xref: /titanic_50/usr/src/cmd/zpool/zpool_vdev.c (revision 142c9f13e148d687426ed2d4e8bd93717eeaebbc)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * Functions to convert between a list of vdevs and an nvlist representing the
31  * configuration.  Each entry in the list can be one of:
32  *
33  * 	Device vdevs
34  * 		disk=(path=..., devid=...)
35  * 		file=(path=...)
36  *
37  * 	Group vdevs
38  * 		raidz[1|2]=(...)
39  * 		mirror=(...)
40  *
41  * 	Hot spares
42  *
43  * While the underlying implementation supports it, group vdevs cannot contain
44  * other group vdevs.  All userland verification of devices is contained within
45  * this file.  If successful, the nvlist returned can be passed directly to the
46  * kernel; we've done as much verification as possible in userland.
47  *
48  * Hot spares are a special case, and passed down as an array of disk vdevs, at
49  * the same level as the root of the vdev tree.
50  *
51  * The only function exported by this file is 'make_root_vdev'.  The
52  * function performs several passes:
53  *
54  * 	1. Construct the vdev specification.  Performs syntax validation and
55  *         makes sure each device is valid.
56  * 	2. Check for devices in use.  Using libdiskmgt, makes sure that no
57  *         devices are also in use.  Some can be overridden using the 'force'
58  *         flag, others cannot.
59  * 	3. Check for replication errors if the 'force' flag is not specified.
60  *         validates that the replication level is consistent across the
61  *         entire pool.
62  * 	4. Call libzfs to label any whole disks with an EFI label.
63  */
64 
65 #include <assert.h>
66 #include <devid.h>
67 #include <errno.h>
68 #include <fcntl.h>
69 #include <libdiskmgt.h>
70 #include <libintl.h>
71 #include <libnvpair.h>
72 #include <stdio.h>
73 #include <string.h>
74 #include <unistd.h>
75 #include <sys/efi_partition.h>
76 #include <sys/stat.h>
77 #include <sys/vtoc.h>
78 #include <sys/mntent.h>
79 
80 #include "zpool_util.h"
81 
82 #define	DISK_ROOT	"/dev/dsk"
83 #define	RDISK_ROOT	"/dev/rdsk"
84 #define	BACKUP_SLICE	"s2"
85 
86 /*
87  * For any given vdev specification, we can have multiple errors.  The
88  * vdev_error() function keeps track of whether we have seen an error yet, and
89  * prints out a header if its the first error we've seen.
90  */
91 boolean_t error_seen;
92 boolean_t is_force;
93 
94 /*PRINTFLIKE1*/
95 static void
96 vdev_error(const char *fmt, ...)
97 {
98 	va_list ap;
99 
100 	if (!error_seen) {
101 		(void) fprintf(stderr, gettext("invalid vdev specification\n"));
102 		if (!is_force)
103 			(void) fprintf(stderr, gettext("use '-f' to override "
104 			    "the following errors:\n"));
105 		else
106 			(void) fprintf(stderr, gettext("the following errors "
107 			    "must be manually repaired:\n"));
108 		error_seen = B_TRUE;
109 	}
110 
111 	va_start(ap, fmt);
112 	(void) vfprintf(stderr, fmt, ap);
113 	va_end(ap);
114 }
115 
116 static void
117 libdiskmgt_error(int error)
118 {
119 	/*
120 	 * ENXIO/ENODEV is a valid error message if the device doesn't live in
121 	 * /dev/dsk.  Don't bother printing an error message in this case.
122 	 */
123 	if (error == ENXIO || error == ENODEV)
124 		return;
125 
126 	(void) fprintf(stderr, gettext("warning: device in use checking "
127 	    "failed: %s\n"), strerror(error));
128 }
129 
130 /*
131  * Validate a device, passing the bulk of the work off to libdiskmgt.
132  */
133 static int
134 check_slice(const char *path, int force, boolean_t wholedisk, boolean_t isspare)
135 {
136 	char *msg;
137 	int error = 0;
138 	dm_who_type_t who;
139 
140 	if (force)
141 		who = DM_WHO_ZPOOL_FORCE;
142 	else if (isspare)
143 		who = DM_WHO_ZPOOL_SPARE;
144 	else
145 		who = DM_WHO_ZPOOL;
146 
147 	if (dm_inuse((char *)path, &msg, who, &error) || error) {
148 		if (error != 0) {
149 			libdiskmgt_error(error);
150 			return (0);
151 		} else {
152 			vdev_error("%s", msg);
153 			free(msg);
154 			return (-1);
155 		}
156 	}
157 
158 	/*
159 	 * If we're given a whole disk, ignore overlapping slices since we're
160 	 * about to label it anyway.
161 	 */
162 	error = 0;
163 	if (!wholedisk && !force &&
164 	    (dm_isoverlapping((char *)path, &msg, &error) || error)) {
165 		if (error == 0) {
166 			/* dm_isoverlapping returned -1 */
167 			vdev_error(gettext("%s overlaps with %s\n"), path, msg);
168 			free(msg);
169 			return (-1);
170 		} else if (error != ENODEV) {
171 			/* libdiskmgt's devcache only handles physical drives */
172 			libdiskmgt_error(error);
173 			return (0);
174 		}
175 	}
176 
177 	return (0);
178 }
179 
180 
181 /*
182  * Validate a whole disk.  Iterate over all slices on the disk and make sure
183  * that none is in use by calling check_slice().
184  */
185 static int
186 check_disk(const char *name, dm_descriptor_t disk, int force, int isspare)
187 {
188 	dm_descriptor_t *drive, *media, *slice;
189 	int err = 0;
190 	int i;
191 	int ret;
192 
193 	/*
194 	 * Get the drive associated with this disk.  This should never fail,
195 	 * because we already have an alias handle open for the device.
