nvlist_t *nv)
887 {
888 	nvlist_t **child;
889 	uint_t c, children;
890 	char *type, *path, *diskname;
891 	char buf[MAXPATHLEN];
892 	uint64_t wholedisk;
893 	int fd;
894 	int ret;
895 	ddi_devid_t devid;
896 	char *minor = NULL, *devid_str = NULL;
897 
898 	verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
899 
900 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
901 	    &child, &children) != 0) {
902 
903 		if (strcmp(type, VDEV_TYPE_DISK) != 0)
904 			return (0);
905 
906 		/*
907 		 * We have a disk device.  Get the path to the device
908 		 * and see if it's a whole disk by appending the backup
909 		 * slice and stat()ing the device.
910 		 */
911 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0);
912 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
913 		    &wholedisk) != 0 || !wholedisk)
914 			return (0);
915 
916 		diskname = strrchr(path, '/');
917 		assert(diskname != NULL);
918 		diskname++;
919 		if (zpool_label_disk(g_zfs, zhp, diskname) == -1)
920 			return (-1);
921 
922 		/*
923 		 * Fill in the devid, now that we've labeled the disk.
924 		 */
925 		(void) snprintf(buf, sizeof (buf), "%ss0", path);
926 		if ((fd = open(buf, O_RDONLY)) < 0) {
927 			(void) fprintf(stderr,
928 			    gettext("cannot open '%s': %s\n"),
929 			    buf, strerror(errno));
930 			return (-1);
931 		}
932 
933 		if (devid_get(fd, &devid) == 0) {
934 			if (devid_get_minor_name(fd, &minor) == 0 &&
935 			    (devid_str = devid_str_encode(devid, minor)) !=
936 			    NULL) {
937 				verify(nvlist_add_string(nv,
938 				    ZPOOL_CONFIG_DEVID, devid_str) == 0);
939 			}
940 			if (devid_str != NULL)
941 				devid_str_free(devid_str);
942 			if (minor != NULL)
943 				devid_str_free(minor);
944 			devid_free(devid);
945 		}
946 
947 		/*
948 		 * Update the path to refer to the 's0' slice.  The presence of
949 		 * the 'whole_disk' field indicates to the CLI that we should
950 		 * chop off the slice number when displaying the device in
951 		 * future output.
952 		 */
953 		verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, buf) == 0);
954 
955 		(void) close(fd);
956 
957 		return (0);
958 	}
959 
960 	for (c = 0; c < children; c++)
961 		if ((ret = make_disks(zhp, child[c])) != 0)
962 			return (ret);
963 
964 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
965 	    &child, &children) == 0)
966 		for (c = 0; c < children; c++)
967 			if ((ret = make_disks(zhp, child[c])) != 0)
968 				return (ret);
969 
970 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
971 	    &child, &children) == 0)
972 		for (c = 0; c < children; c++)
973 			if ((ret = make_disks(zhp, child[c])) != 0)
974 				return (ret);
975 
976 	return (0);
977 }
978 
979 /*
980  * Determine if the given path is a hot spare within the given configuration.
981  */
982 static boolean_t
983 is_spare(nvlist_t *config, const char *path)
984 {
985 	int fd;
986 	pool_state_t state;
987 	char *name = NULL;
988 	nvlist_t *label;
989 	uint64_t guid, spareguid;
990 	nvlist_t *nvroot;
991 	nvlist_t **spares;
992 	uint_t i, nspares;
993 	boolean_t inuse;
994 
995 	if ((fd = open(path, O_RDONLY)) < 0)
996 		return (B_FALSE);
997 
998 	if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 ||
999 	    !inuse ||
1000 	    state != POOL_STATE_SPARE ||
1001 	    zpool_read_label(fd, &label) != 0) {
1002 		free(name);
1003 		(void) close(fd);
1004 		return (B_FALSE);
1005 	}
1006 	free(name);
1007 	(void) close(fd);
1008 
1009 	verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0);
1010 	nvlist_free(label);
1011 
1012 	verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1013 	    &nvroot) == 0);
1014 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1015 	    &spares, &nspares) == 0) {
1016 		for (i = 0; i < nspares; i++) {
1017 			verify(nvlist_lookup_uint64(spares[i],
1018 			    ZPOOL_CONFIG_GUID, &spareguid) == 0);
1019 			if (spareguid == guid)
1020 				return (B_TRUE);
1021 		}
1022 	}
1023 
1024 	return (B_FALSE);
1025 }
1026 
1027 /*
1028  * Go through and find any devices that are in use.  We rely on libdiskmgt for
1029  * the majority of this task.
