1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988 AT&T 24 * All Rights Reserved 25 * 26 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved. 27 */ 28 29 /* 30 * Programmatic interface to the run_time linker. 31 */ 32 33 #include <sys/debug.h> 34 #include <stdio.h> 35 #include <string.h> 36 #include <dlfcn.h> 37 #include <synch.h> 38 #include <limits.h> 39 #include <debug.h> 40 #include <conv.h> 41 #include "_rtld.h" 42 #include "_audit.h" 43 #include "_elf.h" 44 #include "_inline_gen.h" 45 #include "msg.h" 46 47 /* 48 * Determine who called us - given a pc determine in which object it resides. 49 * 50 * For dlopen() the link map of the caller must be passed to load_so() so that 51 * the appropriate search rules (4.x or 5.0) are used to locate any 52 * dependencies. Also, if we've been called from a 4.x module it may be 53 * necessary to fix the specified pathname so that it conforms with the 5.0 elf 54 * rules. 55 * 56 * For dlsym() the link map of the caller is used to determine RTLD_NEXT 57 * requests, together with requests based off of a dlopen(0). 58 * For dladdr() this routines provides a generic means of scanning all loaded 59 * segments. 60 */ 61 Rt_map * 62 _caller(caddr_t cpc, int flags) 63 { 64 Lm_list *lml; 65 Aliste idx1; 66 67 for (APLIST_TRAVERSE(dynlm_list, idx1, lml)) { 68 Aliste idx2; 69 Lm_cntl *lmc; 70 71 for (ALIST_TRAVERSE(lml->lm_lists, idx2, lmc)) { 72 Rt_map *lmp; 73 74 for (lmp = lmc->lc_head; lmp; 75 lmp = NEXT_RT_MAP(lmp)) { 76 77 if (find_segment(cpc, lmp)) 78 return (lmp); 79 } 80 } 81 } 82 83 /* 84 * No mapping can be determined. If asked for a default, assume this 85 * is from the executable. 86 */ 87 if (flags & CL_EXECDEF) 88 return ((Rt_map *)lml_main.lm_head); 89 90 return (0); 91 } 92 93 #pragma weak _dlerror = dlerror 94 95 /* 96 * External entry for dlerror(3dl). Returns a pointer to the string describing 97 * the last occurring error. The last occurring error is cleared. 98 */ 99 char * 100 dlerror() 101 { 102 char *error; 103 Rt_map *clmp; 104 int entry; 105 106 entry = enter(0); 107 108 clmp = _caller(caller(), CL_EXECDEF); 109 110 DBG_CALL(Dbg_dl_dlerror(clmp, lasterr)); 111 112 error = lasterr; 113 lasterr = NULL; 114 115 if (entry) 116 leave(LIST(clmp), 0); 117 return (error); 118 } 119 120 /* 121 * Add a dependency as a group descriptor to a group handle. Returns 0 on 122 * failure. On success, returns the group descriptor, and if alep is non-NULL 123 * the *alep is set to ALE_EXISTS if the dependency already exists, or to 124 * ALE_CREATE if the dependency is newly created. 125 */ 126 Grp_desc * 127 hdl_add(Grp_hdl *ghp, Rt_map *lmp, uint_t dflags, int *alep) 128 { 129 Grp_desc *gdp; 130 Aliste idx; 131 int ale = ALE_CREATE; 132 uint_t oflags; 133 134 /* 135 * Make sure this dependency hasn't already been recorded. 136 */ 137 for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) { 138 if (gdp->gd_depend == lmp) { 139 ale = ALE_EXISTS; 140 break; 141 } 142 } 143 144 if (ale == ALE_CREATE) { 145 Grp_desc gd; 146 147 /* 148 * Create a new handle descriptor. 149 */ 150 gd.gd_depend = lmp; 151 gd.gd_flags = 0; 152 153 /* 154 * Indicate this object is a part of this handles group. 155 */ 156 if (aplist_append(&GROUPS(lmp), ghp, AL_CNT_GROUPS) == NULL) 157 return (NULL); 158 159 /* 160 * Append the new dependency to this handle. 161 */ 162 if ((gdp = alist_append(&ghp->gh_depends, &gd, 163 sizeof (Grp_desc), AL_CNT_DEPENDS)) == NULL) 164 return (NULL); 165 } 166 167 oflags = gdp->gd_flags; 168 gdp->gd_flags |= dflags; 169 170 if (DBG_ENABLED) { 171 if (ale == ALE_CREATE) 172 DBG_CALL(Dbg_file_hdl_action(ghp, lmp, DBG_DEP_ADD, 173 gdp->gd_flags)); 174 else if (gdp->gd_flags != oflags) 175 DBG_CALL(Dbg_file_hdl_action(ghp, lmp, DBG_DEP_UPDATE, 176 gdp->gd_flags)); 177 } 178 179 if (alep) 180 *alep = ale; 181 return (gdp); 182 } 183 184 /* 185 * Create a handle. 186 * 187 * rlmp - represents the reference link-map for which the handle is being 188 * created. 189 * clmp - represents the caller who is requesting the handle. 190 * hflags - provide group handle flags (GPH_*) that affect the use of the 191 * handle, such as dlopen(0), or use or use of RTLD_FIRST. 192 * rdflags - provide group dependency flags for the reference link-map rlmp, 193 * such as whether the dependency can be used for dlsym(), can be 194 * relocated against, or whether this objects dependencies should 195 * be processed. 196 * cdflags - provide group dependency flags for the caller. 197 */ 198 Grp_hdl * 199 hdl_create(Lm_list *lml, Rt_map *rlmp, Rt_map *clmp, uint_t hflags, 200 uint_t rdflags, uint_t cdflags) 201 { 202 Grp_hdl *ghp = NULL, *aghp; 203 APlist **alpp; 204 Aliste idx; 205 206 /* 207 * For dlopen(0) the handle is maintained as part of the link-map list, 208 * otherwise the handle is associated with the reference link-map. 209 */ 210 if (hflags & GPH_ZERO) 211 alpp = &(lml->lm_handle); 212 else 213 alpp = &(HANDLES(rlmp)); 214 215 /* 216 * Objects can contain multiple handles depending on the handle flags 217 * supplied. Most RTLD flags pertain to the object itself and the 218 * bindings that it can achieve. Multiple handles for these flags 219 * don't make sense. But if the flag determines how the handle might 220 * be used, then multiple handles may exist. Presently this only makes 221 * sense for RTLD_FIRST. Determine if an appropriate handle already 222 * exists. 223 */ 224 for (APLIST_TRAVERSE(*alpp, idx, aghp)) { 225 if ((aghp->gh_flags & GPH_FIRST) == (hflags & GPH_FIRST)) { 226 ghp = aghp; 227 break; 228 } 229 } 230 231 if (ghp == NULL) { 232 uint_t ndx; 233 234 /* 235 * If this is the first request for this handle, allocate and 236 * initialize a new handle. 237 */ 238 DBG_CALL(Dbg_file_hdl_title(DBG_HDL_CREATE)); 239 240 if ((ghp = malloc(sizeof (Grp_hdl))) == NULL) 241 return (NULL); 242 243 /* 244 * Associate the handle with the link-map list or the reference 245 * link-map as appropriate. 246 */ 247 if (aplist_append(alpp, ghp, AL_CNT_GROUPS) == NULL) { 248 free(ghp); 249 return (NULL); 250 } 251 252 /* 253 * Record the existence of this handle for future verification. 254 */ 255 /* LINTED */ 256 ndx = (uintptr_t)ghp % HDLIST_SZ; 257 258 if (aplist_append(&hdl_alp[ndx], ghp, AL_CNT_HANDLES) == NULL) { 259 (void) aplist_delete_value(*alpp, ghp); 260 free(ghp); 261 return (NULL); 262 } 263 264 ghp->gh_depends = NULL; 265 ghp->gh_refcnt = 1; 266 ghp->gh_flags = hflags; 267 268 /* 269 * A dlopen(0) handle is identified by the GPH_ZERO flag, the 270 * head of the link-map list is defined as the owner. There is 271 * no need to maintain a list of dependencies, for when this 272 * handle is used (for dlsym()) a dynamic search through the 273 * entire link-map list provides for searching all objects with 274 * GLOBAL visibility. 275 */ 276 if (hflags & GPH_ZERO) { 277 ghp->gh_ownlmp = lml->lm_head; 278 ghp->gh_ownlml = lml; 279 } else { 280 ghp->gh_ownlmp = rlmp; 281 ghp->gh_ownlml = LIST(rlmp); 282 283 if (hdl_add(ghp, rlmp, rdflags, NULL) == NULL) 284 return (NULL); 285 286 /* 287 * If this new handle is a private handle, there's no 288 * need to track the caller, so we're done. 289 */ 290 if (hflags & GPH_PRIVATE) 291 return (ghp); 292 293 /* 294 * If this new handle is public, and isn't a special 295 * handle representing ld.so.1, indicate that a local 296 * group now exists. This state allows singleton 297 * searches to be optimized. 298 */ 299 if ((hflags & GPH_LDSO) == 0) 300 LIST(rlmp)->lm_flags |= LML_FLG_GROUPSEXIST; 301 } 302 } else { 303 /* 304 * If a handle already exists, bump its reference count. 305 * 306 * If the previous reference count was 0, then this is a handle 307 * that an earlier call to dlclose() was unable to remove. Such 308 * handles are put on the orphan list. As this handle is back 309 * in use, it must be removed from the orphan list. 310 * 311 * Note, handles associated with a link-map list itself (i.e. 312 * dlopen(0)) can have a reference count of 0. However, these 313 * handles are never deleted, and therefore are never moved to 314 * the orphan list. 315 */ 316 if ((ghp->gh_refcnt++ == 0) && 317 ((ghp->gh_flags & GPH_ZERO) == 0)) { 318 uint_t ndx; 319 320 /* LINTED */ 321 ndx = (uintptr_t)ghp % HDLIST_SZ; 322 323 (void) aplist_delete_value(hdl_alp[HDLIST_ORP], ghp); 324 (void) aplist_append(&hdl_alp[ndx], ghp, 325 AL_CNT_HANDLES); 326 327 if (DBG_ENABLED) { 328 Aliste idx; 329 Grp_desc *gdp; 330 331 DBG_CALL(Dbg_file_hdl_title(DBG_HDL_REINST)); 332 for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) 333 DBG_CALL(Dbg_file_hdl_action(ghp, 334 gdp->gd_depend, DBG_DEP_REINST, 0)); 335 } 336 } 337 338 /* 339 * If we've been asked to create a private handle, there's no 340 * need to track the caller. 