196 	 */
197 	if ((drive = dm_get_associated_descriptors(disk, DM_DRIVE,
198 	    &err)) == NULL || *drive == NULL) {
199 		if (err)
200 			libdiskmgt_error(err);
201 		return (0);
202 	}
203 
204 	if ((media = dm_get_associated_descriptors(*drive, DM_MEDIA,
205 	    &err)) == NULL) {
206 		dm_free_descriptors(drive);
207 		if (err)
208 			libdiskmgt_error(err);
209 		return (0);
210 	}
211 
212 	dm_free_descriptors(drive);
213 
214 	/*
215 	 * It is possible that the user has specified a removable media drive,
216 	 * and the media is not present.
217 	 */
218 	if (*media == NULL) {
219 		dm_free_descriptors(media);
220 		vdev_error(gettext("'%s' has no media in drive\n"), name);
221 		return (-1);
222 	}
223 
224 	if ((slice = dm_get_associated_descriptors(*media, DM_SLICE,
225 	    &err)) == NULL) {
226 		dm_free_descriptors(media);
227 		if (err)
228 			libdiskmgt_error(err);
229 		return (0);
230 	}
231 
232 	dm_free_descriptors(media);
233 
234 	ret = 0;
235 
236 	/*
237 	 * Iterate over all slices and report any errors.  We don't care about
238 	 * overlapping slices because we are using the whole disk.
239 	 */
240 	for (i = 0; slice[i] != NULL; i++) {
241 		char *name = dm_get_name(slice[i], &err);
242 
243 		if (check_slice(name, force, B_TRUE, isspare) != 0)
244 			ret = -1;
245 
246 		dm_free_name(name);
247 	}
248 
249 	dm_free_descriptors(slice);
250 	return (ret);
251 }
252 
253 /*
254  * Validate a device.
255  */
256 static int
257 check_device(const char *path, boolean_t force, boolean_t isspare)
258 {
259 	dm_descriptor_t desc;
260 	int err;
261 	char *dev;
262 
263 	/*
264 	 * For whole disks, libdiskmgt does not include the leading dev path.
265 	 */
266 	dev = strrchr(path, '/');
267 	assert(dev != NULL);
268 	dev++;
269 	if ((desc = dm_get_descriptor_by_name(DM_ALIAS, dev, &err)) != NULL) {
270 		err = check_disk(path, desc, force, isspare);
271 		dm_free_descriptor(desc);
272 		return (err);
273 	}
274 
275 	return (check_slice(path, force, B_FALSE, isspare));
276 }
277 
278 /*
279  * Check that a file is valid.  All we can do in this case is check that it's
280  * not in use by another pool, and not in use by swap.
281  */
282 static int
283 check_file(const char *file, boolean_t force, boolean_t isspare)
284 {
285 	char  *name;
286 	int fd;
287 	int ret = 0;
288 	int err;
289 	pool_state_t state;
290 	boolean_t inuse;
291 
292 	if (dm_inuse_swap(file, &err)) {
293 		if (err)
294 			libdiskmgt_error(err);
295 		else
296 			vdev_error(gettext("%s is currently used by swap. "
297 			    "Please see swap(1M).\n"), file);
298 		return (-1);
299 	}
300 
301 	if ((fd = open(file, O_RDONLY)) < 0)
302 		return (0);
303 
304 	if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) {
305 		const char *desc;
306 
307 		switch (state) {
308 		case POOL_STATE_ACTIVE:
309 			desc = gettext("active");
310 			break;
311 
312 		case POOL_STATE_EXPORTED:
313 			desc = gettext("exported");
314 			break;
315 
316 		case POOL_STATE_POTENTIALLY_ACTIVE:
317 			desc = gettext("potentially active");
318 			break;
319 
320 		default:
321 			desc = gettext("unknown");
322 			break;
323 		}
324 
325 		/*
326 		 * Allow hot spares to be shared between pools.
327 		 */
328 		if (state == POOL_STATE_SPARE && isspare)
329 			return (0);
330 
331 		if (state == POOL_STATE_ACTIVE ||
332 		    state == POOL_STATE_SPARE || !force) {
333 			switch (state) {
334 			case POOL_STATE_SPARE:
335 				vdev_error(gettext("%s is reserved as a hot "
336 				    "spare for pool %s\n"), file, name);
337 				break;
338 			default:
339 				vdev_error(gettext("%s is part of %s pool "
340 				    "'%s'\n"), file, desc, name);
341 				break;
342 			}
343 			ret = -1;
344 		}
345 
346 		free(name);
347 	}
348 
349 	(void) close(fd);
350 	return (ret);
351 }
352 
353 
354 /*
355  * By "whole disk" we mean an entire physical disk (something we can
356  * label, toggle the write cache on, etc.) as opposed to the full
357  * capacity of a pseudo-device such as lofi or did.  We act as if we
358  * are labeling the disk, which should be a pretty good test of whether
359  * it's a viable device or not.  Returns B_TRUE if it is and B_FALSE if
360  * it isn't.
361  */
362 static boolean_t
363 is_whole_disk(const char *arg)
364 {
365 	struct dk_gpt *label;
366 	int	fd;
367 	char	path[MAXPATHLEN];
368 
369 	(void) snprintf(path, sizeof (path), "%s%s%s",
370 	    RDISK_ROOT, strrchr(arg, '/'), BACKUP_SLICE);
371 	if ((fd = open(path, O_RDWR | O_NDELAY)) < 0)
372 		return (B_FALSE);
373 	if (efi_alloc_and_init(fd, EFI_NUMPAR, &label) != 0) {
374 		(void) close(fd);
375 		return (B_FALSE);
376 	}
377 	efi_free(label);
378 	(void) close(fd);
379 	return (B_TRUE);
380 }
381 
382 /*
383  * Create a leaf vdev.  Determine if this is a file or a device.  If it's a
384  * device, fill in the device id to make a complete nvlist.  Valid forms for a
385  * leaf vdev are:
386  *
387  * 	/dev/dsk/xxx	Complete disk path
388  * 	/xxx		Full path to file
389  * 	xxx		Shorthand for /dev/dsk/xxx
390  */
391 static nvlist_t *
392 make_leaf_vdev(const char *arg, uint64_t is_log)
393 {
394 	char path[MAXPATHLEN];
395 	struct stat64 statbuf;
396 	nvlist_t *vdev = NULL;
397 	char *type = NULL;
398 	boolean_t wholedisk = B_FALSE;
399 
400 	/*
401 	 * Determine what type of vdev this is, and put the full path into
402 	 * 'path'.  We detect whether this is a device of file afterwards by
403 	 * checking the st_mode of the file.
