1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988 AT&T 24 * All Rights Reserved 25 * 26 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 #pragma ident "%Z%%M% %I% %E% SMI" 30 31 /* 32 * Utility routines for run-time linker. some are duplicated here from libc 33 * (with different names) to avoid name space collisions. 34 */ 35 #include "_synonyms.h" 36 #include <stdio.h> 37 #include <sys/types.h> 38 #include <sys/mman.h> 39 #include <sys/lwp.h> 40 #include <sys/debug.h> 41 #include <stdarg.h> 42 #include <fcntl.h> 43 #include <string.h> 44 #include <ctype.h> 45 #include <dlfcn.h> 46 #include <unistd.h> 47 #include <stdlib.h> 48 #include <sys/auxv.h> 49 #include <debug.h> 50 #include <conv.h> 51 #include "_rtld.h" 52 #include "_audit.h" 53 #include "_elf.h" 54 #include "msg.h" 55 56 static int ld_flags_env(const char *, Word *, Word *, uint_t, int); 57 58 /* 59 * All error messages go through eprintf(). During process initialization these 60 * messages should be directed to the standard error, however once control has 61 * been passed to the applications code these messages should be stored in an 62 * internal buffer for use with dlerror(). Note, fatal error conditions that 63 * may occur while running the application will still cause a standard error 64 * message, see rtldexit() in this file for details. 65 * The `application' flag serves to indicate the transition between process 66 * initialization and when the applications code is running. 67 */ 68 69 /* 70 * Null function used as place where a debugger can set a breakpoint. 71 */ 72 void 73 rtld_db_dlactivity(Lm_list *lml) 74 { 75 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 76 r_debug.rtd_rdebug.r_state)); 77 } 78 79 /* 80 * Null function used as place where debugger can set a pre .init 81 * processing breakpoint. 82 */ 83 void 84 rtld_db_preinit(Lm_list *lml) 85 { 86 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 87 r_debug.rtd_rdebug.r_state)); 88 } 89 90 /* 91 * Null function used as place where debugger can set a post .init 92 * processing breakpoint. 93 */ 94 void 95 rtld_db_postinit(Lm_list *lml) 96 { 97 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 98 r_debug.rtd_rdebug.r_state)); 99 } 100 101 /* 102 * Debugger Event Notification 103 * 104 * This function centralizes all debugger event notification (ala rtld_db). 105 * 106 * There's a simple intent, focused on insuring the primary link-map control 107 * list (or each link-map list) is consistent, and the indication that objects 108 * have been added or deleted from this list. Although an RD_ADD and RD_DELETE 109 * event are posted for each of these, most debuggers don't care, as their 110 * view is that these events simply convey an "inconsistent" state. 111 * 112 * We also don't want to trigger multiple RD_ADD/RD_DELETE events any time we 113 * enter ld.so.1. 114 * 115 * With auditors, we may be in the process of relocating a collection of 116 * objects, and will leave() ld.so.1 to call the auditor. At this point we 117 * must indicate an RD_CONSISTENT event, but librtld_db will not report an 118 * object to the debuggers until relocation processing has been completed on it. 119 * To allow for the collection of these objects that are pending relocation, an 120 * RD_ADD event is set after completing a series of relocations on the primary 121 * link-map control list. 122 * 123 * Set an RD_ADD/RD_DELETE event and indicate that an RD_CONSISTENT event is 124 * required later (LML_FLG_DBNOTIF): 125 * 126 * i the first time we add or delete an object to the primary link-map 127 * control list. 128 * ii the first time we move a secondary link-map control list to the primary 129 * link-map control list (effectively, this is like adding a group of 130 * objects to the primary link-map control list). 131 * 132 * Set an RD_CONSISTENT event when it is required (LML_FLG_DBNOTIF is set) and 133 * 134 * i each time we leave the runtime linker. 135 */ 136 void 137 rd_event(Lm_list *lml, rd_event_e event, r_state_e state) 138 { 139 void (*fptr)(Lm_list *); 140 141 switch (event) { 142 case RD_PREINIT: 143 fptr = rtld_db_preinit; 144 break; 145 case RD_POSTINIT: 146 fptr = rtld_db_postinit; 147 break; 148 case RD_DLACTIVITY: 149 switch (state) { 150 case RT_CONSISTENT: 151 lml->lm_flags &= ~LML_FLG_DBNOTIF; 152 153 /* 154 * Do we need to send a notification? 155 */ 156 if ((rtld_flags & RT_FL_DBNOTIF) == 0) 157 return; 158 rtld_flags &= ~RT_FL_DBNOTIF; 159 break; 160 case RT_ADD: 161 case RT_DELETE: 162 lml->lm_flags |= LML_FLG_DBNOTIF; 163 164 /* 165 * If we are already in an inconsistent state, no 166 * notification is required. 167 */ 168 if (rtld_flags & RT_FL_DBNOTIF) 169 return; 170 rtld_flags |= RT_FL_DBNOTIF; 171 break; 172 }; 173 fptr = rtld_db_dlactivity; 174 break; 175 default: 176 /* 177 * RD_NONE - do nothing 178 */ 179 break; 180 }; 181 182 /* 183 * Set event state and call 'notification' function. 184 * 185 * The debugging clients have previously been told about these 186 * notification functions and have set breakpoints on them if they 187 * are interested in the notification. 188 */ 189 r_debug.rtd_rdebug.r_state = state; 190 r_debug.rtd_rdebug.r_rdevent = event; 191 fptr(lml); 192 r_debug.rtd_rdebug.r_rdevent = RD_NONE; 193 } 194 195 #if defined(__sparc) || defined(__x86) 196 /* 197 * Stack Cleanup. 198 * 199 * This function is invoked to 'remove' arguments that were passed in on the 200 * stack. This is most likely if ld.so.1 was invoked directly. In that case 201 * we want to remove ld.so.1 as well as it's arguments from the argv[] array. 202 * Which means we then need to slide everything above it on the stack down 203 * accordingly. 204 * 205 * While the stack layout is platform specific - it just so happens that __x86, 206 * and __sparc platforms share the following initial stack layout. 207 * 208 * !_______________________! high addresses 209 * ! ! 210 * ! Information ! 211 * ! Block ! 212 * ! (size varies) ! 213 * !_______________________! 214 * ! 0 word ! 215 * !_______________________! 216 * ! Auxiliary ! 217 * ! vector ! 218 * ! 2 word entries ! 219 * ! ! 220 * !_______________________! 221 * ! 0 word ! 222 * !_______________________! 223 * ! Environment ! 224 * ! pointers ! 225 * ! ... ! 226 * ! (one word each) ! 227 * !_______________________! 228 * ! 0 word ! 229 * !_______________________! 230 * ! Argument ! low addresses 231 * ! pointers ! 232 * ! Argc words ! 233 * !_______________________! 234 * ! ! 235 * ! Argc ! 236 * !_______________________! 237 * ! ... ! 238 * 239 */ 240 static void 241 stack_cleanup(char **argv, char ***envp, auxv_t **auxv, int rmcnt) 242 { 243 int ndx; 244 long *argc; 245 char **oargv, **nargv; 246 char **oenvp, **nenvp; 247 auxv_t *oauxv, *nauxv; 248 249 /* 250 * Slide ARGV[] and update argc. The argv pointer remains the same, 251 * however slide the applications arguments over the arguments to 252 * ld.so.1. 253 */ 254 nargv = &argv[0]; 255 oargv = &argv[rmcnt]; 256 257 for (ndx = 0; oargv[ndx]; ndx++) 258 nargv[ndx] = oargv[ndx]; 259 nargv[ndx] = oargv[ndx]; 260 261 argc = (long *)((uintptr_t)argv - sizeof (long *)); 262 *argc -= rmcnt; 263 264 /* 265 * Slide ENVP[], and update the environment array pointer. 266 */ 267 ndx++; 268 nenvp = &nargv[ndx]; 269 oenvp = &oargv[ndx]; 270 *envp = nenvp; 271 272 for (ndx = 0; oenvp[ndx]; ndx++) 273 nenvp[ndx] = oenvp[ndx]; 274 nenvp[ndx] = oenvp[ndx]; 275 276 /* 277 * Slide AUXV[], and update the aux vector pointer. 278 */ 279 ndx++; 280 nauxv = (auxv_t *)&nenvp[ndx]; 281 oauxv = (auxv_t *)&oenvp[ndx]; 282 *auxv = nauxv; 283 284 for (ndx = 0; (oauxv[ndx].a_type != AT_NULL); ndx++) 285 nauxv[ndx] = oauxv[ndx]; 286 nauxv[ndx] = oauxv[ndx]; 287 } 288 #else 289 /* 290 * Verify that the above routine is appropriate for any new platforms. 291 */ 292 #error unsupported architecture! 293 #endif 294 295 /* 296 * The only command line argument recognized is -e, followed by a runtime 297 * linker environment variable. 298 */ 299 int 300 rtld_getopt(char **argv, char ***envp, auxv_t **auxv, Word *lmflags, 301 Word *lmtflags, int aout) 302 { 303 int ndx; 304 305 for (ndx = 1; argv[ndx]; ndx++) { 306 char *str; 307 308 if (argv[ndx][0] != '-') 309 break; 310 311 if (argv[ndx][1] == '\0') { 312 ndx++; 313 break; 314 } 315 316 if (argv[ndx][1] != 'e') 317 return (1); 318 319 if (argv[ndx][2] == '\0') { 320 ndx++; 321 if (argv[ndx] == NULL) 322 return (1); 323 str = argv[ndx]; 324 } else 325 str = &argv[ndx][2]; 326 327 /* 328 * If the environment variable starts with LD_, strip the LD_. 329 * Otherwise, take things as is. 330 */ 331 if ((str[0] == 'L') && (str[1] == 'D') && (str[2] == '_') && 332 (str[3] != '\0')) 333 str += 3; 334 if (ld_flags_env(str, lmflags, lmtflags, 0, aout) == 1) 335 return (1); 336 } 337 338 /* 339 * Make sure an object file has been specified. 340 */ 341 if (argv[ndx] == 0) 342 return (1); 343 344 /* 345 * Having gotten the arguments, clean ourselves off of the stack. 346 */ 347 stack_cleanup(argv, envp, auxv, ndx); 348 return (0); 349 } 350 351 /* 352 * Compare function for FullpathNode AVL tree. 353 */ 354 static int 355 fpavl_compare(const void * n1, const void * n2) 356 { 357 uint_t hash1, hash2; 358 const char *st1, *st2; 359 int rc; 360 361 hash1 = ((FullpathNode *)n1)->fpn_hash; 362 hash2 = ((FullpathNode *)n2)->fpn_hash; 363 364 if (hash1 > hash2) 365 return (1); 366 if (hash1 < hash2) 367 return (-1); 368 369 st1 = ((FullpathNode *)n1)->fpn_name; 370 st2 = ((FullpathNode *)n2)->fpn_name; 371 372 rc = strcmp(st1, st2); 373 if (rc > 0) 374 return (1); 375 if (rc < 0) 376 return (-1); 377 return (0); 378 } 379 380 381 /* 382 * Determine if a given pathname has already been loaded in the AVL tree. 383 * If the pathname does not exist in the AVL tree, the next insertion point 384 * is deposited in "where". This value can be used by fpavl_insert() to 385 * expedite the insertion. 386 */ 387 Rt_map * 388 fpavl_loaded(Lm_list *lml, const char *name, avl_index_t *where) 389 { 390 FullpathNode fpn, *fpnp; 391 avl_tree_t *avlt; 392 393 /* 394 * Create the avl tree if required. 395 */ 396 if ((avlt = lml->lm_fpavl) == NULL) { 397 if ((avlt = calloc(sizeof (avl_tree_t), 1)) == 0) 398 return (0); 399 avl_create(avlt, fpavl_compare, sizeof (FullpathNode), 400 SGSOFFSETOF(FullpathNode, fpn_avl)); 401 lml->lm_fpavl = avlt; 402 } 403 404 fpn.fpn_name = name; 405 fpn.fpn_hash = sgs_str_hash(name); 406 407 if ((fpnp = avl_find(lml->lm_fpavl, &fpn, where)) == NULL) 408 return (NULL); 409 410 return (fpnp->fpn_lmp); 411 } 412 413 414 /* 415 * Insert a name into the FullpathNode AVL tree for the link-map list. The 416 * objects NAME() is the path that would have originally been searched for, and 417 * is therefore the name to associate with any "where" value. If the object has 418 * a different PATHNAME(), perhaps because it has resolved to a different file 419 * (see fullpath), then this name is recorded also. See load_file(). 420 */ 421 int 422 fpavl_insert(Lm_list *lml, Rt_map *lmp, const char *name, avl_index_t where) 423 { 424 FullpathNode *fpnp; 425 426 if (where == 0) { 427 /* LINTED */ 428 Rt_map *_lmp = fpavl_loaded(lml, name, &where); 429 430 /* 431 * We better not get a hit now, we do not want duplicates in 432 * the tree. 433 */ 434 ASSERT(_lmp == 0); 435 } 436 437 /* 438 * Insert new node in tree 439 */ 440 if ((fpnp = calloc(sizeof (FullpathNode), 1)) == 0) 441 return (0); 442 443 fpnp->fpn_name = name; 444 fpnp->fpn_hash = sgs_str_hash(name); 445 fpnp->fpn_lmp = lmp; 446 447 if (alist_append(&FPNODE(lmp), &fpnp, sizeof (FullpathNode *), 448 AL_CNT_FPNODE) == 0) { 449 free(fpnp); 450 return (0); 451 } 452 453 ASSERT(lml->lm_fpavl != NULL); 454 avl_insert(lml->lm_fpavl, fpnp, where); 455 return (1); 456 } 457 458 /* 459 * Remove an object from the Fullpath AVL tree. Note, this is called *before* 460 * the objects link-map is torn down (remove_so), which is where any NAME() and 461 * PATHNAME() strings will be deallocated. 462 */ 463 void 464 fpavl_remove(Rt_map *lmp) 465 { 466 FullpathNode **fpnpp; 467 Aliste off; 468 469 for (ALIST_TRAVERSE(FPNODE(lmp), off, fpnpp)) { 470 FullpathNode *fpnp = *fpnpp; 471 472 avl_remove(LIST(lmp)->lm_fpavl, fpnp); 473 free(fpnp); 474 } 475 free(FPNODE(lmp)); 476 FPNODE(lmp) = 0; 477 } 478 479 480 /* 481 * Prior to calling an object, either via a .plt or through dlsym(), make sure 482 * its .init has fired. Through topological sorting, ld.so.1 attempts to fire 483 * init's in the correct order, however, this order is typically based on needed 484 * dependencies and non-lazy relocation bindings. Lazy relocations (.plts) can 485 * still occur and result in bindings that were not captured during topological 486 * sorting. This routine compensates for this lack of binding information, and 487 * provides for dynamic .init firing. 