xref: /titanic_50/usr/src/cmd/sgs/elfdump/common/elfdump.c (revision 73e32a377b571c409fcab2227ee156fd52de7e03)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Dump an elf file.
29  */
30 #include	<sys/elf_386.h>
31 #include	<sys/elf_amd64.h>
32 #include	<sys/elf_SPARC.h>
33 #include	<_libelf.h>
34 #include	<dwarf.h>
35 #include	<stdio.h>
36 #include	<unistd.h>
37 #include	<errno.h>
38 #include	<strings.h>
39 #include	<debug.h>
40 #include	<conv.h>
41 #include	<msg.h>
42 #include	<_elfdump.h>
43 
44 
45 /*
46  * VERSYM_STATE is used to maintain information about the VERSYM section
47  * in the object being analyzed. It is filled in by versions(), and used
48  * by init_symtbl_state() when displaying symbol information.
49  *
50  * There are three forms of symbol versioning known to us:
51  *
52  * 1) The original form, introduced with Solaris 2.5, in which
53  *	the Versym contains indexes to Verdef records, and the
54  *	Versym values for UNDEF symbols resolved by other objects
55  *	are all set to 0.
56  * 2) The GNU form, which is backward compatible with the original
57  *	Solaris form, but which adds several extensions:
58  *	- The Versym also contains indexes to Verneed records, recording
59  *		which object/version contributed the external symbol at
60  *		link time. These indexes start with the next value following
61  *		the final Verdef index. The index is written to the previously
62  *		reserved vna_other field of the ELF Vernaux structure.
63  *	- The top bit of the Versym value is no longer part of the index,
64  *		but is used as a "hidden bit" to prevent binding to the symbol.
65  *	- Multiple implementations of a given symbol, contained in varying
66  *		versions are allowed, using special assembler pseudo ops,
67  *		and encoded in the symbol name using '@' characters.
68  * 3) Modified Solaris form, in which we adopt the first GNU extension
69  *	(Versym indexes to Verneed records), but not the others.
70  *
71  * elfdump can handle any of these cases. The presence of a DT_VERSYM
72  * dynamic element indicates a full GNU object. An object that lacks
73  * a DT_VERSYM entry, but which has non-zero vna_other fields in the Vernaux
74  * structures is a modified Solaris object. An object that has neither of
75  * these uses the original form.
76  *
77  * max_verndx contains the largest version index that can appear
78  * in a Versym entry. This can never be less than 1: In the case where
79  * there is no verdef/verneed sections, the [0] index is reserved
80  * for local symbols, and the [1] index for globals. If the original
81  * Solaris versioning rules are in effect and there is a verdef section,
82  * then max_verndex is the number of defined versions. If one of the
83  * other versioning forms is in effect, then:
84  *	1) If there is no verneed section, it is the same as for
85  *		original Solaris versioning.
86  *	2) If there is a verneed section, the vna_other field of the
87  *		Vernaux structs contain versions, and max_verndx is the
88  *		largest such index.
89  *
90  * If gnu_full is True, the object uses the full GNU form of versioning.
91  * The value of the gnu_full field is based on the presence of
92  * a DT_VERSYM entry in the dynamic section: GNU ld produces these, and
93  * Solaris ld does not.
94  *
95  * The gnu_needed field is True if the Versym contains indexes to
96  * Verneed records, as indicated by non-zero vna_other fields in the Verneed
97  * section. If gnu_full is True, then gnu_needed will always be true.
98  * However, gnu_needed can be true without gnu_full. This is the modified
99  * Solaris form.
100  */
101 typedef struct {
102 	Cache	*cache;		/* Pointer to cache entry for VERSYM */
103 	Versym	*data;		/* Pointer to versym array */
104 	int	gnu_full;	/* True if object uses GNU versioning rules */
105 	int	gnu_needed;	/* True if object uses VERSYM indexes for */
106 				/*	VERNEED (subset of gnu_full) */
107 	int	max_verndx;	/* largest versym index value */
108 } VERSYM_STATE;
109 
110 /*
111  * SYMTBL_STATE is used to maintain information about a single symbol
112  * table section, for use by the routines that display symbol information.
113  */
114 typedef struct {
115 	const char	*file;		/* Name of file */
116 	Ehdr		*ehdr;		/* ELF header for file */
117 	Cache		*cache;		/* Cache of all section headers */
118 	Word		shnum;		/* # of sections in cache */
119 	Cache		*seccache;	/* Cache of symbol table section hdr */
120 	Word		secndx;		/* Index of symbol table section hdr */
121 	const char	*secname;	/* Name of section */
122 	uint_t		flags;		/* Command line option flags */
123 	struct {			/* Extended section index data */
124 		int	checked;	/* TRUE if already checked for shxndx */
125 		Word	*data;		/* NULL, or extended section index */
126 					/*	used for symbol table entries */
127 		uint_t	n;		/* # items in shxndx.data */
128 	} shxndx;
129 	VERSYM_STATE	*versym;	/* NULL, or associated VERSYM section */
130 	Sym 		*sym;		/* Array of symbols */
131 	Word		symn;		/* # of symbols */
132 } SYMTBL_STATE;
133 
134 
135 
136 /*
137  * Focal point for verifying symbol names.
138  */
139 static const char *
140 string(Cache *refsec, Word ndx, Cache *strsec, const char *file, Word name)
141 {
142 	/*
143 	 * If an error in this routine is due to a property of the string
144 	 * section, as opposed to a bad offset into the section (a property of
145 	 * the referencing section), then we will detect the same error on
146 	 * every call involving those sections. We use these static variables
147 	 * to retain the information needed to only issue each such error once.
148 	 */
149 	static Cache	*last_refsec;	/* Last referencing section seen */
150 	static int	strsec_err;	/* True if error issued */
151 
152 	const char	*strs;
153 	Word		strn;
154 
155 	if (strsec->c_data == NULL)
156 		return (NULL);
157 
158 	strs = (char *)strsec->c_data->d_buf;
159 	strn = strsec->c_data->d_size;
160 
161 	/*
162 	 * We only print a diagnostic regarding a bad string table once per
163 	 * input section being processed. If the refsec has changed, reset
164 	 * our retained error state.
165 	 */
166 	if (last_refsec != refsec) {
167 		last_refsec = refsec;
168 		strsec_err = 0;
169 	}
170 
171 	/* Verify that strsec really is a string table */
172 	if (strsec->c_shdr->sh_type != SHT_STRTAB) {
173 		if (!strsec_err) {
174 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOTSTRTAB),
175 			    file, strsec->c_ndx, refsec->c_ndx);
176 			strsec_err = 1;
177 		}
178 		return (MSG_INTL(MSG_STR_UNKNOWN));
179 	}
180 
181 	/*
182 	 * Is the string table offset within range of the available strings?
183 	 */
184 	if (name >= strn) {
185 		/*
186 		 * Do we have a empty string table?
187 		 */
188 		if (strs == 0) {
189 			if (!strsec_err) {
190 				(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
191 				    file, strsec->c_name);
192 				strsec_err = 1;
193 			}
194 		} else {
195 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSTOFF),
196 			    file, refsec->c_name, EC_WORD(ndx), strsec->c_name,
197 			    EC_WORD(name), EC_WORD(strn - 1));
198 		}
199 
200 		/*
201 		 * Return the empty string so that the calling function can
202 		 * continue it's output diagnostics.
203 		 */
204 		return (MSG_INTL(MSG_STR_UNKNOWN));
205 	}
206 	return (strs + name);
207 }
208 
209 /*
210  * Relocations can reference section symbols and standard symbols.  If the
211  * former, establish the section name.
212  */
213 static const char *
214 relsymname(Cache *cache, Cache *csec, Cache *strsec, Word symndx, Word symnum,
215     Word relndx, Sym *syms, char *secstr, size_t secsz, const char *file)
216 {
217 	Sym		*sym;
218 	const char	*name;
219 
220 	if (symndx >= symnum) {
221 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_RELBADSYMNDX),
222 		    file, EC_WORD(symndx), EC_WORD(relndx));
223 		return (MSG_INTL(MSG_STR_UNKNOWN));
224 	}
225 
226 	sym = (Sym *)(syms + symndx);
227 	name = string(csec, symndx, strsec, file, sym->st_name);
228 
229 	/*
230 	 * If the symbol represents a section offset construct an appropriate
231 	 * string.  Note, although section symbol table entries typically have
232 	 * a NULL name pointer, entries do exist that point into the string
233 	 * table to their own NULL strings.
234 	 */
235 	if ((ELF_ST_TYPE(sym->st_info) == STT_SECTION) &&
236 	    ((sym->st_name == 0) || (*name == '\0'))) {
237 		(void) snprintf(secstr, secsz, MSG_INTL(MSG_STR_SECTION),
238 		    cache[sym->st_shndx].c_name);
239 		return ((const char *)secstr);
240 	}
241 
242 	return (name);
243 }
244 
245 /*
246  * Focal point for establishing a string table section.  Data such as the
247  * dynamic information simply points to a string table.  Data such as
248  * relocations, reference a symbol table, which in turn is associated with a
249  * string table.
250  */
251 static int
252 stringtbl(Cache *cache, int symtab, Word ndx, Word shnum, const char *file,
253     Word *symnum, Cache **symsec, Cache **strsec)
254 {
255 	Shdr	*shdr = cache[ndx].c_shdr;
256 
257 	if (symtab) {
258 		/*
259 		 * Validate the symbol table section.
260 		 */
261 		if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
262 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
263 			    file, cache[ndx].c_name, EC_WORD(shdr->sh_link));
264 			return (0);
265 		}
266 		if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
267 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
268 			    file, cache[ndx].c_name);
269 			return (0);
270 		}
271 
272 		/*
273 		 * Obtain, and verify the symbol table data.