341 */ 342 if (hflags & GPH_PRIVATE) { 343 /* 344 * Negate the reference count increment. 345 */ 346 ghp->gh_refcnt--; 347 return (ghp); 348 } else { 349 /* 350 * If a private handle already exists, promote this 351 * handle to public by initializing both the reference 352 * count and the handle flags. 353 */ 354 if (ghp->gh_flags & GPH_PRIVATE) { 355 ghp->gh_refcnt = 1; 356 ghp->gh_flags &= ~GPH_PRIVATE; 357 ghp->gh_flags |= hflags; 358 } 359 } 360 } 361 362 /* 363 * Keep track of the parent (caller). As this object can be referenced 364 * by different parents, this processing is carried out every time a 365 * handle is requested. 366 */ 367 if (clmp && (hdl_add(ghp, clmp, cdflags, NULL) == NULL)) 368 return (NULL); 369 370 return (ghp); 371 } 372 373 /* 374 * Initialize a handle that has been created for an object that is already 375 * loaded. The handle is initialized with the present dependencies of that 376 * object. Once this initialization has occurred, any new objects that might 377 * be loaded as dependencies (lazy-loading) are added to the handle as each new 378 * object is loaded. 379 */ 380 int 381 hdl_initialize(Grp_hdl *ghp, Rt_map *nlmp, int mode, int promote) 382 { 383 Aliste idx; 384 Grp_desc *gdp; 385 386 /* 387 * If the handle has already been initialized, and the initial object's 388 * mode hasn't been promoted, there's no need to recompute the modes of 389 * any dependencies. If the object we've added has just been opened, 390 * the objects dependencies will not yet have been processed. These 391 * dependencies will be added on later calls to load_one(). Otherwise, 392 * this object already exists, so add all of its dependencies to the 393 * handle were operating on. 394 */ 395 if (((ghp->gh_flags & GPH_INITIAL) && (promote == 0)) || 396 ((FLAGS(nlmp) & FLG_RT_ANALYZED) == 0)) { 397 ghp->gh_flags |= GPH_INITIAL; 398 return (1); 399 } 400 401 DBG_CALL(Dbg_file_hdl_title(DBG_HDL_ADD)); 402 for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) { 403 Rt_map *lmp = gdp->gd_depend; 404 Aliste idx1; 405 Bnd_desc *bdp; 406 407 /* 408 * If this dependency doesn't indicate that its dependencies 409 * should be added to a handle, ignore it. This case identifies 410 * a parent of a dlopen(RTLD_PARENT) request. 411 */ 412 if ((gdp->gd_flags & GPD_ADDEPS) == 0) 413 continue; 414 415 for (APLIST_TRAVERSE(DEPENDS(lmp), idx1, bdp)) { 416 Rt_map *dlmp = bdp->b_depend; 417 418 if ((bdp->b_flags & BND_NEEDED) == 0) 419 continue; 420 421 if (hdl_add(ghp, dlmp, 422 (GPD_DLSYM | GPD_RELOC | GPD_ADDEPS), NULL) == NULL) 423 return (0); 424 425 (void) update_mode(dlmp, MODE(dlmp), mode); 426 } 427 } 428 ghp->gh_flags |= GPH_INITIAL; 429 return (1); 430 } 431 432 /* 433 * Sanity check a program-provided handle. 434 */ 435 static int 436 hdl_validate(Grp_hdl *ghp) 437 { 438 Aliste idx; 439 Grp_hdl *lghp; 440 uint_t ndx; 441 442 /* LINTED */ 443 ndx = (uintptr_t)ghp % HDLIST_SZ; 444 445 for (APLIST_TRAVERSE(hdl_alp[ndx], idx, lghp)) { 446 if ((lghp == ghp) && (ghp->gh_refcnt != 0)) 447 return (1); 448 } 449 return (0); 450 } 451 452 /* 453 * Core dlclose activity. 454 */ 455 int 456 dlclose_core(Grp_hdl *ghp, Rt_map *clmp, Lm_list *lml) 457 { 458 int error; 459 Rt_map *lmp; 460 461 /* 462 * If we're already at atexit() there's no point processing further, 463 * all objects have already been tsorted for fini processing. 464 */ 465 if (rtld_flags & RT_FL_ATEXIT) 466 return (0); 467 468 /* 469 * Diagnose what we're up to. 470 */ 471 if (ghp->gh_flags & GPH_ZERO) { 472 DBG_CALL(Dbg_dl_dlclose(clmp, MSG_ORIG(MSG_STR_ZERO), 473 DBG_DLCLOSE_IGNORE)); 474 } else { 475 DBG_CALL(Dbg_dl_dlclose(clmp, NAME(ghp->gh_ownlmp), 476 DBG_DLCLOSE_NULL)); 477 } 478 479 /* 480 * Decrement reference count of this object. 481 */ 482 if (--(ghp->gh_refcnt)) 483 return (0); 484 485 /* 486 * If this handle is special (dlopen(0)), then leave it around - it 487 * has little overhead. 488 */ 489 if (ghp->gh_flags & GPH_ZERO) 490 return (0); 491 492 /* 493 * If this handle is associated with an object that is not on the base 494 * link-map control list, or it has not yet been relocated, then this 495 * handle must have originated from an auditors interaction. User code 496 * can only execute and bind to relocated objects on the base link-map 497 * control list. A non-relocated object, or an object on a non-base 498 * link-map control list, is in the process of being loaded, and 499 * therefore we do not attempt to remove the handle, as we might 500 * mistakenly delete the object thinking that its loading has failed. 501 */ 502 if (((lmp = ghp->gh_ownlmp) != NULL) && 503 ((CNTL(lmp) != ALIST_OFF_DATA) || 504 ((FLAGS(lmp) & FLG_RT_RELOCED) == 0))) 505 return (0); 506 507 /* 508 * This handle is no longer being referenced, remove it. If this handle 509 * is part of an alternative link-map list, determine if the whole list 510 * can be removed also. 511 */ 512 error = remove_hdl(ghp, clmp, NULL); 513 514 if ((lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) == 0) 515 remove_lml(lml); 516 517 return (error); 518 } 519 520 /* 521 * Internal dlclose activity. Called from user level or directly for internal 522 * error cleanup. 523 */ 524 int 525 dlclose_intn(Grp_hdl *ghp, Rt_map *clmp) 526 { 527 Rt_map *nlmp = NULL; 528 Lm_list *olml = NULL; 529 int error; 530 531 /* 532 * Although we're deleting object(s) it's quite possible that additional 533 * objects get loaded from running the .fini section(s) of the objects 534 * being deleted. These objects will have been added to the same 535 * link-map list as those objects being deleted. Remember this list 536 * for later investigation. 537 */ 538 olml = ghp->gh_ownlml; 539 540 error = dlclose_core(ghp, clmp, olml); 541 542 /* 543 * Determine whether the original link-map list still exists. In the 544 * case of a dlclose of an alternative (dlmopen) link-map the whole 545 * list may have been removed. 546 */ 547 if (olml) { 548 Aliste idx; 549 Lm_list *lml; 550 551 for (APLIST_TRAVERSE(dynlm_list, idx, lml)) { 552 if (olml == lml) { 553 nlmp = olml->lm_head; 554 break; 555 } 556 } 557 } 558 load_completion(nlmp); 559 return (error); 560 } 561 562 /* 563 * Argument checking for dlclose. Only called via external entry. 564 */ 565 static int 566 dlclose_check(void *handle, Rt_map *clmp) 567 { 568 Grp_hdl *ghp = (Grp_hdl *)handle; 569 570 if (hdl_validate(ghp) == 0) { 571 Conv_inv_buf_t inv_buf; 572 573 (void) conv_invalid_val(&inv_buf, EC_NATPTR(ghp), 0); 574 DBG_CALL(Dbg_dl_dlclose(clmp, inv_buf.buf, DBG_DLCLOSE_NULL)); 575 576 eprintf(LIST(clmp), ERR_FATAL, MSG_INTL(MSG_ARG_INVHNDL), 577 EC_NATPTR(handle)); 578 return (1); 579 } 580 return (dlclose_intn(ghp, clmp)); 581 } 582 583 #pragma weak _dlclose = dlclose 584 585 /* 586 * External entry for dlclose(3dl). Returns 0 for success, non-zero otherwise. 587 */ 588 int 589 dlclose(void *handle) 590 { 591 int error, entry; 592 Rt_map *clmp; 593 594 entry = enter(0); 595 596 clmp = _caller(caller(), CL_EXECDEF); 597 598 error = dlclose_check(handle, clmp); 599 600 if (entry) 601 leave(LIST(clmp), 0); 602 return (error); 603 } 604 605 static uint_t lmid = 0; 606 607 /* 608 * The addition of new link-map lists is assumed to be in small quantities. 609 * Here, we assign a unique link-map id for diagnostic use. Simply update the 610 * running link-map count until we max out. 611 */ 612 int 613 newlmid(Lm_list *lml) 614 { 615 char buffer[MSG_LMID_ALT_SIZE + 12]; 616 617 if (lmid == UINT_MAX) { 618 lml->lm_lmid = UINT_MAX; 619 (void) strncpy(buffer, MSG_ORIG(MSG_LMID_MAXED), 620 MSG_LMID_ALT_SIZE + 12); 621 } else { 622 lml->lm_lmid = lmid++; 623 (void) snprintf(buffer, MSG_LMID_ALT_SIZE + 12, 624 MSG_ORIG(MSG_LMID_FMT), MSG_ORIG(MSG_LMID_ALT), 625 lml->lm_lmid); 626 } 627 if ((lml->lm_lmidstr = strdup(buffer)) == NULL) 628 return (0); 629 630 return (1); 631 } 632 633 /* 634 * Core dlopen activity. 635 */ 636 static Grp_hdl * 637 dlmopen_core(Lm_list *lml, Lm_list *olml, const char *path, int mode, 638 Rt_map *clmp, uint_t flags, uint_t orig, int *in_nfavl) 639 { 640 Alist *palp = NULL; 641 Rt_map *nlmp; 642 Grp_hdl *ghp; 643 Aliste olmco, nlmco; 644 645 DBG_CALL(Dbg_dl_dlopen(clmp, 646 (path ? path : MSG_ORIG(MSG_STR_ZERO)), in_nfavl, mode)); 647 648 /* 649 * Having diagnosed the originally defined modes, assign any defaults 650 * or corrections. 