488 */ 489 void 490 is_dep_init(Rt_map * dlmp, Rt_map * clmp) 491 { 492 Rt_map ** tobj; 493 494 /* 495 * If the caller is an auditor, and the destination isn't, then don't 496 * run any .inits (see comments in load_completion()). 497 */ 498 if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) && 499 (LIST(clmp) != LIST(dlmp))) 500 return; 501 502 if ((dlmp == clmp) || (rtld_flags & (RT_FL_BREADTH | RT_FL_INITFIRST))) 503 return; 504 505 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITDONE)) == 506 (FLG_RT_RELOCED | FLG_RT_INITDONE)) 507 return; 508 509 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITCALL)) == 510 (FLG_RT_RELOCED | FLG_RT_INITCALL)) { 511 DBG_CALL(Dbg_util_no_init(dlmp)); 512 return; 513 } 514 515 if ((tobj = calloc(2, sizeof (Rt_map *))) != NULL) { 516 tobj[0] = dlmp; 517 call_init(tobj, DBG_INIT_DYN); 518 } 519 } 520 521 /* 522 * In a threaded environment insure the thread responsible for loading an object 523 * has completed .init processing for that object before any new thread is 524 * allowed to access the object. This check is only valid with libthread 525 * TI_VERSION 2, where ld.so.1 implements locking through low level mutexes. 526 * 527 * When a new link-map is created, the thread that causes it to be loaded is 528 * identified by THREADID(dlmp). Compare this with the current thread to 529 * determine if it must be blocked. 530 * 531 * NOTE, there are a number of instances (typically only for .plt processing) 532 * where we must skip this test: 533 * 534 * . any thread id of 0 - threads that call thr_exit() may be in this state 535 * thus we can't deduce what tid they used to be. Also some of the 536 * lib/libthread worker threads have this id and must bind (to themselves 537 * or libc) for libthread to function. 538 * 539 * . libthread itself binds to libc, and as libthread is INITFIRST 540 * libc's .init can't have fired yet. Luckly libc's .init is not required 541 * by libthreads binding. 542 * 543 * . if the caller is an auditor, and the destination isn't, then don't 544 * block (see comments in load_completion()). 545 */ 546 void 547 is_dep_ready(Rt_map * dlmp, Rt_map * clmp, int what) 548 { 549 thread_t tid; 550 551 if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) && 552 (LIST(clmp) != LIST(dlmp))) 553 return; 554 555 if ((rtld_flags & RT_FL_CONCUR) && 556 ((FLAGS(dlmp) & FLG_RT_INITDONE) == 0) && 557 ((FLAGS(clmp) & FLG_RT_INITFRST) == 0) && 558 ((tid = rt_thr_self()) != 0) && (THREADID(dlmp) != tid)) { 559 while ((FLAGS(dlmp) & FLG_RT_INITDONE) == 0) { 560 FLAGS1(dlmp) |= FL1_RT_INITWAIT; 561 DBG_CALL(Dbg_util_wait(clmp, dlmp, what)); 562 (void) rt_cond_wait(CONDVAR(dlmp), &rtldlock); 563 } 564 } 565 } 566 567 /* 568 * Execute .{preinit|init|fini}array sections 569 */ 570 void 571 call_array(Addr *array, uint_t arraysz, Rt_map *lmp, Word shtype) 572 { 573 int start, stop, incr, ndx; 574 uint_t arraycnt = (uint_t)(arraysz / sizeof (Addr)); 575 576 if (array == NULL) 577 return; 578 579 /* 580 * initarray & preinitarray are walked from beginning to end - while 581 * finiarray is walked from end to beginning. 582 */ 583 if (shtype == SHT_FINI_ARRAY) { 584 start = arraycnt - 1; 585 stop = incr = -1; 586 } else { 587 start = 0; 588 stop = arraycnt; 589 incr = 1; 590 } 591 592 /* 593 * Call the .*array[] entries 594 */ 595 for (ndx = start; ndx != stop; ndx += incr) { 596 void (*fptr)(void) = (void(*)())array[ndx]; 597 598 DBG_CALL(Dbg_util_call_array(lmp, (void *)fptr, ndx, shtype)); 599 600 leave(LIST(lmp)); 601 (*fptr)(); 602 (void) enter(); 603 } 604 } 605 606 607 /* 608 * Execute any .init sections. These are passed to us in an lmp array which 609 * (by default) will have been sorted. 610 */ 611 void 612 call_init(Rt_map ** tobj, int flag) 613 { 614 Rt_map ** _tobj, ** _nobj; 615 static List pending = { NULL, NULL }; 616 617 /* 618 * If we're in the middle of an INITFIRST, this must complete before 619 * any new init's are fired. In this case add the object list to the 620 * pending queue and return. We'll pick up the queue after any 621 * INITFIRST objects have their init's fired. 622 */ 623 if (rtld_flags & RT_FL_INITFIRST) { 624 (void) list_append(&pending, tobj); 625 return; 626 } 627 628 /* 629 * Traverse the tobj array firing each objects init. 630 */ 631 for (_tobj = _nobj = tobj, _nobj++; *_tobj != NULL; _tobj++, _nobj++) { 632 Rt_map * lmp = *_tobj; 633 void (* iptr)() = INIT(lmp); 634 635 if (FLAGS(lmp) & FLG_RT_INITCALL) 636 continue; 637 638 FLAGS(lmp) |= FLG_RT_INITCALL; 639 640 /* 641 * Establish an initfirst state if necessary - no other inits 642 * will be fired (because of additional relocation bindings) 643 * when in this state. 644 */ 645 if (FLAGS(lmp) & FLG_RT_INITFRST) 646 rtld_flags |= RT_FL_INITFIRST; 647 648 if (INITARRAY(lmp) || iptr) { 649 Aliste off; 650 Bnd_desc ** bdpp; 651 652 /* 653 * Make sure that all dependencies that have been 654 * relocated to are initialized before this objects 655 * .init is executed. This insures that a dependency 656 * on an external item that must first be initialized 657 * by its associated object is satisfied. 658 */ 659 for (ALIST_TRAVERSE(DEPENDS(lmp), off, bdpp)) { 660 Bnd_desc * bdp = *bdpp; 661 662 if ((bdp->b_flags & BND_REFER) == 0) 663 continue; 664 is_dep_ready(bdp->b_depend, lmp, DBG_WAIT_INIT); 665 } 666 DBG_CALL(Dbg_util_call_init(lmp, flag)); 667 } 668 669 if (iptr) { 670 leave(LIST(lmp)); 671 (*iptr)(); 672 (void) enter(); 673 } 674 675 call_array(INITARRAY(lmp), INITARRAYSZ(lmp), lmp, 676 SHT_INIT_ARRAY); 677 678 if (INITARRAY(lmp) || iptr) 679 DBG_CALL(Dbg_util_call_init(lmp, DBG_INIT_DONE)); 680 681 /* 682 * Set the initdone flag regardless of whether this object 683 * actually contains an .init section. This flag prevents us 684 * from processing this section again for an .init and also 685 * signifies that a .fini must be called should it exist. 686 * Clear the sort field for use in later .fini processing. 687 */ 688 FLAGS(lmp) |= FLG_RT_INITDONE; 689 SORTVAL(lmp) = -1; 690 691 /* 692 * Wake anyone up who might be waiting on this .init. 693 */ 694 if (FLAGS1(lmp) & FL1_RT_INITWAIT) { 695 DBG_CALL(Dbg_util_broadcast(lmp)); 696 (void) rt_cond_broadcast(CONDVAR(lmp)); 697 FLAGS1(lmp) &= ~FL1_RT_INITWAIT; 698 } 699 700 /* 701 * If we're firing an INITFIRST object, and other objects must 702 * be fired which are not INITFIRST, make sure we grab any 703 * pending objects that might have been delayed as this 704 * INITFIRST was processed. 705 */ 706 if ((rtld_flags & RT_FL_INITFIRST) && 707 ((*_nobj == NULL) || !(FLAGS(*_nobj) & FLG_RT_INITFRST))) { 708 Listnode * lnp; 709 Rt_map ** pobj; 710 711 rtld_flags &= ~RT_FL_INITFIRST; 712 713 while ((lnp = pending.head) != NULL) { 714 if ((pending.head = lnp->next) == NULL) 715 pending.tail = NULL; 716 pobj = lnp->data; 717 free(lnp); 718 719 call_init(pobj, DBG_INIT_PEND); 720 } 721 } 722 } 723 free(tobj); 724 } 725 726 /* 727 * Function called by atexit(3C). Calls all .fini sections related with the 728 * mains dependent shared libraries in the order in which the shared libraries 729 * have been loaded. Skip any .fini defined in the main executable, as this 730 * will be called by crt0 (main was never marked as initdone). 731 */ 732 void 733 call_fini(Lm_list * lml, Rt_map ** tobj) 734 { 735 Rt_map **_tobj; 736 737 for (_tobj = tobj; *_tobj != NULL; _tobj++) { 738 Rt_map * clmp, * lmp = *_tobj; 739 Aliste off; 740 Bnd_desc ** bdpp; 741 742 /* 743 * If concurrency checking isn't enabled only fire .fini if 744 * .init has completed. We collect all .fini sections of 745 * objects that had their .init collected, but that doesn't 746 * mean at the time that the .init had completed. 747 */ 748 if ((rtld_flags & RT_FL_CONCUR) || 749 (FLAGS(lmp) & FLG_RT_INITDONE)) { 750 void (*fptr)(void) = FINI(lmp); 751 752 if (FINIARRAY(lmp) || fptr) { 753 /* 754 * If concurrency checking is enabled make sure 755 * this object's .init is completed before 756 * calling any .fini. 757 */ 758 is_dep_ready(lmp, lmp, DBG_WAIT_FINI); 759 DBG_CALL(Dbg_util_call_fini(lmp)); 760 } 761 762 call_array(FINIARRAY(lmp), FINIARRAYSZ(lmp), lmp, 763 SHT_FINI_ARRAY); 764 765 if (fptr) { 766 leave(LIST(lmp)); 767 (*fptr)(); 768 (void) enter(); 769 } 770 } 771 772 /* 773 * Skip main, this is explicitly called last in atexit_fini(). 774 */ 775 if (FLAGS(lmp) & FLG_RT_ISMAIN) 776 continue; 777 778 /* 779 * Audit `close' operations at this point. The library has 780 * exercised its last instructions (regardless of whether it 781 * will be unmapped or not). 782 * 783 * First call any global auditing. 784 */ 785 if (lml->lm_tflags & LML_TFLG_AUD_OBJCLOSE) 786 _audit_objclose(&(auditors->ad_list), lmp); 787 788 /* 789 * Finally determine whether this object has local auditing 790 * requirements by inspecting itself and then its dependencies. 791 */ 792 if ((lml->lm_flags & LML_FLG_LOCAUDIT) == 0) 793 continue; 794 795 if (FLAGS1(lmp) & LML_TFLG_AUD_OBJCLOSE) 796 _audit_objclose(&(AUDITORS(lmp)->ad_list), lmp); 797 798 for (ALIST_TRAVERSE(CALLERS(lmp), off, bdpp)) { 799 Bnd_desc * bdp = *bdpp; 800 801 clmp = bdp->b_caller; 802 803 if (FLAGS1(clmp) & LML_TFLG_AUD_OBJCLOSE) { 804 _audit_objclose(&(AUDITORS(clmp)->ad_list), 805 lmp); 806 break; 807 } 808 } 809 } 810 DBG_CALL(Dbg_bind_plt_summary(lml, M_MACH, pltcnt21d, pltcnt24d, 811 pltcntu32, pltcntu44, pltcntfull, pltcntfar)); 812 813 free(tobj); 814 } 815 816 void 817 atexit_fini() 818 { 819 Rt_map ** tobj, * lmp; 820 Lm_list * lml; 821 Listnode * lnp; 822 823 (void) enter(); 824 825 rtld_flags |= RT_FL_ATEXIT; 826 827 lml = &lml_main; 828 lml->lm_flags |= LML_FLG_ATEXIT; 829 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 830 lmp = (Rt_map *)lml->lm_head; 831 832 /* 833 * Display any objects that haven't been referenced so far. 834 */ 835 unused(lml); 836 837 /* 838 * Reverse topologically sort the main link-map for .fini execution. 839 */ 840 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 841 (tobj != (Rt_map **)S_ERROR)) 842 call_fini(lml, tobj); 843 844 /* 845 * Add an explicit close to main and ld.so.1. Although main's .fini is 846 * collected in call_fini() to provide for FINITARRAY processing, its 847 * audit_objclose is explicitly skipped. This provides for it to be 848 * called last, here. This is the reverse of the explicit calls to 849 * audit_objopen() made in setup(). 850 */ 851 if ((lml->lm_tflags | FLAGS1(lmp)) & LML_TFLG_AUD_MASK) { 852 audit_objclose(lmp, (Rt_map *)lml_rtld.lm_head); 853 audit_objclose(lmp, lmp); 854 } 855 856 /* 857 * Now that all .fini code has been run, see what unreferenced objects 858 * remain. Any difference between this and the above unused() would 859 * indicate an object is only being used for .fini processing, which 860 * might be fine, but might also indicate an overhead whose removal 861 * would be worth considering. 862 */ 863 unused(lml); 864 865 /* 866 * Traverse any alternative link-map lists. 867 */ 868 for (LIST_TRAVERSE(&dynlm_list, lnp, lml)) { 869 /* 870 * Ignore the base-link-map list, which has already been 871 * processed, and the runtime linkers link-map list, which is 872 * typically processed last. 873 */ 874 if (lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) 875 continue; 876 877 if ((lmp = (Rt_map *)lml->lm_head) == 0) 878 continue; 879 880 lml->lm_flags |= LML_FLG_ATEXIT; 881 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 882 883 /* 884 * Reverse topologically sort the link-map for .fini execution. 885 */ 886 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 887 (tobj != (Rt_map **)S_ERROR)) 888 call_fini(lml, tobj); 889 890 unused(lml); 891 } 892 893 /* 894 * Finally reverse topologically sort the runtime linkers link-map for 895 * .fini execution. 896 */ 897 lml = &lml_rtld; 898 lml->lm_flags |= LML_FLG_ATEXIT; 899 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 900 lmp = (Rt_map *)lml->lm_head; 901 902 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 903 (tobj != (Rt_map **)S_ERROR)) 904 call_fini(lml, tobj); 905 906 leave(&lml_main); 907 } 908 909 910 /* 911 * This routine is called to complete any runtime linker activity which may have 912 * resulted in objects being loaded. This is called from all user entry points 913 * and from any internal dl*() requests. 