274 		 */
275 		if ((cache[ndx].c_data == NULL) ||
276 		    (cache[ndx].c_data->d_buf == NULL)) {
277 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
278 			    file, cache[ndx].c_name);
279 			return (0);
280 		}
281 
282 		/*
283 		 * Establish the string table index.
284 		 */
285 		ndx = shdr->sh_link;
286 		shdr = cache[ndx].c_shdr;
287 
288 		/*
289 		 * Return symbol table information.
290 		 */
291 		if (symnum)
292 			*symnum = (shdr->sh_size / shdr->sh_entsize);
293 		if (symsec)
294 			*symsec = &cache[ndx];
295 	}
296 
297 	/*
298 	 * Validate the associated string table section.
299 	 */
300 	if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
301 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
302 		    file, cache[ndx].c_name, EC_WORD(shdr->sh_link));
303 		return (0);
304 	}
305 
306 	if (strsec)
307 		*strsec = &cache[shdr->sh_link];
308 
309 	return (1);
310 }
311 
312 /*
313  * Lookup a symbol and set Sym accordingly.
314  */
315 static int
316 symlookup(const char *name, Cache *cache, Word shnum, Sym **sym,
317     Cache *symtab, const char *file)
318 {
319 	Shdr	*shdr;
320 	Word	symn, cnt;
321 	Sym	*syms;
322 
323 	if (symtab == 0)
324 		return (0);
325 
326 	shdr = symtab->c_shdr;
327 
328 	/*
329 	 * Determine the symbol data and number.
330 	 */
331 	if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
332 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
333 		    file, symtab->c_name);
334 		return (0);
335 	}
336 	if (symtab->c_data == NULL)
337 		return (0);
338 
339 	/* LINTED */
340 	symn = (Word)(shdr->sh_size / shdr->sh_entsize);
341 	syms = (Sym *)symtab->c_data->d_buf;
342 
343 	/*
344 	 * Get the associated string table section.
345 	 */
346 	if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
347 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
348 		    file, symtab->c_name, EC_WORD(shdr->sh_link));
349 		return (0);
350 	}
351 
352 	/*
353 	 * Loop through the symbol table to find a match.
354 	 */
355 	for (cnt = 0; cnt < symn; syms++, cnt++) {
356 		const char	*symname;
357 
358 		symname = string(symtab, cnt, &cache[shdr->sh_link], file,
359 		    syms->st_name);
360 
361 		if (symname && (strcmp(name, symname) == 0)) {
362 			*sym = syms;
363 			return (1);
364 		}
365 	}
366 	return (0);
367 }
368 
369 /*
370  * Print section headers.
371  */
372 static void
373 sections(const char *file, Cache *cache, Word shnum, Ehdr *ehdr)
374 {
375 	size_t	seccnt;
376 
377 	for (seccnt = 1; seccnt < shnum; seccnt++) {
378 		Cache		*_cache = &cache[seccnt];
379 		Shdr		*shdr = _cache->c_shdr;
380 		const char	*secname = _cache->c_name;
381 
382 		/*
383 		 * Although numerous section header entries can be zero, it's
384 		 * usually a sign of trouble if the type is zero.
385 		 */
386 		if (shdr->sh_type == 0) {
387 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHTYPE),
388 			    file, secname, EC_WORD(shdr->sh_type));
389 		}
390 
391 		if (!match(MATCH_F_ALL, secname, seccnt, shdr->sh_type))
392 			continue;
393 
394 		/*
395 		 * Identify any sections that are suspicious.  A .got section
396 		 * shouldn't exist in a relocatable object.
397 		 */
398 		if (ehdr->e_type == ET_REL) {
399 			if (strncmp(secname, MSG_ORIG(MSG_ELF_GOT),
400 			    MSG_ELF_GOT_SIZE) == 0) {
401 				(void) fprintf(stderr,
402 				    MSG_INTL(MSG_GOT_UNEXPECTED), file,
403 				    secname);
404 			}
405 		}
406 
407 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
408 		dbg_print(0, MSG_INTL(MSG_ELF_SHDR), EC_WORD(seccnt), secname);
409 		Elf_shdr(0, ehdr->e_machine, shdr);
410 	}
411 }
412 
413 /*
414  * A couple of instances of unwind data are printed as tables of 8 data items
415  * expressed as 0x?? integers.
416  */
417 #define	UNWINDTBLSZ	10 + (8 * 5) + 1
418 
419 static void
420 unwindtbl(uint64_t *ndx, uint_t len, uchar_t *data, uint64_t doff,
421     const char *msg, const char *pre, size_t plen)
422 {
423 	char	buffer[UNWINDTBLSZ];
424 	uint_t	boff = plen, cnt = 0;
425 
426 	dbg_print(0, msg);
427 	(void) strncpy(buffer, pre, UNWINDTBLSZ);
428 
429 	while (*ndx < (len + 4)) {
430 		if (cnt == 8) {
431 			dbg_print(0, buffer);
432 			boff = plen;
433 			cnt = 0;
434 		}
435 		(void) snprintf(&buffer[boff], UNWINDTBLSZ - boff,
436 		    MSG_ORIG(MSG_UNW_TBLENTRY), data[doff + (*ndx)++]);
437 		boff += 5;
438 		cnt++;
439 	}
440 	if (cnt)
441 		dbg_print(0, buffer);
442 }
443 
444 /*
445  * Obtain a specified Phdr entry.
446  */
447 static Phdr *
448 getphdr(Word phnum, Word type, const char *file, Elf *elf)
449 {
450 	Word	cnt;
451 	Phdr	*phdr;
452 
453 	if ((phdr = elf_getphdr(elf)) == NULL) {
454 		failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
455 		return (0);
456 	}
457 
458 	for (cnt = 0; cnt < phnum; phdr++, cnt++) {
459 		if (phdr->p_type == type)
460 			return (phdr);
461 	}
462 	return (0);
463 }
464 
465 static void
466 unwind(Cache *cache, Word shnum, Word phnum, Ehdr *ehdr, const char *file,
467     Elf *elf)
468 {
469 	Conv_dwarf_ehe_buf_t	dwarf_ehe_buf;
470 	Word	cnt;
471 	Phdr	*uphdr = 0;
472 
473 	/*
474 	 * For the moment - UNWIND is only relevant for a AMD64 object.
475 	 */
476 	if (ehdr->e_machine != EM_AMD64)
477 		return;
478 
479 	if (phnum)
480 		uphdr = getphdr(phnum, PT_SUNW_UNWIND, file, elf);
481 
482 	for (cnt = 1; cnt < shnum; cnt++) {
483 		Cache		*_cache = &cache[cnt];
484 		Shdr		*shdr = _cache->c_shdr;
485 		uchar_t		*data;
486 		size_t		datasize;
487 		uint64_t	off, ndx, frame_ptr, fde_cnt, tabndx;
488 		uint_t		vers, frame_ptr_enc, fde_cnt_enc, table_enc;
489 
490 		/*
491 		 * AMD64 - this is a strmcp() just to find the gcc produced
492 		 * sections.  Soon gcc should be setting the section type - and
493 		 * we'll not need this strcmp().
494 		 */
495 		if ((shdr->sh_type != SHT_AMD64_UNWIND) &&
496 		    (strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRM),
497 		    MSG_SCN_FRM_SIZE) != 0) &&
498 		    (strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRMHDR),
499 		    MSG_SCN_FRMHDR_SIZE) != 0))
500 			continue;
501 
502 		if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
503 			continue;
504 
505 		if (_cache->c_data == NULL)
506 			continue;
507 
508 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
509 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_UNWIND), _cache->c_name);
510 
511 		data = (uchar_t *)(_cache->c_data->d_buf);
512 		datasize = _cache->c_data->d_size;
513 		off = 0;
514 
515 		/*
516 		 * Is this a .eh_frame_hdr
517 		 */
518 		if ((uphdr && (shdr->sh_addr == uphdr->p_vaddr)) ||
519 		    (strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRMHDR),
520 		    MSG_SCN_FRMHDR_SIZE) == 0)) {
521 			dbg_print(0, MSG_ORIG(MSG_UNW_FRMHDR));
522 			ndx = 0;
523 
524 			vers = data[ndx++];
525 			frame_ptr_enc = data[ndx++];
526 			fde_cnt_enc = data[ndx++];
527 			table_enc = data[ndx++];
528 
529 			dbg_print(0, MSG_ORIG(MSG_UNW_FRMVERS), vers);
530 
531 			frame_ptr = dwarf_ehe_extract(data, &ndx, frame_ptr_enc,
532 			    ehdr->e_ident, shdr->sh_addr + ndx);
533 
534 			dbg_print(0, MSG_ORIG(MSG_UNW_FRPTRENC),
535 			    conv_dwarf_ehe(frame_ptr_enc, &dwarf_ehe_buf),
536 			    EC_XWORD(frame_ptr));
537 
538 			fde_cnt = dwarf_ehe_extract(data, &ndx, fde_cnt_enc,
539 			    ehdr->e_ident, shdr->sh_addr + ndx);
540 
541 			dbg_print(0, MSG_ORIG(MSG_UNW_FDCNENC),
542 			    conv_dwarf_ehe(fde_cnt_enc, &dwarf_ehe_buf),
543 			    EC_XWORD(fde_cnt));
544 			dbg_print(0, MSG_ORIG(MSG_UNW_TABENC),
545 			    conv_dwarf_ehe(table_enc, &dwarf_ehe_buf));
546 			dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB1));
547 			dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB2));
548 
549 			for (tabndx = 0; tabndx < fde_cnt; tabndx++) {
550 				dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTABENT),
551 				    EC_XWORD(dwarf_ehe_extract(data, &ndx,
552 				    table_enc, ehdr->e_ident, shdr->sh_addr)),
553 				    EC_XWORD(dwarf_ehe_extract(data, &ndx,
554 				    table_enc, ehdr->e_ident, shdr->sh_addr)));
555 			}
556 			continue;
557 		}
558 
559 		/*
560 		 * Walk the Eh_frame's
561 		 */
562 		while (off < datasize) {
563 			uint_t		cieid, cielength, cieversion;
564 			uint_t		cieretaddr;
565 			int		cieRflag, cieLflag, ciePflag, cieZflag;
566 			uint_t		cieaugndx, length, id;
567 			uint64_t	ciecalign, ciedalign;
568 			char		*cieaugstr;
569 
570 			ndx = 0;
571 			/*
572 			 * Extract length in lsb format.  A zero length
573 			 * indicates that this CIE is a terminator and that
574 			 * processing for this unwind information should end.