1030  */
1031 static boolean_t
1032 is_device_in_use(nvlist_t *config, nvlist_t *nv, boolean_t force,
1033     boolean_t replacing, boolean_t isspare)
1034 {
1035 	nvlist_t **child;
1036 	uint_t c, children;
1037 	char *type, *path;
1038 	int ret;
1039 	char buf[MAXPATHLEN];
1040 	uint64_t wholedisk;
1041 	boolean_t anyinuse = B_FALSE;
1042 
1043 	verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
1044 
1045 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1046 	    &child, &children) != 0) {
1047 
1048 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0);
1049 
1050 		/*
1051 		 * As a generic check, we look to see if this is a replace of a
1052 		 * hot spare within the same pool.  If so, we allow it
1053 		 * regardless of what libdiskmgt or zpool_in_use() says.
1054 		 */
1055 		if (replacing) {
1056 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
1057 			    &wholedisk) == 0 && wholedisk)
1058 				(void) snprintf(buf, sizeof (buf), "%ss0",
1059 				    path);
1060 			else
1061 				(void) strlcpy(buf, path, sizeof (buf));
1062 
1063 			if (is_spare(config, buf))
1064 				return (B_FALSE);
1065 		}
1066 
1067 		if (strcmp(type, VDEV_TYPE_DISK) == 0)
1068 			ret = check_device(path, force, isspare);
1069 		else if (strcmp(type, VDEV_TYPE_FILE) == 0)
1070 			ret = check_file(path, force, isspare);
1071 
1072 		return (ret != 0);
1073 	}
1074 
1075 	for (c = 0; c < children; c++)
1076 		if (is_device_in_use(config, child[c], force, replacing,
1077 		    B_FALSE))
1078 			anyinuse = B_TRUE;
1079 
1080 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1081 	    &child, &children) == 0)
1082 		for (c = 0; c < children; c++)
1083 			if (is_device_in_use(config, child[c], force, replacing,
1084 			    B_TRUE))
1085 				anyinuse = B_TRUE;
1086 
1087 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1088 	    &child, &children) == 0)
1089 		for (c = 0; c < children; c++)
1090 			if (is_device_in_use(config, child[c], force, replacing,
1091 			    B_FALSE))
1092 				anyinuse = B_TRUE;
1093 
1094 	return (anyinuse);
1095 }
1096 
1097 static const char *
1098 is_grouping(const char *type, int *mindev, int *maxdev)
1099 {
1100 	if (strncmp(type, "raidz", 5) == 0) {
1101 		const char *p = type + 5;
1102 		char *end;
1103 		long nparity;
1104 
1105 		if (*p == '\0') {
1106 			nparity = 1;
1107 		} else if (*p == '0') {
1108 			return (NULL); /* no zero prefixes allowed */
1109 		} else {
1110 			errno = 0;
1111 			nparity = strtol(p, &end, 10);
1112 			if (errno != 0 || nparity < 1 || nparity >= 255 ||
1113 			    *end != '\0')
1114 				return (NULL);
1115 		}
1116 
1117 		if (mindev != NULL)
1118 			*mindev = nparity + 1;
1119 		if (maxdev != NULL)
1120 			*maxdev = 255;
1121 		return (VDEV_TYPE_RAIDZ);
1122 	}
1123 
1124 	if (maxdev != NULL)
1125 		*maxdev = INT_MAX;
1126 
1127 	if (strcmp(type, "mirror") == 0) {
1128 		if (mindev != NULL)
1129 			*mindev = 2;
1130 		return (VDEV_TYPE_MIRROR);
1131 	}
1132 
1133 	if (strcmp(type, "spare") == 0) {
1134 		if (mindev != NULL)
1135 			*mindev = 1;
1136 		return (VDEV_TYPE_SPARE);
1137 	}
1138 
1139 	if (strcmp(type, "log") == 0) {
1140 		if (mindev != NULL)
1141 			*mindev = 1;
1142 		return (VDEV_TYPE_LOG);
1143 	}
1144 
1145 	if (strcmp(type, "cache") == 0) {
1146 		if (mindev != NULL)
1147 			*mindev = 1;
1148 		return (VDEV_TYPE_L2CACHE);
1149 	}
1150 
1151 	return (NULL);
1152 }
1153 
1154 /*
1155  * Construct a syntactically valid vdev specification,
1156  * and ensure that all devices and files exist and can be opened.