914 */ 915 void 916 load_completion(Rt_map *nlmp) 917 { 918 Rt_map **tobj = 0; 919 Lm_list *nlml; 920 921 /* 922 * Establish any .init processing. Note, in a world of lazy loading, 923 * objects may have been loaded regardless of whether the users request 924 * was fulfilled (i.e., a dlsym() request may have failed to find a 925 * symbol but objects might have been loaded during its search). Thus, 926 * any tsorting starts from the nlmp (new link-maps) pointer and not 927 * necessarily from the link-map that may have satisfied the request. 928 * 929 * Note, the primary link-map has an initialization phase where dynamic 930 * .init firing is suppressed. This provides for a simple and clean 931 * handshake with the primary link-maps libc, which is important for 932 * establishing uberdata. In addition, auditors often obtain handles 933 * to primary link-map objects as the objects are loaded, so as to 934 * inspect the link-map for symbols. This inspection is allowed without 935 * running any code on the primary link-map, as running this code may 936 * reenter the auditor, who may not yet have finished its own 937 * initialization. 938 */ 939 if (nlmp) 940 nlml = LIST(nlmp); 941 942 if (nlmp && nlml->lm_init && 943 ((nlml != &lml_main) || (rtld_flags2 & RT_FL2_PLMSETUP))) { 944 if ((tobj = tsort(nlmp, LIST(nlmp)->lm_init, 945 RT_SORT_REV)) == (Rt_map **)S_ERROR) 946 tobj = 0; 947 } 948 949 /* 950 * Make sure any alternative link-map retrieves any external interfaces 951 * and initializes threads. 952 */ 953 if (nlmp && (nlml != &lml_main)) { 954 (void) rt_get_extern(nlml, nlmp); 955 rt_thr_init(nlml); 956 } 957 958 /* 959 * Traverse the list of new link-maps and register any dynamic TLS. 960 * This storage is established for any objects not on the primary 961 * link-map, and for any objects added to the primary link-map after 962 * static TLS has been registered. 963 */ 964 if (nlmp && nlml->lm_tls && 965 ((nlml != &lml_main) || (rtld_flags2 & RT_FL2_PLMSETUP))) { 966 Rt_map *lmp; 967 968 for (lmp = nlmp; lmp; lmp = (Rt_map *)NEXT(lmp)) { 969 if (PTTLS(lmp) && PTTLS(lmp)->p_memsz) 970 tls_modaddrem(lmp, TM_FLG_MODADD); 971 } 972 nlml->lm_tls = 0; 973 } 974 975 /* 976 * Fire any .init's. 977 */ 978 if (tobj) 979 call_init(tobj, DBG_INIT_SORT); 980 } 981 982 /* 983 * Append an item to the specified list, and return a pointer to the list 984 * node created. 985 */ 986 Listnode * 987 list_append(List *lst, const void *item) 988 { 989 Listnode * _lnp; 990 991 if ((_lnp = malloc(sizeof (Listnode))) == 0) 992 return (0); 993 994 _lnp->data = (void *)item; 995 _lnp->next = NULL; 996 997 if (lst->head == NULL) 998 lst->tail = lst->head = _lnp; 999 else { 1000 lst->tail->next = _lnp; 1001 lst->tail = lst->tail->next; 1002 } 1003 return (_lnp); 1004 } 1005 1006 1007 /* 1008 * Add an item after specified listnode, and return a pointer to the list 1009 * node created. 1010 */ 1011 Listnode * 1012 list_insert(List *lst, const void *item, Listnode *lnp) 1013 { 1014 Listnode * _lnp; 1015 1016 if ((_lnp = malloc(sizeof (Listnode))) == (Listnode *)0) 1017 return (0); 1018 1019 _lnp->data = (void *)item; 1020 _lnp->next = lnp->next; 1021 if (_lnp->next == NULL) 1022 lst->tail = _lnp; 1023 lnp->next = _lnp; 1024 return (_lnp); 1025 } 1026 1027 /* 1028 * Prepend an item to the specified list, and return a pointer to the 1029 * list node created. 1030 */ 1031 Listnode * 1032 list_prepend(List * lst, const void * item) 1033 { 1034 Listnode * _lnp; 1035 1036 if ((_lnp = malloc(sizeof (Listnode))) == (Listnode *)0) 1037 return (0); 1038 1039 _lnp->data = (void *)item; 1040 1041 if (lst->head == NULL) { 1042 _lnp->next = NULL; 1043 lst->tail = lst->head = _lnp; 1044 } else { 1045 _lnp->next = lst->head; 1046 lst->head = _lnp; 1047 } 1048 return (_lnp); 1049 } 1050 1051 1052 /* 1053 * Delete a 'listnode' from a list. 1054 */ 1055 void 1056 list_delete(List *lst, void *item) 1057 { 1058 Listnode *clnp, *plnp; 1059 1060 for (plnp = NULL, clnp = lst->head; clnp; clnp = clnp->next) { 1061 if (item == clnp->data) 1062 break; 1063 plnp = clnp; 1064 } 1065 1066 if (clnp == 0) 1067 return; 1068 1069 if (lst->head == clnp) 1070 lst->head = clnp->next; 1071 if (lst->tail == clnp) 1072 lst->tail = plnp; 1073 1074 if (plnp) 1075 plnp->next = clnp->next; 1076 1077 free(clnp); 1078 } 1079 1080 /* 1081 * Append an item to the specified link map control list. 1082 */ 1083 void 1084 lm_append(Lm_list *lml, Aliste lmco, Rt_map *lmp) 1085 { 1086 Lm_cntl *lmc; 1087 int add = 1; 1088 1089 /* 1090 * Indicate that this link-map list has a new object. 1091 */ 1092 (lml->lm_obj)++; 1093 1094 /* 1095 * If we're about to add a new object to the main link-map control list, 1096 * alert the debuggers that we are about to mess with this list. 1097 * Additions of individual objects to the main link-map control list 1098 * occur during initial setup as the applications immediate dependencies 1099 * are loaded. Individual objects are also loaded on the main link-map 1100 * control list of new alternative link-map control lists. 1101 */ 1102 if ((lmco == ALO_DATA) && ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1103 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1104 1105 /* LINTED */ 1106 lmc = (Lm_cntl *)((char *)lml->lm_lists + lmco); 1107 1108 /* 1109 * A link-map list header points to one of more link-map control lists 1110 * (see include/rtld.h). The initial list, pointed to by lm_cntl, is 1111 * the list of relocated objects. Other lists maintain objects that 1112 * are still being analyzed or relocated. This list provides the core 1113 * link-map list information used by all ld.so.1 routines. 1114 */ 1115 if (lmc->lc_head == NULL) { 1116 /* 1117 * If this is the first link-map for the given control list, 1118 * initialize the list. 1119 */ 1120 lmc->lc_head = lmc->lc_tail = lmp; 1121 add = 0; 1122 1123 } else if (FLAGS(lmp) & FLG_RT_OBJINTPO) { 1124 Rt_map *tlmp; 1125 1126 /* 1127 * If this is an interposer then append the link-map following 1128 * any other interposers (these are objects that have been 1129 * previously preloaded, or were identified with -z interpose). 1130 * Interposers can only be inserted on the first link-map 1131 * control list, as once relocation has started, interposition 1132 * from new interposers can't be guaranteed. 1133 * 1134 * NOTE: We do not interpose on the head of a list. This model 1135 * evolved because dynamic executables have already been fully 1136 * relocated within themselves and thus can't be interposed on. 1137 * Nowadays it's possible to have shared objects at the head of 1138 * a list, which conceptually means they could be interposed on. 1139 * But, shared objects can be created via dldump() and may only 1140 * be partially relocated (just relatives), in which case they 1141 * are interposable, but are marked as fixed (ET_EXEC). 1142 * 1143 * Thus we really don't have a clear method of deciding when the 1144 * head of a link-map is interposable. So, to be consistent, 1145 * for now only add interposers after the link-map lists head 1146 * object. 1147 */ 1148 for (tlmp = (Rt_map *)NEXT(lmc->lc_head); tlmp; 1149 tlmp = (Rt_map *)NEXT(tlmp)) { 1150 1151 if (FLAGS(tlmp) & FLG_RT_OBJINTPO) 1152 continue; 1153 1154 /* 1155 * Insert the new link-map before this non-interposer, 1156 * and indicate an interposer is found. 1157 */ 1158 NEXT((Rt_map *)PREV(tlmp)) = (Link_map *)lmp; 1159 PREV(lmp) = PREV(tlmp); 1160 1161 NEXT(lmp) = (Link_map *)tlmp; 1162 PREV(tlmp) = (Link_map *)lmp; 1163 1164 lmc->lc_flags |= LMC_FLG_REANALYZE; 1165 add = 0; 1166 break; 1167 } 1168 } 1169 1170 /* 1171 * Fall through to appending the new link map to the tail of the list. 1172 * If we're processing the initial objects of this link-map list, add 1173 * them to the backward compatibility list. 1174 */ 1175 if (add) { 1176 NEXT(lmc->lc_tail) = (Link_map *)lmp; 1177 PREV(lmp) = (Link_map *)lmc->lc_tail; 1178 lmc->lc_tail = lmp; 1179 } 1180 1181 /* 1182 * Having added this link-map to a control list, indicate which control 1183 * list the link-map belongs to. Note, control list information is 1184 * always maintained as an offset, as the Alist can be reallocated. 1185 */ 1186 CNTL(lmp) = lmco; 1187 1188 /* 1189 * Indicate if an interposer is found. Note that the first object on a 1190 * link-map can be explicitly defined as an interposer so that it can 1191 * provide interposition over direct binding requests. 1192 */ 1193 if (FLAGS(lmp) & MSK_RT_INTPOSE) 1194 lml->lm_flags |= LML_FLG_INTRPOSE; 1195 1196 /* 1197 * For backward compatibility with debuggers, the link-map list contains 1198 * pointers to the main control list. 1199 */ 1200 if (lmco == ALO_DATA) { 1201 lml->lm_head = lmc->lc_head; 1202 lml->lm_tail = lmc->lc_tail; 1203 } 1204 } 1205 1206 /* 1207 * Delete an item from the specified link map control list. 1208 */ 1209 void 1210 lm_delete(Lm_list *lml, Rt_map *lmp) 1211 { 1212 Lm_cntl *lmc; 1213 1214 /* 1215 * If the control list pointer hasn't been initialized, this object 1216 * never got added to a link-map list. 1217 */ 1218 if (CNTL(lmp) == 0) 1219 return; 1220 1221 /* 1222 * If we're about to delete an object from the main link-map control 1223 * list, alert the debuggers that we are about to mess with this list. 1224 */ 1225 if ((CNTL(lmp) == ALO_DATA) && ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1226 rd_event(lml, RD_DLACTIVITY, RT_DELETE); 1227 1228 /* LINTED */ 1229 lmc = (Lm_cntl *)((char *)lml->lm_lists + CNTL(lmp)); 1230 1231 if (lmc->lc_head == lmp) 1232 lmc->lc_head = (Rt_map *)NEXT(lmp); 1233 else 1234 NEXT((Rt_map *)PREV(lmp)) = (void *)NEXT(lmp); 1235 1236 if (lmc->lc_tail == lmp) 1237 lmc->lc_tail = (Rt_map *)PREV(lmp); 1238 else 1239 PREV((Rt_map *)NEXT(lmp)) = PREV(lmp); 1240 1241 /* 1242 * For backward compatibility with debuggers, the link-map list contains 1243 * pointers to the main control list. 1244 */ 1245 if (lmc == (Lm_cntl *)&(lml->lm_lists->al_data)) { 1246 lml->lm_head = lmc->lc_head; 1247 lml->lm_tail = lmc->lc_tail; 1248 } 1249 1250 /* 1251 * Indicate we have one less object on this control list. 1252 */ 1253 (lml->lm_obj)--; 1254 } 1255 1256 /* 1257 * Move a link-map control list to another. Objects that are being relocated 1258 * are maintained on secondary control lists. Once their relocation is 1259 * complete, the entire list is appended to the previous control list, as this 1260 * list must have been the trigger for generating the new control list. 1261 */ 1262 void 1263 lm_move(Lm_list *lml, Aliste nlmco, Aliste plmco, Lm_cntl *nlmc, Lm_cntl *plmc) 1264 { 1265 Rt_map *lmp; 1266 1267 /* 1268 * If we're about to add a new family of objects to the main link-map 1269 * control list, alert the debuggers that we are about to mess with this 1270 * list. Additions of object families to the main link-map control 1271 * list occur during lazy loading, filtering and dlopen(). 1272 */ 1273 if ((plmco == ALO_DATA) && ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1274 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1275 1276 DBG_CALL(Dbg_file_cntl(lml, nlmco, plmco)); 1277 1278 /* 1279 * Indicate each new link-map has been moved to the previous link-map 1280 * control list. 1281 */ 1282 for (lmp = nlmc->lc_head; lmp; lmp = (Rt_map *)NEXT(lmp)) 1283 CNTL(lmp) = plmco; 1284 1285 /* 1286 * Move the new link-map control list, to the callers link-map control 1287 * list. 1288 */ 1289 if (plmc->lc_head == 0) { 1290 plmc->lc_head = nlmc->lc_head; 1291 PREV(nlmc->lc_head) = 0; 1292 } else { 1293 NEXT(plmc->lc_tail) = (Link_map *)nlmc->lc_head; 1294 PREV(nlmc->lc_head) = (Link_map *)plmc->lc_tail; 1295 } 1296 1297 plmc->lc_tail = nlmc->lc_tail; 1298 nlmc->lc_head = nlmc->lc_tail = 0; 1299 1300 /* 1301 * For backward compatibility with debuggers, the link-map list contains 1302 * pointers to the main control list. 1303 */ 1304 if (plmco == ALO_DATA) { 1305 lml->lm_head = plmc->lc_head; 1306 lml->lm_tail = plmc->lc_tail; 1307 } 1308 } 1309 1310 /* 1311 * Environment variables can have a variety of defined permutations, and thus 1312 * the following infrastructure exists to allow this variety and to select the 1313 * required definition. 1314 * 1315 * Environment variables can be defined as 32- or 64-bit specific, and if so 1316 * they will take precedence over any instruction set neutral form. Typically 1317 * this is only useful when the environment value is an informational string. 