575 			 * However, skip this entry and keep processing, just
576 			 * in case there is any other information remaining in
577 			 * this section.  Note, ld(1) will terminate the
578 			 * processing of the .eh_frame contents for this file
579 			 * after a zero length CIE, thus any information that
580 			 * does follow is ignored by ld(1), and is therefore
581 			 * questionable.
582 			 */
583 			if ((length = LSB32EXTRACT(data + off + ndx)) == 0) {
584 				dbg_print(0, MSG_ORIG(MSG_UNW_ZEROTERM));
585 				off += 4;
586 				continue;
587 			}
588 			ndx += 4;
589 
590 			/*
591 			 * extract CIE id in lsb format
592 			 */
593 			id = LSB32EXTRACT(data + off + ndx);
594 			ndx += 4;
595 
596 			/*
597 			 * A CIE record has a id of '0', otherwise this is a
598 			 * FDE entry and the 'id' is the CIE pointer.
599 			 */
600 			if (id == 0) {
601 				uint64_t    persVal;
602 
603 				cielength = length;
604 				cieid = id;
605 				cieLflag = ciePflag = cieRflag = cieZflag = 0;
606 
607 				dbg_print(0, MSG_ORIG(MSG_UNW_CIE),
608 				    EC_XWORD(shdr->sh_addr + off));
609 				dbg_print(0, MSG_ORIG(MSG_UNW_CIELNGTH),
610 				    cielength, cieid);
611 
612 				cieversion = data[off + ndx];
613 				ndx += 1;
614 				cieaugstr = (char *)(&data[off + ndx]);
615 				ndx += strlen(cieaugstr) + 1;
616 
617 				dbg_print(0, MSG_ORIG(MSG_UNW_CIEVERS),
618 				    cieversion, cieaugstr);
619 
620 				ciecalign = uleb_extract(&data[off], &ndx);
621 				ciedalign = sleb_extract(&data[off], &ndx);
622 				cieretaddr = data[off + ndx];
623 				ndx += 1;
624 
625 				dbg_print(0, MSG_ORIG(MSG_UNW_CIECALGN),
626 				    EC_XWORD(ciecalign), EC_XWORD(ciedalign),
627 				    cieretaddr);
628 
629 				if (cieaugstr[0])
630 					dbg_print(0,
631 					    MSG_ORIG(MSG_UNW_CIEAXVAL));
632 
633 				for (cieaugndx = 0; cieaugstr[cieaugndx];
634 				    cieaugndx++) {
635 					uint_t	val;
636 
637 					switch (cieaugstr[cieaugndx]) {
638 					case 'z':
639 						val = uleb_extract(&data[off],
640 						    &ndx);
641 						dbg_print(0,
642 						    MSG_ORIG(MSG_UNW_CIEAXSIZ),
643 						    val);
644 						cieZflag = 1;
645 						break;
646 					case 'P':
647 						ciePflag = data[off + ndx];
648 						ndx += 1;
649 
650 						persVal = dwarf_ehe_extract(
651 						    &data[off], &ndx, ciePflag,
652 						    ehdr->e_ident,
653 						    shdr->sh_addr + off + ndx);
654 						dbg_print(0,
655 						    MSG_ORIG(MSG_UNW_CIEAXPERS),
656 						    ciePflag,
657 						    conv_dwarf_ehe(ciePflag,
658 						    &dwarf_ehe_buf),
659 						    EC_XWORD(persVal));
660 						break;
661 					case 'R':
662 						val = data[off + ndx];
663 						ndx += 1;
664 						dbg_print(0,
665 						    MSG_ORIG(MSG_UNW_CIEAXCENC),
666 						    val, conv_dwarf_ehe(val,
667 						    &dwarf_ehe_buf));
668 						cieRflag = val;
669 						break;
670 					case 'L':
671 						val = data[off + ndx];
672 						ndx += 1;
673 						dbg_print(0,
674 						    MSG_ORIG(MSG_UNW_CIEAXLSDA),
675 						    val, conv_dwarf_ehe(val,
676 						    &dwarf_ehe_buf));
677 						cieLflag = val;
678 						break;
679 					default:
680 						dbg_print(0,
681 						    MSG_ORIG(MSG_UNW_CIEAXUNEC),
682 						    cieaugstr[cieaugndx]);
683 						break;
684 					}
685 				}
686 				if ((cielength + 4) > ndx)
687 					unwindtbl(&ndx, cielength, data, off,
688 					    MSG_ORIG(MSG_UNW_CIECFI),
689 					    MSG_ORIG(MSG_UNW_CIEPRE),
690 					    MSG_UNW_CIEPRE_SIZE);
691 				off += cielength + 4;
692 
693 			} else {
694 				uint_t	    fdelength = length;
695 				int	    fdecieptr = id;
696 				uint64_t    fdeinitloc, fdeaddrrange;
697 
698 				dbg_print(0, MSG_ORIG(MSG_UNW_FDE),
699 				    EC_XWORD(shdr->sh_addr + off));
700 				dbg_print(0, MSG_ORIG(MSG_UNW_FDELNGTH),
701 				    fdelength, fdecieptr);
702 
703 				fdeinitloc = dwarf_ehe_extract(&data[off],
704 				    &ndx, cieRflag, ehdr->e_ident,
705 				    shdr->sh_addr + off + ndx);
706 				fdeaddrrange = dwarf_ehe_extract(&data[off],
707 				    &ndx, (cieRflag & ~DW_EH_PE_pcrel),
708 				    ehdr->e_ident,
709 				    shdr->sh_addr + off + ndx);
710 
711 				dbg_print(0, MSG_ORIG(MSG_UNW_FDEINITLOC),
712 				    EC_XWORD(fdeinitloc),
713 				    EC_XWORD(fdeaddrrange));
714 
715 				if (cieaugstr[0])
716 					dbg_print(0,
717 					    MSG_ORIG(MSG_UNW_FDEAXVAL));
718 				if (cieZflag) {
719 					uint64_t    val;
720 					val = uleb_extract(&data[off], &ndx);
721 					dbg_print(0,
722 					    MSG_ORIG(MSG_UNW_FDEAXSIZE),
723 					    EC_XWORD(val));
724 					if (val & cieLflag) {
725 						fdeinitloc = dwarf_ehe_extract(
726 						    &data[off], &ndx, cieLflag,
727 						    ehdr->e_ident,
728 						    shdr->sh_addr + off + ndx);
729 						dbg_print(0,
730 						    MSG_ORIG(MSG_UNW_FDEAXLSDA),
731 						    EC_XWORD(val));
732 					}
733 				}
734 				if ((fdelength + 4) > ndx)
735 					unwindtbl(&ndx, fdelength, data, off,
736 					    MSG_ORIG(MSG_UNW_FDECFI),
737 					    MSG_ORIG(MSG_UNW_FDEPRE),
738 					    MSG_UNW_FDEPRE_SIZE);
739 				off += fdelength + 4;
740 			}
741 		}
742 	}
743 }
744 
745 /*
746  * Print the hardware/software capabilities.  For executables and shared objects
747  * this should be accompanied with a program header.
748  */
749 static void
750 cap(const char *file, Cache *cache, Word shnum, Word phnum, Ehdr *ehdr,
751     Elf *elf)
752 {
753 	Word		cnt;
754 	Shdr		*cshdr = 0;
755 	Cache		*ccache;
756 	Off		cphdr_off = 0;
757 	Xword		cphdr_sz;
758 
759 	/*
760 	 * Determine if a hardware/software capabilities header exists.
761 	 */
762 	if (phnum) {
763 		Phdr	*phdr;
764 
765 		if ((phdr = elf_getphdr(elf)) == NULL) {
766 			failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
767 			return;
768 		}
769 
770 		for (cnt = 0; cnt < phnum; phdr++, cnt++) {
771 			if (phdr->p_type == PT_SUNWCAP) {
772 				cphdr_off = phdr->p_offset;
773 				cphdr_sz = phdr->p_filesz;
774 				break;
775 			}
776 		}
777 	}
778 
779 	/*
780 	 * Determine if a hardware/software capabilities section exists.
781 	 */
782 	for (cnt = 1; cnt < shnum; cnt++) {
783 		Cache	*_cache = &cache[cnt];
784 		Shdr	*shdr = _cache->c_shdr;
785 
786 		if (shdr->sh_type != SHT_SUNW_cap)
787 			continue;
788 
789 		if (cphdr_off && ((cphdr_off < shdr->sh_offset) ||
790 		    (cphdr_off + cphdr_sz) > (shdr->sh_offset + shdr->sh_size)))
791 			continue;
792 
793 		if (_cache->c_data == NULL)
794 			continue;
795 
796 		ccache = _cache;
797 		cshdr = shdr;
798 		break;
799 	}
800 
801 	if ((cshdr == 0) && (cphdr_off == 0))
802 		return;
803 
804 	/*
805 	 * Print the hardware/software capabilities section.