1157  * Note: we don't bother freeing anything in the error paths
1158  * because the program is just going to exit anyway.
1159  */
1160 nvlist_t *
1161 construct_spec(int argc, char **argv)
1162 {
1163 	nvlist_t *nvroot, *nv, **top, **spares, **l2cache;
1164 	int t, toplevels, mindev, maxdev, nspares, nlogs, nl2cache;
1165 	const char *type;
1166 	uint64_t is_log;
1167 	boolean_t seen_logs;
1168 
1169 	top = NULL;
1170 	toplevels = 0;
1171 	spares = NULL;
1172 	l2cache = NULL;
1173 	nspares = 0;
1174 	nlogs = 0;
1175 	nl2cache = 0;
1176 	is_log = B_FALSE;
1177 	seen_logs = B_FALSE;
1178 
1179 	while (argc > 0) {
1180 		nv = NULL;
1181 
1182 		/*
1183 		 * If it's a mirror or raidz, the subsequent arguments are
1184 		 * its leaves -- until we encounter the next mirror or raidz.
1185 		 */
1186 		if ((type = is_grouping(argv[0], &mindev, &maxdev)) != NULL) {
1187 			nvlist_t **child = NULL;
1188 			int c, children = 0;
1189 
1190 			if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1191 				if (spares != NULL) {
1192 					(void) fprintf(stderr,
1193 					    gettext("invalid vdev "
1194 					    "specification: 'spare' can be "
1195 					    "specified only once\n"));
1196 					return (NULL);
1197 				}
1198 				is_log = B_FALSE;
1199 			}
1200 
1201 			if (strcmp(type, VDEV_TYPE_LOG) == 0) {
1202 				if (seen_logs) {
1203 					(void) fprintf(stderr,
1204 					    gettext("invalid vdev "
1205 					    "specification: 'log' can be "
1206 					    "specified only once\n"));
1207 					return (NULL);
1208 				}
1209 				seen_logs = B_TRUE;
1210 				is_log = B_TRUE;
1211 				argc--;
1212 				argv++;
1213 				/*
1214 				 * A log is not a real grouping device.
1215 				 * We just set is_log and continue.