1318 * 1319 * Environment variables may be obtained from the standard user environment or 1320 * from a configuration file. The latter provides a fallback if no user 1321 * environment setting is found, and can take two forms: 1322 * 1323 * . a replaceable definition - this will be used if no user environment 1324 * setting has been seen, or 1325 * 1326 * . an permanent definition - this will be used no matter what user 1327 * environment setting is seen. In the case of list variables it will be 1328 * appended to any process environment setting seen. 1329 * 1330 * Environment variables can be defined without a value (ie. LD_XXXX=) so as to 1331 * override any replaceable environment variables from a configuration file. 1332 */ 1333 static u_longlong_t rplgen; /* replaceable generic */ 1334 /* variables */ 1335 static u_longlong_t rplisa; /* replaceable ISA specific */ 1336 /* variables */ 1337 static u_longlong_t prmgen; /* permanent generic */ 1338 /* variables */ 1339 static u_longlong_t prmisa; /* permanent ISA specific */ 1340 /* variables */ 1341 1342 /* 1343 * Classify an environment variables type. 1344 */ 1345 #define ENV_TYP_IGNORE 0x1 /* ignore - variable is for */ 1346 /* the wrong ISA */ 1347 #define ENV_TYP_ISA 0x2 /* variable is ISA specific */ 1348 #define ENV_TYP_CONFIG 0x4 /* variable obtained from a */ 1349 /* config file */ 1350 #define ENV_TYP_PERMANT 0x8 /* variable is permanent */ 1351 1352 /* 1353 * Identify all environment variables. 1354 */ 1355 #define ENV_FLG_AUDIT 0x0000000001ULL 1356 #define ENV_FLG_AUDIT_ARGS 0x0000000002ULL 1357 #define ENV_FLG_BIND_NOW 0x0000000004ULL 1358 #define ENV_FLG_BIND_NOT 0x0000000008ULL 1359 #define ENV_FLG_BINDINGS 0x0000000010ULL 1360 #define ENV_FLG_CONCURRENCY 0x0000000020ULL 1361 #define ENV_FLG_CONFGEN 0x0000000040ULL 1362 #define ENV_FLG_CONFIG 0x0000000080ULL 1363 #define ENV_FLG_DEBUG 0x0000000100ULL 1364 #define ENV_FLG_DEBUG_OUTPUT 0x0000000200ULL 1365 #define ENV_FLG_DEMANGLE 0x0000000400ULL 1366 #define ENV_FLG_FLAGS 0x0000000800ULL 1367 #define ENV_FLG_INIT 0x0000001000ULL 1368 #define ENV_FLG_LIBPATH 0x0000002000ULL 1369 #define ENV_FLG_LOADAVAIL 0x0000004000ULL 1370 #define ENV_FLG_LOADFLTR 0x0000008000ULL 1371 #define ENV_FLG_NOAUDIT 0x0000010000ULL 1372 #define ENV_FLG_NOAUXFLTR 0x0000020000ULL 1373 #define ENV_FLG_NOBAPLT 0x0000040000ULL 1374 #define ENV_FLG_NOCONFIG 0x0000080000ULL 1375 #define ENV_FLG_NODIRCONFIG 0x0000100000ULL 1376 #define ENV_FLG_NODIRECT 0x0000200000ULL 1377 #define ENV_FLG_NOENVCONFIG 0x0000400000ULL 1378 #define ENV_FLG_NOLAZY 0x0000800000ULL 1379 #define ENV_FLG_NOOBJALTER 0x0001000000ULL 1380 #define ENV_FLG_NOVERSION 0x0002000000ULL 1381 #define ENV_FLG_PRELOAD 0x0004000000ULL 1382 #define ENV_FLG_PROFILE 0x0008000000ULL 1383 #define ENV_FLG_PROFILE_OUTPUT 0x0010000000ULL 1384 #define ENV_FLG_SIGNAL 0x0020000000ULL 1385 #define ENV_FLG_TRACE_OBJS 0x0040000000ULL 1386 #define ENV_FLG_TRACE_PTHS 0x0080000000ULL 1387 #define ENV_FLG_UNREF 0x0100000000ULL 1388 #define ENV_FLG_UNUSED 0x0200000000ULL 1389 #define ENV_FLG_VERBOSE 0x0400000000ULL 1390 #define ENV_FLG_WARN 0x0800000000ULL 1391 #define ENV_FLG_NOFLTCONFIG 0x1000000000ULL 1392 #define ENV_FLG_BIND_LAZY 0x2000000000ULL 1393 1394 #ifdef SIEBEL_DISABLE 1395 #define ENV_FLG_FIX_1 0x8000000000ULL 1396 #endif 1397 1398 #define SEL_REPLACE 0x0001 1399 #define SEL_PERMANT 0x0002 1400 #define SEL_ACT_RT 0x0100 /* setting rtld_flags */ 1401 #define SEL_ACT_RT2 0x0200 /* setting rtld_flags2 */ 1402 #define SEL_ACT_STR 0x0400 /* setting string value */ 1403 #define SEL_ACT_LML 0x0800 /* setting lml_flags */ 1404 #define SEL_ACT_LMLT 0x1000 /* setting lml_tflags */ 1405 #define SEL_ACT_SPEC_1 0x2000 /* For FLG_{FLAGS, LIBPATH} */ 1406 #define SEL_ACT_SPEC_2 0x4000 /* need special handling */ 1407 1408 /* 1409 * Pattern match an LD_XXXX environment variable. s1 points to the XXXX part 1410 * and len specifies its length (comparing a strings length before the string 1411 * itself speed things up). s2 points to the token itself which has already 1412 * had any leading white-space removed. 1413 */ 1414 static void 1415 ld_generic_env(const char *s1, size_t len, const char *s2, Word *lmflags, 1416 Word *lmtflags, uint_t env_flags, int aout) 1417 { 1418 u_longlong_t variable = 0; 1419 ushort_t select = 0; 1420 const char **str; 1421 Word val = 0; 1422 1423 /* 1424 * Determine whether we're dealing with a replaceable or permanent 1425 * string. 1426 */ 1427 if (env_flags & ENV_TYP_PERMANT) { 1428 /* 1429 * If the string is from a configuration file and defined as 1430 * permanent, assign it as permanent. 1431 */ 1432 select |= SEL_PERMANT; 1433 } else 1434 select |= SEL_REPLACE; 1435 1436 /* 1437 * Parse the variable given. 1438 * 1439 * The LD_AUDIT family. 1440 */ 1441 if (*s1 == 'A') { 1442 if ((len == MSG_LD_AUDIT_SIZE) && (strncmp(s1, 1443 MSG_ORIG(MSG_LD_AUDIT), MSG_LD_AUDIT_SIZE) == 0)) { 1444 /* 1445 * Replaceable and permanent audit objects can exist. 1446 */ 1447 select |= SEL_ACT_STR; 1448 if (select & SEL_REPLACE) 1449 str = &rpl_audit; 1450 else { 1451 str = &prm_audit; 1452 rpl_audit = 0; 1453 } 1454 variable = ENV_FLG_AUDIT; 1455 } else if ((len == MSG_LD_AUDIT_ARGS_SIZE) && 1456 (strncmp(s1, MSG_ORIG(MSG_LD_AUDIT_ARGS), 1457 MSG_LD_AUDIT_ARGS_SIZE) == 0)) { 1458 /* 1459 * A specialized variable for plt_exit() use, not 1460 * documented for general use. 1461 */ 1462 select |= SEL_ACT_SPEC_2; 1463 variable = ENV_FLG_AUDIT_ARGS; 1464 } 1465 } 1466 /* 1467 * The LD_BIND family and LD_BREADTH (historic). 1468 */ 1469 else if (*s1 == 'B') { 1470 if ((len == MSG_LD_BIND_LAZY_SIZE) && (strncmp(s1, 1471 MSG_ORIG(MSG_LD_BIND_LAZY), 1472 MSG_LD_BIND_LAZY_SIZE) == 0)) { 1473 select |= SEL_ACT_RT2; 1474 val = RT_FL2_BINDLAZY; 1475 variable = ENV_FLG_BIND_LAZY; 1476 } else if ((len == MSG_LD_BIND_NOW_SIZE) && (strncmp(s1, 1477 MSG_ORIG(MSG_LD_BIND_NOW), MSG_LD_BIND_NOW_SIZE) == 0)) { 1478 select |= SEL_ACT_RT2; 1479 val = RT_FL2_BINDNOW; 1480 variable = ENV_FLG_BIND_NOW; 1481 } else if ((len == MSG_LD_BIND_NOT_SIZE) && (strncmp(s1, 1482 MSG_ORIG(MSG_LD_BIND_NOT), MSG_LD_BIND_NOT_SIZE) == 0)) { 1483 /* 1484 * Another trick, enabled to help debug AOUT 1485 * applications under BCP, but not documented for 1486 * general use. 1487 */ 1488 select |= SEL_ACT_RT; 1489 val = RT_FL_NOBIND; 1490 variable = ENV_FLG_BIND_NOT; 1491 } else if ((len == MSG_LD_BINDINGS_SIZE) && (strncmp(s1, 1492 MSG_ORIG(MSG_LD_BINDINGS), MSG_LD_BINDINGS_SIZE) == 0)) { 1493 /* 1494 * This variable is simply for backward compatibility. 1495 * If this and LD_DEBUG are both specified, only one of 1496 * the strings is going to get processed. 1497 */ 1498 select |= SEL_ACT_SPEC_2; 1499 variable = ENV_FLG_BINDINGS; 1500 #ifndef LD_BREADTH_DISABLED 1501 } else if ((len == MSG_LD_BREADTH_SIZE) && (strncmp(s1, 1502 MSG_ORIG(MSG_LD_BREADTH), MSG_LD_BREADTH_SIZE) == 0)) { 1503 /* 1504 * Besides some old patches this is no longer available. 1505 */ 1506 rtld_flags |= RT_FL_BREADTH; 1507 return; 1508 #endif 1509 } 1510 } 1511 /* 1512 * LD_CONCURRENCY and LD_CONFIG family. 1513 */ 1514 else if (*s1 == 'C') { 1515 if ((len == MSG_LD_CONCURRENCY_SIZE) && (strncmp(s1, 1516 MSG_ORIG(MSG_LD_CONCURRENCY), 1517 MSG_LD_CONCURRENCY_SIZE) == 0)) { 1518 /* 1519 * Waiting in the wings, as concurrency checking isn't 1520 * yet enabled. 1521 */ 1522 select |= SEL_ACT_SPEC_2; 1523 variable = ENV_FLG_CONCURRENCY; 1524 } else if ((len == MSG_LD_CONFGEN_SIZE) && (strncmp(s1, 1525 MSG_ORIG(MSG_LD_CONFGEN), MSG_LD_CONFGEN_SIZE) == 0)) { 1526 /* 1527 * Set by crle(1) to indicate it's building a 1528 * configuration file, not documented for general use. 1529 */ 1530 select |= SEL_ACT_SPEC_2; 1531 variable = ENV_FLG_CONFGEN; 1532 } else if ((len == MSG_LD_CONFIG_SIZE) && (strncmp(s1, 1533 MSG_ORIG(MSG_LD_CONFIG), MSG_LD_CONFIG_SIZE) == 0)) { 1534 /* 1535 * Secure applications must use a default configuration 1536 * file. A setting from a configuration file doesn't 1537 * make sense (given we must be reading a configuration 1538 * file to have gotten this). 1539 */ 1540 if ((rtld_flags & RT_FL_SECURE) || 1541 (env_flags & ENV_TYP_CONFIG)) 1542 return; 1543 select |= SEL_ACT_STR; 1544 str = &config->c_name; 1545 variable = ENV_FLG_CONFIG; 1546 } 1547 } 1548 /* 1549 * The LD_DEBUG family and LD_DEMANGLE. 1550 */ 1551 else if (*s1 == 'D') { 1552 if ((len == MSG_LD_DEBUG_SIZE) && (strncmp(s1, 1553 MSG_ORIG(MSG_LD_DEBUG), MSG_LD_DEBUG_SIZE) == 0)) { 1554 select |= SEL_ACT_STR; 1555 if (select & SEL_REPLACE) 1556 str = &rpl_debug; 1557 else { 1558 str = &prm_debug; 1559 rpl_debug = 0; 1560 } 1561 variable = ENV_FLG_DEBUG; 1562 } else if ((len == MSG_LD_DEBUG_OUTPUT_SIZE) && (strncmp(s1, 1563 MSG_ORIG(MSG_LD_DEBUG_OUTPUT), 1564 MSG_LD_DEBUG_OUTPUT_SIZE) == 0)) { 1565 select |= SEL_ACT_STR; 1566 str = &dbg_file; 1567 variable = ENV_FLG_DEBUG_OUTPUT; 1568 } else if ((len == MSG_LD_DEMANGLE_SIZE) && (strncmp(s1, 1569 MSG_ORIG(MSG_LD_DEMANGLE), MSG_LD_DEMANGLE_SIZE) == 0)) { 1570 select |= SEL_ACT_RT; 1571 val = RT_FL_DEMANGLE; 1572 variable = ENV_FLG_DEMANGLE; 1573 } 1574 } 1575 /* 1576 * LD_FLAGS - collect the best variable definition. On completion of 1577 * environment variable processing pass the result to ld_flags_env() 1578 * where they'll be decomposed and passed back to this routine. 1579 */ 1580 else if (*s1 == 'F') { 1581 if ((len == MSG_LD_FLAGS_SIZE) && (strncmp(s1, 1582 MSG_ORIG(MSG_LD_FLAGS), MSG_LD_FLAGS_SIZE) == 0)) { 1583 select |= SEL_ACT_SPEC_1; 1584 if (select & SEL_REPLACE) 1585 str = &rpl_ldflags; 1586 else { 1587 str = &prm_ldflags; 1588 rpl_ldflags = 0; 1589 } 1590 variable = ENV_FLG_FLAGS; 1591 } 1592 } 1593 /* 1594 * LD_INIT (internal, used by ldd(1)). 1595 */ 1596 else if (*s1 == 'I') { 1597 if ((len == MSG_LD_INIT_SIZE) && (strncmp(s1, 1598 MSG_ORIG(MSG_LD_INIT), MSG_LD_INIT_SIZE) == 0)) { 1599 select |= SEL_ACT_LML; 1600 val = LML_FLG_TRC_INIT; 1601 variable = ENV_FLG_INIT; 1602 } 1603 } 1604 /* 1605 * The LD_LIBRARY_PATH and LD_LOAD families. 1606 */ 1607 else if (*s1 == 'L') { 1608 if ((len == MSG_LD_LIBPATH_SIZE) && (strncmp(s1, 1609 MSG_ORIG(MSG_LD_LIBPATH), MSG_LD_LIBPATH_SIZE) == 0)) { 1610 select |= SEL_ACT_SPEC_1; 1611 if (select & SEL_REPLACE) 1612 str = &rpl_libpath; 1613 else { 1614 str = &prm_libpath; 1615 rpl_libpath = 0; 1616 } 1617 variable = ENV_FLG_LIBPATH; 1618 } else if ((len == MSG_LD_LOADAVAIL_SIZE) && (strncmp(s1, 1619 MSG_ORIG(MSG_LD_LOADAVAIL), MSG_LD_LOADAVAIL_SIZE) == 0)) { 1620 /* 1621 * Internal use by crle(1), not documented for general 1622 * use. 1623 */ 1624 select |= SEL_ACT_LML; 1625 val = LML_FLG_LOADAVAIL; 1626 variable = ENV_FLG_LOADAVAIL; 1627 } else if ((len == MSG_LD_LOADFLTR_SIZE) && (strncmp(s1, 1628 MSG_ORIG(MSG_LD_LOADFLTR), MSG_LD_LOADFLTR_SIZE) == 0)) { 1629 select |= SEL_ACT_SPEC_2; 1630 variable = ENV_FLG_LOADFLTR; 1631 } 1632 } 1633 /* 1634 * The LD_NO family. 1635 */ 1636 else if (*s1 == 'N') { 1637 if ((len == MSG_LD_NOAUDIT_SIZE) && (strncmp(s1, 1638 MSG_ORIG(MSG_LD_NOAUDIT), MSG_LD_NOAUDIT_SIZE) == 0)) { 1639 select |= SEL_ACT_RT; 1640 val = RT_FL_NOAUDIT; 1641 variable = ENV_FLG_NOAUDIT; 1642 } else if ((len == MSG_LD_NOAUXFLTR_SIZE) && (strncmp(s1, 1643 MSG_ORIG(MSG_LD_NOAUXFLTR), MSG_LD_NOAUXFLTR_SIZE) == 0)) { 1644 select |= SEL_ACT_RT; 1645 val = RT_FL_NOAUXFLTR; 1646 variable = ENV_FLG_NOAUXFLTR; 1647 } else if ((len == MSG_LD_NOBAPLT_SIZE) && (strncmp(s1, 1648 MSG_ORIG(MSG_LD_NOBAPLT), MSG_LD_NOBAPLT_SIZE) == 0)) { 1649 select |= SEL_ACT_RT; 1650 val = RT_FL_NOBAPLT; 1651 variable = ENV_FLG_NOBAPLT; 1652 } else if ((len == MSG_LD_NOCONFIG_SIZE) && (strncmp(s1, 1653 MSG_ORIG(MSG_LD_NOCONFIG), MSG_LD_NOCONFIG_SIZE) == 0)) { 1654 select |= SEL_ACT_RT; 1655 val = RT_FL_NOCFG; 1656 variable = ENV_FLG_NOCONFIG; 1657 } else if ((len == MSG_LD_NODIRCONFIG_SIZE) && (strncmp(s1, 1658 MSG_ORIG(MSG_LD_NODIRCONFIG), 1659 MSG_LD_NODIRCONFIG_SIZE) == 0)) { 1660 select |= SEL_ACT_RT; 1661 val = RT_FL_NODIRCFG; 1662 variable = ENV_FLG_NODIRCONFIG; 1663 } else if ((len == MSG_LD_NODIRECT_SIZE) && (strncmp(s1, 1664 MSG_ORIG(MSG_LD_NODIRECT), MSG_LD_NODIRECT_SIZE) == 0)) { 1665 select |= SEL_ACT_LMLT; 1666 val = LML_TFLG_NODIRECT; 1667 variable = ENV_FLG_NODIRECT; 1668 } else if ((len == MSG_LD_NOENVCONFIG_SIZE) && (strncmp(s1, 1669 MSG_ORIG(MSG_LD_NOENVCONFIG), 1670 MSG_LD_NOENVCONFIG_SIZE) == 0)) { 1671 select |= SEL_ACT_RT; 1672 val = RT_FL_NOENVCFG; 1673 variable = ENV_FLG_NOENVCONFIG; 1674 } else if ((len == MSG_LD_NOFLTCONFIG_SIZE) && (strncmp(s1, 1675 MSG_ORIG(MSG_LD_NOFLTCONFIG), 1676 MSG_LD_NOFLTCONFIG_SIZE) == 0)) { 1677 select |= SEL_ACT_RT2; 1678 val = RT_FL2_NOFLTCFG; 1679 variable = ENV_FLG_NOFLTCONFIG; 1680 } else if ((len == MSG_LD_NOLAZY_SIZE) && (strncmp(s1, 1681 MSG_ORIG(MSG_LD_NOLAZY), MSG_LD_NOLAZY_SIZE) == 0)) { 1682 select |= SEL_ACT_LMLT; 1683 val = LML_TFLG_NOLAZYLD; 1684 variable = ENV_FLG_NOLAZY; 1685 } else if ((len == MSG_LD_NOOBJALTER_SIZE) && (strncmp(s1, 1686 MSG_ORIG(MSG_LD_NOOBJALTER), 1687 MSG_LD_NOOBJALTER_SIZE) == 0)) { 1688 select |= SEL_ACT_RT; 1689 val = RT_FL_NOOBJALT; 1690 variable = ENV_FLG_NOOBJALTER; 1691 } else if ((len == MSG_LD_NOVERSION_SIZE) && (strncmp(s1, 1692 MSG_ORIG(MSG_LD_NOVERSION), MSG_LD_NOVERSION_SIZE) == 0)) { 1693 select |= SEL_ACT_RT; 1694 val = RT_FL_NOVERSION; 1695 variable = ENV_FLG_NOVERSION; 1696 } 1697 } 1698 /* 1699 * LD_ORIGIN. 