404 	 */
405 	if (arg[0] == '/') {
406 		/*
407 		 * Complete device or file path.  Exact type is determined by
408 		 * examining the file descriptor afterwards.
409 		 */
410 		wholedisk = is_whole_disk(arg);
411 		if (!wholedisk && (stat64(arg, &statbuf) != 0)) {
412 			(void) fprintf(stderr,
413 			    gettext("cannot open '%s': %s\n"),
414 			    arg, strerror(errno));
415 			return (NULL);
416 		}
417 
418 		(void) strlcpy(path, arg, sizeof (path));
419 	} else {
420 		/*
421 		 * This may be a short path for a device, or it could be total
422 		 * gibberish.  Check to see if it's a known device in
423 		 * /dev/dsk/.  As part of this check, see if we've been given a
424 		 * an entire disk (minus the slice number).
425 		 */
426 		(void) snprintf(path, sizeof (path), "%s/%s", DISK_ROOT,
427 		    arg);
428 		wholedisk = is_whole_disk(path);
429 		if (!wholedisk && (stat64(path, &statbuf) != 0)) {
430 			/*
431 			 * If we got ENOENT, then the user gave us
432 			 * gibberish, so try to direct them with a
433 			 * reasonable error message.  Otherwise,
434 			 * regurgitate strerror() since it's the best we
435 			 * can do.
436 			 */
437 			if (errno == ENOENT) {
438 				(void) fprintf(stderr,
439 				    gettext("cannot open '%s': no such "
440 				    "device in %s\n"), arg, DISK_ROOT);
441 				(void) fprintf(stderr,
442 				    gettext("must be a full path or "
443 				    "shorthand device name\n"));
444 				return (NULL);
445 			} else {
446 				(void) fprintf(stderr,
447 				    gettext("cannot open '%s': %s\n"),
448 				    path, strerror(errno));
449 				return (NULL);
450 			}
451 		}
452 	}
453 
454 	/*
455 	 * Determine whether this is a device or a file.
456 	 */
457 	if (wholedisk || S_ISBLK(statbuf.st_mode)) {
458 		type = VDEV_TYPE_DISK;
459 	} else if (S_ISREG(statbuf.st_mode)) {
460 		type = VDEV_TYPE_FILE;
461 	} else {
462 		(void) fprintf(stderr, gettext("cannot use '%s': must be a "
463 		    "block device or regular file\n"), path);
464 		return (NULL);
465 	}
466 
467 	/*
468 	 * Finally, we have the complete device or file, and we know that it is
469 	 * acceptable to use.  Construct the nvlist to describe this vdev.  All
470 	 * vdevs have a 'path' element, and devices also have a 'devid' element.
471 	 */
472 	verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
473 	verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
474 	verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
475 	verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_IS_LOG, is_log) == 0);
476 	if (strcmp(type, VDEV_TYPE_DISK) == 0)
477 		verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
478 		    (uint64_t)wholedisk) == 0);
479 
480 	/*
481 	 * For a whole disk, defer getting its devid until after labeling it.
482 	 */
483 	if (S_ISBLK(statbuf.st_mode) && !wholedisk) {
484 		/*
485 		 * Get the devid for the device.
486 		 */
487 		int fd;
488 		ddi_devid_t devid;
489 		char *minor = NULL, *devid_str = NULL;
490 
491 		if ((fd = open(path, O_RDONLY)) < 0) {
492 			(void) fprintf(stderr, gettext("cannot open '%s': "
493 			    "%s\n"), path, strerror(errno));
494 			nvlist_free(vdev);
495 			return (NULL);
496 		}
497 
498 		if (devid_get(fd, &devid) == 0) {
499 			if (devid_get_minor_name(fd, &minor) == 0 &&
500 			    (devid_str = devid_str_encode(devid, minor)) !=
501 			    NULL) {
502 				verify(nvlist_add_string(vdev,
503 				    ZPOOL_CONFIG_DEVID, devid_str) == 0);
504 			}
505 			if (devid_str != NULL)
506 				devid_str_free(devid_str);
507 			if (minor != NULL)
508 				devid_str_free(minor);
509 			devid_free(devid);
510 		}
511 
512 		(void) close(fd);
513 	}
514 
515 	return (vdev);
516 }
517 
518 /*
519  * Go through and verify the replication level of the pool is consistent.
520  * Performs the following checks:
521  *
522  * 	For the new spec, verifies that devices in mirrors and raidz are the
523  * 	same size.
524  *
525  * 	If the current configuration already has inconsistent replication
526  * 	levels, ignore any other potential problems in the new spec.
527  *
528  * 	Otherwise, make sure that the current spec (if there is one) and the new
529  * 	spec have consistent replication levels.
530  */
531 typedef struct replication_level {
532 	char *zprl_type;
533 	uint64_t zprl_children;
534 	uint64_t zprl_parity;
535 } replication_level_t;
536 
537 #define	ZPOOL_FUZZ	(16 * 1024 * 1024)
538 
539 /*
540  * Given a list of toplevel vdevs, return the current replication level.  If
541  * the config is inconsistent, then NULL is returned.  If 'fatal' is set, then
542  * an error message will be displayed for each self-inconsistent vdev.