1216 				 */
1217 				continue;
1218 			}
1219 
1220 			if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1221 				if (l2cache != NULL) {
1222 					(void) fprintf(stderr,
1223 					    gettext("invalid vdev "
1224 					    "specification: 'cache' can be "
1225 					    "specified only once\n"));
1226 					return (NULL);
1227 				}
1228 				is_log = B_FALSE;
1229 			}
1230 
1231 			if (is_log) {
1232 				if (strcmp(type, VDEV_TYPE_MIRROR) != 0) {
1233 					(void) fprintf(stderr,
1234 					    gettext("invalid vdev "
1235 					    "specification: unsupported 'log' "
1236 					    "device: %s\n"), type);
1237 					return (NULL);
1238 				}
1239 				nlogs++;
1240 			}
1241 
1242 			for (c = 1; c < argc; c++) {
1243 				if (is_grouping(argv[c], NULL, NULL) != NULL)
1244 					break;
1245 				children++;
1246 				child = realloc(child,
1247 				    children * sizeof (nvlist_t *));
1248 				if (child == NULL)
1249 					zpool_no_memory();
1250 				if ((nv = make_leaf_vdev(argv[c], B_FALSE))
1251 				    == NULL)
1252 					return (NULL);
1253 				child[children - 1] = nv;
1254 			}
1255 
1256 			if (children < mindev) {
1257 				(void) fprintf(stderr, gettext("invalid vdev "
1258 				    "specification: %s requires at least %d "
1259 				    "devices\n"), argv[0], mindev);
1260 				return (NULL);
1261 			}
1262 
1263 			if (children > maxdev) {
1264 				(void) fprintf(stderr, gettext("invalid vdev "
1265 				    "specification: %s supports no more than "
1266 				    "%d devices\n"), argv[0], maxdev);
1267 				return (NULL);
1268 			}
1269 
1270 			argc -= c;
1271 			argv += c;
1272 
1273 			if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1274 				spares = child;
1275 				nspares = children;
1276 				continue;
1277 			} else if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1278 				l2cache = child;
1279 				nl2cache = children;
1280 				continue;
1281 			} else {
1282 				verify(nvlist_alloc(&nv, NV_UNIQUE_NAME,
1283 				    0) == 0);
1284 				verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
1285 				    type) == 0);
1286 				verify(nvlist_add_uint64(nv,
1287 				    ZPOOL_CONFIG_IS_LOG, is_log) == 0);
1288 				if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
1289 					verify(nvlist_add_uint64(nv,
1290 					    ZPOOL_CONFIG_NPARITY,
1291 					    mindev - 1) == 0);
1292 				}
1293 				verify(nvlist_add_nvlist_array(nv,
1294 				    ZPOOL_CONFIG_CHILDREN, child,
1295 				    children) == 0);
1296 
1297 				for (c = 0; c < children; c++)
1298 					nvlist_free(child[c]);
1299 				free(child);
1300 			}
1301 		} else {
1302 			/*
1303 			 * We have a device.  Pass off to make_leaf_vdev() to
1304 			 * construct the appropriate nvlist describing the vdev.
1305 			 */
1306 			if ((nv = make_leaf_vdev(argv[0], is_log)) == NULL)
1307 				return (NULL);
1308 			if (is_log)
1309 				nlogs++;
1310 			argc--;
1311 			argv++;
1312 		}
1313 
1314 		toplevels++;
1315 		top = realloc(top, toplevels * sizeof (nvlist_t *));
1316 		if (top == NULL)
1317 			zpool_no_memory();
1318 		top[toplevels - 1] = nv;
1319 	}
1320 
1321 	if (toplevels == 0 && nspares == 0 && nl2cache == 0) {
1322 		(void) fprintf(stderr, gettext("invalid vdev "
1323 		    "specification: at least one toplevel vdev must be "
1324 		    "specified\n"));
1325 		return (NULL);
1326 	}
1327 
1328 	if (seen_logs && nlogs == 0) {
1329 		(void) fprintf(stderr, gettext("invalid vdev specification: "
1330 		    "log requires at least 1 device\n"));
1331 		return (NULL);
1332 	}
1333 
1334 	/*
1335 	 * Finally, create nvroot and add all top-level vdevs to it.