806 	 */
807 	if (cshdr) {
808 		Word	ndx, capn;
809 		Cap	*cap = (Cap *)ccache->c_data->d_buf;
810 
811 		if ((cshdr->sh_entsize == 0) || (cshdr->sh_size == 0)) {
812 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
813 			    file, ccache->c_name);
814 			return;
815 		}
816 
817 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
818 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_CAP), ccache->c_name);
819 
820 		Elf_cap_title(0);
821 
822 		capn = (Word)(cshdr->sh_size / cshdr->sh_entsize);
823 
824 		for (ndx = 0; ndx < capn; cap++, ndx++) {
825 			if (cap->c_tag != CA_SUNW_NULL)
826 				Elf_cap_entry(0, cap, ndx, ehdr->e_machine);
827 		}
828 	} else
829 		(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP1), file);
830 
831 	/*
832 	 * If this object is an executable or shared object, then the
833 	 * hardware/software capabilities section should have an accompanying
834 	 * program header.
835 	 */
836 	if (cshdr && ((ehdr->e_type == ET_EXEC) || (ehdr->e_type == ET_DYN))) {
837 		if (cphdr_off == 0)
838 			(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP2),
839 			    file, ccache->c_name);
840 		else if ((cphdr_off != cshdr->sh_offset) ||
841 		    (cphdr_sz != cshdr->sh_size))
842 			(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP3),
843 			    file, ccache->c_name);
844 	}
845 }
846 
847 /*
848  * Print the interpretor.
849  */
850 static void
851 interp(const char *file, Cache *cache, Word shnum, Word phnum, Elf *elf)
852 {
853 	Word	cnt;
854 	Shdr	*ishdr = 0;
855 	Cache	*icache;
856 	Off	iphdr_off = 0;
857 	Xword	iphdr_fsz;
858 
859 	/*
860 	 * Determine if an interp header exists.
861 	 */
862 	if (phnum) {
863 		Phdr	*phdr;
864 
865 		if ((phdr = getphdr(phnum, PT_INTERP, file, elf)) != 0) {
866 			iphdr_off = phdr->p_offset;
867 			iphdr_fsz = phdr->p_filesz;
868 		}
869 	}
870 
871 	if (iphdr_off == 0)
872 		return;
873 
874 	/*
875 	 * Determine if an interp section exists.
876 	 */
877 	for (cnt = 1; cnt < shnum; cnt++) {
878 		Cache	*_cache = &cache[cnt];
879 		Shdr	*shdr = _cache->c_shdr;
880 
881 		/*
882 		 * Scan sections to find a section which contains the PT_INTERP
883 		 * string.  The target section can't be in a NOBITS section.
884 		 */
885 		if ((shdr->sh_type == SHT_NOBITS) ||
886 		    (iphdr_off < shdr->sh_offset) ||
887 		    (iphdr_off + iphdr_fsz) > (shdr->sh_offset + shdr->sh_size))
888 			continue;
889 
890 		icache = _cache;
891 		ishdr = shdr;
892 		break;
893 	}
894 
895 	/*
896 	 * Print the interpreter string based on the offset defined in the
897 	 * program header, as this is the offset used by the kernel.
898 	 */
899 	if (ishdr && icache->c_data) {
900 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
901 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_INTERP), icache->c_name);
902 		dbg_print(0, MSG_ORIG(MSG_FMT_INDENT),
903 		    (char *)icache->c_data->d_buf +
904 		    (iphdr_off - ishdr->sh_offset));
905 	} else
906 		(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP1), file);
907 
908 	/*
909 	 * If there are any inconsistences between the program header and
910 	 * section information, flag them.
911 	 */
912 	if (ishdr && ((iphdr_off != ishdr->sh_offset) ||
913 	    (iphdr_fsz != ishdr->sh_size))) {
914 		(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP2), file,
915 		    icache->c_name);
916 	}
917 }
918 
919 /*
920  * Print the syminfo section.
921  */
922 static void
923 syminfo(Cache *cache, Word shnum, const char *file)
924 {
925 	Shdr		*infoshdr;
926 	Syminfo		*info;
927 	Sym		*syms;
928 	Dyn		*dyns;
929 	Word		infonum, cnt, ndx, symnum;
930 	Cache		*infocache = 0, *symsec, *strsec;
931 
932 	for (cnt = 1; cnt < shnum; cnt++) {
933 		if (cache[cnt].c_shdr->sh_type == SHT_SUNW_syminfo) {
934 			infocache = &cache[cnt];
935 			break;
936 		}
937 	}
938 	if (infocache == 0)
939 		return;
940 
941 	infoshdr = infocache->c_shdr;
942 	if ((infoshdr->sh_entsize == 0) || (infoshdr->sh_size == 0)) {
943 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
944 		    file, infocache->c_name);
945 		return;
946 	}
947 	if (infocache->c_data == NULL)
948 		return;
949 
950 	infonum = (Word)(infoshdr->sh_size / infoshdr->sh_entsize);
951 	info = (Syminfo *)infocache->c_data->d_buf;
952 
953 	/*
954 	 * Get the data buffer of the associated dynamic section.
955 	 */
956 	if ((infoshdr->sh_info == 0) || (infoshdr->sh_info >= shnum)) {
957 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO),
958 		    file, infocache->c_name, EC_WORD(infoshdr->sh_info));
959 		return;
960 	}
961 	if (cache[infoshdr->sh_info].c_data == NULL)
962 		return;
963 
964 	dyns = cache[infoshdr->sh_info].c_data->d_buf;
965 	if (dyns == 0) {
966 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
967 		    file, cache[infoshdr->sh_info].c_name);
968 		return;
969 	}
970 
971 	/*
972 	 * Get the data buffer for the associated symbol table and string table.
973 	 */
974 	if (stringtbl(cache, 1, cnt, shnum, file,
975 	    &symnum, &symsec, &strsec) == 0)
976 		return;
977 
978 	syms = symsec->c_data->d_buf;
979 
980 	/*
981 	 * Loop through the syminfo entries.
982 	 */
983 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
984 	dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMINFO), infocache->c_name);
985 	Elf_syminfo_title(0);
986 
987 	for (ndx = 1, info++; ndx < infonum; ndx++, info++) {
988 		Sym 		*sym;
989 		const char	*needed = 0, *name;
990 
991 		if ((info->si_flags == 0) && (info->si_boundto == 0))
992 			continue;
993 
994 		sym = &syms[ndx];
995 		name = string(infocache, ndx, strsec, file, sym->st_name);
996 
997 		if (info->si_boundto < SYMINFO_BT_LOWRESERVE) {
998 			Dyn	*dyn = &dyns[info->si_boundto];
999 
1000 			needed = string(infocache, info->si_boundto,
1001 			    strsec, file, dyn->d_un.d_val);
1002 		}
1003 		Elf_syminfo_entry(0, ndx, info, name, needed);
1004 	}
1005 }
1006 
1007 /*
1008  * Print version definition section entries.
1009  */
1010 static void
1011 version_def(Verdef *vdf, Word vdf_num, Cache *vcache, Cache *scache,
1012     const char *file)
1013 {
1014 	Word	cnt;
1015 	char	index[MAXNDXSIZE];
1016 
1017 	Elf_ver_def_title(0);
1018 
1019 	for (cnt = 1; cnt <= vdf_num; cnt++,
1020 	    vdf = (Verdef *)((uintptr_t)vdf + vdf->vd_next)) {
1021 		Conv_ver_flags_buf_t	ver_flags_buf;
1022 		const char		*name, *dep;
1023 		Half			vcnt = vdf->vd_cnt - 1;
1024 		Half			ndx = vdf->vd_ndx;
1025 		Verdaux	*vdap = (Verdaux *)((uintptr_t)vdf + vdf->vd_aux);
1026 
1027 		/*
1028 		 * Obtain the name and first dependency (if any).
1029 		 */
1030 		name = string(vcache, cnt, scache, file, vdap->vda_name);
1031 		vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next);
1032 		if (vcnt)
1033 			dep = string(vcache, cnt, scache, file, vdap->vda_name);
1034 		else
1035 			dep = MSG_ORIG(MSG_STR_EMPTY);
1036 
1037 		(void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX),
1038 		    EC_XWORD(ndx));
1039 		Elf_ver_line_1(0, index, name, dep,
1040 		    conv_ver_flags(vdf->vd_flags, 0, &ver_flags_buf));
1041 
1042 		/*
1043 		 * Print any additional dependencies.
1044 		 */
1045 		if (vcnt) {
1046 			vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next);
1047 			for (vcnt--; vcnt; vcnt--,
1048 			    vdap = (Verdaux *)((uintptr_t)vdap +
1049 			    vdap->vda_next)) {
1050 				dep = string(vcache, cnt, scache, file,
1051 				    vdap->vda_name);
1052 				Elf_ver_line_2(0, MSG_ORIG(MSG_STR_EMPTY), dep);
1053 			}
1054 		}
1055 	}
1056 }
1057 
1058 /*
1059  * Print version needed section entries.
1060  *
1061  * entry:
1062  *	vnd - Address of verneed data
1063  *	vnd_num - # of Verneed entries
1064  *	vcache - Cache of verneed section being processed
1065  *	scache - Cache of associated string table section
1066  *	file - Name of object being processed.
1067  *	versym - Information about versym section
1068  *
1069  * exit:
1070  *	The versions have been printed. If GNU style versioning
1071  *	is in effect, versym->max_verndx has been updated to
1072  *	contain the largest version index seen.
1073  *
1074  * note:
1075  * 	The versym section of an object that follows the original
1076  *	Solaris versioning rules only contains indexes into the verdef
1077  *	section. Symbols defined in other objects (UNDEF) are given
1078  *	a version of 0, indicating that they are not defined by
1079  *	this file, and the Verneed entries do not have associated version
1080  *	indexes. For these reasons, we do not display a version index
1081  *	for original-style Verneed sections.