1700 */ 1701 else if (*s1 == 'O') { 1702 #ifndef EXPAND_RELATIVE 1703 if ((len == MSG_LD_ORIGIN_SIZE) && (strncmp(s1, 1704 MSG_ORIG(MSG_LD_ORIGIN), MSG_LD_ORIGIN_SIZE) == 0)) { 1705 /* 1706 * Besides some old patches this is no longer required. 1707 */ 1708 rtld_flags |= RT_FL_RELATIVE; 1709 } 1710 #endif 1711 return; 1712 } 1713 /* 1714 * LD_PRELOAD and LD_PROFILE family. 1715 */ 1716 else if (*s1 == 'P') { 1717 if ((len == MSG_LD_PRELOAD_SIZE) && (strncmp(s1, 1718 MSG_ORIG(MSG_LD_PRELOAD), MSG_LD_PRELOAD_SIZE) == 0)) { 1719 select |= SEL_ACT_STR; 1720 if (select & SEL_REPLACE) 1721 str = &rpl_preload; 1722 else { 1723 str = &prm_preload; 1724 rpl_preload = 0; 1725 } 1726 variable = ENV_FLG_PRELOAD; 1727 } else if ((len == MSG_LD_PROFILE_SIZE) && (strncmp(s1, 1728 MSG_ORIG(MSG_LD_PROFILE), MSG_LD_PROFILE_SIZE) == 0)) { 1729 /* 1730 * Only one user library can be profiled at a time. 1731 */ 1732 select |= SEL_ACT_SPEC_2; 1733 variable = ENV_FLG_PROFILE; 1734 } else if ((len == MSG_LD_PROFILE_OUTPUT_SIZE) && (strncmp(s1, 1735 MSG_ORIG(MSG_LD_PROFILE_OUTPUT), 1736 MSG_LD_PROFILE_OUTPUT_SIZE) == 0)) { 1737 /* 1738 * Only one user library can be profiled at a time. 1739 */ 1740 select |= SEL_ACT_STR; 1741 str = &profile_out; 1742 variable = ENV_FLG_PROFILE_OUTPUT; 1743 } 1744 } 1745 /* 1746 * LD_SIGNAL. 1747 */ 1748 else if (*s1 == 'S') { 1749 if (rtld_flags & RT_FL_SECURE) 1750 return; 1751 if ((len == MSG_LD_SIGNAL_SIZE) && 1752 (strncmp(s1, MSG_ORIG(MSG_LD_SIGNAL), 1753 MSG_LD_SIGNAL_SIZE) == 0)) { 1754 select |= SEL_ACT_SPEC_2; 1755 variable = ENV_FLG_SIGNAL; 1756 } 1757 } 1758 /* 1759 * The LD_TRACE family (internal, used by ldd(1)). This definition is 1760 * the key to enabling all other ldd(1) specific environment variables. 1761 * In case an auditor is called, which in turn might exec(2) a 1762 * subprocess, this variable is disabled, so that any subprocess 1763 * escapes ldd(1) processing. 1764 */ 1765 else if (*s1 == 'T') { 1766 if (((len == MSG_LD_TRACE_OBJS_SIZE) && 1767 (strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS), 1768 MSG_LD_TRACE_OBJS_SIZE) == 0)) || 1769 ((len == MSG_LD_TRACE_OBJS_E_SIZE) && 1770 (((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_E), 1771 MSG_LD_TRACE_OBJS_E_SIZE) == 0) && !aout) || 1772 ((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_A), 1773 MSG_LD_TRACE_OBJS_A_SIZE) == 0) && aout)))) { 1774 char *s0 = (char *)s1; 1775 1776 select |= SEL_ACT_SPEC_2; 1777 variable = ENV_FLG_TRACE_OBJS; 1778 1779 #if defined(__sparc) || defined(__x86) 1780 /* 1781 * The simplest way to "disable" this variable is to 1782 * truncate this string to "LD_'\0'". This string is 1783 * ignored by any ld.so.1 environment processing. 1784 * Use of such interfaces as unsetenv(3c) are overkill, 1785 * and would drag too much libc implementation detail 1786 * into ld.so.1. 1787 */ 1788 *s0 = '\0'; 1789 #else 1790 /* 1791 * Verify that the above write is appropriate for any new platforms. 1792 */ 1793 #error unsupported architecture! 1794 #endif 1795 } else if ((len == MSG_LD_TRACE_PTHS_SIZE) && (strncmp(s1, 1796 MSG_ORIG(MSG_LD_TRACE_PTHS), 1797 MSG_LD_TRACE_PTHS_SIZE) == 0)) { 1798 select |= SEL_ACT_LML; 1799 val = LML_FLG_TRC_SEARCH; 1800 variable = ENV_FLG_TRACE_PTHS; 1801 } 1802 } 1803 /* 1804 * LD_UNREF and LD_UNUSED (internal, used by ldd(1)). 1805 */ 1806 else if (*s1 == 'U') { 1807 if ((len == MSG_LD_UNREF_SIZE) && (strncmp(s1, 1808 MSG_ORIG(MSG_LD_UNREF), MSG_LD_UNREF_SIZE) == 0)) { 1809 select |= SEL_ACT_LML; 1810 val = LML_FLG_TRC_UNREF; 1811 variable = ENV_FLG_UNREF; 1812 } else if ((len == MSG_LD_UNUSED_SIZE) && (strncmp(s1, 1813 MSG_ORIG(MSG_LD_UNUSED), MSG_LD_UNUSED_SIZE) == 0)) { 1814 select |= SEL_ACT_LML; 1815 val = LML_FLG_TRC_UNUSED; 1816 variable = ENV_FLG_UNUSED; 1817 } 1818 } 1819 /* 1820 * LD_VERBOSE (internal, used by ldd(1)). 1821 */ 1822 else if (*s1 == 'V') { 1823 if ((len == MSG_LD_VERBOSE_SIZE) && (strncmp(s1, 1824 MSG_ORIG(MSG_LD_VERBOSE), MSG_LD_VERBOSE_SIZE) == 0)) { 1825 select |= SEL_ACT_LML; 1826 val = LML_FLG_TRC_VERBOSE; 1827 variable = ENV_FLG_VERBOSE; 1828 } 1829 } 1830 /* 1831 * LD_WARN (internal, used by ldd(1)). 1832 */ 1833 else if (*s1 == 'W') { 1834 if ((len == MSG_LD_WARN_SIZE) && (strncmp(s1, 1835 MSG_ORIG(MSG_LD_WARN), MSG_LD_WARN_SIZE) == 0)) { 1836 select |= SEL_ACT_LML; 1837 val = LML_FLG_TRC_WARN; 1838 variable = ENV_FLG_WARN; 1839 } 1840 #ifdef SIEBEL_DISABLE 1841 } 1842 /* 1843 * LD__FIX__ (undocumented, enable future technology that can't be 1844 * delivered in a patch release). 1845 */ 1846 else if (*s1 == '_') { 1847 if ((len == MSG_LD_FIX_1_SIZE) && (strncmp(s1, 1848 MSG_ORIG(MSG_LD_FIX_1), MSG_LD_FIX_1_SIZE) == 0)) { 1849 select |= SEL_ACT_RT; 1850 val = RT_FL_DISFIX_1; 1851 variable = ENV_FLG_FIX_1; 1852 } 1853 #endif 1854 } 1855 if (variable == 0) 1856 return; 1857 1858 /* 1859 * If the variable is already processed with ISA specific variable, 1860 * no further processing needed. 1861 */ 1862 if (((select & SEL_REPLACE) && (rplisa & variable)) || 1863 ((select & SEL_PERMANT) && (prmisa & variable))) 1864 return; 1865 1866 /* 1867 * Now mark the appropriate variables. 1868 * If the replaceable variable is already set, then the 1869 * process environment variable must be set. Any replaceable 1870 * variable specified in a configuration file can be ignored. 1871 */ 1872 if (env_flags & ENV_TYP_ISA) { 1873 /* 1874 * This is ISA setting. We do the setting 1875 * even if s2 is NULL. 1876 * If s2 is NULL, we might need to undo 1877 * the setting. 1878 */ 1879 if (select & SEL_REPLACE) { 1880 if (rplisa & variable) 1881 return; 1882 rplisa |= variable; 1883 } else { 1884 prmisa |= variable; 1885 } 1886 } else if (s2) { 1887 /* 1888 * This is non0-ISA setting 1889 */ 1890 if (select & SEL_REPLACE) { 1891 if (rplgen & variable) 1892 return; 1893 rplgen |= variable; 1894 } else 1895 prmgen |= variable; 1896 } else 1897 /* 1898 * This is non-ISA setting which 1899 * can be ignored. 1900 */ 1901 return; 1902 1903 /* 1904 * Now perform the setting. 1905 */ 1906 if (select & SEL_ACT_RT) { 1907 if (s2) 1908 rtld_flags |= val; 1909 else 1910 rtld_flags &= ~val; 1911 } else if (select & SEL_ACT_RT2) { 1912 if (s2) 1913 rtld_flags2 |= val; 1914 else 1915 rtld_flags2 &= ~val; 1916 } else if (select & SEL_ACT_STR) 1917 *str = s2; 1918 else if (select & SEL_ACT_LML) { 1919 if (s2) 1920 *lmflags |= val; 1921 else 1922 *lmflags &= ~val; 1923 } else if (select & SEL_ACT_LMLT) { 1924 if (s2) 1925 *lmtflags |= val; 1926 else 1927 *lmtflags &= ~val; 1928 } else if (select & SEL_ACT_SPEC_1) { 1929 /* 1930 * variable is either ENV_FLG_FLAGS or ENV_FLG_LIBPATH 1931 */ 1932 *str = s2; 1933 if ((select & SEL_REPLACE) && (env_flags & ENV_TYP_CONFIG)) { 1934 if (s2) { 1935 if (variable == ENV_FLG_FLAGS) 1936 env_info |= ENV_INF_FLAGCFG; 1937 else 1938 env_info |= ENV_INF_PATHCFG; 1939 } else { 1940 if (variable == ENV_FLG_FLAGS) 1941 env_info &= ~ENV_INF_FLAGCFG; 1942 else 1943 env_info &= ~ENV_INF_PATHCFG; 1944 } 1945 } 1946 } else if (select & SEL_ACT_SPEC_2) { 1947 /* 1948 * variables can be: ENV_FLG_ 1949 * AUDIT_ARGS, BINDING, CONCURRENCY, CONFGEN, 1950 * LOADFLTR, PROFILE, SIGNAL, TRACE_OBJS 1951 */ 1952 if (variable == ENV_FLG_AUDIT_ARGS) { 1953 if (s2) { 1954 audit_argcnt = atoi(s2); 1955 audit_argcnt += audit_argcnt % 2; 1956 } else 1957 audit_argcnt = 0; 1958 } else if (variable == ENV_FLG_BINDINGS) { 1959 if (s2) 1960 rpl_debug = MSG_ORIG(MSG_TKN_BINDINGS); 1961 else 1962 rpl_debug = 0; 1963 } else if (variable == ENV_FLG_CONCURRENCY) { 1964 if (s2) 1965 rtld_flags &= ~RT_FL_NOCONCUR; 1966 else 1967 rtld_flags |= RT_FL_NOCONCUR; 1968 } else if (variable == ENV_FLG_CONFGEN) { 1969 if (s2) { 1970 rtld_flags |= RT_FL_CONFGEN; 1971 *lmflags |= LML_FLG_IGNRELERR; 1972 } else { 1973 rtld_flags &= ~RT_FL_CONFGEN; 1974 *lmflags &= ~LML_FLG_IGNRELERR; 1975 } 1976 } else if (variable == ENV_FLG_LOADFLTR) { 1977 if (s2) { 1978 *lmtflags |= LML_TFLG_LOADFLTR; 1979 if (*s2 == '2') 1980 rtld_flags |= RT_FL_WARNFLTR; 1981 } else { 1982 *lmtflags &= ~LML_TFLG_LOADFLTR; 1983 rtld_flags &= ~RT_FL_WARNFLTR; 1984 } 1985 } else if (variable == ENV_FLG_PROFILE) { 1986 profile_name = s2; 1987 if (s2) { 1988 if (strcmp(s2, MSG_ORIG(MSG_FIL_RTLD)) == 0) { 1989 return; 1990 } 1991 /* BEGIN CSTYLED */ 1992 if (rtld_flags & RT_FL_SECURE) { 1993 profile_lib = 1994 #if defined(_ELF64) 1995 MSG_ORIG(MSG_PTH_LDPROFSE_64); 1996 #else 1997 MSG_ORIG(MSG_PTH_LDPROFSE); 1998 #endif 1999 } else { 2000 profile_lib = 2001 #if defined(_ELF64) 2002 MSG_ORIG(MSG_PTH_LDPROF_64); 2003 #else 2004 MSG_ORIG(MSG_PTH_LDPROF); 2005 #endif 2006 } 2007 /* END CSTYLED */ 2008 } else 2009 profile_lib = 0; 2010 } else if (variable == ENV_FLG_SIGNAL) { 2011 killsig = s2 ? atoi(s2) : SIGKILL; 2012 } else if (variable == ENV_FLG_TRACE_OBJS) { 2013 if (s2) { 2014 *lmflags |= LML_FLG_TRC_ENABLE; 2015 if (*s2 == '2') 2016 *lmflags |= LML_FLG_TRC_LDDSTUB; 2017 } else 2018 *lmflags &= 2019 ~(LML_FLG_TRC_ENABLE|LML_FLG_TRC_LDDSTUB); 2020 } 2021 } 2022 } 2023 2024 /* 2025 * Determine whether we have an architecture specific environment variable. 2026 * If we do, and we're the wrong architecture, it'll just get ignored. 2027 * Otherwise the variable is processed in it's architecture neutral form. 2028 */ 2029 static int 2030 ld_arch_env(const char *s1, size_t *len) 2031 { 2032 size_t _len = *len - 3; 2033 2034 if (s1[_len++] == '_') { 2035 if ((s1[_len] == '3') && (s1[_len + 1] == '2')) { 2036 #if defined(_ELF64) 2037 return (ENV_TYP_IGNORE); 2038 #else 2039 *len = *len - 3; 2040 return (ENV_TYP_ISA); 2041 #endif 2042 } 2043 if ((s1[_len] == '6') && (s1[_len + 1] == '4')) { 2044 #if defined(_ELF64) 2045 *len = *len - 3; 2046 return (ENV_TYP_ISA); 2047 #else 2048 return (ENV_TYP_IGNORE); 2049 #endif 2050 } 2051 } 2052 return (0); 2053 } 2054 2055 2056 /* 2057 * Process an LD_FLAGS environment variable. The value can be a comma 2058 * separated set of tokens, which are sent (in upper case) into the generic 2059 * LD_XXXX environment variable engine. For example: 2060 * 2061 * LD_FLAGS=bind_now -> LD_BIND_NOW=1 2062 * LD_FLAGS=library_path=/foo:. -> LD_LIBRARY_PATH=/foo:. 2063 * LD_FLAGS=debug=files:detail -> LD_DEBUG=files:detail 2064 * or 2065 * LD_FLAGS=bind_now,library_path=/foo:.,debug=files:detail 2066 */ 2067 static int 2068 ld_flags_env(const char *str, Word *lmflags, Word *lmtflags, 2069 uint_t env_flags, int aout) 2070 { 2071 char *nstr, *sstr, *estr = 0; 2072 size_t nlen, len; 2073 2074 if (str == 0) 2075 return (0); 2076 2077 /* 2078 * Create a new string as we're going to transform the token(s) into 2079 * uppercase and separate tokens with nulls. 2080 */ 2081 len = strlen(str); 2082 if ((nstr = malloc(len + 1)) == 0) 2083 return (1); 2084 (void) strcpy(nstr, str); 2085 2086 for (sstr = nstr; sstr; sstr++, len--) { 2087 int flags; 2088 2089 if ((*sstr != '\0') && (*sstr != ',')) { 2090 if (estr == 0) { 2091 if (*sstr == '=') 2092 estr = sstr; 2093 else { 2094 /* 2095 * Translate token to uppercase. Don't 2096 * use toupper(3C) as including this 2097 * code doubles the size of ld.so.1. 2098 */ 2099 if ((*sstr >= 'a') && (*sstr <= 'z')) 2100 *sstr = *sstr - ('a' - 'A'); 2101 } 2102 } 2103 continue; 2104 } 2105 2106 *sstr = '\0'; 2107 if (estr) { 2108 nlen = estr - nstr; 2109 if ((*++estr == '\0') || (*estr == ',')) 2110 estr = 0; 2111 } else 2112 nlen = sstr - nstr; 2113 2114 /* 2115 * Fabricate a boolean definition for any unqualified variable. 2116 * Thus LD_FLAGS=bind_now is represented as BIND_NOW=(null). 2117 * The value is sufficient to assert any boolean variables, plus 2118 * the term "(null)" is specifically chosen in case someone 2119 * mistakenly supplies something like LD_FLAGS=library_path. 2120 */ 2121 if (estr == 0) 2122 estr = (char *)MSG_INTL(MSG_STR_NULL); 2123 2124 /* 2125 * Determine whether the environment variable is 32- or 64-bit 2126 * specific. The length, len, will reflect the architecture 2127 * neutral portion of the string. 2128 */ 2129 if ((flags = ld_arch_env(nstr, &nlen)) != ENV_TYP_IGNORE) { 2130 ld_generic_env(nstr, nlen, estr, lmflags, 2131 lmtflags, (env_flags | flags), aout); 2132 } 2133 if (len == 0) 2134 return (0); 2135 2136 nstr = sstr + 1; 2137 estr = 0; 2138 } 2139 return (0); 2140 } 2141 2142 2143 /* 2144 * Process a single environment string. Only strings starting with `LD_' are 2145 * reserved for our use. By convention, all strings should be of the form 2146 * `LD_XXXX=', if the string is followed by a non-null value the appropriate 2147 * functionality is enabled. Also pick off applicable locale variables. 