543  */
544 static replication_level_t *
545 get_replication(nvlist_t *nvroot, boolean_t fatal)
546 {
547 	nvlist_t **top;
548 	uint_t t, toplevels;
549 	nvlist_t **child;
550 	uint_t c, children;
551 	nvlist_t *nv;
552 	char *type;
553 	replication_level_t lastrep, rep, *ret;
554 	boolean_t dontreport;
555 
556 	ret = safe_malloc(sizeof (replication_level_t));
557 
558 	verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
559 	    &top, &toplevels) == 0);
560 
561 	lastrep.zprl_type = NULL;
562 	for (t = 0; t < toplevels; t++) {
563 		uint64_t is_log = B_FALSE;
564 
565 		nv = top[t];
566 
567 		/*
568 		 * For separate logs we ignore the top level vdev replication
569 		 * constraints.
570 		 */
571 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log);
572 		if (is_log)
573 			continue;
574 
575 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE,
576 		    &type) == 0);
577 		if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
578 		    &child, &children) != 0) {
579 			/*
580 			 * This is a 'file' or 'disk' vdev.
581 			 */
582 			rep.zprl_type = type;
583 			rep.zprl_children = 1;
584 			rep.zprl_parity = 0;
585 		} else {
586 			uint64_t vdev_size;
587 
588 			/*
589 			 * This is a mirror or RAID-Z vdev.  Go through and make
590 			 * sure the contents are all the same (files vs. disks),
591 			 * keeping track of the number of elements in the
592 			 * process.
593 			 *
594 			 * We also check that the size of each vdev (if it can
595 			 * be determined) is the same.
596 			 */
597 			rep.zprl_type = type;
598 			rep.zprl_children = 0;
599 
600 			if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
601 				verify(nvlist_lookup_uint64(nv,
602 				    ZPOOL_CONFIG_NPARITY,
603 				    &rep.zprl_parity) == 0);
604 				assert(rep.zprl_parity != 0);
605 			} else {
606 				rep.zprl_parity = 0;
607 			}
608 
609 			/*
610 			 * The 'dontreport' variable indicates that we've
611 			 * already reported an error for this spec, so don't
612 			 * bother doing it again.
613 			 */
614 			type = NULL;
615 			dontreport = 0;
616 			vdev_size = -1ULL;
617 			for (c = 0; c < children; c++) {
618 				nvlist_t *cnv = child[c];
619 				char *path;
620 				struct stat64 statbuf;
621 				uint64_t size = -1ULL;
622 				char *childtype;
623 				int fd, err;
624 
625 				rep.zprl_children++;
626 
627 				verify(nvlist_lookup_string(cnv,
628 				    ZPOOL_CONFIG_TYPE, &childtype) == 0);
629 
630 				/*
631 				 * If this is a replacing or spare vdev, then
632 				 * get the real first child of the vdev.
633 				 */
634 				if (strcmp(childtype,
635 				    VDEV_TYPE_REPLACING) == 0 ||
636 				    strcmp(childtype, VDEV_TYPE_SPARE) == 0) {
637 					nvlist_t **rchild;
638 					uint_t rchildren;
639 
640 					verify(nvlist_lookup_nvlist_array(cnv,
641 					    ZPOOL_CONFIG_CHILDREN, &rchild,
642 					    &rchildren) == 0);
643 					assert(rchildren == 2);
644 					cnv = rchild[0];
645 
646 					verify(nvlist_lookup_string(cnv,
647 					    ZPOOL_CONFIG_TYPE,
648 					    &childtype) == 0);
649 				}
650 
651 				verify(nvlist_lookup_string(cnv,
652 				    ZPOOL_CONFIG_PATH, &path) == 0);
653 
654 				/*
655 				 * If we have a raidz/mirror that combines disks
656 				 * with files, report it as an error.
657 				 */
658 				if (!dontreport && type != NULL &&
659 				    strcmp(type, childtype) != 0) {
660 					if (ret != NULL)
661 						free(ret);
662 					ret = NULL;
663 					if (fatal)
664 						vdev_error(gettext(
665 						    "mismatched replication "
666 						    "level: %s contains both "
667 						    "files and devices\n"),
668 						    rep.zprl_type);
669 					else
670 						return (NULL);
671 					dontreport = B_TRUE;
672 				}
673 
674 				/*
675 				 * According to stat(2), the value of 'st_size'
676 				 * is undefined for block devices and character
677 				 * devices.  But there is no effective way to
678 				 * determine the real size in userland.
679 				 *
680 				 * Instead, we'll take advantage of an
681 				 * implementation detail of spec_size().  If the
682 				 * device is currently open, then we (should)
683 				 * return a valid size.
684 				 *
685 				 * If we still don't get a valid size (indicated
686 				 * by a size of 0 or MAXOFFSET_T), then ignore
687 				 * this device altogether.
688 				 */
689 				if ((fd = open(path, O_RDONLY)) >= 0) {
690 					err = fstat64(fd, &statbuf);
691 					(void) close(fd);
692 				} else {
693 					err = stat64(path, &statbuf);
694 				}
695 
696 				if (err != 0 ||
697 				    statbuf.st_size == 0 ||
698 				    statbuf.st_size == MAXOFFSET_T)
699 					continue;
700 
701 				size = statbuf.st_size;
702 
703 				/*
704 				 * Also make sure that devices and
705 				 * slices have a consistent size.  If
706 				 * they differ by a significant amount
707 				 * (~16MB) then report an error.