1082  *
1083  *	The GNU versioning extensions alter this: Symbols defined in other
1084  *	objects receive a version index in the range above those defined
1085  *	by the Verdef section, and the vna_other field of the Vernaux
1086  *	structs inside the Verneed section contain the version index for
1087  *	that item. We therefore  display the index when showing the
1088  *	contents of a GNU style Verneed section. You should not
1089  *	necessarily expect these indexes to appear in sorted
1090  *	order --- it seems that the GNU ld assigns the versions as
1091  *	symbols are encountered during linking, and then the results
1092  *	are assembled into the Verneed section afterwards.
1093  */
1094 static void
1095 version_need(Verneed *vnd, Word vnd_num, Cache *vcache, Cache *scache,
1096     const char *file, VERSYM_STATE *versym)
1097 {
1098 	Word		cnt;
1099 	char		index[MAXNDXSIZE];
1100 	const char	*index_str;
1101 
1102 	Elf_ver_need_title(0, versym->gnu_needed);
1103 
1104 	for (cnt = 1; cnt <= vnd_num; cnt++,
1105 	    vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) {
1106 		Conv_ver_flags_buf_t	ver_flags_buf;
1107 		const char		*name, *dep;
1108 		Half			vcnt = vnd->vn_cnt;
1109 		Vernaux *vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux);
1110 
1111 		/*
1112 		 * Obtain the name of the needed file and the version name
1113 		 * within it that we're dependent on.  Note that the count
1114 		 * should be at least one, otherwise this is a pretty bogus
1115 		 * entry.
1116 		 */
1117 		name = string(vcache, cnt, scache, file, vnd->vn_file);
1118 		if (vcnt)
1119 			dep = string(vcache, cnt, scache, file, vnap->vna_name);
1120 		else
1121 			dep = MSG_INTL(MSG_STR_NULL);
1122 
1123 		if (vnap->vna_other == 0) {	/* Traditional form */
1124 			index_str = MSG_ORIG(MSG_STR_EMPTY);
1125 		} else {			/* GNU form */
1126 			index_str = index;
1127 			/* Format the version index value */
1128 			(void) snprintf(index, MAXNDXSIZE,
1129 			    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(vnap->vna_other));
1130 			if (vnap->vna_other > versym->max_verndx)
1131 				versym->max_verndx = vnap->vna_other;
1132 		}
1133 		Elf_ver_line_1(0, index_str, name, dep,
1134 		    conv_ver_flags(vnap->vna_flags, 0, &ver_flags_buf));
1135 
1136 		/*
1137 		 * Print any additional version dependencies.
1138 		 */
1139 		if (vcnt) {
1140 			vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next);
1141 			for (vcnt--; vcnt; vcnt--,
1142 			    vnap = (Vernaux *)((uintptr_t)vnap +
1143 			    vnap->vna_next)) {
1144 				dep = string(vcache, cnt, scache, file,
1145 				    vnap->vna_name);
1146 				if (vnap->vna_other > 0) {
1147 					/* Format the next index value */
1148 					(void) snprintf(index, MAXNDXSIZE,
1149 					    MSG_ORIG(MSG_FMT_INDEX),
1150 					    EC_XWORD(vnap->vna_other));
1151 					Elf_ver_line_1(0, index,
1152 					    MSG_ORIG(MSG_STR_EMPTY), dep,
1153 					    conv_ver_flags(vnap->vna_flags,
1154 					    0, &ver_flags_buf));
1155 					if (vnap->vna_other >
1156 					    versym->max_verndx)
1157 						versym->max_verndx =
1158 						    vnap->vna_other;
1159 				} else {
1160 					Elf_ver_line_3(0,
1161 					    MSG_ORIG(MSG_STR_EMPTY), dep,
1162 					    conv_ver_flags(vnap->vna_flags,
1163 					    0, &ver_flags_buf));
1164 				}
1165 			}
1166 		}
1167 	}
1168 }
1169 
1170 /*
1171  * Examine the Verneed section for information related to GNU
1172  * style Versym indexing:
1173  *	- A non-zero vna_other field indicates that Versym indexes can
1174  *		reference Verneed records.
1175  *	- If the object uses GNU style Versym indexing, the
1176  *	  maximum index value is needed to detect bad Versym entries.
1177  *
1178  * entry:
1179  *	vnd - Address of verneed data
1180  *	vnd_num - # of Verneed entries
1181  *	versym - Information about versym section
1182  *
1183  * exit:
1184  *	If a non-zero vna_other field is seen, versym->gnu_needed is set.
1185  *
1186  *	versym->max_verndx has been updated to contain the largest
1187  *	version index seen.
1188  */
1189 static void
1190 update_gnu_verndx(Verneed *vnd, Word vnd_num, VERSYM_STATE *versym)
1191 {
1192 	Word		cnt;
1193 
1194 	for (cnt = 1; cnt <= vnd_num; cnt++,
1195 	    vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) {
1196 		Half	vcnt = vnd->vn_cnt;
1197 		Vernaux	*vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux);
1198 
1199 		/*
1200 		 * A non-zero value of vna_other indicates that this
1201 		 * object references VERNEED items from the VERSYM
1202 		 * array.
1203 		 */
1204 		if (vnap->vna_other != 0) {
1205 			versym->gnu_needed = 1;
1206 			if (vnap->vna_other > versym->max_verndx)
1207 				versym->max_verndx = vnap->vna_other;
1208 		}
1209 
1210 		/*
1211 		 * Check any additional version dependencies.
1212 		 */
1213 		if (vcnt) {
1214 			vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next);
1215 			for (vcnt--; vcnt; vcnt--,
1216 			    vnap = (Vernaux *)((uintptr_t)vnap +
1217 			    vnap->vna_next)) {
1218 				if (vnap->vna_other == 0)
1219 					continue;
1220 
1221 				versym->gnu_needed = 1;
1222 				if (vnap->vna_other > versym->max_verndx)
1223 					versym->max_verndx = vnap->vna_other;
1224 			}
1225 		}
1226 	}
1227 }
1228 
1229 /*
1230  * Display version section information if the flags require it.
1231  * Return version information needed by other output.
1232  *
1233  * entry:
1234  *	cache - Cache of all section headers
1235  *	shnum - # of sections in cache
1236  *	file - Name of file
1237  *	flags - Command line option flags
1238  *	versym - VERSYM_STATE block to be filled in.
1239  */
1240 static void
1241 versions(Cache *cache, Word shnum, const char *file, uint_t flags,
1242     VERSYM_STATE *versym)
1243 {
1244 	GElf_Word	cnt;
1245 	Cache		*verdef_cache = NULL, *verneed_cache = NULL;
1246 
1247 
1248 	/* Gather information about the version sections */
1249 	bzero(versym, sizeof (*versym));
1250 	versym->max_verndx = 1;
1251 	for (cnt = 1; cnt < shnum; cnt++) {
1252 		Cache		*_cache = &cache[cnt];
1253 		Shdr		*shdr = _cache->c_shdr;
1254 		Dyn		*dyn;
1255 		ulong_t		numdyn;
1256 
1257 		switch (shdr->sh_type) {
1258 		case SHT_DYNAMIC:
1259 			/*
1260 			 * The GNU ld puts a DT_VERSYM entry in the dynamic
1261 			 * section so that the runtime linker can use it to
1262 			 * implement their versioning rules. They allow multiple
1263 			 * incompatible functions with the same name to exist
1264 			 * in different versions. The Solaris ld does not
1265 			 * support this mechanism, and as such, does not
1266 			 * produce DT_VERSYM. We use this fact to determine
1267 			 * which ld produced this object, and how to interpret
1268 			 * the version values.
1269 			 */
1270 			if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0) ||
1271 			    (_cache->c_data == NULL))
1272 				continue;
1273 			numdyn = shdr->sh_size / shdr->sh_entsize;
1274 			dyn = (Dyn *)_cache->c_data->d_buf;
1275 			for (; numdyn-- > 0; dyn++)
1276 				if (dyn->d_tag == DT_VERSYM) {
1277 					versym->gnu_full =
1278 					    versym->gnu_needed = 1;
1279 					break;
1280 				}
1281 			break;
1282 
1283 		case SHT_SUNW_versym:
1284 			/* Record data address for later symbol processing */
1285 			if (_cache->c_data != NULL) {
1286 				versym->cache = _cache;
1287 				versym->data = _cache->c_data->d_buf;
1288 				continue;
1289 			}
1290 			break;
1291 
1292 		case SHT_SUNW_verdef:
1293 		case SHT_SUNW_verneed:
1294 			/*
1295 			 * Ensure the data is non-NULL and the number
1296 			 * of items is non-zero. Otherwise, we don't
1297 			 * understand the section, and will not use it.
1298 			 */
1299 			if ((_cache->c_data == NULL) ||
1300 			    (_cache->c_data->d_buf == NULL)) {
1301 				(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1302 				    file, _cache->c_name);
1303 				continue;
1304 			}
1305 			if (shdr->sh_info == 0) {
1306 				(void) fprintf(stderr,
1307 				    MSG_INTL(MSG_ERR_BADSHINFO),
1308 				    file, _cache->c_name,
1309 				    EC_WORD(shdr->sh_info));
1310 				continue;
1311 			}
1312 
1313 			/* Make sure the string table index is in range */
1314 			if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
1315 				(void) fprintf(stderr,
1316 				    MSG_INTL(MSG_ERR_BADSHLINK), file,
1317 				    _cache->c_name, EC_WORD(shdr->sh_link));
1318 				continue;
1319 			}
1320 
1321 			/*
1322 			 * The section is usable. Save the cache entry.
1323 			 */
1324 			if (shdr->sh_type == SHT_SUNW_verdef) {
1325 				verdef_cache = _cache;
1326 				/*
1327 				 * Under Solaris rules, if there is a verdef
1328 				 * section, the max versym index is number
1329 				 * of version definitions it supplies.