651 */ 652 if (((mode & (RTLD_GROUP | RTLD_WORLD)) == 0) && 653 ((mode & RTLD_NOLOAD) == 0)) 654 mode |= (RTLD_GROUP | RTLD_WORLD); 655 if ((mode & RTLD_NOW) && (rtld_flags2 & RT_FL2_BINDLAZY)) { 656 mode &= ~RTLD_NOW; 657 mode |= RTLD_LAZY; 658 } 659 660 /* 661 * If the path specified is null then we're operating on global 662 * objects. Associate a dummy handle with the link-map list. 663 */ 664 if (path == NULL) { 665 Grp_hdl *ghp; 666 uint_t hflags, rdflags, cdflags; 667 int promote = 0; 668 669 /* 670 * Establish any flags for the handle (Grp_hdl). 671 * 672 * - This is a dummy, public, handle (0) that provides for a 673 * dynamic search of all global objects within the process. 674 * - Use of the RTLD_FIRST mode indicates that only the first 675 * dependency on the handle (the referenced object) can be 676 * used to satisfy dlsym() requests. 677 */ 678 hflags = (GPH_PUBLIC | GPH_ZERO); 679 if (mode & RTLD_FIRST) 680 hflags |= GPH_FIRST; 681 682 /* 683 * Establish the flags for the referenced dependency descriptor 684 * (Grp_desc). 685 * 686 * - The referenced object is available for dlsym(). 687 * - The referenced object is available to relocate against. 688 * - The referenced object should have it's dependencies 689 * added to this handle. 690 */ 691 rdflags = (GPD_DLSYM | GPD_RELOC | GPD_ADDEPS); 692 693 /* 694 * Establish the flags for this callers dependency descriptor 695 * (Grp_desc). 696 * 697 * - The explicit creation of a handle creates a descriptor 698 * for the referenced object and the parent (caller). 699 * - Use of the RTLD_PARENT flag indicates that the parent 700 * can be relocated against. 701 */ 702 cdflags = GPD_PARENT; 703 if (mode & RTLD_PARENT) 704 cdflags |= GPD_RELOC; 705 706 if ((ghp = hdl_create(lml, 0, clmp, hflags, rdflags, 707 cdflags)) == NULL) 708 return (NULL); 709 710 /* 711 * Traverse the main link-map control list, updating the mode 712 * of any objects as necessary. Call the relocation engine if 713 * this mode promotes the existing state of any relocations. 714 * crle()'s first pass loads all objects necessary for building 715 * a configuration file, however none of them are relocated. 716 * crle()'s second pass relocates objects in preparation for 717 * dldump()'ing using dlopen(0, RTLD_NOW). 718 */ 719 if ((mode & (RTLD_NOW | RTLD_CONFGEN)) == RTLD_CONFGEN) 720 return (ghp); 721 722 for (nlmp = lml->lm_head; nlmp; nlmp = NEXT_RT_MAP(nlmp)) { 723 if (((MODE(nlmp) & RTLD_GLOBAL) == 0) || 724 (FLAGS(nlmp) & FLG_RT_DELETE)) 725 continue; 726 727 if (update_mode(nlmp, MODE(nlmp), mode)) 728 promote = 1; 729 } 730 if (promote) 731 (void) relocate_lmc(lml, ALIST_OFF_DATA, clmp, 732 lml->lm_head, in_nfavl); 733 734 return (ghp); 735 } 736 737 /* 738 * Fix the pathname. If this object expands to multiple paths (ie. 739 * $ISALIST or $HWCAP have been used), then make sure the user has also 740 * furnished the RTLD_FIRST flag. As yet, we don't support opening 741 * more than one object at a time, so enforcing the RTLD_FIRST flag 742 * provides flexibility should we be able to support dlopening more 743 * than one object in the future. 744 */ 745 if (LM_FIX_NAME(clmp)(path, clmp, &palp, AL_CNT_NEEDED, orig) == NULL) 746 return (NULL); 747 748 if ((palp->al_arritems > 1) && ((mode & RTLD_FIRST) == 0)) { 749 remove_alist(&palp, 1); 750 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_5)); 751 return (NULL); 752 } 753 754 /* 755 * Establish a link-map control list for this request, and load the 756 * associated object. 757 */ 758 if ((nlmco = create_cntl(lml, 1)) == NULL) { 759 remove_alist(&palp, 1); 760 return (NULL); 761 } 762 olmco = nlmco; 763 764 nlmp = load_one(lml, nlmco, palp, clmp, mode, (flags | FLG_RT_PUBHDL), 765 &ghp, in_nfavl); 766 767 /* 768 * Remove any expanded pathname infrastructure, and if the dependency 769 * couldn't be loaded, cleanup. 770 */ 771 remove_alist(&palp, 1); 772 if (nlmp == NULL) { 773 remove_cntl(lml, olmco); 774 return (NULL); 775 } 776 777 /* 778 * If loading an auditor was requested, and the auditor already existed, 779 * then the link-map returned will be to the original auditor. The new 780 * link-map list that was initially created, and the associated link-map 781 * control list are no longer needed. As the auditor is already loaded, 782 * we're probably done, but fall through in case additional relocations 783 * would be triggered by the mode of the caller. 784 */ 785 if ((flags & FLG_RT_AUDIT) && (LIST(nlmp) != lml)) { 786 remove_cntl(lml, olmco); 787 lml = LIST(nlmp); 788 olmco = 0; 789 nlmco = ALIST_OFF_DATA; 790 } 791 792 /* 793 * Finish processing the objects associated with this request. 794 */ 795 if (((nlmp = analyze_lmc(lml, nlmco, nlmp, clmp, in_nfavl)) == NULL) || 796 (relocate_lmc(lml, nlmco, clmp, nlmp, in_nfavl) == 0)) { 797 ghp = NULL; 798 nlmp = NULL; 799 } 800 801 /* 802 * If the dlopen has failed, clean up any objects that might have been 803 * loaded successfully on this new link-map control list. 804 */ 805 if (olmco && (nlmp == NULL)) 806 remove_lmc(lml, clmp, olmco, path); 807 808 /* 809 * Finally, remove any temporary link-map control list. Note, if this 810 * operation successfully established a new link-map list, then a base 811 * link-map control list will have been created, which must remain. 812 */ 813 if (olmco && ((nlmp == NULL) || (olml != (Lm_list *)LM_ID_NEWLM))) 814 remove_cntl(lml, olmco); 815 816 return (ghp); 817 } 818 819 /* 820 * dlopen() and dlsym() operations are the means by which a process can 821 * test for the existence of required dependencies. If the necessary 822 * dependencies don't exist, then associated functionality can't be used. 823 * However, the lack of dependencies can be fixed, and the dlopen() and 824 * dlsym() requests can be repeated. As we use a "not-found" AVL tree to 825 * cache any failed full path loads, secondary dlopen() and dlsym() requests 826 * will fail, even if the dependencies have been installed. 827 * 828 * dlopen() and dlsym() retry any failures by removing the "not-found" AVL 829 * tree. Should any dependencies be found, their names are added to the 830 * FullPath AVL tree. This routine removes any new "not-found" AVL tree, 831 * so that the dlopen() or dlsym() can replace the original "not-found" tree. 832 */ 833 inline static void 834 nfavl_remove(avl_tree_t *avlt) 835 { 836 PathNode *pnp; 837 void *cookie = NULL; 838 839 if (avlt) { 840 while ((pnp = avl_destroy_nodes(avlt, &cookie)) != NULL) 841 free(pnp); 842 843 avl_destroy(avlt); 844 free(avlt); 845 } 846 } 847 848 /* 849 * Internal dlopen() activity. Called from user level or directly for internal 850 * opens that require a handle. 851 */ 852 Grp_hdl * 853 dlmopen_intn(Lm_list *lml, const char *path, int mode, Rt_map *clmp, 854 uint_t flags, uint_t orig) 855 { 856 Lm_list *olml = lml; 857 Rt_map *dlmp = NULL; 858 Grp_hdl *ghp; 859 int in_nfavl = 0; 860 861 /* 862 * Check for magic link-map list values: 863 * 864 * LM_ID_BASE: Operate on the PRIMARY (executables) link map 865 * LM_ID_LDSO: Operation on ld.so.1's link map 866 * LM_ID_NEWLM: Create a new link-map. 867 */ 868 if (lml == (Lm_list *)LM_ID_NEWLM) { 869 if ((lml = calloc(sizeof (Lm_list), 1)) == NULL) 870 return (NULL); 871 872 /* 873 * Establish the new link-map flags from the callers and those 874 * explicitly provided. 875 */ 876 lml->lm_tflags = LIST(clmp)->lm_tflags; 877 if (flags & FLG_RT_AUDIT) { 878 /* 879 * Unset any auditing flags - an auditor shouldn't be 880 * audited. Insure all audit dependencies are loaded. 