708 				 */
709 				if (!dontreport &&
710 				    (vdev_size != -1ULL &&
711 				    (labs(size - vdev_size) >
712 				    ZPOOL_FUZZ))) {
713 					if (ret != NULL)
714 						free(ret);
715 					ret = NULL;
716 					if (fatal)
717 						vdev_error(gettext(
718 						    "%s contains devices of "
719 						    "different sizes\n"),
720 						    rep.zprl_type);
721 					else
722 						return (NULL);
723 					dontreport = B_TRUE;
724 				}
725 
726 				type = childtype;
727 				vdev_size = size;
728 			}
729 		}
730 
731 		/*
732 		 * At this point, we have the replication of the last toplevel
733 		 * vdev in 'rep'.  Compare it to 'lastrep' to see if its
734 		 * different.
735 		 */
736 		if (lastrep.zprl_type != NULL) {
737 			if (strcmp(lastrep.zprl_type, rep.zprl_type) != 0) {
738 				if (ret != NULL)
739 					free(ret);
740 				ret = NULL;
741 				if (fatal)
742 					vdev_error(gettext(
743 					    "mismatched replication level: "
744 					    "both %s and %s vdevs are "
745 					    "present\n"),
746 					    lastrep.zprl_type, rep.zprl_type);
747 				else
748 					return (NULL);
749 			} else if (lastrep.zprl_parity != rep.zprl_parity) {
750 				if (ret)
751 					free(ret);
752 				ret = NULL;
753 				if (fatal)
754 					vdev_error(gettext(
755 					    "mismatched replication level: "
756 					    "both %llu and %llu device parity "
757 					    "%s vdevs are present\n"),
758 					    lastrep.zprl_parity,
759 					    rep.zprl_parity,
760 					    rep.zprl_type);
761 				else
762 					return (NULL);
763 			} else if (lastrep.zprl_children != rep.zprl_children) {
764 				if (ret)
765 					free(ret);
766 				ret = NULL;
767 				if (fatal)
768 					vdev_error(gettext(
769 					    "mismatched replication level: "
770 					    "both %llu-way and %llu-way %s "
771 					    "vdevs are present\n"),
772 					    lastrep.zprl_children,
773 					    rep.zprl_children,
774 					    rep.zprl_type);
775 				else
776 					return (NULL);
777 			}
778 		}
779 		lastrep = rep;
780 	}
781 
782 	if (ret != NULL)
783 		*ret = rep;
784 
785 	return (ret);
786 }
787 
788 /*
789  * Check the replication level of the vdev spec against the current pool.  Calls
790  * get_replication() to make sure the new spec is self-consistent.  If the pool
791  * has a consistent replication level, then we ignore any errors.  Otherwise,
792  * report any difference between the two.
793  */
794 static int
795 check_replication(nvlist_t *config, nvlist_t *newroot)
796 {
797 	nvlist_t **child;
798 	uint_t	children;
799 	replication_level_t *current = NULL, *new;
800 	int ret;
801 
802 	/*
803 	 * If we have a current pool configuration, check to see if it's
804 	 * self-consistent.  If not, simply return success.
805 	 */
806 	if (config != NULL) {
807 		nvlist_t *nvroot;
808 
809 		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
810 		    &nvroot) == 0);
811 		if ((current = get_replication(nvroot, B_FALSE)) == NULL)
812 			return (0);
813 	}
814 	/*
815 	 * for spares there may be no children, and therefore no
816 	 * replication level to check
817 	 */
818 	if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN,
819 	    &child, &children) != 0) || (children == 0)) {
820 		free(current);
821 		return (0);
822 	}
823 
824 	/*
825 	 * If all we have is logs then there's no replication level to check.
826 	 */
827 	if (num_logs(newroot) == children) {
828 		free(current);
829 		return (0);
830 	}
831 
832 	/*
833 	 * Get the replication level of the new vdev spec, reporting any
834 	 * inconsistencies found.
835 	 */
836 	if ((new = get_replication(newroot, B_TRUE)) == NULL) {
837 		free(current);
838 		return (-1);
839 	}
840 
841 	/*
842 	 * Check to see if the new vdev spec matches the replication level of
843 	 * the current pool.
844 	 */
845 	ret = 0;
846 	if (current != NULL) {
847 		if (strcmp(current->zprl_type, new->zprl_type) != 0) {
848 			vdev_error(gettext(
849 			    "mismatched replication level: pool uses %s "
850 			    "and new vdev is %s\n"),
851 			    current->zprl_type, new->zprl_type);
852 			ret = -1;
853 		} else if (current->zprl_parity != new->zprl_parity) {
854 			vdev_error(gettext(
855 			    "mismatched replication level: pool uses %llu "
856 			    "device parity and new vdev uses %llu\n"),
857 			    current->zprl_parity, new->zprl_parity);
858 			ret = -1;
859 		} else if (current->zprl_children != new->zprl_children) {
860 			vdev_error(gettext(
861 			    "mismatched replication level: pool uses %llu-way "
862 			    "%s and new vdev uses %llu-way %s\n"),
863 			    current->zprl_children, current->zprl_type,
864 			    new->zprl_children, new->zprl_type);
865 			ret = -1;
866 		}
867 	}
868 
869 	free(new);
870 	if (current != NULL)
871 		free(current);
872 
873 	return (ret);
874 }
875 
876 /*
877  * Go through and find any whole disks in the vdev specification, labelling them
878  * as appropriate.  When constructing the vdev spec, we were unable to open this
879  * device in order to provide a devid.  Now that we have labelled the disk and
880  * know that slice 0 is valid, we can construct the devid now.
881  *
882  * If the disk was already labeled with an EFI label, we will have gotten the
883  * devid already (because we were able to open the whole disk).  Otherwise, we
884  * need to get the devid after we label the disk.