2148 */ 2149 #define LOC_LANG 1 2150 #define LOC_MESG 2 2151 #define LOC_ALL 3 2152 2153 static void 2154 ld_str_env(const char *s1, Word *lmflags, Word *lmtflags, uint_t env_flags, 2155 int aout) 2156 { 2157 const char *s2; 2158 static size_t loc = 0; 2159 2160 if (*s1++ != 'L') 2161 return; 2162 2163 /* 2164 * See if we have any locale environment settings. These environment 2165 * variables have a precedence, LC_ALL is higher than LC_MESSAGES which 2166 * is higher than LANG. 2167 */ 2168 s2 = s1; 2169 if ((*s2++ == 'C') && (*s2++ == '_') && (*s2 != '\0')) { 2170 if (strncmp(s2, MSG_ORIG(MSG_LC_ALL), MSG_LC_ALL_SIZE) == 0) { 2171 s2 += MSG_LC_ALL_SIZE; 2172 if ((*s2 != '\0') && (loc < LOC_ALL)) { 2173 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2174 loc = LOC_ALL; 2175 } 2176 } else if (strncmp(s2, MSG_ORIG(MSG_LC_MESSAGES), 2177 MSG_LC_MESSAGES_SIZE) == 0) { 2178 s2 += MSG_LC_MESSAGES_SIZE; 2179 if ((*s2 != '\0') && (loc < LOC_MESG)) { 2180 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2181 loc = LOC_MESG; 2182 } 2183 } 2184 return; 2185 } 2186 2187 s2 = s1; 2188 if ((*s2++ == 'A') && (*s2++ == 'N') && (*s2++ == 'G') && 2189 (*s2++ == '=') && (*s2 != '\0') && (loc < LOC_LANG)) { 2190 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2191 loc = LOC_LANG; 2192 return; 2193 } 2194 2195 /* 2196 * Pick off any LD_XXXX environment variables. 2197 */ 2198 if ((*s1++ == 'D') && (*s1++ == '_') && (*s1 != '\0')) { 2199 size_t len; 2200 int flags; 2201 2202 /* 2203 * In a branded process we must ignore all LD_XXXX env vars 2204 * because they are intended for the brand's linker. 2205 * To affect the Solaris linker, use LD_BRAND_XXXX instead. 2206 */ 2207 if (rtld_flags2 & RT_FL2_BRANDED) { 2208 if (strncmp(s1, MSG_ORIG(MSG_LD_BRAND_PREFIX), 2209 MSG_LD_BRAND_PREFIX_SIZE) != 0) 2210 return; 2211 s1 += MSG_LD_BRAND_PREFIX_SIZE; 2212 } 2213 2214 /* 2215 * Environment variables with no value (ie. LD_XXXX=) typically 2216 * have no impact, however if environment variables are defined 2217 * within a configuration file, these null user settings can be 2218 * used to disable any configuration replaceable definitions. 2219 */ 2220 if ((s2 = strchr(s1, '=')) == 0) { 2221 len = strlen(s1); 2222 s2 = 0; 2223 } else if (*++s2 == '\0') { 2224 len = strlen(s1) - 1; 2225 s2 = 0; 2226 } else { 2227 len = s2 - s1 - 1; 2228 while (isspace(*s2)) 2229 s2++; 2230 } 2231 2232 /* 2233 * Determine whether the environment variable is 32- or 64-bit 2234 * specific. The length, len, will reflect the architecture 2235 * neutral portion of the string. 2236 */ 2237 if ((flags = ld_arch_env(s1, &len)) == ENV_TYP_IGNORE) 2238 return; 2239 env_flags |= flags; 2240 2241 ld_generic_env(s1, len, s2, lmflags, lmtflags, env_flags, aout); 2242 } 2243 } 2244 2245 /* 2246 * Internal getenv routine. Called immediately after ld.so.1 initializes 2247 * itself. 2248 */ 2249 int 2250 readenv_user(const char ** envp, Word *lmflags, Word *lmtflags, int aout) 2251 { 2252 char *locale; 2253 2254 if (envp == (const char **)0) 2255 return (0); 2256 2257 while (*envp != (const char *)0) 2258 ld_str_env(*envp++, lmflags, lmtflags, 0, aout); 2259 2260 /* 2261 * Having collected the best representation of any LD_FLAGS, process 2262 * these strings. 2263 */ 2264 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2265 return (1); 2266 2267 /* 2268 * Don't allow environment controlled auditing when tracing or if 2269 * explicitly disabled. Trigger all tracing modes from 2270 * LML_FLG_TRC_ENABLE. 2271 */ 2272 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2273 rpl_audit = profile_lib = profile_name = 0; 2274 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2275 *lmflags &= ~LML_MSK_TRC; 2276 2277 /* 2278 * If both LD_BIND_NOW and LD_BIND_LAZY are specified, the former wins. 2279 */ 2280 if ((rtld_flags2 & (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) == 2281 (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) 2282 rtld_flags2 &= ~RT_FL2_BINDLAZY; 2283 2284 /* 2285 * If we have a locale setting make sure its worth processing further. 2286 * C and POSIX locales don't need any processing. In addition, to 2287 * ensure no one escapes the /usr/lib/locale hierarchy, don't allow 2288 * the locale to contain a segment that leads upward in the file system 2289 * hierarchy (i.e. no '..' segments). Given that we'll be confined to 2290 * the /usr/lib/locale hierarchy, there is no need to extensively 2291 * validate the mode or ownership of any message file (as libc's 2292 * generic handling of message files does). Duplicate the string so 2293 * that new locale setting can generically cleanup any previous locales. 2294 */ 2295 if ((locale = glcs[CI_LCMESSAGES].lc_un.lc_ptr) != 0) { 2296 if (((*locale == 'C') && (*(locale + 1) == '\0')) || 2297 (strcmp(locale, MSG_ORIG(MSG_TKN_POSIX)) == 0) || 2298 (strstr(locale, MSG_ORIG(MSG_TKN_DOTDOT)) != NULL)) 2299 glcs[CI_LCMESSAGES].lc_un.lc_ptr = 0; 2300 else 2301 glcs[CI_LCMESSAGES].lc_un.lc_ptr = strdup(locale); 2302 } 2303 return (0); 2304 } 2305 2306 /* 2307 * Configuration environment processing. Called after the a.out has been 2308 * processed (as the a.out can specify its own configuration file). 2309 */ 2310 int 2311 readenv_config(Rtc_env * envtbl, Addr addr, int aout) 2312 { 2313 Word * lmflags = &(lml_main.lm_flags); 2314 Word * lmtflags = &(lml_main.lm_tflags); 2315 2316 if (envtbl == (Rtc_env *)0) 2317 return (0); 2318 2319 while (envtbl->env_str) { 2320 uint_t env_flags = ENV_TYP_CONFIG; 2321 2322 if (envtbl->env_flags & RTC_ENV_PERMANT) 2323 env_flags |= ENV_TYP_PERMANT; 2324 2325 ld_str_env((const char *)(envtbl->env_str + addr), 2326 lmflags, lmtflags, env_flags, 0); 2327 envtbl++; 2328 } 2329 2330 /* 2331 * Having collected the best representation of any LD_FLAGS, process 2332 * these strings. 2333 */ 2334 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2335 return (1); 2336 if (ld_flags_env(prm_ldflags, lmflags, lmtflags, ENV_TYP_CONFIG, 2337 aout) == 1) 2338 return (1); 2339 2340 /* 2341 * Don't allow environment controlled auditing when tracing or if 2342 * explicitly disabled. Trigger all tracing modes from 2343 * LML_FLG_TRC_ENABLE. 2344 */ 2345 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2346 prm_audit = profile_lib = profile_name = 0; 2347 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2348 *lmflags &= ~LML_MSK_TRC; 2349 2350 return (0); 2351 } 2352 2353 int 2354 dowrite(Prfbuf * prf) 2355 { 2356 /* 2357 * We do not have a valid file descriptor, so we are unable 2358 * to flush the buffer. 2359 */ 2360 if (prf->pr_fd == -1) 2361 return (0); 2362 (void) write(prf->pr_fd, prf->pr_buf, prf->pr_cur - prf->pr_buf); 2363 prf->pr_cur = prf->pr_buf; 2364 return (1); 2365 } 2366 2367 /* 2368 * Simplified printing. The following conversion specifications are supported: 2369 * 2370 * % [#] [-] [min field width] [. precision] s|d|x|c 2371 * 2372 * 2373 * dorprf takes the output buffer in the form of Prfbuf which permits 2374 * the verification of the output buffer size and the concatenation 2375 * of data to an already existing output buffer. The Prfbuf 2376 * structure contains the following: 2377 * 2378 * pr_buf pointer to the beginning of the output buffer. 2379 * pr_cur pointer to the next available byte in the output buffer. By 2380 * setting pr_cur ahead of pr_buf you can append to an already 2381 * existing buffer. 2382 * pr_len the size of the output buffer. By setting pr_len to '0' you 2383 * disable protection from overflows in the output buffer. 2384 * pr_fd a pointer to the file-descriptor the buffer will eventually be 2385 * output to. If pr_fd is set to '-1' then it's assumed there is 2386 * no output buffer, and doprf() will return with an error to 2387 * indicate an output buffer overflow. If pr_fd is > -1 then when 2388 * the output buffer is filled it will be flushed to pr_fd and will 2389 * then be available for additional data. 2390 */ 2391 #define FLG_UT_MINUS 0x0001 /* - */ 2392 #define FLG_UT_SHARP 0x0002 /* # */ 2393 #define FLG_UT_DOTSEEN 0x0008 /* dot appeared in format spec */ 2394 2395 /* 2396 * This macro is for use from within doprf only. It is to be used for checking 2397 * the output buffer size and placing characters into the buffer. 2398 */ 2399 #define PUTC(c) \ 2400 { \ 2401 char tmpc; \ 2402 \ 2403 tmpc = (c); \ 2404 if (bufsiz && (bp >= bufend)) { \ 2405 prf->pr_cur = bp; \ 2406 if (dowrite(prf) == 0) \ 2407 return (0); \ 2408 bp = prf->pr_cur; \ 2409 } \ 2410 *bp++ = tmpc; \ 2411 } 2412 2413 /* 2414 * Define a local buffer size for building a numeric value - large enough to 2415 * hold a 64-bit value. 2416 */ 2417 #define NUM_SIZE 22 2418 2419 size_t 2420 doprf(const char *format, va_list args, Prfbuf *prf) 2421 { 2422 char c; 2423 char *bp = prf->pr_cur; 2424 char *bufend = prf->pr_buf + prf->pr_len; 2425 size_t bufsiz = prf->pr_len; 2426 2427 while ((c = *format++) != '\0') { 2428 if (c != '%') { 2429 PUTC(c); 2430 } else { 2431 int base = 0, flag = 0, width = 0, prec = 0; 2432 size_t _i; 2433 int _c, _n; 2434 char *_s; 2435 int ls = 0; 2436 again: 2437 c = *format++; 2438 switch (c) { 2439 case '-': 2440 flag |= FLG_UT_MINUS; 2441 goto again; 2442 case '#': 2443 flag |= FLG_UT_SHARP; 2444 goto again; 2445 case '.': 2446 flag |= FLG_UT_DOTSEEN; 2447 goto again; 2448 case '0': 2449 case '1': 2450 case '2': 2451 case '3': 2452 case '4': 2453 case '5': 2454 case '6': 2455 case '7': 2456 case '8': 2457 case '9': 2458 if (flag & FLG_UT_DOTSEEN) 2459 prec = (prec * 10) + c - '0'; 2460 else 2461 width = (width * 10) + c - '0'; 2462 goto again; 2463 case 'x': 2464 case 'X': 2465 base = 16; 2466 break; 2467 case 'd': 2468 case 'D': 2469 case 'u': 2470 base = 10; 2471 flag &= ~FLG_UT_SHARP; 2472 break; 2473 case 'l': 2474 base = 10; 2475 ls++; /* number of l's (long or long long) */ 2476 if ((*format == 'l') || 2477 (*format == 'd') || (*format == 'D') || 2478 (*format == 'x') || (*format == 'X') || 2479 (*format == 'o') || (*format == 'O')) 2480 goto again; 2481 break; 2482 case 'o': 2483 case 'O': 2484 base = 8; 2485 break; 2486 case 'c': 2487 _c = va_arg(args, int); 2488 2489 for (_i = 24; _i > 0; _i -= 8) { 2490 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2491 PUTC(c); 2492 } 2493 } 2494 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2495 PUTC(c); 2496 } 2497 break; 2498 case 's': 2499 _s = va_arg(args, char *); 2500 _i = strlen(_s); 2501 /* LINTED */ 2502 _n = (int)(width - _i); 2503 if (!prec) 2504 /* LINTED */ 2505 prec = (int)_i; 2506 2507 if (width && !(flag & FLG_UT_MINUS)) { 2508 while (_n-- > 0) 2509 PUTC(' '); 2510 } 2511 while (((c = *_s++) != 0) && prec--) { 2512 PUTC(c); 2513 } 2514 if (width && (flag & FLG_UT_MINUS)) { 2515 while (_n-- > 0) 2516 PUTC(' '); 2517 } 2518 break; 2519 case '%': 2520 PUTC('%'); 2521 break; 2522 default: 2523 break; 2524 } 2525 2526 /* 2527 * Numeric processing 2528 */ 2529 if (base) { 2530 char local[NUM_SIZE]; 2531 size_t ssize = 0, psize = 0; 2532 const char *string = 2533 MSG_ORIG(MSG_STR_HEXNUM); 2534 const char *prefix = 2535 MSG_ORIG(MSG_STR_EMPTY); 2536 u_longlong_t num; 2537 2538 switch (ls) { 2539 case 0: /* int */ 2540 num = (u_longlong_t) 2541 va_arg(args, uint_t); 2542 break; 2543 case 1: /* long */ 2544 num = (u_longlong_t) 2545 va_arg(args, ulong_t); 2546 break; 2547 case 2: /* long long */ 2548 num = va_arg(args, u_longlong_t); 2549 break; 2550 } 2551 2552 if (flag & FLG_UT_SHARP) { 2553 if (base == 16) { 2554 prefix = MSG_ORIG(MSG_STR_HEX); 2555 psize = 2; 2556 } else { 2557 prefix = MSG_ORIG(MSG_STR_ZERO); 2558 psize = 1; 2559 } 2560 } 2561 if ((base == 10) && (long)num < 0) { 2562 prefix = MSG_ORIG(MSG_STR_NEGATE); 2563 psize = MSG_STR_NEGATE_SIZE; 2564 num = (u_longlong_t)(-(longlong_t)num); 2565 } 2566 2567 /* 2568 * Convert the numeric value into a local 2569 * string (stored in reverse order). 2570 */ 2571 _s = local; 2572 do { 2573 *_s++ = string[num % base]; 2574 num /= base; 2575 ssize++; 2576 } while (num); 2577 2578 ASSERT(ssize < sizeof (local)); 2579 2580 /* 2581 * Provide any precision or width padding. 2582 */ 2583 if (prec) { 2584 /* LINTED */ 2585 _n = (int)(prec - ssize); 2586 while ((_n-- > 0) && 2587 (ssize < sizeof (local))) { 2588 *_s++ = '0'; 2589 ssize++; 2590 } 2591 } 2592 if (width && !(flag & FLG_UT_MINUS)) { 2593 /* LINTED */ 2594 _n = (int)(width - ssize - psize); 2595 while (_n-- > 0) { 2596 PUTC(' '); 2597 } 2598 } 2599 2600 /* 2601 * Print any prefix and the numeric string 2602 */ 2603 while (*prefix) 2604 PUTC(*prefix++); 2605 do { 2606 PUTC(*--_s); 2607 } while (_s > local); 2608 2609 /* 2610 * Provide any width padding. 