881 */ 882 lml->lm_tflags &= ~LML_TFLG_AUD_MASK; 883 lml->lm_tflags |= (LML_TFLG_NOLAZYLD | 884 LML_TFLG_LOADFLTR | LML_TFLG_NOAUDIT); 885 } 886 887 if (aplist_append(&dynlm_list, lml, AL_CNT_DYNLIST) == NULL) { 888 free(lml); 889 return (NULL); 890 } 891 if (newlmid(lml) == 0) { 892 (void) aplist_delete_value(dynlm_list, lml); 893 free(lml); 894 return (NULL); 895 } 896 } else if ((uintptr_t)lml < LM_ID_NUM) { 897 if ((uintptr_t)lml == LM_ID_BASE) 898 lml = &lml_main; 899 else if ((uintptr_t)lml == LM_ID_LDSO) 900 lml = &lml_rtld; 901 } 902 903 /* 904 * Open the required object on the associated link-map list. 905 */ 906 ghp = dlmopen_core(lml, olml, path, mode, clmp, flags, orig, &in_nfavl); 907 908 /* 909 * If the object could not be found it is possible that the "not-found" 910 * AVL tree had indicated that the file does not exist. In case the 911 * file system has changed since this "not-found" recording was made, 912 * retry the dlopen() with a clean "not-found" AVL tree. 913 */ 914 if ((ghp == NULL) && in_nfavl) { 915 avl_tree_t *oavlt = nfavl; 916 917 nfavl = NULL; 918 ghp = dlmopen_core(lml, olml, path, mode, clmp, flags, orig, 919 NULL); 920 921 /* 922 * If the file is found, then its full path name will have been 923 * registered in the FullPath AVL tree. Remove any new 924 * "not-found" AVL information, and restore the former AVL tree. 925 */ 926 nfavl_remove(nfavl); 927 nfavl = oavlt; 928 } 929 930 /* 931 * Establish the new link-map from which .init processing will begin. 932 * Ignore .init firing when constructing a configuration file (crle(1)). 933 */ 934 if (ghp && ((mode & RTLD_CONFGEN) == 0)) 935 dlmp = ghp->gh_ownlmp; 936 937 /* 938 * If loading an auditor was requested, and the auditor already existed, 939 * then the link-map returned will be to the original auditor. Remove 940 * the link-map control list that was created for this request. 941 */ 942 if (dlmp && (flags & FLG_RT_AUDIT) && (LIST(dlmp) != lml)) { 943 remove_lml(lml); 944 lml = LIST(dlmp); 945 } 946 947 /* 948 * If this load failed, remove any alternative link-map list. 949 */ 950 if ((ghp == NULL) && 951 ((lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) == 0)) { 952 remove_lml(lml); 953 lml = NULL; 954 } 955 956 /* 957 * Finish this load request. If objects were loaded, .init processing 958 * is computed. Finally, the debuggers are informed of the link-map 959 * lists being stable. 960 */ 961 load_completion(dlmp); 962 963 return (ghp); 964 } 965 966 /* 967 * Argument checking for dlopen. Only called via external entry. 968 */ 969 static Grp_hdl * 970 dlmopen_check(Lm_list *lml, const char *path, int mode, Rt_map *clmp) 971 { 972 /* 973 * Verify that a valid pathname has been supplied. 974 */ 975 if (path && (*path == '\0')) { 976 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLPATH)); 977 return (0); 978 } 979 980 /* 981 * Historically we've always verified the mode is either RTLD_NOW or 982 * RTLD_LAZY. RTLD_NOLOAD is valid by itself. Use of LM_ID_NEWLM 983 * requires a specific pathname, and use of RTLD_PARENT is meaningless. 984 */ 985 if ((mode & (RTLD_NOW | RTLD_LAZY | RTLD_NOLOAD)) == 0) { 986 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_1)); 987 return (0); 988 } 989 if ((mode & (RTLD_NOW | RTLD_LAZY)) == (RTLD_NOW | RTLD_LAZY)) { 990 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_2)); 991 return (0); 992 } 993 if ((lml == (Lm_list *)LM_ID_NEWLM) && (path == NULL)) { 994 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_3)); 995 return (0); 996 } 997 if ((lml == (Lm_list *)LM_ID_NEWLM) && (mode & RTLD_PARENT)) { 998 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_4)); 999 return (0); 1000 } 1001 1002 return (dlmopen_intn(lml, path, mode, clmp, 0, 0)); 1003 } 1004 1005 #pragma weak _dlopen = dlopen 1006 1007 /* 1008 * External entry for dlopen(3dl). On success, returns a pointer (handle) to 1009 * the structure containing information about the newly added object, ie. can 1010 * be used by dlsym(). On failure, returns a null pointer. 1011 */ 1012 void * 1013 dlopen(const char *path, int mode) 1014 { 1015 int entry; 1016 Rt_map *clmp; 1017 Grp_hdl *ghp; 1018 Lm_list *lml; 1019 1020 entry = enter(0); 1021 1022 clmp = _caller(caller(), CL_EXECDEF); 1023 lml = LIST(clmp); 1024 1025 ghp = dlmopen_check(lml, path, mode, clmp); 1026 1027 if (entry) 1028 leave(lml, 0); 1029 return ((void *)ghp); 1030 } 1031 1032 #pragma weak _dlmopen = dlmopen 1033 1034 /* 1035 * External entry for dlmopen(3dl). 1036 */ 1037 void * 1038 dlmopen(Lmid_t lmid, const char *path, int mode) 1039 { 1040 int entry; 1041 Rt_map *clmp; 1042 Grp_hdl *ghp; 1043 1044 entry = enter(0); 1045 1046 clmp = _caller(caller(), CL_EXECDEF); 1047 1048 ghp = dlmopen_check((Lm_list *)lmid, path, mode, clmp); 1049 1050 if (entry) 1051 leave(LIST(clmp), 0); 1052 return ((void *)ghp); 1053 } 1054 1055 /* 1056 * Handle processing for dlsym. 1057 */ 1058 int 1059 dlsym_handle(Grp_hdl *ghp, Slookup *slp, Sresult *srp, uint_t *binfo, 1060 int *in_nfavl) 1061 { 1062 Rt_map *nlmp, * lmp = ghp->gh_ownlmp; 1063 Rt_map *clmp = slp->sl_cmap; 1064 const char *name = slp->sl_name; 1065 Slookup sl = *slp; 1066 1067 sl.sl_flags = (LKUP_FIRST | LKUP_DLSYM | LKUP_SPEC); 1068 1069 /* 1070 * Continue processing a dlsym request. Lookup the required symbol in 1071 * each link-map specified by the handle. 1072 * 1073 * To leverage off of lazy loading, dlsym() requests can result in two 1074 * passes. The first descends the link-maps of any objects already in 1075 * the address space. If the symbol isn't located, and lazy 1076 * dependencies still exist, then a second pass is made to load these 1077 * dependencies if applicable. This model means that in the case where 1078 * a symbol exists in more than one object, the one located may not be 1079 * constant - this is the standard issue with lazy loading. In addition, 1080 * attempting to locate a symbol that doesn't exist will result in the 1081 * loading of all lazy dependencies on the given handle, which can 1082 * defeat some of the advantages of lazy loading (look out JVM). 1083 */ 1084 if (ghp->gh_flags & GPH_ZERO) { 1085 Lm_list *lml; 1086 uint_t lazy = 0; 1087 1088 /* 1089 * If this symbol lookup is triggered from a dlopen(0) handle, 1090 * traverse the present link-map list looking for promiscuous 1091 * entries. 1092 */ 1093 for (nlmp = lmp; nlmp; nlmp = NEXT_RT_MAP(nlmp)) { 1094 /* 1095 * If this handle indicates we're only to look in the 1096 * first object check whether we're done. 1097 */ 1098 if ((nlmp != lmp) && (ghp->gh_flags & GPH_FIRST)) 1099 return (0); 1100 1101 if (!(MODE(nlmp) & RTLD_GLOBAL)) 1102 continue; 1103 if ((FLAGS(nlmp) & FLG_RT_DELETE) && 1104 ((FLAGS(clmp) & FLG_RT_DELETE) == 0)) 1105 continue; 1106 1107 sl.sl_imap = nlmp; 1108 if (LM_LOOKUP_SYM(clmp)(&sl, srp, binfo, in_nfavl)) 1109 return (1); 1110 1111 /* 1112 * Keep track of any global pending lazy loads. 1113 */ 1114 lazy += LAZY(nlmp); 1115 } 1116 1117 /* 1118 * If we're unable to locate the symbol and this link-map list 1119 * still has pending lazy dependencies, start loading them in an 1120 * attempt to exhaust the search. Note that as we're already 1121 * traversing a dynamic linked list of link-maps there's no 1122 * need for elf_lazy_find_sym() to descend the link-maps itself. 1123 */ 1124 lml = LIST(lmp); 1125 if (lazy) { 1126 DBG_CALL(Dbg_syms_lazy_rescan(lml, name)); 1127 1128 sl.sl_flags |= LKUP_NODESCENT; 1129 1130 for (nlmp = lmp; nlmp; nlmp = NEXT_RT_MAP(nlmp)) { 1131 1132 if (!(MODE(nlmp) & RTLD_GLOBAL) || !LAZY(nlmp)) 1133 continue; 1134 if ((FLAGS(nlmp) & FLG_RT_DELETE) && 1135 ((FLAGS(clmp) & FLG_RT_DELETE) == 0)) 1136 continue; 1137 1138 sl.sl_imap = nlmp; 1139 if (elf_lazy_find_sym(&sl, srp, binfo, 1140 in_nfavl)) 1141 return (1); 1142 } 1143 } 1144 } else { 1145 /* 1146 * Traverse the dlopen() handle searching all presently loaded 1147 * link-maps. 1148 */ 1149 Grp_desc *gdp; 1150 Aliste idx; 1151 uint_t lazy = 0; 1152 1153 for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) { 1154 nlmp = gdp->gd_depend; 1155 1156 if ((gdp->gd_flags & GPD_DLSYM) == 0) 1157 continue; 1158 1159 sl.sl_imap = nlmp; 1160 if (LM_LOOKUP_SYM(clmp)(&sl, srp, binfo, in_nfavl)) 1161 return (1); 1162 1163 if (ghp->gh_flags & GPH_FIRST) 1164 return (0); 1165 1166 /* 1167 * Keep track of any pending lazy loads associated 1168 * with this handle. 1169 */ 1170 lazy += LAZY(nlmp); 1171 } 1172 1173 /* 1174 * If we're unable to locate the symbol and this handle still 1175 * has pending lazy dependencies, start loading the lazy 1176 * dependencies, in an attempt to exhaust the search. 1177 */ 1178 if (lazy) { 1179 DBG_CALL(Dbg_syms_lazy_rescan(LIST(lmp), name)); 1180 1181 for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) { 1182 nlmp = gdp->gd_depend; 1183 1184 if (((gdp->gd_flags & GPD_DLSYM) == 0) || 1185 (LAZY(nlmp) == 0)) 1186 continue; 1187 1188 sl.sl_imap = nlmp; 1189 if (elf_lazy_find_sym(&sl, srp, binfo, 1190 in_nfavl)) 1191 return (1); 1192 } 1193 } 1194 } 1195 return (0); 1196 } 1197 1198 /* 1199 * Determine whether a symbol resides in a caller. This may be a reference, 1200 * which is associated with a specific dependency. 