1330 				 */
1331 				versym->max_verndx = shdr->sh_info;
1332 			} else {
1333 				verneed_cache = _cache;
1334 			}
1335 			break;
1336 		}
1337 	}
1338 
1339 	/*
1340 	 * If there is a Verneed section, examine it for information
1341 	 * related to GNU style versioning.
1342 	 */
1343 	if (verneed_cache != NULL)
1344 		update_gnu_verndx((Verneed *)verneed_cache->c_data->d_buf,
1345 		    verneed_cache->c_shdr->sh_info, versym);
1346 
1347 	/*
1348 	 * Now that all the information is available, display the
1349 	 * Verdef and Verneed section contents, if requested.
1350 	 */
1351 	if ((flags & FLG_SHOW_VERSIONS) == 0)
1352 		return;
1353 	if (verdef_cache != NULL) {
1354 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1355 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERDEF),
1356 		    verdef_cache->c_name);
1357 		version_def((Verdef *)verdef_cache->c_data->d_buf,
1358 		    verdef_cache->c_shdr->sh_info, verdef_cache,
1359 		    &cache[verdef_cache->c_shdr->sh_link], file);
1360 	}
1361 	if (verneed_cache != NULL) {
1362 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1363 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERNEED),
1364 		    verneed_cache->c_name);
1365 		/*
1366 		 * If GNU versioning applies to this object, version_need()
1367 		 * will update versym->max_verndx, and it is not
1368 		 * necessary to call update_gnu_verndx().
1369 		 */
1370 		version_need((Verneed *)verneed_cache->c_data->d_buf,
1371 		    verneed_cache->c_shdr->sh_info, verneed_cache,
1372 		    &cache[verneed_cache->c_shdr->sh_link], file, versym);
1373 	}
1374 }
1375 
1376 /*
1377  * Initialize a symbol table state structure
1378  *
1379  * entry:
1380  *	state - State structure to be initialized
1381  *	cache - Cache of all section headers
1382  *	shnum - # of sections in cache
1383  *	secndx - Index of symbol table section
1384  *	ehdr - ELF header for file
1385  *	versym - Information about versym section
1386  *	file - Name of file
1387  *	flags - Command line option flags
1388  */
1389 static int
1390 init_symtbl_state(SYMTBL_STATE *state, Cache *cache, Word shnum, Word secndx,
1391     Ehdr *ehdr, VERSYM_STATE *versym, const char *file, uint_t flags)
1392 {
1393 	Shdr *shdr;
1394 
1395 	state->file = file;
1396 	state->ehdr = ehdr;
1397 	state->cache = cache;
1398 	state->shnum = shnum;
1399 	state->seccache = &cache[secndx];
1400 	state->secndx = secndx;
1401 	state->secname = state->seccache->c_name;
1402 	state->flags = flags;
1403 	state->shxndx.checked = 0;
1404 	state->shxndx.data = NULL;
1405 	state->shxndx.n = 0;
1406 
1407 	shdr = state->seccache->c_shdr;
1408 
1409 	/*
1410 	 * Check the symbol data and per-item size.
1411 	 */
1412 	if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
1413 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1414 		    file, state->secname);
1415 		return (0);
1416 	}
1417 	if (state->seccache->c_data == NULL)
1418 		return (0);
1419 
1420 	/* LINTED */
1421 	state->symn = (Word)(shdr->sh_size / shdr->sh_entsize);
1422 	state->sym = (Sym *)state->seccache->c_data->d_buf;
1423 
1424 	/*
1425 	 * Check associated string table section.
1426 	 */
1427 	if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
1428 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1429 		    file, state->secname, EC_WORD(shdr->sh_link));
1430 		return (0);
1431 	}
1432 
1433 	/*
1434 	 * Determine if there is a associated Versym section
1435 	 * with this Symbol Table.
1436 	 */
1437 	if (versym->cache &&
1438 	    (versym->cache->c_shdr->sh_link == state->secndx))
1439 		state->versym = versym;
1440 	else
1441 		state->versym = NULL;
1442 
1443 
1444 	return (1);
1445 }
1446 
1447 /*
1448  * Determine the extended section index used for symbol tables entries.
1449  */
1450 static void
1451 symbols_getxindex(SYMTBL_STATE *state)
1452 {
1453 	uint_t	symn;
1454 	Word	symcnt;
1455 
1456 	state->shxndx.checked = 1;   /* Note that we've been called */
1457 	for (symcnt = 1; symcnt < state->shnum; symcnt++) {
1458 		Cache	*_cache = &state->cache[symcnt];
1459 		Shdr	*shdr = _cache->c_shdr;
1460 
1461 		if ((shdr->sh_type != SHT_SYMTAB_SHNDX) ||
1462 		    (shdr->sh_link != state->secndx))
1463 			continue;
1464 
1465 		if ((shdr->sh_entsize) &&
1466 		    /* LINTED */
1467 		    ((symn = (uint_t)(shdr->sh_size / shdr->sh_entsize)) == 0))
1468 			continue;
1469 
1470 		if (_cache->c_data == NULL)
1471 			continue;
1472 
1473 		state->shxndx.data = _cache->c_data->d_buf;
1474 		state->shxndx.n = symn;
1475 		return;
1476 	}
1477 }
1478 
1479 /*
1480  * Produce a line of output for the given symbol
1481  *
1482  * entry:
1483  *	state - Symbol table state
1484  *	symndx - Index of symbol within the table
1485  *	info - Value of st_info (indicates local/global range)
1486  *	symndx_disp - Index to display. This may not be the same
1487  *		as symndx if the display is relative to the logical
1488  *		combination of the SUNW_ldynsym/dynsym tables.
1489  *	sym - Symbol to display
1490  */
1491 static void
1492 output_symbol(SYMTBL_STATE *state, Word symndx, Word info, Word disp_symndx,
1493     Sym *sym)
1494 {
1495 	/*
1496 	 * Symbol types for which we check that the specified
1497 	 * address/size land inside the target section.
1498 	 */
1499 	static const int addr_symtype[STT_NUM] = {
1500 		0,			/* STT_NOTYPE */
1501 		1,			/* STT_OBJECT */
1502 		1,			/* STT_FUNC */
1503 		0,			/* STT_SECTION */
1504 		0,			/* STT_FILE */
1505 		1,			/* STT_COMMON */
1506 		0,			/* STT_TLS */
1507 	};
1508 #if STT_NUM != (STT_TLS + 1)
1509 #error "STT_NUM has grown. Update addr_symtype[]"
1510 #endif
1511 
1512 	char		index[MAXNDXSIZE];
1513 	const char	*symname, *sec;
1514 	Versym		verndx;
1515 	int		gnuver;
1516 	uchar_t		type;
1517 	Shdr		*tshdr;
1518 	Word		shndx;
1519 	Conv_inv_buf_t	inv_buf;
1520 
1521 	/* Ensure symbol index is in range */
1522 	if (symndx >= state->symn) {
1523 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSORTNDX),
1524 		    state->file, state->secname, EC_WORD(symndx));
1525 		return;
1526 	}
1527 
1528 	/*
1529 	 * If we are using extended symbol indexes, find the
1530 	 * corresponding SHN_SYMTAB_SHNDX table.
1531 	 */
1532 	if ((sym->st_shndx == SHN_XINDEX) && (state->shxndx.checked == 0))
1533 		symbols_getxindex(state);
1534 
1535 	/* LINTED */
1536 	symname = string(state->seccache, symndx,
1537 	    &state->cache[state->seccache->c_shdr->sh_link], state->file,
1538 	    sym->st_name);
1539 
1540 	tshdr = 0;
1541 	sec = NULL;
1542 
1543 	if (state->ehdr->e_type == ET_CORE) {
1544 		sec = (char *)MSG_INTL(MSG_STR_UNKNOWN);
1545 	} else if (state->flags & FLG_CTL_FAKESHDR) {
1546 		/*
1547 		 * If we are using fake section headers derived from
1548 		 * the program headers, then the section indexes
1549 		 * in the symbols do not correspond to these headers.
1550 		 * The section names are not available, so all we can
1551 		 * do is to display them in numeric form.
1552 		 */
1553 		sec = conv_sym_shndx(sym->st_shndx, &inv_buf);
1554 	} else if ((sym->st_shndx < SHN_LORESERVE) &&
1555 	    (sym->st_shndx < state->shnum)) {
1556 		shndx = sym->st_shndx;
1557 		tshdr = state->cache[shndx].c_shdr;
1558 		sec = state->cache[shndx].c_name;
1559 	} else if (sym->st_shndx == SHN_XINDEX) {
1560 		if (state->shxndx.data) {
1561 			Word	_shxndx;
1562 
1563 			if (symndx > state->shxndx.n) {
1564 				(void) fprintf(stderr,
1565 				    MSG_INTL(MSG_ERR_BADSYMXINDEX1),
1566 				    state->file, state->secname,
1567 				    EC_WORD(symndx));
1568 			} else if ((_shxndx =
1569 			    state->shxndx.data[symndx]) > state->shnum) {
1570 				(void) fprintf(stderr,
1571 				    MSG_INTL(MSG_ERR_BADSYMXINDEX2),
1572 				    state->file, state->secname,
1573 				    EC_WORD(symndx), EC_WORD(_shxndx));
1574 			} else {
1575 				shndx = _shxndx;
1576 				tshdr = state->cache[shndx].c_shdr;
1577 				sec = state->cache[shndx].c_name;
1578 			}
1579 		} else {
1580 			(void) fprintf(stderr,
1581 			    MSG_INTL(MSG_ERR_BADSYMXINDEX3),
1582 			    state->file, state->secname, EC_WORD(symndx));
1583 		}
1584 	} else if ((sym->st_shndx < SHN_LORESERVE) &&
1585 	    (sym->st_shndx >= state->shnum)) {
1586 		(void) fprintf(stderr,
1587 		    MSG_INTL(MSG_ERR_BADSYM5), state->file,
1588 		    state->secname, EC_WORD(symndx),
1589 		    demangle(symname, state->flags), sym->st_shndx);
1590 	}
1591 
1592 	/*
1593 	 * If versioning is available display the
1594 	 * version index. If not, then use 0.