885  */
886 static int
887 make_disks(zpool_handle_t *zhp, nvlist_t *nv)
888 {
889 	nvlist_t **child;
890 	uint_t c, children;
891 	char *type, *path, *diskname;
892 	char buf[MAXPATHLEN];
893 	uint64_t wholedisk;
894 	int fd;
895 	int ret;
896 	ddi_devid_t devid;
897 	char *minor = NULL, *devid_str = NULL;
898 
899 	verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
900 
901 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
902 	    &child, &children) != 0) {
903 
904 		if (strcmp(type, VDEV_TYPE_DISK) != 0)
905 			return (0);
906 
907 		/*
908 		 * We have a disk device.  Get the path to the device
909 		 * and see if it's a whole disk by appending the backup
910 		 * slice and stat()ing the device.
911 		 */
912 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0);
913 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
914 		    &wholedisk) != 0 || !wholedisk)
915 			return (0);
916 
917 		diskname = strrchr(path, '/');
918 		assert(diskname != NULL);
919 		diskname++;
920 		if (zpool_label_disk(g_zfs, zhp, diskname) == -1)
921 			return (-1);
922 
923 		/*
924 		 * Fill in the devid, now that we've labeled the disk.
925 		 */
926 		(void) snprintf(buf, sizeof (buf), "%ss0", path);
927 		if ((fd = open(buf, O_RDONLY)) < 0) {
928 			(void) fprintf(stderr,
929 			    gettext("cannot open '%s': %s\n"),
930 			    buf, strerror(errno));
931 			return (-1);
932 		}
933 
934 		if (devid_get(fd, &devid) == 0) {
935 			if (devid_get_minor_name(fd, &minor) == 0 &&
936 			    (devid_str = devid_str_encode(devid, minor)) !=
937 			    NULL) {
938 				verify(nvlist_add_string(nv,
939 				    ZPOOL_CONFIG_DEVID, devid_str) == 0);
940 			}
941 			if (devid_str != NULL)
942 				devid_str_free(devid_str);
943 			if (minor != NULL)
944 				devid_str_free(minor);
945 			devid_free(devid);
946 		}
947 
948 		/*
949 		 * Update the path to refer to the 's0' slice.  The presence of
950 		 * the 'whole_disk' field indicates to the CLI that we should
951 		 * chop off the slice number when displaying the device in
952 		 * future output.
953 		 */
954 		verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, buf) == 0);
955 
956 		(void) close(fd);
957 
958 		return (0);
959 	}
960 
961 	for (c = 0; c < children; c++)
962 		if ((ret = make_disks(zhp, child[c])) != 0)
963 			return (ret);
964 
965 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
966 	    &child, &children) == 0)
967 		for (c = 0; c < children; c++)
968 			if ((ret = make_disks(zhp, child[c])) != 0)
969 				return (ret);
970 
971 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
972 	    &child, &children) == 0)
973 		for (c = 0; c < children; c++)
974 			if ((ret = make_disks(zhp, child[c])) != 0)
975 				return (ret);
976 
977 	return (0);
978 }
979 
980 /*
981  * Determine if the given path is a hot spare within the given configuration.
982  */
983 static boolean_t
984 is_spare(nvlist_t *config, const char *path)
985 {
986 	int fd;
987 	pool_state_t state;
988 	char *name = NULL;
989 	nvlist_t *label;
990 	uint64_t guid, spareguid;
991 	nvlist_t *nvroot;
992 	nvlist_t **spares;
993 	uint_t i, nspares;
994 	boolean_t inuse;
995 
996 	if ((fd = open(path, O_RDONLY)) < 0)
997 		return (B_FALSE);
998 
999 	if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 ||
1000 	    !inuse ||
1001 	    state != POOL_STATE_SPARE ||
1002 	    zpool_read_label(fd, &label) != 0) {
1003 		free(name);
1004 		(void) close(fd);
1005 		return (B_FALSE);
1006 	}
1007 	free(name);
1008 
1009 	(void) close(fd);
1010 	verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0);
1011 	nvlist_free(label);
1012 
1013 	verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1014 	    &nvroot) == 0);
1015 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1016 	    &spares, &nspares) == 0) {
1017 		for (i = 0; i < nspares; i++) {
1018 			verify(nvlist_lookup_uint64(spares[i],
1019 			    ZPOOL_CONFIG_GUID, &spareguid) == 0);
1020 			if (spareguid == guid)
1021 				return (B_TRUE);
1022 		}
1023 	}
1024 
1025 	return (B_FALSE);
1026 }
1027 
1028 /*
1029  * Go through and find any devices that are in use.  We rely on libdiskmgt for
1030  * the majority of this task.
1031  */
1032 static int
1033 check_in_use(nvlist_t *config, nvlist_t *nv, int force, int isreplacing,
1034     int isspare)
1035 {
1036 	nvlist_t **child;
1037 	uint_t c, children;
1038 	char *type, *path;
1039 	int ret;
1040 	char buf[MAXPATHLEN];
1041 	uint64_t wholedisk;
1042 
1043 	verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
1044 
1045 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1046 	    &child, &children) != 0) {
1047 
1048 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0);
1049 
1050 		/*
1051 		 * As a generic check, we look to see if this is a replace of a
1052 		 * hot spare within the same pool.  If so, we allow it
1053 		 * regardless of what libdiskmgt or zpool_in_use() says.