1201 */ 1202 inline static Sym * 1203 sym_lookup_in_caller(Rt_map *clmp, Slookup *slp, Sresult *srp, uint_t *binfo) 1204 { 1205 if (THIS_IS_ELF(clmp) && SYMINTP(clmp)(slp, srp, binfo, NULL)) { 1206 Sym *sym = srp->sr_sym; 1207 1208 slp->sl_rsymndx = (((ulong_t)sym - 1209 (ulong_t)SYMTAB(clmp)) / SYMENT(clmp)); 1210 slp->sl_rsym = sym; 1211 return (sym); 1212 } 1213 return (NULL); 1214 } 1215 1216 /* 1217 * Core dlsym activity. Selects symbol lookup method from handle. 1218 */ 1219 static void * 1220 dlsym_core(void *handle, const char *name, Rt_map *clmp, Rt_map **dlmp, 1221 int *in_nfavl) 1222 { 1223 Sym *sym; 1224 int ret = 0; 1225 Syminfo *sip; 1226 Slookup sl; 1227 Sresult sr; 1228 uint_t binfo; 1229 1230 /* 1231 * Initialize the symbol lookup data structure. 1232 * 1233 * Standard relocations are evaluated using the symbol index of the 1234 * associated relocation symbol. This index provides for loading 1235 * any lazy dependency and establishing a direct binding if necessary. 1236 * If a dlsym() operation originates from an object that contains a 1237 * symbol table entry for the same name, then we need to establish the 1238 * symbol index so that any dependency requirements can be triggered. 1239 * 1240 * Therefore, the first symbol lookup that is carried out is for the 1241 * symbol name within the calling object. If this symbol exists, the 1242 * symbols index is computed, added to the Slookup data, and thus used 1243 * to seed the real symbol lookup. 1244 */ 1245 SLOOKUP_INIT(sl, name, clmp, clmp, ld_entry_cnt, elf_hash(name), 1246 0, 0, 0, LKUP_SYMNDX); 1247 SRESULT_INIT(sr, name); 1248 sym = sym_lookup_in_caller(clmp, &sl, &sr, &binfo); 1249 1250 SRESULT_INIT(sr, name); 1251 1252 if (sym && (ELF_ST_VISIBILITY(sym->st_other) == STV_SINGLETON)) { 1253 Rt_map *hlmp = LIST(clmp)->lm_head; 1254 1255 /* 1256 * If a symbol reference is known, and that reference indicates 1257 * that the symbol is a singleton, then the search for the 1258 * symbol must follow the default search path. 1259 */ 1260 DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl, 0, 1261 DBG_DLSYM_SINGLETON)); 1262 1263 sl.sl_imap = hlmp; 1264 if (handle == RTLD_PROBE) 1265 sl.sl_flags = LKUP_NOFALLBACK; 1266 else 1267 sl.sl_flags = LKUP_SPEC; 1268 ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl); 1269 1270 } else if (handle == RTLD_NEXT) { 1271 Rt_map *nlmp; 1272 1273 /* 1274 * If this handle is RTLD_NEXT determine whether a lazy load 1275 * from the caller might provide the next object. This mimics 1276 * the lazy loading initialization normally carried out by 1277 * lookup_sym(), however here, we must do this up-front, as 1278 * lookup_sym() will be used to inspect the next object. 1279 */ 1280 if ((sl.sl_rsymndx) && ((sip = SYMINFO(clmp)) != NULL)) { 1281 /* LINTED */ 1282 sip = (Syminfo *)((char *)sip + 1283 (sl.sl_rsymndx * SYMINENT(clmp))); 1284 1285 if ((sip->si_flags & SYMINFO_FLG_DIRECT) && 1286 (sip->si_boundto < SYMINFO_BT_LOWRESERVE)) 1287 (void) elf_lazy_load(clmp, &sl, 1288 sip->si_boundto, name, 0, NULL, in_nfavl); 1289 1290 /* 1291 * Clear the symbol index, so as not to confuse 1292 * lookup_sym() of the next object. 1293 */ 1294 sl.sl_rsymndx = 0; 1295 sl.sl_rsym = NULL; 1296 } 1297 1298 /* 1299 * If the handle is RTLD_NEXT, start searching in the next link 1300 * map from the callers. Determine permissions from the 1301 * present link map. Indicate to lookup_sym() that we're on an 1302 * RTLD_NEXT request so that it will use the callers link map to 1303 * start any possible lazy dependency loading. 1304 */ 1305 sl.sl_imap = nlmp = NEXT_RT_MAP(clmp); 1306 1307 DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl, 1308 (nlmp ? NAME(nlmp) : MSG_INTL(MSG_STR_NULL)), 1309 DBG_DLSYM_NEXT)); 1310 1311 if (nlmp == NULL) 1312 return (0); 1313 1314 sl.sl_flags = LKUP_NEXT; 1315 ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl); 1316 1317 } else if (handle == RTLD_SELF) { 1318 /* 1319 * If the handle is RTLD_SELF start searching from the caller. 1320 */ 1321 DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl, NAME(clmp), 1322 DBG_DLSYM_SELF)); 1323 1324 sl.sl_imap = clmp; 1325 sl.sl_flags = (LKUP_SPEC | LKUP_SELF); 1326 ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl); 1327 1328 } else if (handle == RTLD_DEFAULT) { 1329 Rt_map *hlmp = LIST(clmp)->lm_head; 1330 1331 /* 1332 * If the handle is RTLD_DEFAULT mimic the standard symbol 1333 * lookup as would be triggered by a relocation. 1334 */ 1335 DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl, 0, 1336 DBG_DLSYM_DEFAULT)); 1337 1338 sl.sl_imap = hlmp; 1339 sl.sl_flags = LKUP_SPEC; 1340 ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl); 1341 1342 } else if (handle == RTLD_PROBE) { 1343 Rt_map *hlmp = LIST(clmp)->lm_head; 1344 1345 /* 1346 * If the handle is RTLD_PROBE, mimic the standard symbol 1347 * lookup as would be triggered by a relocation, however do 1348 * not fall back to a lazy loading rescan if the symbol can't be 1349 * found within the currently loaded objects. Note, a lazy 1350 * loaded dependency required by the caller might still get 1351 * loaded to satisfy this request, but no exhaustive lazy load 1352 * rescan is carried out. 1353 */ 1354 DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl, 0, 1355 DBG_DLSYM_PROBE)); 1356 1357 sl.sl_imap = hlmp; 1358 sl.sl_flags = LKUP_NOFALLBACK; 1359 ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl); 1360 1361 } else { 1362 Grp_hdl *ghp = (Grp_hdl *)handle; 1363 1364 /* 1365 * Look in the shared object specified by the handle and in all 1366 * of its dependencies. 1367 */ 1368 DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl, 1369 NAME(ghp->gh_ownlmp), DBG_DLSYM_DEF)); 1370 1371 ret = LM_DLSYM(clmp)(ghp, &sl, &sr, &binfo, in_nfavl); 1372 } 1373 1374 if (ret && ((sym = sr.sr_sym) != NULL)) { 1375 Lm_list *lml = LIST(clmp); 1376 Addr addr = sym->st_value; 1377 1378 *dlmp = sr.sr_dmap; 1379 if (!(FLAGS(*dlmp) & FLG_RT_FIXED)) 1380 addr += ADDR(*dlmp); 1381 1382 /* 1383 * Indicate that the defining object is now used. 1384 */ 1385 if (*dlmp != clmp) 1386 FLAGS1(*dlmp) |= FL1_RT_USED; 1387 1388 DBG_CALL(Dbg_bind_global(clmp, 0, 0, (Xword)-1, PLT_T_NONE, 1389 *dlmp, addr, sym->st_value, sr.sr_name, binfo)); 1390 1391 if ((lml->lm_tflags | AFLAGS(clmp)) & LML_TFLG_AUD_SYMBIND) { 1392 uint_t sb_flags = LA_SYMB_DLSYM; 1393 /* LINTED */ 1394 uint_t symndx = (uint_t)(((Xword)sym - 1395 (Xword)SYMTAB(*dlmp)) / SYMENT(*dlmp)); 1396 addr = audit_symbind(clmp, *dlmp, sym, symndx, addr, 1397 &sb_flags); 1398 } 1399 return ((void *)addr); 1400 } 1401 1402 return (NULL); 1403 } 1404 1405 /* 1406 * Internal dlsym activity. Called from user level or directly for internal 1407 * symbol lookup. 1408 */ 1409 void * 1410 dlsym_intn(void *handle, const char *name, Rt_map *clmp, Rt_map **dlmp) 1411 { 1412 Rt_map *llmp = NULL; 1413 void *error; 1414 Aliste idx; 1415 Grp_desc *gdp; 1416 int in_nfavl = 0; 1417 1418 /* 1419 * While looking for symbols it's quite possible that additional objects 1420 * get loaded from lazy loading. These objects will have been added to 1421 * the same link-map list as those objects on the handle. Remember this 1422 * list for later investigation. 1423 */ 1424 if ((handle == RTLD_NEXT) || (handle == RTLD_DEFAULT) || 1425 (handle == RTLD_SELF) || (handle == RTLD_PROBE)) 1426 llmp = LIST(clmp)->lm_tail; 1427 else { 1428 Grp_hdl *ghp = (Grp_hdl *)handle; 1429 1430 if (ghp->gh_ownlmp) 1431 llmp = LIST(ghp->gh_ownlmp)->lm_tail; 1432 else { 1433 for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) { 1434 if ((llmp = 1435 LIST(gdp->gd_depend)->lm_tail) != NULL) 1436 break; 1437 } 1438 } 1439 } 1440 1441 error = dlsym_core(handle, name, clmp, dlmp, &in_nfavl); 1442 1443 /* 1444 * If the symbol could not be found it is possible that the "not-found" 1445 * AVL tree had indicated that a required file does not exist. In case 1446 * the file system has changed since this "not-found" recording was 1447 * made, retry the dlsym() with a clean "not-found" AVL tree. 1448 */ 1449 if ((error == NULL) && in_nfavl) { 1450 avl_tree_t *oavlt = nfavl; 1451 1452 nfavl = NULL; 1453 error = dlsym_core(handle, name, clmp, dlmp, NULL); 1454 1455 /* 1456 * If the symbol is found, then any file that was loaded will 1457 * have had its full path name registered in the FullPath AVL 1458 * tree. Remove any new "not-found" AVL information, and 1459 * restore the former AVL tree. 1460 */ 1461 nfavl_remove(nfavl); 1462 nfavl = oavlt; 1463 } 1464 1465 if (error == NULL) { 1466 /* 1467 * Cache the error message, as Java tends to fall through this 1468 * code many times. 