2611 */ 2612 if (width && (flag & FLG_UT_MINUS)) { 2613 /* LINTED */ 2614 _n = (int)(width - ssize - psize); 2615 while (_n-- > 0) 2616 PUTC(' '); 2617 } 2618 } 2619 } 2620 } 2621 2622 PUTC('\0'); 2623 prf->pr_cur = bp; 2624 return (1); 2625 } 2626 2627 static int 2628 doprintf(const char *format, va_list args, Prfbuf *prf) 2629 { 2630 char *ocur = prf->pr_cur; 2631 2632 if (doprf(format, args, prf) == 0) 2633 return (0); 2634 /* LINTED */ 2635 return ((int)(prf->pr_cur - ocur)); 2636 } 2637 2638 /* VARARGS2 */ 2639 int 2640 sprintf(char *buf, const char *format, ...) 2641 { 2642 va_list args; 2643 int len; 2644 Prfbuf prf; 2645 2646 va_start(args, format); 2647 prf.pr_buf = prf.pr_cur = buf; 2648 prf.pr_len = 0; 2649 prf.pr_fd = -1; 2650 len = doprintf(format, args, &prf); 2651 va_end(args); 2652 2653 /* 2654 * sprintf() return value excludes the terminating null byte. 2655 */ 2656 return (len - 1); 2657 } 2658 2659 /* VARARGS3 */ 2660 int 2661 snprintf(char *buf, size_t n, const char *format, ...) 2662 { 2663 va_list args; 2664 int len; 2665 Prfbuf prf; 2666 2667 va_start(args, format); 2668 prf.pr_buf = prf.pr_cur = buf; 2669 prf.pr_len = n; 2670 prf.pr_fd = -1; 2671 len = doprintf(format, args, &prf); 2672 va_end(args); 2673 2674 return (len); 2675 } 2676 2677 /* VARARGS2 */ 2678 int 2679 bufprint(Prfbuf *prf, const char *format, ...) 2680 { 2681 va_list args; 2682 int len; 2683 2684 va_start(args, format); 2685 len = doprintf(format, args, prf); 2686 va_end(args); 2687 2688 return (len); 2689 } 2690 2691 /*PRINTFLIKE1*/ 2692 int 2693 printf(const char *format, ...) 2694 { 2695 va_list args; 2696 char buffer[ERRSIZE]; 2697 Prfbuf prf; 2698 2699 va_start(args, format); 2700 prf.pr_buf = prf.pr_cur = buffer; 2701 prf.pr_len = ERRSIZE; 2702 prf.pr_fd = 1; 2703 (void) doprf(format, args, &prf); 2704 va_end(args); 2705 /* 2706 * Trim trailing '\0' form buffer 2707 */ 2708 prf.pr_cur--; 2709 return (dowrite(&prf)); 2710 } 2711 2712 static char errbuf[ERRSIZE], *nextptr = errbuf, *prevptr = 0; 2713 2714 /*PRINTFLIKE3*/ 2715 void 2716 eprintf(Lm_list *lml, Error error, const char *format, ...) 2717 { 2718 va_list args; 2719 int overflow = 0; 2720 static int lock = 0; 2721 Prfbuf prf; 2722 2723 if (lock || (nextptr == (errbuf + ERRSIZE))) 2724 return; 2725 2726 /* 2727 * Note: this lock is here to prevent the same thread from recursively 2728 * entering itself during a eprintf. ie: during eprintf malloc() fails 2729 * and we try and call eprintf ... and then malloc() fails .... 2730 */ 2731 lock = 1; 2732 2733 /* 2734 * If we have completed startup initialization, all error messages 2735 * must be saved. These are reported through dlerror(). If we're 2736 * still in the initialization stage, output the error directly and 2737 * add a newline. 2738 */ 2739 va_start(args, format); 2740 2741 prf.pr_buf = prf.pr_cur = nextptr; 2742 prf.pr_len = ERRSIZE - (nextptr - errbuf); 2743 2744 if (!(rtld_flags & RT_FL_APPLIC)) 2745 prf.pr_fd = 2; 2746 else 2747 prf.pr_fd = -1; 2748 2749 if (error > ERR_NONE) { 2750 if ((error == ERR_FATAL) && (rtld_flags2 & RT_FL2_FTL2WARN)) 2751 error = ERR_WARNING; 2752 if (error == ERR_WARNING) { 2753 if (err_strs[ERR_WARNING] == 0) 2754 err_strs[ERR_WARNING] = 2755 MSG_INTL(MSG_ERR_WARNING); 2756 } else if (error == ERR_FATAL) { 2757 if (err_strs[ERR_FATAL] == 0) 2758 err_strs[ERR_FATAL] = MSG_INTL(MSG_ERR_FATAL); 2759 } else if (error == ERR_ELF) { 2760 if (err_strs[ERR_ELF] == 0) 2761 err_strs[ERR_ELF] = MSG_INTL(MSG_ERR_ELF); 2762 } 2763 if (procname) { 2764 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR1), 2765 rtldname, procname, err_strs[error]) == 0) 2766 overflow = 1; 2767 } else { 2768 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2769 rtldname, err_strs[error]) == 0) 2770 overflow = 1; 2771 } 2772 if (overflow == 0) { 2773 /* 2774 * Remove the terminating '\0'. 2775 */ 2776 prf.pr_cur--; 2777 } 2778 } 2779 2780 if ((overflow == 0) && doprf(format, args, &prf) == 0) 2781 overflow = 1; 2782 2783 /* 2784 * If this is an ELF error, it will have been generated by a support 2785 * object that has a dependency on libelf. ld.so.1 doesn't generate any 2786 * ELF error messages as it doesn't interact with libelf. Determine the 2787 * ELF error string. 2788 */ 2789 if ((overflow == 0) && (error == ERR_ELF)) { 2790 static int (*elfeno)() = 0; 2791 static const char *(*elfemg)(); 2792 const char *emsg; 2793 Rt_map *dlmp, *lmp = lml_rtld.lm_head; 2794 2795 if (NEXT(lmp) && (elfeno == 0)) { 2796 if (((elfemg = (const char *(*)())dlsym_intn(RTLD_NEXT, 2797 MSG_ORIG(MSG_SYM_ELFERRMSG), lmp, &dlmp)) == 0) || 2798 ((elfeno = (int (*)())dlsym_intn(RTLD_NEXT, 2799 MSG_ORIG(MSG_SYM_ELFERRNO), lmp, &dlmp)) == 0)) 2800 elfeno = 0; 2801 } 2802 2803 /* 2804 * Lookup the message; equivalent to elf_errmsg(elf_errno()). 2805 */ 2806 if (elfeno && ((emsg = (* elfemg)((* elfeno)())) != 0)) { 2807 prf.pr_cur--; 2808 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2809 emsg) == 0) 2810 overflow = 1; 2811 } 2812 } 2813 2814 /* 2815 * Push out any message that's been built. Note, in the case of an 2816 * overflow condition, this message may be incomplete, in which case 2817 * make sure any partial string is null terminated. 2818 */ 2819 if (overflow) 2820 *(prf.pr_cur) = '\0'; 2821 if ((rtld_flags & (RT_FL_APPLIC | RT_FL_SILENCERR)) == 0) { 2822 *(prf.pr_cur - 1) = '\n'; 2823 (void) dowrite(&prf); 2824 } 2825 2826 DBG_CALL(Dbg_util_str(lml, nextptr)); 2827 va_end(args); 2828 2829 /* 2830 * Determine if there was insufficient space left in the buffer to 2831 * complete the message. If so, we'll have printed out as much as had 2832 * been processed if we're not yet executing the application. 2833 * Otherwise, there will be some debugging diagnostic indicating 2834 * as much of the error message as possible. Write out a final buffer 2835 * overflow diagnostic - unlocalized, so we don't chance more errors. 2836 */ 2837 if (overflow) { 2838 char *str = (char *)MSG_INTL(MSG_EMG_BUFOVRFLW); 2839 2840 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2841 lasterr = str; 2842 2843 if ((rtld_flags & RT_FL_APPLIC) == 0) { 2844 (void) write(2, str, strlen(str)); 2845 (void) write(2, MSG_ORIG(MSG_STR_NL), 2846 MSG_STR_NL_SIZE); 2847 } 2848 } 2849 DBG_CALL(Dbg_util_str(lml, str)); 2850 2851 lock = 0; 2852 nextptr = errbuf + ERRSIZE; 2853 return; 2854 } 2855 2856 /* 2857 * If the application has started, then error messages are being saved 2858 * for retrieval by dlerror(), or possible flushing from rtldexit() in 2859 * the case of a fatal error. In this case, establish the next error 2860 * pointer. If we haven't started the application, the whole message 2861 * buffer can be reused. 2862 */ 2863 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2864 lasterr = nextptr; 2865 2866 /* 2867 * Note, should we encounter an error such as ENOMEM, there may 2868 * be a number of the same error messages (ie. an operation 2869 * fails with ENOMEM, and then the attempts to construct the 2870 * error message itself, which incurs additional ENOMEM errors). 2871 * Compare any previous error message with the one we've just 2872 * created to prevent any duplication clutter. 2873 */ 2874 if ((rtld_flags & RT_FL_APPLIC) && 2875 ((prevptr == 0) || (strcmp(prevptr, nextptr) != 0))) { 2876 prevptr = nextptr; 2877 nextptr = prf.pr_cur; 2878 *nextptr = '\0'; 2879 } 2880 } 2881 lock = 0; 2882 } 2883 2884 2885 #if DEBUG 2886 /* 2887 * Provide assfail() for ASSERT() statements, 2888 * see <sys/debug.h> for further details. 2889 */ 2890 int 2891 assfail(const char *a, const char *f, int l) 2892 { 2893 (void) printf("assertion failed: %s, file: %s, line: %d\n", a, f, l); 2894 (void) _lwp_kill(_lwp_self(), SIGABRT); 2895 return (0); 2896 } 2897 #endif 2898 2899 /* 2900 * Exit. If we arrive here with a non zero status it's because of a fatal 2901 * error condition (most commonly a relocation error). If the application has 2902 * already had control, then the actual fatal error message will have been 2903 * recorded in the dlerror() message buffer. Print the message before really 2904 * exiting. 2905 */ 2906 void 2907 rtldexit(Lm_list * lml, int status) 2908 { 2909 if (status) { 2910 if (rtld_flags & RT_FL_APPLIC) { 2911 /* 2912 * If the error buffer has been used, write out all 2913 * pending messages - lasterr is simply a pointer to 2914 * the last message in this buffer. However, if the 2915 * buffer couldn't be created at all, lasterr points 2916 * to a constant error message string. 2917 */ 2918 if (*errbuf) { 2919 char *errptr = errbuf; 2920 char *errend = errbuf + ERRSIZE; 2921 2922 while ((errptr < errend) && *errptr) { 2923 size_t size = strlen(errptr); 2924 (void) write(2, errptr, size); 2925 (void) write(2, MSG_ORIG(MSG_STR_NL), 2926 MSG_STR_NL_SIZE); 2927 errptr += (size + 1); 2928 } 2929 } 2930 if (lasterr && ((lasterr < errbuf) || 2931 (lasterr > (errbuf + ERRSIZE)))) { 2932 (void) write(2, lasterr, strlen(lasterr)); 2933 (void) write(2, MSG_ORIG(MSG_STR_NL), 2934 MSG_STR_NL_SIZE); 2935 } 2936 } 2937 leave(lml); 2938 (void) _lwp_kill(_lwp_self(), killsig); 2939 } 2940 _exit(status); 2941 } 2942 2943 /* 2944 * Routines to co-ordinate the opening of /dev/zero and /proc. 2945 * dz_fd is exported for possible use by libld.so, and to insure it gets 2946 * closed on leaving ld.so.1. 2947 */ 2948 int dz_fd = FD_UNAVAIL; 2949 2950 void 2951 dz_init(int fd) 2952 { 2953 dz_fd = fd; 2954 } 2955 2956 2957 /* 2958 * mmap() a page from MAP_ANON 2959 * 2960 * Note: MAP_ANON is only on Solaris8++, we use this routine to 2961 * not only mmap(MAP_ANON) but to also probe if it is available 2962 * on the current OS. 2963 */ 2964 Am_ret 2965 anon_map(Lm_list *lml, caddr_t *addr, size_t len, int prot, int flags) 2966 { 2967 #if defined(MAP_ANON) 2968 static int noanon = 0; 2969 caddr_t va; 2970 2971 if (noanon == 0) { 2972 if ((va = (caddr_t)mmap(*addr, len, prot, 2973 (flags | MAP_ANON), -1, 0)) != MAP_FAILED) { 2974 *addr = va; 2975 return (AM_OK); 2976 } 2977 2978 if ((errno != EBADF) && (errno != EINVAL)) { 2979 int err = errno; 2980 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAPANON), 2981 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 2982 return (AM_ERROR); 2983 } else 2984 noanon = 1; 2985 } 2986 #endif 2987 return (AM_NOSUP); 2988 } 2989 2990 /* 2991 * Map anonymous memory from /dev/zero, or via MAP_ANON. 2992 * 2993 * (MAP_ANON only appears on Solaris 8, so we need fall-back 2994 * behavior for older systems.) 2995 */ 2996 caddr_t 2997 dz_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 2998 { 2999 caddr_t va; 3000 int err; 3001 Am_ret amret; 3002 3003 amret = anon_map(lml, &addr, len, prot, flags); 3004 3005 if (amret == AM_OK) 3006 return (addr); 3007 if (amret == AM_ERROR) 3008 return (MAP_FAILED); 3009 3010 /* amret == AM_NOSUP -> fallback to a devzero mmaping */ 3011 3012 if (dz_fd == FD_UNAVAIL) { 3013 if ((dz_fd = open(MSG_ORIG(MSG_PTH_DEVZERO), 3014 O_RDONLY)) == FD_UNAVAIL) { 3015 err = errno; 3016 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 3017 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 3018 return (MAP_FAILED); 3019 } 3020 } 3021 3022 if ((va = mmap(addr, len, prot, flags, dz_fd, 0)) == MAP_FAILED) { 3023 err = errno; 3024 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 3025 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 3026 } 3027 return (va); 3028 } 3029 3030 static int pr_fd = FD_UNAVAIL; 3031 3032 int 3033 pr_open(Lm_list *lml) 3034 { 3035 char proc[16]; 3036 3037 if (pr_fd == FD_UNAVAIL) { 3038 (void) snprintf(proc, 16, MSG_ORIG(MSG_FMT_PROC), 3039 (int)getpid()); 3040 if ((pr_fd = open(proc, O_RDONLY)) == FD_UNAVAIL) { 3041 int err = errno; 3042 3043 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), proc, 3044 strerror(err)); 3045 } 3046 } 3047 return (pr_fd); 3048 } 3049 3050 static int nu_fd = FD_UNAVAIL; 3051 3052 caddr_t 3053 nu_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 3054 { 3055 caddr_t va; 3056 int err; 3057 3058 if (nu_fd == FD_UNAVAIL) { 3059 if ((nu_fd = open(MSG_ORIG(MSG_PTH_DEVNULL), 3060 O_RDONLY)) == FD_UNAVAIL) { 3061 err = errno; 3062 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 3063 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3064 return (MAP_FAILED); 3065 } 3066 } 3067 3068 if ((va = (caddr_t)mmap(addr, len, prot, flags, nu_fd, 0)) == 3069 MAP_FAILED) { 3070 err = errno; 3071 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 3072 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3073 } 3074 return (va); 3075 } 3076 3077 /* 3078 * Generic entry point from user code - simply grabs a lock. 3079 */ 3080 int 3081 enter(void) 3082 { 3083 if (rt_bind_guard(THR_FLG_RTLD)) { 3084 (void) rt_mutex_lock(&rtldlock); 3085 return (1); 3086 } 3087 return (0); 3088 } 3089 3090 /* 3091 * Generate diagnostics as to whether an object has been used. A symbolic 3092 * reference that gets bound to an object marks it as used. Dependencies that 3093 * are unused when RTLD_NOW is in effect should be removed from future builds 3094 * of an object. Dependencies that are unused without RTLD_NOW in effect are 3095 * candidates for lazy-loading. 