1054 		 */
1055 		if (isreplacing) {
1056 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
1057 			    &wholedisk) == 0 && wholedisk)
1058 				(void) snprintf(buf, sizeof (buf), "%ss0",
1059 				    path);
1060 			else
1061 				(void) strlcpy(buf, path, sizeof (buf));
1062 			if (is_spare(config, buf))
1063 				return (0);
1064 		}
1065 
1066 		if (strcmp(type, VDEV_TYPE_DISK) == 0)
1067 			ret = check_device(path, force, isspare);
1068 
1069 		if (strcmp(type, VDEV_TYPE_FILE) == 0)
1070 			ret = check_file(path, force, isspare);
1071 
1072 		return (ret);
1073 	}
1074 
1075 	for (c = 0; c < children; c++)
1076 		if ((ret = check_in_use(config, child[c], force,
1077 		    isreplacing, B_FALSE)) != 0)
1078 			return (ret);
1079 
1080 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1081 	    &child, &children) == 0)
1082 		for (c = 0; c < children; c++)
1083 			if ((ret = check_in_use(config, child[c], force,
1084 			    isreplacing, B_TRUE)) != 0)
1085 				return (ret);
1086 
1087 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1088 	    &child, &children) == 0)
1089 		for (c = 0; c < children; c++)
1090 			if ((ret = check_in_use(config, child[c], force,
1091 			    isreplacing, B_FALSE)) != 0)
1092 				return (ret);
1093 
1094 	return (0);
1095 }
1096 
1097 static const char *
1098 is_grouping(const char *type, int *mindev)
1099 {
1100 	if (strcmp(type, "raidz") == 0 || strcmp(type, "raidz1") == 0) {
1101 		if (mindev != NULL)
1102 			*mindev = 2;
1103 		return (VDEV_TYPE_RAIDZ);
1104 	}
1105 
1106 	if (strcmp(type, "raidz2") == 0) {
1107 		if (mindev != NULL)
1108 			*mindev = 3;
1109 		return (VDEV_TYPE_RAIDZ);
1110 	}
1111 
1112 	if (strcmp(type, "mirror") == 0) {
1113 		if (mindev != NULL)
1114 			*mindev = 2;
1115 		return (VDEV_TYPE_MIRROR);
1116 	}
1117 
1118 	if (strcmp(type, "spare") == 0) {
1119 		if (mindev != NULL)
1120 			*mindev = 1;
1121 		return (VDEV_TYPE_SPARE);
1122 	}
1123 
1124 	if (strcmp(type, "log") == 0) {
1125 		if (mindev != NULL)
1126 			*mindev = 1;
1127 		return (VDEV_TYPE_LOG);
1128 	}
1129 
1130 	if (strcmp(type, "cache") == 0) {
1131 		if (mindev != NULL)
1132 			*mindev = 1;
1133 		return (VDEV_TYPE_L2CACHE);
1134 	}
1135 
1136 	return (NULL);
1137 }
1138 
1139 /*
1140  * Construct a syntactically valid vdev specification,
1141  * and ensure that all devices and files exist and can be opened.
1142  * Note: we don't bother freeing anything in the error paths
1143  * because the program is just going to exit anyway.
1144  */
1145 nvlist_t *
1146 construct_spec(int argc, char **argv)
1147 {
1148 	nvlist_t *nvroot, *nv, **top, **spares, **l2cache;
1149 	int t, toplevels, mindev, nspares, nlogs, nl2cache;
1150 	const char *type;
1151 	uint64_t is_log;
1152 	boolean_t seen_logs;
1153 
1154 	top = NULL;
1155 	toplevels = 0;
1156 	spares = NULL;
1157 	l2cache = NULL;
1158 	nspares = 0;
1159 	nlogs = 0;
1160 	nl2cache = 0;
1161 	is_log = B_FALSE;
1162 	seen_logs = B_FALSE;
1163 
1164 	while (argc > 0) {
1165 		nv = NULL;
1166 
1167 		/*
1168 		 * If it's a mirror or raidz, the subsequent arguments are
1169 		 * its leaves -- until we encounter the next mirror or raidz.
1170 		 */
1171 		if ((type = is_grouping(argv[0], &mindev)) != NULL) {
1172 			nvlist_t **child = NULL;
1173 			int c, children = 0;
1174 
1175 			if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1176 				if (spares != NULL) {
1177 					(void) fprintf(stderr,
1178 					    gettext("invalid vdev "
1179 					    "specification: 'spare' can be "
1180 					    "specified only once\n"));
1181 					return (NULL);
1182 				}
1183 				is_log = B_FALSE;
1184 			}
1185 
1186 			if (strcmp(type, VDEV_TYPE_LOG) == 0) {
1187 				if (seen_logs) {
1188 					(void) fprintf(stderr,
1189 					    gettext("invalid vdev "
1190 					    "specification: 'log' can be "
1191 					    "specified only once\n"));
1192 					return (NULL);
1193 				}
1194 				seen_logs = B_TRUE;
1195 				is_log = B_TRUE;
1196 				argc--;
1197 				argv++;
1198 				/*
1199 				 * A log is not a real grouping device.
1200 				 * We just set is_log and continue.