1469 */ 1470 if (nosym_str == NULL) 1471 nosym_str = MSG_INTL(MSG_GEN_NOSYM); 1472 eprintf(LIST(clmp), ERR_FATAL, nosym_str, name); 1473 } 1474 1475 load_completion(llmp); 1476 return (error); 1477 } 1478 1479 /* 1480 * Argument checking for dlsym. Only called via external entry. 1481 */ 1482 static void * 1483 dlsym_check(void *handle, const char *name, Rt_map *clmp, Rt_map **dlmp) 1484 { 1485 /* 1486 * Verify the arguments. 1487 */ 1488 if (name == NULL) { 1489 eprintf(LIST(clmp), ERR_FATAL, MSG_INTL(MSG_ARG_ILLSYM)); 1490 return (NULL); 1491 } 1492 if ((handle != RTLD_NEXT) && (handle != RTLD_DEFAULT) && 1493 (handle != RTLD_SELF) && (handle != RTLD_PROBE) && 1494 (hdl_validate((Grp_hdl *)handle) == 0)) { 1495 eprintf(LIST(clmp), ERR_FATAL, MSG_INTL(MSG_ARG_INVHNDL), 1496 EC_NATPTR(handle)); 1497 return (NULL); 1498 } 1499 return (dlsym_intn(handle, name, clmp, dlmp)); 1500 } 1501 1502 1503 #pragma weak _dlsym = dlsym 1504 1505 /* 1506 * External entry for dlsym(). On success, returns the address of the specified 1507 * symbol. On error returns a null. 1508 */ 1509 void * 1510 dlsym(void *handle, const char *name) 1511 { 1512 int entry; 1513 Rt_map *clmp, *dlmp = NULL; 1514 void *addr; 1515 1516 entry = enter(0); 1517 1518 clmp = _caller(caller(), CL_EXECDEF); 1519 1520 addr = dlsym_check(handle, name, clmp, &dlmp); 1521 1522 if (entry) { 1523 if (dlmp) 1524 is_dep_init(dlmp, clmp); 1525 leave(LIST(clmp), 0); 1526 } 1527 return (addr); 1528 } 1529 1530 /* 1531 * Core dladdr activity. 1532 */ 1533 static void 1534 dladdr_core(Rt_map *almp, void *addr, Dl_info_t *dlip, void **info, int flags) 1535 { 1536 /* 1537 * Set up generic information and any defaults. 1538 */ 1539 dlip->dli_fname = PATHNAME(almp); 1540 1541 dlip->dli_fbase = (void *)ADDR(almp); 1542 dlip->dli_sname = NULL; 1543 dlip->dli_saddr = NULL; 1544 1545 /* 1546 * Determine the nearest symbol to this address. 1547 */ 1548 LM_DLADDR(almp)((ulong_t)addr, almp, dlip, info, flags); 1549 } 1550 1551 #pragma weak _dladdr = dladdr 1552 1553 /* 1554 * External entry for dladdr(3dl) and dladdr1(3dl). Returns an information 1555 * structure that reflects the symbol closest to the address specified. 1556 */ 1557 int 1558 dladdr(void *addr, Dl_info_t *dlip) 1559 { 1560 int entry, ret; 1561 Rt_map *clmp, *almp; 1562 Lm_list *clml; 1563 1564 entry = enter(0); 1565 1566 clmp = _caller(caller(), CL_EXECDEF); 1567 clml = LIST(clmp); 1568 1569 DBG_CALL(Dbg_dl_dladdr(clmp, addr)); 1570 1571 /* 1572 * Use our calling technique to determine what object is associated 1573 * with the supplied address. If a caller can't be determined, 1574 * indicate the failure. 1575 */ 1576 if ((almp = _caller(addr, CL_NONE)) == NULL) { 1577 eprintf(clml, ERR_FATAL, MSG_INTL(MSG_ARG_INVADDR), 1578 EC_NATPTR(addr)); 1579 ret = 0; 1580 } else { 1581 dladdr_core(almp, addr, dlip, 0, 0); 1582 ret = 1; 1583 } 1584 1585 if (entry) 1586 leave(clml, 0); 1587 return (ret); 1588 } 1589 1590 #pragma weak _dladdr1 = dladdr1 1591 1592 int 1593 dladdr1(void *addr, Dl_info_t *dlip, void **info, int flags) 1594 { 1595 int entry, ret = 1; 1596 Rt_map *clmp, *almp; 1597 Lm_list *clml; 1598 1599 entry = enter(0); 1600 1601 clmp = _caller(caller(), CL_EXECDEF); 1602 clml = LIST(clmp); 1603 1604 DBG_CALL(Dbg_dl_dladdr(clmp, addr)); 1605 1606 /* 1607 * Validate any flags. 1608 */ 1609 if (flags) { 1610 int request; 1611 1612 if (((request = (flags & RTLD_DL_MASK)) != RTLD_DL_SYMENT) && 1613 (request != RTLD_DL_LINKMAP)) { 1614 eprintf(clml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLFLAGS), 1615 flags); 1616 ret = 0; 1617 1618 } else if (info == NULL) { 1619 eprintf(clml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLINFO), 1620 flags); 1621 ret = 0; 1622 } 1623 } 1624 1625 /* 1626 * Use our calling technique to determine what object is associated 1627 * with the supplied address. If a caller can't be determined, 1628 * indicate the failure. 1629 */ 1630 if (ret) { 1631 if ((almp = _caller(addr, CL_NONE)) == NULL) { 1632 eprintf(clml, ERR_FATAL, MSG_INTL(MSG_ARG_INVADDR), 1633 EC_NATPTR(addr)); 1634 ret = 0; 1635 } else 1636 dladdr_core(almp, addr, dlip, info, flags); 1637 } 1638 1639 if (entry) 1640 leave(clml, 0); 1641 return (ret); 1642 } 1643 1644 /* 1645 * Core dldump activity. 1646 */ 1647 static int 1648 dldump_core(Rt_map *clmp, Rt_map *lmp, const char *ipath, const char *opath, 1649 int flags) 1650 { 1651 Lm_list *lml = LIST(clmp); 1652 Addr addr = 0; 1653 1654 /* 1655 * Verify any arguments first. 1656 */ 1657 if ((opath == NULL) || (opath[0] == '\0') || 1658 ((lmp == NULL) && (ipath[0] == '\0'))) { 1659 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLPATH)); 1660 return (1); 1661 } 1662 1663 /* 1664 * If an input file is specified make sure its one of our dependencies 1665 * on the main link-map list. Note, this has really all evolved for 1666 * crle(), which uses libcrle.so on an alternative link-map to trigger 1667 * dumping objects from the main link-map list. If we ever want to 1668 * dump objects from alternative link-maps, this model is going to 1669 * have to be revisited. 1670 */ 1671 if (lmp == NULL) { 1672 if ((lmp = is_so_loaded(&lml_main, ipath, NULL)) == NULL) { 1673 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_NOFILE), 1674 ipath); 1675 return (1); 1676 } 1677 if (FLAGS(lmp) & FLG_RT_ALTER) { 1678 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_ALTER), ipath); 1679 return (1); 1680 } 1681 if (FLAGS(lmp) & FLG_RT_NODUMP) { 1682 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_NODUMP), 1683 ipath); 1684 return (1); 1685 } 1686 } 1687 1688 /* 1689 * If the object being dump'ed isn't fixed identify its mapping. 1690 */ 1691 if (!(FLAGS(lmp) & FLG_RT_FIXED)) 1692 addr = ADDR(lmp); 1693 1694 /* 1695 * As rt_dldump() will effectively lazy load the necessary support 1696 * libraries, make sure ld.so.1 is initialized for plt relocations. 1697 */ 1698 if (elf_rtld_load() == 0) 1699 return (0); 1700 1701 /* 1702 * Dump the required image. 1703 */ 1704 return (rt_dldump(lmp, opath, flags, addr)); 1705 } 1706 1707 #pragma weak _dldump = dldump 1708 1709 /* 1710 * External entry for dldump(3c). Returns 0 on success, non-zero otherwise. 1711 */ 1712 int 1713 dldump(const char *ipath, const char *opath, int flags) 1714 { 1715 int error, entry; 1716 Rt_map *clmp, *lmp; 1717 1718 entry = enter(0); 1719 1720 clmp = _caller(caller(), CL_EXECDEF); 1721 1722 if (ipath) { 1723 lmp = NULL; 1724 } else { 1725 lmp = lml_main.lm_head; 1726 ipath = NAME(lmp); 1727 } 1728 1729 DBG_CALL(Dbg_dl_dldump(clmp, ipath, opath, flags)); 1730 1731 error = dldump_core(clmp, lmp, ipath, opath, flags); 1732 1733 if (entry) 1734 leave(LIST(clmp), 0); 1735 return (error); 1736 } 1737 1738 /* 1739 * get_linkmap_id() translates Lm_list * pointers to the Link_map id as used by 1740 * the rtld_db and dlmopen() interfaces. It checks to see if the Link_map is 1741 * one of the primary ones and if so returns it's special token: 1742 * LM_ID_BASE 1743 * LM_ID_LDSO 1744 * 1745 * If it's not one of the primary link_map id's it will instead returns a 1746 * pointer to the Lm_list structure which uniquely identifies the Link_map. 1747 */ 1748 Lmid_t 1749 get_linkmap_id(Lm_list *lml) 1750 { 1751 if (lml->lm_flags & LML_FLG_BASELM) 1752 return (LM_ID_BASE); 1753 if (lml->lm_flags & LML_FLG_RTLDLM) 1754 return (LM_ID_LDSO); 1755 1756 return ((Lmid_t)lml); 1757 } 1758 1759 /* 1760 * Set a new deferred dependency name. 1761 */ 1762 static int 1763 set_def_need(Lm_list *lml, Dyninfo *dyip, const char *name) 1764 { 1765 /* 1766 * If this dependency has already been established, then this dlinfo() 1767 * call is too late. 1768 */ 1769 if (dyip->di_info) { 1770 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_DEF_DEPLOADED), 1771 dyip->di_name); 1772 return (-1); 1773 } 1774 1775 /* 1776 * Assign the new dependency name. 1777 */ 1778 DBG_CALL(Dbg_file_deferred(lml, dyip->di_name, name)); 1779 dyip->di_flags |= FLG_DI_DEF_DONE; 1780 dyip->di_name = name; 1781 return (0); 1782 } 1783 1784 /* 1785 * Extract information for a dlopen() handle. 