1336 	 */
1337 	verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0);
1338 	verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
1339 	    VDEV_TYPE_ROOT) == 0);
1340 	verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1341 	    top, toplevels) == 0);
1342 	if (nspares != 0)
1343 		verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1344 		    spares, nspares) == 0);
1345 	if (nl2cache != 0)
1346 		verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
1347 		    l2cache, nl2cache) == 0);
1348 
1349 	for (t = 0; t < toplevels; t++)
1350 		nvlist_free(top[t]);
1351 	for (t = 0; t < nspares; t++)
1352 		nvlist_free(spares[t]);
1353 	for (t = 0; t < nl2cache; t++)
1354 		nvlist_free(l2cache[t]);
1355 	if (spares)
1356 		free(spares);
1357 	if (l2cache)
1358 		free(l2cache);
1359 	free(top);
1360 
1361 	return (nvroot);
1362 }
1363 
1364 nvlist_t *
1365 split_mirror_vdev(zpool_handle_t *zhp, char *newname, nvlist_t *props,
1366     splitflags_t flags, int argc, char **argv)
1367 {
1368 	nvlist_t *newroot = NULL, **child;
1369 	uint_t c, children;
1370 
1371 	if (argc > 0) {
1372 		if ((newroot = construct_spec(argc, argv)) == NULL) {
1373 			(void) fprintf(stderr, gettext("Unable to build a "
1374 			    "pool from the specified devices\n"));
1375 			return (NULL);
1376 		}
1377 
1378 		if (!flags.dryrun && make_disks(zhp, newroot) != 0) {
1379 			nvlist_free(newroot);
1380 			return (NULL);
1381 		}
1382 
1383 		/* avoid any tricks in the spec */
1384 		verify(nvlist_lookup_nvlist_array(newroot,
1385 		    ZPOOL_CONFIG_CHILDREN, &child, &children) == 0);
1386 		for (c = 0; c < children; c++) {
1387 			char *path;
1388 			const char *type;
1389 			int min, max;
1390 
1391 			verify(nvlist_lookup_string(child[c],
1392 			    ZPOOL_CONFIG_PATH, &path) == 0);
1393 			if ((type = is_grouping(path, &min, &max)) != NULL) {
1394 				(void) fprintf(stderr, gettext("Cannot use "
1395 				    "'%s' as a device for splitting\n"), type);
1396 				nvlist_free(newroot);
1397 				return (NULL);
1398 			}
1399 		}
1400 	}
1401 
1402 	if (zpool_vdev_split(zhp, newname, &newroot, props, flags) != 0) {
1403 		if (newroot != NULL)
1404 			nvlist_free(newroot);
1405 		return (NULL);
1406 	}
1407 
1408 	return (newroot);
1409 }
1410 
1411 /*
1412  * Get and validate the contents of the given vdev specification.  This ensures
1413  * that the nvlist returned is well-formed, that all the devices exist, and that
1414  * they are not currently in use by any other known consumer.  The 'poolconfig'
1415  * parameter is the current configuration of the pool when adding devices
1416  * existing pool, and is used to perform additional checks, such as changing the
1417  * replication level of the pool.  It can be 'NULL' to indicate that this is a
1418  * new pool.  The 'force' flag controls whether devices should be forcefully
1419  * added, even if they appear in use.
1420  */
1421 nvlist_t *
1422 make_root_vdev(zpool_handle_t *zhp, int force, int check_rep,
1423     boolean_t replacing, boolean_t dryrun, int argc, char **argv)
1424 {
1425 	nvlist_t *newroot;
1426 	nvlist_t *poolconfig = NULL;
1427 	is_force = force;
1428 
1429 	/*
1430 	 * Construct the vdev specification.  If this is successful, we know
1431 	 * that we have a valid specification, and that all devices can be
1432 	 * opened.
1433 	 */
1434 	if ((newroot = construct_spec(argc, argv)) == NULL)
1435 		return (NULL);
1436 
1437 	if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL))
1438 		return (NULL);
1439 
1440 	/*
1441 	 * Validate each device to make sure that its not shared with another
1442 	 * subsystem.  We do this even if 'force' is set, because there are some
1443 	 * uses (such as a dedicated dump device) that even '-f' cannot
1444 	 * override.
1445 	 */
1446 	if (is_device_in_use(poolconfig, newroot, force, replacing, B_FALSE)) {
1447 		nvlist_free(newroot);
1448 		return (NULL);
1449 	}
1450 
1451 	/*
1452 	 * Check the replication level of the given vdevs and report any errors
1453 	 * found.  We include the existing pool spec, if any, as we need to
1454 	 * catch changes against the existing replication level.
1455 	 */
1456 	if (check_rep && check_replication(poolconfig, newroot) != 0) {
1457 		nvlist_free(newroot);
1458 		return (NULL);
1459 	}
1460 
1461 	/*
1462 	 * Run through the vdev specification and label any whole disks found.
1463 	 */
1464 	if (!dryrun && make_disks(zhp, newroot) != 0) {
1465 		nvlist_free(newroot);
1466 		return (NULL);
1467 	}
1468 
1469 	return (newroot);
1470 }
1471