1201 				 */
1202 				continue;
1203 			}
1204 
1205 			if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1206 				if (l2cache != NULL) {
1207 					(void) fprintf(stderr,
1208 					    gettext("invalid vdev "
1209 					    "specification: 'cache' can be "
1210 					    "specified only once\n"));
1211 					return (NULL);
1212 				}
1213 				is_log = B_FALSE;
1214 			}
1215 
1216 			if (is_log) {
1217 				if (strcmp(type, VDEV_TYPE_MIRROR) != 0) {
1218 					(void) fprintf(stderr,
1219 					    gettext("invalid vdev "
1220 					    "specification: unsupported 'log' "
1221 					    "device: %s\n"), type);
1222 					return (NULL);
1223 				}
1224 				nlogs++;
1225 			}
1226 
1227 			for (c = 1; c < argc; c++) {
1228 				if (is_grouping(argv[c], NULL) != NULL)
1229 					break;
1230 				children++;
1231 				child = realloc(child,
1232 				    children * sizeof (nvlist_t *));
1233 				if (child == NULL)
1234 					zpool_no_memory();
1235 				if ((nv = make_leaf_vdev(argv[c], B_FALSE))
1236 				    == NULL)
1237 					return (NULL);
1238 				child[children - 1] = nv;
1239 			}
1240 
1241 			if (children < mindev) {
1242 				(void) fprintf(stderr, gettext("invalid vdev "
1243 				    "specification: %s requires at least %d "
1244 				    "devices\n"), argv[0], mindev);
1245 				return (NULL);
1246 			}
1247 
1248 			argc -= c;
1249 			argv += c;
1250 
1251 			if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1252 				spares = child;
1253 				nspares = children;
1254 				continue;
1255 			} else if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1256 				l2cache = child;
1257 				nl2cache = children;
1258 				continue;
1259 			} else {
1260 				verify(nvlist_alloc(&nv, NV_UNIQUE_NAME,
1261 				    0) == 0);
1262 				verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
1263 				    type) == 0);
1264 				verify(nvlist_add_uint64(nv,
1265 				    ZPOOL_CONFIG_IS_LOG, is_log) == 0);
1266 				if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
1267 					verify(nvlist_add_uint64(nv,
1268 					    ZPOOL_CONFIG_NPARITY,
1269 					    mindev - 1) == 0);
1270 				}
1271 				verify(nvlist_add_nvlist_array(nv,
1272 				    ZPOOL_CONFIG_CHILDREN, child,
1273 				    children) == 0);
1274 
1275 				for (c = 0; c < children; c++)
1276 					nvlist_free(child[c]);
1277 				free(child);
1278 			}
1279 		} else {
1280 			/*
1281 			 * We have a device.  Pass off to make_leaf_vdev() to
1282 			 * construct the appropriate nvlist describing the vdev.
1283 			 */
1284 			if ((nv = make_leaf_vdev(argv[0], is_log)) == NULL)
1285 				return (NULL);
1286 			if (is_log)
1287 				nlogs++;
1288 			argc--;
1289 			argv++;
1290 		}
1291 
1292 		toplevels++;
1293 		top = realloc(top, toplevels * sizeof (nvlist_t *));
1294 		if (top == NULL)
1295 			zpool_no_memory();
1296 		top[toplevels - 1] = nv;
1297 	}
1298 
1299 	if (toplevels == 0 && nspares == 0 && nl2cache == 0) {
1300 		(void) fprintf(stderr, gettext("invalid vdev "
1301 		    "specification: at least one toplevel vdev must be "
1302 		    "specified\n"));
1303 		return (NULL);
1304 	}
1305 
1306 	if (seen_logs && nlogs == 0) {
1307 		(void) fprintf(stderr, gettext("invalid vdev specification: "
1308 		    "log requires at least 1 device\n"));
1309 		return (NULL);
1310 	}
1311 
1312 	/*
1313 	 * Finally, create nvroot and add all top-level vdevs to it.
1314 	 */
1315 	verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0);
1316 	verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
1317 	    VDEV_TYPE_ROOT) == 0);
1318 	verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1319 	    top, toplevels) == 0);
1320 	if (nspares != 0)
1321 		verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1322 		    spares, nspares) == 0);
1323 	if (nl2cache != 0)
1324 		verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
1325 		    l2cache, nl2cache) == 0);
1326 
1327 	for (t = 0; t < toplevels; t++)
1328 		nvlist_free(top[t]);
1329 	for (t = 0; t < nspares; t++)
1330 		nvlist_free(spares[t]);
1331 	for (t = 0; t < nl2cache; t++)
1332 		nvlist_free(l2cache[t]);
1333 	if (spares)
1334 		free(spares);
1335 	if (l2cache)
1336 		free(l2cache);
1337 	free(top);
1338 
1339 	return (nvroot);
1340 }
1341 
1342 
1343 /*
1344  * Get and validate the contents of the given vdev specification.  This ensures
1345  * that the nvlist returned is well-formed, that all the devices exist, and that
1346  * they are not currently in use by any other known consumer.  The 'poolconfig'
1347  * parameter is the current configuration of the pool when adding devices
1348  * existing pool, and is used to perform additional checks, such as changing the
1349  * replication level of the pool.  It can be 'NULL' to indicate that this is a
1350  * new pool.  The 'force' flag controls whether devices should be forcefully
1351  * added, even if they appear in use.
1352  */
1353 nvlist_t *
1354 make_root_vdev(zpool_handle_t *zhp, int force, int check_rep,
1355     boolean_t isreplacing, int argc, char **argv)
1356 {
1357 	nvlist_t *newroot;
1358 	nvlist_t *poolconfig = NULL;
1359 	is_force = force;
1360 
1361 	/*
1362 	 * Construct the vdev specification.  If this is successful, we know
1363 	 * that we have a valid specification, and that all devices can be
1364 	 * opened.
1365 	 */
1366 	if ((newroot = construct_spec(argc, argv)) == NULL)
1367 		return (NULL);
1368 
1369 	if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL))
1370 		return (NULL);
1371 
1372 	/*
1373 	 * Validate each device to make sure that its not shared with another
1374 	 * subsystem.  We do this even if 'force' is set, because there are some
1375 	 * uses (such as a dedicated dump device) that even '-f' cannot
1376 	 * override.
1377 	 */
1378 	if (check_in_use(poolconfig, newroot, force, isreplacing,
1379 	    B_FALSE) != 0) {
1380 		nvlist_free(newroot);
1381 		return (NULL);
1382 	}
1383 
1384 	/*
1385 	 * Check the replication level of the given vdevs and report any errors
1386 	 * found.  We include the existing pool spec, if any, as we need to
1387 	 * catch changes against the existing replication level.
1388 	 */
1389 	if (check_rep && check_replication(poolconfig, newroot) != 0) {
1390 		nvlist_free(newroot);
1391 		return (NULL);
1392 	}
1393 
1394 	/*
1395 	 * Run through the vdev specification and label any whole disks found.
1396 	 */
1397 	if (make_disks(zhp, newroot) != 0) {
1398 		nvlist_free(newroot);
1399 		return (NULL);
1400 	}
1401 
1402 	return (newroot);
1403 }
1404