1595 	 */
1596 	if (state->versym) {
1597 		Versym test_verndx;
1598 
1599 		verndx = test_verndx = state->versym->data[symndx];
1600 		gnuver = state->versym->gnu_full;
1601 
1602 		/*
1603 		 * Check to see if this is a defined symbol with a
1604 		 * version index that is outside the valid range for
1605 		 * the file. The interpretation of this depends on
1606 		 * the style of versioning used by the object.
1607 		 *
1608 		 * Versions >= VER_NDX_LORESERVE have special meanings,
1609 		 * and are exempt from this checking.
1610 		 *
1611 		 * GNU style version indexes use the top bit of the
1612 		 * 16-bit index value (0x8000) as the "hidden bit".
1613 		 * We must mask off this bit in order to compare
1614 		 * the version against the maximum value.
1615 		 */
1616 		if (gnuver)
1617 			test_verndx &= ~0x8000;
1618 
1619 		if ((test_verndx > state->versym->max_verndx) &&
1620 		    (verndx < VER_NDX_LORESERVE))
1621 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADVER),
1622 			    state->file, state->secname, EC_WORD(symndx),
1623 			    EC_HALF(test_verndx), state->versym->max_verndx);
1624 	} else {
1625 		verndx = 0;
1626 		gnuver = 0;
1627 	}
1628 
1629 	/*
1630 	 * Error checking for TLS.
1631 	 */
1632 	type = ELF_ST_TYPE(sym->st_info);
1633 	if (type == STT_TLS) {
1634 		if (tshdr &&
1635 		    (sym->st_shndx != SHN_UNDEF) &&
1636 		    ((tshdr->sh_flags & SHF_TLS) == 0)) {
1637 			(void) fprintf(stderr,
1638 			    MSG_INTL(MSG_ERR_BADSYM3), state->file,
1639 			    state->secname, EC_WORD(symndx),
1640 			    demangle(symname, state->flags));
1641 		}
1642 	} else if ((type != STT_SECTION) && sym->st_size &&
1643 	    tshdr && (tshdr->sh_flags & SHF_TLS)) {
1644 		(void) fprintf(stderr,
1645 		    MSG_INTL(MSG_ERR_BADSYM4), state->file,
1646 		    state->secname, EC_WORD(symndx),
1647 		    demangle(symname, state->flags));
1648 	}
1649 
1650 	/*
1651 	 * If a symbol with non-zero size has a type that
1652 	 * specifies an address, then make sure the location
1653 	 * it references is actually contained within the
1654 	 * section.  UNDEF symbols don't count in this case,
1655 	 * so we ignore them.
1656 	 *
1657 	 * The meaning of the st_value field in a symbol
1658 	 * depends on the type of object. For a relocatable
1659 	 * object, it is the offset within the section.
1660 	 * For sharable objects, it is the offset relative to
1661 	 * the base of the object, and for other types, it is
1662 	 * the virtual address. To get an offset within the
1663 	 * section for non-ET_REL files, we subtract the
1664 	 * base address of the section.
1665 	 */
1666 	if (addr_symtype[type] && (sym->st_size > 0) &&
1667 	    (sym->st_shndx != SHN_UNDEF) && ((sym->st_shndx < SHN_LORESERVE) ||
1668 	    (sym->st_shndx == SHN_XINDEX)) && (tshdr != NULL)) {
1669 		Word v = sym->st_value;
1670 			if (state->ehdr->e_type != ET_REL)
1671 				v -= tshdr->sh_addr;
1672 		if (((v + sym->st_size) > tshdr->sh_size)) {
1673 			(void) fprintf(stderr,
1674 			    MSG_INTL(MSG_ERR_BADSYM6), state->file,
1675 			    state->secname, EC_WORD(symndx),
1676 			    demangle(symname, state->flags),
1677 			    EC_WORD(shndx), EC_XWORD(tshdr->sh_size),
1678 			    EC_XWORD(sym->st_value), EC_XWORD(sym->st_size));
1679 		}
1680 	}
1681 
1682 	/*
1683 	 * A typical symbol table uses the sh_info field to indicate one greater
1684 	 * than the symbol table index of the last local symbol, STB_LOCAL.
1685 	 * Therefore, symbol indexes less than sh_info should have local
1686 	 * binding.  Symbol indexes greater than, or equal to sh_info, should
1687 	 * have global binding.  Note, we exclude UNDEF/NOTY symbols with zero
1688 	 * value and size, as these symbols may be the result of an mcs(1)
1689 	 * section deletion.
1690 	 */
1691 	if (info) {
1692 		uchar_t	bind = ELF_ST_BIND(sym->st_info);
1693 
1694 		if ((symndx < info) && (bind != STB_LOCAL)) {
1695 			(void) fprintf(stderr,
1696 			    MSG_INTL(MSG_ERR_BADSYM7), state->file,
1697 			    state->secname, EC_WORD(symndx),
1698 			    demangle(symname, state->flags), EC_XWORD(info));
1699 
1700 		} else if ((symndx >= info) && (bind == STB_LOCAL) &&
1701 		    ((sym->st_shndx != SHN_UNDEF) ||
1702 		    (ELF_ST_TYPE(sym->st_info) != STT_NOTYPE) ||
1703 		    (sym->st_size != 0) || (sym->st_value != 0))) {
1704 			(void) fprintf(stderr,
1705 			    MSG_INTL(MSG_ERR_BADSYM8), state->file,
1706 			    state->secname, EC_WORD(symndx),
1707 			    demangle(symname, state->flags), EC_XWORD(info));
1708 		}
1709 	}
1710 
1711 	(void) snprintf(index, MAXNDXSIZE,
1712 	    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(disp_symndx));
1713 	Elf_syms_table_entry(0, ELF_DBG_ELFDUMP, index,
1714 	    state->ehdr->e_machine, sym, verndx, gnuver, sec, symname);
1715 }
1716 
1717 /*
1718  * Search for and process any symbol tables.
1719  */
1720 void
1721 symbols(Cache *cache, Word shnum, Ehdr *ehdr, VERSYM_STATE *versym,
1722     const char *file, uint_t flags)
1723 {
1724 	SYMTBL_STATE state;
1725 	Cache *_cache;
1726 	Word secndx;
1727 
1728 	for (secndx = 1; secndx < shnum; secndx++) {
1729 		Word		symcnt;
1730 		Shdr		*shdr;
1731 
1732 		_cache = &cache[secndx];
1733 		shdr = _cache->c_shdr;
1734 
1735 		if ((shdr->sh_type != SHT_SYMTAB) &&
1736 		    (shdr->sh_type != SHT_DYNSYM) &&
1737 		    (shdr->sh_type != SHT_SUNW_LDYNSYM))
1738 			continue;
1739 		if (!match(MATCH_F_ALL, _cache->c_name, secndx, shdr->sh_type))
1740 			continue;
1741 
1742 		if (!init_symtbl_state(&state, cache, shnum, secndx, ehdr,
1743 		    versym, file, flags))
1744 			continue;
1745 		/*
1746 		 * Loop through the symbol tables entries.
1747 		 */
1748 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1749 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMTAB), state.secname);
1750 		Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
1751 
1752 		for (symcnt = 0; symcnt < state.symn; symcnt++)
1753 			output_symbol(&state, symcnt, shdr->sh_info, symcnt,
1754 			    state.sym + symcnt);
1755 	}
1756 }
1757 
1758 /*
1759  * Search for and process any SHT_SUNW_symsort or SHT_SUNW_tlssort sections.
1760  * These sections are always associated with the .SUNW_ldynsym./.dynsym pair.
1761  */
1762 static void
1763 sunw_sort(Cache *cache, Word shnum, Ehdr *ehdr, VERSYM_STATE *versym,
1764     const char *file, uint_t flags)
1765 {
1766 	SYMTBL_STATE	ldynsym_state,	dynsym_state;
1767 	Cache		*sortcache,	*symcache;
1768 	Shdr		*sortshdr,	*symshdr;
1769 	Word		sortsecndx,	symsecndx;
1770 	Word		ldynsym_cnt;
1771 	Word		*ndx;
1772 	Word		ndxn;
1773 	int		output_cnt = 0;
1774 	Conv_inv_buf_t	inv_buf;
1775 
1776 	for (sortsecndx = 1; sortsecndx < shnum; sortsecndx++) {
1777 
1778 		sortcache = &cache[sortsecndx];
1779 		sortshdr = sortcache->c_shdr;
1780 
1781 		if ((sortshdr->sh_type != SHT_SUNW_symsort) &&
1782 		    (sortshdr->sh_type != SHT_SUNW_tlssort))
1783 			continue;
1784 		if (!match(MATCH_F_ALL, sortcache->c_name, sortsecndx,
1785 		    sortshdr->sh_type))
1786 			continue;
1787 
1788 		/*
1789 		 * If the section references a SUNW_ldynsym, then we
1790 		 * expect to see the associated .dynsym immediately
1791 		 * following. If it references a .dynsym, there is no
1792 		 * SUNW_ldynsym. If it is any other type, then we don't
1793 		 * know what to do with it.