1786 */ 1787 static int 1788 dlinfo_core(void *handle, int request, void *p, Rt_map *clmp) 1789 { 1790 Conv_inv_buf_t inv_buf; 1791 char *handlename; 1792 Lm_list *lml = LIST(clmp); 1793 Rt_map *lmp = NULL; 1794 1795 /* 1796 * Determine whether a handle is provided. A handle isn't needed for 1797 * all operations, but it is validated here for the initial diagnostic. 1798 */ 1799 if (handle == RTLD_SELF) { 1800 lmp = clmp; 1801 } else { 1802 Grp_hdl *ghp = (Grp_hdl *)handle; 1803 1804 if (hdl_validate(ghp)) 1805 lmp = ghp->gh_ownlmp; 1806 } 1807 if (lmp) { 1808 handlename = NAME(lmp); 1809 } else { 1810 (void) conv_invalid_val(&inv_buf, EC_NATPTR(handle), 0); 1811 handlename = inv_buf.buf; 1812 } 1813 1814 DBG_CALL(Dbg_dl_dlinfo(clmp, handlename, request, p)); 1815 1816 /* 1817 * Validate the request and return buffer. 1818 */ 1819 if ((request > RTLD_DI_MAX) || (p == NULL)) { 1820 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLVAL)); 1821 return (-1); 1822 } 1823 1824 /* 1825 * Return configuration cache name and address. 1826 */ 1827 if (request == RTLD_DI_CONFIGADDR) { 1828 Dl_info_t *dlip = (Dl_info_t *)p; 1829 1830 if ((config->c_name == NULL) || (config->c_bgn == 0) || 1831 (config->c_end == 0)) { 1832 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_NOCONFIG)); 1833 return (-1); 1834 } 1835 dlip->dli_fname = config->c_name; 1836 dlip->dli_fbase = (void *)config->c_bgn; 1837 return (0); 1838 } 1839 1840 /* 1841 * Return profiled object name (used by ldprof audit library). 1842 */ 1843 if (request == RTLD_DI_PROFILENAME) { 1844 if (profile_name == NULL) { 1845 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_NOPROFNAME)); 1846 return (-1); 1847 } 1848 1849 *(const char **)p = profile_name; 1850 return (0); 1851 } 1852 if (request == RTLD_DI_PROFILEOUT) { 1853 /* 1854 * If a profile destination directory hasn't been specified 1855 * provide a default. 1856 */ 1857 if (profile_out == NULL) 1858 profile_out = MSG_ORIG(MSG_PTH_VARTMP); 1859 1860 *(const char **)p = profile_out; 1861 return (0); 1862 } 1863 1864 /* 1865 * Obtain or establish a termination signal. 1866 */ 1867 if (request == RTLD_DI_GETSIGNAL) { 1868 *(int *)p = killsig; 1869 return (0); 1870 } 1871 1872 if (request == RTLD_DI_SETSIGNAL) { 1873 sigset_t set; 1874 int sig = *(int *)p; 1875 1876 /* 1877 * Determine whether the signal is in range. 1878 */ 1879 (void) sigfillset(&set); 1880 if (sigismember(&set, sig) != 1) { 1881 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_INVSIG), sig); 1882 return (-1); 1883 } 1884 1885 killsig = sig; 1886 return (0); 1887 } 1888 1889 /* 1890 * For any other request a link-map is required. Verify the handle. 1891 */ 1892 if (lmp == NULL) { 1893 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_INVHNDL), 1894 EC_NATPTR(handle)); 1895 return (-1); 1896 } 1897 1898 /* 1899 * Obtain the process arguments, environment and auxv. Note, as the 1900 * environment can be modified by the user (putenv(3c)), reinitialize 1901 * the environment pointer on each request. 1902 */ 1903 if (request == RTLD_DI_ARGSINFO) { 1904 Dl_argsinfo_t *aip = (Dl_argsinfo_t *)p; 1905 Lm_list *lml = LIST(lmp); 1906 1907 *aip = argsinfo; 1908 if (lml->lm_flags & LML_FLG_ENVIRON) 1909 aip->dla_envp = *(lml->lm_environ); 1910 1911 return (0); 1912 } 1913 1914 /* 1915 * Return Lmid_t of the Link-Map list that the specified object is 1916 * loaded on. 1917 */ 1918 if (request == RTLD_DI_LMID) { 1919 *(Lmid_t *)p = get_linkmap_id(LIST(lmp)); 1920 return (0); 1921 } 1922 1923 /* 1924 * Return a pointer to the Link-Map structure associated with the 1925 * specified object. 1926 */ 1927 if (request == RTLD_DI_LINKMAP) { 1928 *(Link_map **)p = (Link_map *)lmp; 1929 return (0); 1930 } 1931 1932 /* 1933 * Return search path information, or the size of the buffer required 1934 * to store the information. 1935 */ 1936 if ((request == RTLD_DI_SERINFO) || (request == RTLD_DI_SERINFOSIZE)) { 1937 Spath_desc sd = { search_rules, NULL, 0 }; 1938 Pdesc *pdp; 1939 Dl_serinfo_t *info; 1940 Dl_serpath_t *path; 1941 char *strs; 1942 size_t size = sizeof (Dl_serinfo_t); 1943 uint_t cnt = 0; 1944 1945 info = (Dl_serinfo_t *)p; 1946 path = &info->dls_serpath[0]; 1947 strs = (char *)&info->dls_serpath[info->dls_cnt]; 1948 1949 /* 1950 * Traverse search path entries for this object. 1951 */ 1952 while ((pdp = get_next_dir(&sd, lmp, 0)) != NULL) { 1953 size_t _size; 1954 1955 if (pdp->pd_pname == NULL) 1956 continue; 1957 1958 /* 1959 * If configuration information exists, it's possible 1960 * this path has been identified as non-existent, if so 1961 * ignore it. 1962 */ 1963 if (pdp->pd_info) { 1964 Rtc_obj *dobj = (Rtc_obj *)pdp->pd_info; 1965 if (dobj->co_flags & RTC_OBJ_NOEXIST) 1966 continue; 1967 } 1968 1969 /* 1970 * Keep track of search path count and total info size. 1971 */ 1972 if (cnt++) 1973 size += sizeof (Dl_serpath_t); 1974 _size = pdp->pd_plen + 1; 1975 size += _size; 1976 1977 if (request == RTLD_DI_SERINFOSIZE) 1978 continue; 1979 1980 /* 1981 * If we're filling in search path information, confirm 1982 * there's sufficient space. 1983 */ 1984 if (size > info->dls_size) { 1985 eprintf(lml, ERR_FATAL, 1986 MSG_INTL(MSG_ARG_SERSIZE), 1987 EC_OFF(info->dls_size)); 1988 return (-1); 1989 } 1990 if (cnt > info->dls_cnt) { 1991 eprintf(lml, ERR_FATAL, 1992 MSG_INTL(MSG_ARG_SERCNT), info->dls_cnt); 1993 return (-1); 1994 } 1995 1996 /* 1997 * Append the path to the information buffer. 1998 */ 1999 (void) strcpy(strs, pdp->pd_pname); 2000 path->dls_name = strs; 2001 path->dls_flags = (pdp->pd_flags & LA_SER_MASK); 2002 2003 strs = strs + _size; 2004 path++; 2005 } 2006 2007 /* 2008 * If we're here to size the search buffer fill it in. 2009 */ 2010 if (request == RTLD_DI_SERINFOSIZE) { 2011 info->dls_size = size; 2012 info->dls_cnt = cnt; 2013 } 2014 2015 return (0); 2016 } 2017 2018 /* 2019 * Return the origin of the object associated with this link-map. 2020 * Basically return the dirname(1) of the objects fullpath. 2021 */ 2022 if (request == RTLD_DI_ORIGIN) { 2023 char *str = (char *)p; 2024 2025 (void) strncpy(str, ORIGNAME(lmp), DIRSZ(lmp)); 2026 str += DIRSZ(lmp); 2027 *str = '\0'; 2028 2029 return (0); 2030 } 2031 2032 /* 2033 * Return the number of object mappings, or the mapping information for 2034 * this object. 2035 */ 2036 if (request == RTLD_DI_MMAPCNT) { 2037 uint_t *cnt = (uint_t *)p; 2038 2039 *cnt = MMAPCNT(lmp); 2040 return (0); 2041 } 2042 if (request == RTLD_DI_MMAPS) { 2043 Dl_mapinfo_t *mip = (Dl_mapinfo_t *)p; 2044 2045 if (mip->dlm_acnt && mip->dlm_maps) { 2046 uint_t cnt = 0; 2047 2048 while ((cnt < mip->dlm_acnt) && (cnt < MMAPCNT(lmp))) { 2049 mip->dlm_maps[cnt] = MMAPS(lmp)[cnt]; 2050 cnt++; 2051 } 2052 mip->dlm_rcnt = cnt; 2053 } 2054 return (0); 2055 } 2056 2057 /* 2058 * Assign a new dependency name to a deferred dependency. 2059 */ 2060 if ((request == RTLD_DI_DEFERRED) || 2061 (request == RTLD_DI_DEFERRED_SYM)) { 2062 Dl_definfo_t *dfip = (Dl_definfo_t *)p; 2063 Dyninfo *dyip; 2064 const char *dname, *rname; 2065 2066 /* 2067 * Verify the names. 2068 */ 2069 if ((dfip->dld_refname == NULL) || 2070 (dfip->dld_depname == NULL)) { 2071 eprintf(LIST(clmp), ERR_FATAL, 2072 MSG_INTL(MSG_ARG_ILLNAME)); 2073 return (-1); 2074 } 2075 2076 dname = dfip->dld_depname; 2077 rname = dfip->dld_refname; 2078 2079 /* 2080 * A deferred dependency can be determined by referencing a 2081 * symbol family member that is associated to the dependency, 2082 * or by looking for the dependency by its name. 2083 */ 2084 if (request == RTLD_DI_DEFERRED_SYM) { 2085 Slookup sl; 2086 Sresult sr; 2087 uint_t binfo; 2088 Syminfo *sip; 2089 2090 /* 2091 * Lookup the symbol in the associated object. 2092 */ 2093 SLOOKUP_INIT(sl, rname, lmp, lmp, ld_entry_cnt, 2094 elf_hash(rname), 0, 0, 0, LKUP_SYMNDX); 2095 SRESULT_INIT(sr, rname); 2096 if (sym_lookup_in_caller(clmp, &sl, &sr, 2097 &binfo) == NULL) { 2098 eprintf(LIST(clmp), ERR_FATAL, 2099 MSG_INTL(MSG_DEF_NOSYMFOUND), rname); 2100 return (-1); 2101 } 2102 2103 /* 2104 * Use the symbols index to reference the Syminfo entry 2105 * and thus find the associated dependency. 2106 */ 2107 if (sl.sl_rsymndx && ((sip = SYMINFO(clmp)) != NULL)) { 2108 /* LINTED */ 2109 sip = (Syminfo *)((char *)sip + 2110 (sl.sl_rsymndx * SYMINENT(lmp))); 2111 2112 if ((sip->si_flags & SYMINFO_FLG_DEFERRED) && 2113 (sip->si_boundto < SYMINFO_BT_LOWRESERVE) && 2114 ((dyip = DYNINFO(lmp)) != NULL)) { 2115 dyip += sip->si_boundto; 2116 2117 if (!