3096 * Unreferenced objects identify objects that are defined as dependencies but 3097 * are unreferenced by the caller (they may however be referenced by other 3098 * objects within the process, and therefore don't qualify as completely unused. 3099 */ 3100 void 3101 unused(Lm_list *lml) 3102 { 3103 Rt_map *lmp; 3104 int nl = 0; 3105 Word tracing; 3106 3107 /* 3108 * If we're not tracing unused references or dependencies, or debugging 3109 * there's nothing to do. 3110 */ 3111 tracing = lml->lm_flags & (LML_FLG_TRC_UNREF | LML_FLG_TRC_UNUSED); 3112 3113 if ((tracing == 0) && (DBG_ENABLED == 0)) 3114 return; 3115 3116 /* 3117 * Traverse the link-maps looking for unreferenced or unused 3118 * dependencies. Ignore the first object on a link-map list, as this 3119 * is effectively always used. 3120 */ 3121 for (lmp = (Rt_map *)NEXT(lml->lm_head); lmp; 3122 lmp = (Rt_map *)NEXT(lmp)) { 3123 /* 3124 * If tracing unreferenced objects, or under debugging, 3125 * determine whether any of this objects callers haven't 3126 * referenced it. 3127 */ 3128 if ((tracing & LML_FLG_TRC_UNREF) || DBG_ENABLED) { 3129 Bnd_desc ** bdpp; 3130 Aliste off; 3131 3132 for (ALIST_TRAVERSE(CALLERS(lmp), off, bdpp)) { 3133 Bnd_desc * bdp = *bdpp; 3134 Rt_map * clmp; 3135 3136 if (bdp->b_flags & BND_REFER) 3137 continue; 3138 3139 clmp = bdp->b_caller; 3140 if (FLAGS1(clmp) & FL1_RT_LDDSTUB) 3141 continue; 3142 3143 /* BEGIN CSTYLED */ 3144 if (nl++ == 0) { 3145 if (tracing & LML_FLG_TRC_UNREF) 3146 (void) printf(MSG_ORIG(MSG_STR_NL)); 3147 else 3148 DBG_CALL(Dbg_util_nl(lml, 3149 DBG_NL_STD)); 3150 } 3151 3152 if (tracing & LML_FLG_TRC_UNREF) 3153 (void) printf(MSG_INTL(MSG_LDD_UNREF_FMT), 3154 NAME(lmp), NAME(clmp)); 3155 else 3156 DBG_CALL(Dbg_unused_unref(lmp, NAME(clmp))); 3157 /* END CSTYLED */ 3158 } 3159 } 3160 3161 /* 3162 * If tracing unused objects simply display those objects that 3163 * haven't been referenced by anyone. 3164 */ 3165 if (FLAGS1(lmp) & FL1_RT_USED) 3166 continue; 3167 3168 if (nl++ == 0) { 3169 if (tracing) 3170 (void) printf(MSG_ORIG(MSG_STR_NL)); 3171 else 3172 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3173 } 3174 if (CYCGROUP(lmp)) { 3175 if (tracing) 3176 (void) printf(MSG_INTL(MSG_LDD_UNCYC_FMT), 3177 NAME(lmp), CYCGROUP(lmp)); 3178 else 3179 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 3180 CYCGROUP(lmp))); 3181 } else { 3182 if (tracing) 3183 (void) printf(MSG_INTL(MSG_LDD_UNUSED_FMT), 3184 NAME(lmp)); 3185 else 3186 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 0)); 3187 } 3188 } 3189 3190 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3191 } 3192 3193 /* 3194 * Initialization routine for the Fmap structure. If the fmap structure is 3195 * already in use, any mapping is released. The structure is then initialized 3196 * in preparation for further use. 3197 */ 3198 void 3199 fmap_setup() 3200 { 3201 #if defined(MAP_ALIGN) 3202 /* 3203 * If MAP_ALIGN is set, the fm_addr has been seeded with an alignment 3204 * value. Otherwise, if fm_addr is non-null it indicates a mapping that 3205 * should now be freed. 3206 */ 3207 if (fmap->fm_maddr && ((fmap->fm_mflags & MAP_ALIGN) == 0)) 3208 (void) munmap((caddr_t)fmap->fm_maddr, fmap->fm_msize); 3209 3210 /* 3211 * Providing we haven't determined that this system doesn't support 3212 * MAP_ALIGN, initialize the mapping address with the default segment 3213 * alignment. 3214 */ 3215 if ((rtld_flags2 & RT_FL2_NOMALIGN) == 0) { 3216 fmap->fm_maddr = (char *)M_SEGM_ALIGN; 3217 fmap->fm_mflags = MAP_PRIVATE | MAP_ALIGN; 3218 } else { 3219 fmap->fm_maddr = 0; 3220 fmap->fm_mflags = MAP_PRIVATE; 3221 } 3222 #else 3223 if (fmap->fm_maddr) 3224 (void) munmap((caddr_t)fmap->fm_maddr, fmap->fm_msize); 3225 3226 fmap->fm_maddr = 0; 3227 fmap->fm_mflags = MAP_PRIVATE; 3228 #endif 3229 3230 fmap->fm_msize = FMAP_SIZE; 3231 fmap->fm_hwptr = 0; 3232 } 3233 3234 /* 3235 * Generic cleanup routine called prior to returning control to the user. 3236 * Insures that any ld.so.1 specific file descriptors or temporary mapping are 3237 * released, and any locks dropped. 3238 */ 3239 void 3240 leave(Lm_list *lml) 3241 { 3242 Lm_list *elml = lml; 3243 Rt_map **clmpp; 3244 Aliste off; 3245 3246 /* 3247 * Alert the debuggers that the link-maps are consistent. Note, in the 3248 * case of tearing down a whole link-map list, lml will be null. In 3249 * this case use the main link-map list to test for a notification. 3250 */ 3251 if (elml == 0) 3252 elml = &lml_main; 3253 if (elml->lm_flags & LML_FLG_DBNOTIF) 3254 rd_event(elml, RD_DLACTIVITY, RT_CONSISTENT); 3255 3256 /* 3257 * Alert any auditors that the link-maps are consistent. 3258 */ 3259 for (ALIST_TRAVERSE(elml->lm_actaudit, off, clmpp)) { 3260 audit_activity(*clmpp, LA_ACT_CONSISTENT); 3261 3262 (void) alist_delete(elml->lm_actaudit, 0, &off); 3263 } 3264 3265 if (dz_fd != FD_UNAVAIL) { 3266 (void) close(dz_fd); 3267 dz_fd = FD_UNAVAIL; 3268 } 3269 3270 if (pr_fd != FD_UNAVAIL) { 3271 (void) close(pr_fd); 3272 pr_fd = FD_UNAVAIL; 3273 } 3274 3275 if (nu_fd != FD_UNAVAIL) { 3276 (void) close(nu_fd); 3277 nu_fd = FD_UNAVAIL; 3278 } 3279 3280 fmap_setup(); 3281 3282 /* 3283 * Reinitialize error message pointer, and any overflow indication. 3284 */ 3285 nextptr = errbuf; 3286 prevptr = 0; 3287 3288 /* 3289 * Don't drop our lock if we are running on our link-map list as 3290 * there's little point in doing so since we are single-threaded. 3291 * 3292 * LML_FLG_HOLDLOCK is set for: 3293 * *) The ld.so.1's link-map list. 3294 * *) The auditor's link-map if the environment is 3295 * libc/libthread un-unified. 3296 */ 3297 if (lml && (lml->lm_flags & LML_FLG_HOLDLOCK)) 3298 return; 3299 3300 if (rt_bind_clear(0) & THR_FLG_RTLD) { 3301 (void) rt_mutex_unlock(&rtldlock); 3302 (void) rt_bind_clear(THR_FLG_RTLD); 3303 } 3304 } 3305 3306 int 3307 callable(Rt_map *clmp, Rt_map *dlmp, Grp_hdl *ghp) 3308 { 3309 Alist *calp, *dalp; 3310 Aliste off1, off2; 3311 Grp_hdl **ghpp1, **ghpp2; 3312 3313 /* 3314 * An object can always find symbols within itself. 3315 */ 3316 if (clmp == dlmp) 3317 return (1); 3318 3319 /* 3320 * Don't allow an object to bind to an object that is being deleted 3321 * unless the binder is also being deleted. 3322 */ 3323 if ((FLAGS(dlmp) & FLG_RT_DELETE) && 3324 ((FLAGS(clmp) & FLG_RT_DELETE) == 0)) 3325 return (0); 3326 3327 /* 3328 * An object with world access can always bind to an object with global 3329 * visibility. 3330 */ 3331 if ((MODE(clmp) & RTLD_WORLD) && (MODE(dlmp) & RTLD_GLOBAL)) 3332 return (1); 3333 3334 /* 3335 * An object with local access can only bind to an object that is a 3336 * member of the same group. 3337 */ 3338 if (((MODE(clmp) & RTLD_GROUP) == 0) || 3339 ((calp = GROUPS(clmp)) == 0) || ((dalp = GROUPS(dlmp)) == 0)) 3340 return (0); 3341 3342 /* 3343 * Traverse the list of groups the caller is a part of. 3344 */ 3345 for (ALIST_TRAVERSE(calp, off1, ghpp1)) { 3346 /* 3347 * If we're testing for the ability of two objects to bind to 3348 * each other regardless of a specific group, ignore that group. 3349 */ 3350 if (ghp && (*ghpp1 == ghp)) 3351 continue; 3352 3353 /* 3354 * Traverse the list of groups the destination is a part of. 3355 */ 3356 for (ALIST_TRAVERSE(dalp, off2, ghpp2)) { 3357 Grp_desc *gdp; 3358 Aliste off3; 3359 3360 if (*ghpp1 != *ghpp2) 3361 continue; 3362 3363 /* 3364 * Make sure the relationship between the destination 3365 * and the caller provide symbols for relocation. 3366 * Parents are maintained as callers, but unless the 3367 * destination object was opened with RTLD_PARENT, the 3368 * parent doesn't provide symbols for the destination 3369 * to relocate against. 3370 */ 3371 for (ALIST_TRAVERSE((*ghpp2)->gh_depends, off3, gdp)) { 3372 if (dlmp != gdp->gd_depend) 3373 continue; 3374 3375 if (gdp->gd_flags & GPD_RELOC) 3376 return (1); 3377 } 3378 } 3379 } 3380 return (0); 3381 } 3382 3383 /* 3384 * Initialize the environ symbol. Traditionally this is carried out by the crt 3385 * code prior to jumping to main. However, init sections get fired before this 3386 * variable is initialized, so ld.so.1 sets this directly from the AUX vector 3387 * information. In addition, a process may have multiple link-maps (ld.so.1's 3388 * debugging and preloading objects), and link auditing, and each may need an 3389 * environ variable set. 3390 * 3391 * This routine is called after a relocation() pass, and thus provides for: 3392 * 3393 * o setting environ on the main link-map after the initial application and 3394 * its dependencies have been established. Typically environ lives in the 3395 * application (provided by its crt), but in older applications it might 3396 * be in libc. Who knows what's expected of applications not built on 3397 * Solaris. 3398 * 3399 * o after loading a new shared object. We can add shared objects to various 3400 * link-maps, and any link-map dependencies requiring getopt() require 3401 * their own environ. In addition, lazy loading might bring in the 3402 * supplier of environ (libc used to be a lazy loading candidate) after 3403 * the link-map has been established and other objects are present. 3404 * 3405 * This routine handles all these scenarios, without adding unnecessary overhead 3406 * to ld.so.1. 3407 */ 3408 void 3409 set_environ(Lm_list *lml) 3410 { 3411 Rt_map * dlmp; 3412 Sym * sym; 3413 Slookup sl; 3414 uint_t binfo; 3415 3416 sl.sl_name = MSG_ORIG(MSG_SYM_ENVIRON); 3417 sl.sl_cmap = lml->lm_head; 3418 sl.sl_imap = lml->lm_head; 3419 sl.sl_hash = 0; 3420 sl.sl_rsymndx = 0; 3421 sl.sl_flags = LKUP_WEAK; 3422 3423 if (sym = LM_LOOKUP_SYM(lml->lm_head)(&sl, &dlmp, &binfo)) { 3424 lml->lm_environ = (char ***)sym->st_value; 3425 3426 if (!(FLAGS(dlmp) & FLG_RT_FIXED)) 3427 lml->lm_environ = 3428 (char ***)((uintptr_t)lml->lm_environ + 3429 (uintptr_t)ADDR(dlmp)); 3430 *(lml->lm_environ) = (char **)environ; 3431 lml->lm_flags |= LML_FLG_ENVIRON; 3432 } 3433 } 3434 3435 /* 3436 * Determine whether we have a secure executable. Uid and gid information 3437 * can be passed to us via the aux vector, however if these values are -1 3438 * then use the appropriate system call to obtain them. 3439 * 3440 * o If the user is the root they can do anything 3441 * 3442 * o If the real and effective uid's don't match, or the real and 3443 * effective gid's don't match then this is determined to be a `secure' 3444 * application. 3445 * 3446 * This function is called prior to any dependency processing (see _setup.c). 3447 * Any secure setting will remain in effect for the life of the process. 3448 */ 3449 void 3450 security(uid_t uid, uid_t euid, gid_t gid, gid_t egid, int auxflags) 3451 { 3452 #ifdef AT_SUN_AUXFLAGS 3453 if (auxflags != -1) { 3454 if ((auxflags & AF_SUN_SETUGID) != 0) 3455 rtld_flags |= RT_FL_SECURE; 3456 return; 3457 } 3458 #endif 3459 if (uid == (uid_t)-1) 3460 uid = getuid(); 3461 if (uid) { 3462 if (euid == (uid_t)-1) 3463 euid = geteuid(); 3464 if (uid != euid) 3465 rtld_flags |= RT_FL_SECURE; 3466 else { 3467 if (gid == (gid_t)-1) 3468 gid = getgid(); 3469 if (egid == (gid_t)-1) 3470 egid = getegid(); 3471 if (gid != egid) 3472 rtld_flags |= RT_FL_SECURE; 3473 } 3474 } 3475 } 3476 3477 /* 3478 * _REENTRANT code gets errno redefined to a function so provide for return 3479 * of the thread errno if applicable. This has no meaning in ld.so.1 which 3480 * is basically singled threaded. Provide the interface for our dependencies. 3481 */ 3482 #undef errno 3483 #pragma weak _private___errno = ___errno 3484 int * 3485 ___errno() 3486 { 3487 extern int errno; 3488 3489 return (&errno); 3490 } 3491 3492 /* 3493 * The interface with the c library which is supplied through libdl.so.1. 3494 * A non-null argument allows a function pointer array to be passed to us which 3495 * is used to re-initialize the linker libc table. 3496 */ 3497 void 3498 _ld_libc(void * ptr) 3499 { 3500 get_lcinterface(_caller(caller(), CL_EXECDEF), (Lc_interface *)ptr); 3501 } 3502 3503 /* 3504 * Determine whether a symbol name should be demangled. 3505 */ 3506 const char * 3507 demangle(const char *name) 3508 { 3509 if (rtld_flags & RT_FL_DEMANGLE) 3510 return (conv_demangle_name(name)); 3511 else 3512 return (name); 3513 } 3514