(dyip->di_flags & FLG_DI_IGNORE)) 2118 return (set_def_need(lml, 2119 dyip, dname)); 2120 } 2121 } 2122 2123 /* 2124 * No deferred symbol found. 2125 */ 2126 eprintf(LIST(clmp), ERR_FATAL, 2127 MSG_INTL(MSG_DEF_NOSYMFOUND), rname); 2128 return (-1); 2129 2130 } else { 2131 Dyn *dyn; 2132 2133 /* 2134 * Using the target objects dependency information, find 2135 * the associated deferred dependency. 2136 */ 2137 for (dyn = DYN(lmp), dyip = DYNINFO(lmp); 2138 !(dyip->di_flags & FLG_DI_IGNORE); dyn++, dyip++) { 2139 const char *oname; 2140 2141 if ((dyip->di_flags & FLG_DI_DEFERRED) == 0) 2142 continue; 2143 2144 if (strcmp(rname, dyip->di_name) == 0) 2145 return (set_def_need(lml, dyip, dname)); 2146 2147 /* 2148 * If this dependency name has been changed by 2149 * a previous dlinfo(), check the original 2150 * dynamic entry string. The user might be 2151 * attempting to re-change an entry using the 2152 * original name as the reference. 2153 */ 2154 if ((dyip->di_flags & FLG_DI_DEF_DONE) == 0) 2155 continue; 2156 2157 oname = STRTAB(lmp) + dyn->d_un.d_val; 2158 if (strcmp(rname, oname) == 0) 2159 return (set_def_need(lml, dyip, dname)); 2160 } 2161 2162 /* 2163 * No deferred dependency found. 2164 */ 2165 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_DEF_NODEPFOUND), 2166 rname); 2167 return (-1); 2168 } 2169 } 2170 return (0); 2171 } 2172 2173 #pragma weak _dlinfo = dlinfo 2174 2175 /* 2176 * External entry for dlinfo(3dl). 2177 */ 2178 int 2179 dlinfo(void *handle, int request, void *p) 2180 { 2181 int error, entry; 2182 Rt_map *clmp; 2183 2184 entry = enter(0); 2185 2186 clmp = _caller(caller(), CL_EXECDEF); 2187 2188 error = dlinfo_core(handle, request, p, clmp); 2189 2190 if (entry) 2191 leave(LIST(clmp), 0); 2192 return (error); 2193 } 2194 2195 /* 2196 * GNU defined function to iterate through the program headers for all 2197 * currently loaded dynamic objects. The caller supplies a callback function 2198 * which is called for each object. 2199 * 2200 * entry: 2201 * callback - Callback function to call. The arguments to the callback 2202 * function are: 2203 * info - Address of dl_phdr_info structure 2204 * size - sizeof (struct dl_phdr_info) 2205 * data - Caller supplied value. 2206 * data - Value supplied by caller, which is passed to callback without 2207 * examination. 2208 * 2209 * exit: 2210 * callback is called for each dynamic ELF object in the process address 2211 * space, halting when a non-zero value is returned, or when the last 2212 * object has been processed. The return value from the last call 2213 * to callback is returned. 2214 * 2215 * note: 2216 * The Linux implementation has added additional fields to the 2217 * dl_phdr_info structure over time. The callback function is 2218 * supposed to use the size field to determine which fields are 2219 * present, and to avoid attempts to access non-existent fields. 2220 * We have added those fields that are compatible with Solaris, and 2221 * which are used by GNU C++ (g++) runtime exception handling support. 2222 * 2223 * note: 2224 * We issue a callback for every ELF object mapped into the process 2225 * address space at the time this routine is entered. These callbacks 2226 * are arbitrary functions that can do anything, including possibly 2227 * causing new objects to be mapped into the process, or unmapped. 2228 * This complicates matters: 2229 * 2230 * - Adding new objects can cause the alists to be reallocated 2231 * or for contents to move. This can happen explicitly via 2232 * dlopen(), or implicitly via lazy loading. One might consider 2233 * simply banning dlopen from a callback, but lazy loading must 2234 * be allowed, in which case there's no reason to ban dlopen(). 2235 * 2236 * - Removing objects can leave us holding references to freed 2237 * memory that must not be accessed, and can cause the list 2238 * items to move in a way that would cause us to miss reporting 2239 * one, or double report others. 2240 * 2241 * - We cannot allocate memory to build a separate data structure, 2242 * because the interface to dl_iterate_phdr() does not have a 2243 * way to communicate allocation errors back to the caller. 2244 * Even if we could, it would be difficult to do so efficiently. 2245 * 2246 * - It is possible for dl_iterate_phdr() to be called recursively 2247 * from a callback, and there is no way for us to detect or manage 2248 * this effectively, particularly as the user might use longjmp() 2249 * to skip past us on return. Hence, we must be reentrant 2250 * (stateless), further precluding the option of building a 2251 * separate data structure. 2252 * 2253 * Despite these constraints, we are able to traverse the link-map 2254 * lists safely: 2255 * 2256 * - Once interposer (preload) objects have been processed at 2257 * startup, we know that new objects are always placed at the 2258 * end of the list. Hence, if we are reading a list when that 2259 * happens, the new object will not alter the part of the list 2260 * that we've already processed. 2261 * 2262 * - The alist _TRAVERSE macros recalculate the address of the 2263 * current item from scratch on each iteration, rather than 2264 * incrementing a pointer. Hence, alist additions that occur 2265 * in mid-traverse will not cause confusion. 2266 * 2267 * There is one limitation: We cannot continue operation if an object 2268 * is removed from the process from within a callback. We detect when 2269 * this happens and return immediately with a -1 return value. 2270 * 2271 * note: 2272 * As currently implemented, if a callback causes an object to be loaded, 2273 * that object may or may not be reported by the current invocation of 2274 * dl_iterate_phdr(), based on whether or not we have already processed 2275 * the link-map list that receives it. If we want to prevent this, it 2276 * can be done efficiently by associating the current value of cnt_map 2277 * with each new Rt_map entered into the system. Then this function can 2278 * use that to detect and skip new objects that enter the system in 2279 * mid-iteration. However, the Linux documentation is ambiguous on whether 2280 * this is necessary, and it does not appear to matter in practice. 2281 * We have therefore chosen not to do so at this time. 2282 */ 2283 int 2284 dl_iterate_phdr(int (*callback)(struct dl_phdr_info *, size_t, void *), 2285 void *data) 2286 { 2287 struct dl_phdr_info info; 2288 u_longlong_t l_cnt_map = cnt_map; 2289 u_longlong_t l_cnt_unmap = cnt_unmap; 2290 Lm_list *lml, *clml; 2291 Lm_cntl *lmc; 2292 Rt_map *lmp, *clmp; 2293 Aliste idx1, idx2; 2294 Ehdr *ehdr; 2295 int ret = 0; 2296 int entry; 2297 2298 entry = enter(0); 2299 clmp = _caller(caller(), CL_EXECDEF); 2300 clml = LIST(clmp); 2301 2302 DBG_CALL(Dbg_dl_iphdr_enter(clmp, cnt_map, cnt_unmap)); 2303 2304 /* Issue a callback for each ELF object in the process */ 2305 for (APLIST_TRAVERSE(dynlm_list, idx1, lml)) { 2306 for (ALIST_TRAVERSE(lml->lm_lists, idx2, lmc)) { 2307 for (lmp = lmc->lc_head; lmp; lmp = NEXT_RT_MAP(lmp)) { 2308 #if defined(_sparc) && !defined(_LP64) 2309 /* 2310 * On 32-bit sparc, the possibility exists that 2311 * this object is not ELF. 2312 */ 2313 if (THIS_IS_NOT_ELF(lmp)) 2314 continue; 2315 #endif 2316 /* Prepare the object information structure */ 2317 ehdr = (Ehdr *) ADDR(lmp); 2318 info.dlpi_addr = (ehdr->e_type == ET_EXEC) ? 2319 0 : ADDR(lmp); 2320 info.dlpi_name = lmp->rt_pathname; 2321 info.dlpi_phdr = (Phdr *) 2322 (ADDR(lmp) + ehdr->e_phoff); 2323 info.dlpi_phnum = ehdr->e_phnum; 2324 info.dlpi_adds = cnt_map; 2325 info.dlpi_subs = cnt_unmap; 2326 2327 /* Issue the callback */ 2328 DBG_CALL(Dbg_dl_iphdr_callback(clml, &info)); 2329 leave(clml, thr_flg_reenter); 2330 ret = (* callback)(&info, sizeof (info), data); 2331 (void) enter(thr_flg_reenter); 2332 2333 /* Return immediately on non-zero result */ 2334 if (ret != 0) 2335 goto done; 2336 2337 /* Adapt to object mapping changes */ 2338 if ((cnt_map == l_cnt_map) && 2339 (cnt_unmap == l_cnt_unmap)) 2340 continue; 2341 2342 DBG_CALL(Dbg_dl_iphdr_mapchange(clml, cnt_map, 2343 cnt_unmap)); 2344 2345 /* Stop if an object was unmapped */ 2346 if (cnt_unmap == l_cnt_unmap) { 2347 l_cnt_map = cnt_map; 2348 continue; 2349 } 2350 2351 ret = -1; 2352 DBG_CALL(Dbg_dl_iphdr_unmap_ret(clml)); 2353 goto done; 2354 } 2355 } 2356 } 2357 2358 done: 2359 if (entry) 2360 leave(LIST(clmp), 0); 2361 return (ret); 2362 } 2363