1794 		 */
1795 		if ((sortshdr->sh_link == 0) || (sortshdr->sh_link >= shnum)) {
1796 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1797 			    file, sortcache->c_name,
1798 			    EC_WORD(sortshdr->sh_link));
1799 			continue;
1800 		}
1801 		symcache = &cache[sortshdr->sh_link];
1802 		symshdr = symcache->c_shdr;
1803 		symsecndx = sortshdr->sh_link;
1804 		ldynsym_cnt = 0;
1805 		switch (symshdr->sh_type) {
1806 		case SHT_SUNW_LDYNSYM:
1807 			if (!init_symtbl_state(&ldynsym_state, cache, shnum,
1808 			    symsecndx, ehdr, versym, file, flags))
1809 				continue;
1810 			ldynsym_cnt = ldynsym_state.symn;
1811 			/*
1812 			 * We know that the dynsym follows immediately
1813 			 * after the SUNW_ldynsym, and so, should be at
1814 			 * (sortshdr->sh_link + 1). However, elfdump is a
1815 			 * diagnostic tool, so we do the full paranoid
1816 			 * search instead.
1817 			 */
1818 			for (symsecndx = 1; symsecndx < shnum; symsecndx++) {
1819 				symcache = &cache[symsecndx];
1820 				symshdr = symcache->c_shdr;
1821 				if (symshdr->sh_type == SHT_DYNSYM)
1822 					break;
1823 			}
1824 			if (symsecndx >= shnum) {	/* Dynsym not found! */
1825 				(void) fprintf(stderr,
1826 				    MSG_INTL(MSG_ERR_NODYNSYM),
1827 				    file, sortcache->c_name);
1828 				continue;
1829 			}
1830 			/* Fallthrough to process associated dynsym */
1831 			/* FALLTHROUGH */
1832 		case SHT_DYNSYM:
1833 			if (!init_symtbl_state(&dynsym_state, cache, shnum,
1834 			    symsecndx, ehdr, versym, file, flags))
1835 				continue;
1836 			break;
1837 		default:
1838 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADNDXSEC),
1839 			    file, sortcache->c_name, conv_sec_type(
1840 			    ehdr->e_machine, symshdr->sh_type, 0, &inv_buf));
1841 			continue;
1842 		}
1843 
1844 		/*
1845 		 * Output header
1846 		 */
1847 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1848 		if (ldynsym_cnt > 0) {
1849 			dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT2),
1850 			    sortcache->c_name, ldynsym_state.secname,
1851 			    dynsym_state.secname);
1852 			/*
1853 			 * The data for .SUNW_ldynsym and dynsym sections
1854 			 * is supposed to be adjacent with SUNW_ldynsym coming
1855 			 * first. Check, and issue a warning if it isn't so.
1856 			 */
1857 			if (((ldynsym_state.sym + ldynsym_state.symn)
1858 			    != dynsym_state.sym) &&
1859 			    ((flags & FLG_CTL_FAKESHDR) == 0))
1860 				(void) fprintf(stderr,
1861 				    MSG_INTL(MSG_ERR_LDYNNOTADJ), file,
1862 				    ldynsym_state.secname,
1863 				    dynsym_state.secname);
1864 		} else {
1865 			dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT1),
1866 			    sortcache->c_name, dynsym_state.secname);
1867 		}
1868 		Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
1869 
1870 		/* If not first one, insert a line of whitespace */
1871 		if (output_cnt++ > 0)
1872 			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1873 
1874 		/*
1875 		 * SUNW_dynsymsort and SUNW_dyntlssort are arrays of
1876 		 * symbol indices. Iterate over the array entries,
1877 		 * dispaying the referenced symbols.
1878 		 */
1879 		ndxn = sortshdr->sh_size / sortshdr->sh_entsize;
1880 		ndx = (Word *)sortcache->c_data->d_buf;
1881 		for (; ndxn-- > 0; ndx++) {
1882 			if (*ndx >= ldynsym_cnt) {
1883 				Word sec_ndx = *ndx - ldynsym_cnt;
1884 
1885 				output_symbol(&dynsym_state, sec_ndx, 0,
1886 				    *ndx, dynsym_state.sym + sec_ndx);
1887 			} else {
1888 				output_symbol(&ldynsym_state, *ndx, 0,
1889 				    *ndx, ldynsym_state.sym + *ndx);
1890 			}
1891 		}
1892 	}
1893 }
1894 
1895 /*
1896  * Search for and process any relocation sections.
1897  */
1898 static void
1899 reloc(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
1900 {
1901 	Word	cnt;
1902 
1903 	for (cnt = 1; cnt < shnum; cnt++) {
1904 		Word		type, symnum;
1905 		Xword		relndx, relnum, relsize;
1906 		void		*rels;
1907 		Sym		*syms;
1908 		Cache		*symsec, *strsec;
1909 		Cache		*_cache = &cache[cnt];
1910 		Shdr		*shdr = _cache->c_shdr;
1911 		char		*relname = _cache->c_name;
1912 		Conv_inv_buf_t	inv_buf;
1913 
1914 		if (((type = shdr->sh_type) != SHT_RELA) &&
1915 		    (type != SHT_REL))
1916 			continue;
1917 		if (!match(MATCH_F_ALL, relname, cnt, type))
1918 			continue;
1919 
1920 		/*
1921 		 * Decide entry size.
1922 		 */
1923 		if (((relsize = shdr->sh_entsize) == 0) ||
1924 		    (relsize > shdr->sh_size)) {
1925 			if (type == SHT_RELA)
1926 				relsize = sizeof (Rela);
1927 			else
1928 				relsize = sizeof (Rel);
1929 		}
1930 
1931 		/*
1932 		 * Determine the number of relocations available.
1933 		 */
1934 		if (shdr->sh_size == 0) {
1935 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1936 			    file, relname);
1937 			continue;
1938 		}
1939 		if (_cache->c_data == NULL)
1940 			continue;
1941 
1942 		rels = _cache->c_data->d_buf;
1943 		relnum = shdr->sh_size / relsize;
1944 
1945 		/*
1946 		 * Get the data buffer for the associated symbol table and
1947 		 * string table.
1948 		 */
1949 		if (stringtbl(cache, 1, cnt, shnum, file,
1950 		    &symnum, &symsec, &strsec) == 0)
1951 			continue;
1952 
1953 		syms = symsec->c_data->d_buf;
1954 
1955 		/*
1956 		 * Loop through the relocation entries.
1957 		 */
1958 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1959 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_RELOC), _cache->c_name);
1960 		Elf_reloc_title(0, ELF_DBG_ELFDUMP, type);
1961 
1962 		for (relndx = 0; relndx < relnum; relndx++,
1963 		    rels = (void *)((char *)rels + relsize)) {
1964 			Half		mach = ehdr->e_machine;
1965 			char		section[BUFSIZ];
1966 			const char	*symname;
1967 			Word		symndx, reltype;
1968 			Rela		*rela;
1969 			Rel		*rel;
1970 
1971 			/*
1972 			 * Unravel the relocation and determine the symbol with
1973 			 * which this relocation is associated.
1974 			 */
1975 			if (type == SHT_RELA) {
1976 				rela = (Rela *)rels;
1977 				symndx = ELF_R_SYM(rela->r_info);
1978 				reltype = ELF_R_TYPE(rela->r_info, mach);
1979 			} else {
1980 				rel = (Rel *)rels;
1981 				symndx = ELF_R_SYM(rel->r_info);
1982 				reltype = ELF_R_TYPE(rel->r_info, mach);
1983 			}
1984 
1985 			symname = relsymname(cache, _cache, strsec, symndx,
1986 			    symnum, relndx, syms, section, BUFSIZ, file);
1987 
1988 			/*
1989 			 * A zero symbol index is only valid for a few
1990 			 * relocations.
1991 			 */
1992 			if (symndx == 0) {
1993 				int	badrel = 0;
1994 
1995 				if ((mach == EM_SPARC) ||
1996 				    (mach == EM_SPARC32PLUS) ||
1997 				    (mach == EM_SPARCV9)) {
1998 					if ((reltype != R_SPARC_NONE) &&
1999 					    (reltype != R_SPARC_REGISTER) &&
2000 					    (reltype != R_SPARC_RELATIVE))
2001 						badrel++;
2002 				} else if (mach == EM_386) {
2003 					if ((reltype != R_386_NONE) &&
2004 					    (reltype != R_386_RELATIVE))
2005 						badrel++;
2006 				} else if (mach == EM_AMD64) {
2007 					if ((reltype != R_AMD64_NONE) &&
2008 					    (reltype != R_AMD64_RELATIVE))
2009 						badrel++;
2010 				}
2011 
2012 				if (badrel) {
2013 					(void) fprintf(stderr,
2014 					    MSG_INTL(MSG_ERR_BADREL1), file,
2015 					    conv_reloc_type(mach, reltype,
2016 					    0, &inv_buf));
2017 				}
2018 			}
2019 
2020 			Elf_reloc_entry_1(0, ELF_DBG_ELFDUMP,
2021 			    MSG_ORIG(MSG_STR_EMPTY), ehdr->e_machine, type,
2022 			    rels, relname, symname, 0);
2023 		}
2024 	}
2025 }
2026 
2027 
2028 /*
2029  * This value controls which test dyn_test() performs.
2030  */
2031 typedef enum { DYN_TEST_ADDR, DYN_TEST_SIZE, DYN_TEST_ENTSIZE } dyn_test_t;
2032 
2033 /*
2034  * Used by dynamic() to compare the value of a dynamic element against
2035  * the starting address of the section it references.
2036  *
2037  * entry:
2038  *	test_type - Specify which dyn item is being tested.
2039  *	sh_type - SHT_* type value for required section.
2040  *	sec_cache - Cache entry for section, or NULL if the object lacks
2041  *		a section of this type.
2042  *	dyn - Dyn entry to be tested
2043  *	dynsec_cnt - # of dynamic section being examined. The first
2044  *		dynamic section is 1, the next is 2, and so on...
2045  *	ehdr - ELF header for file
2046  *	file - Name of file
2047  */
2048 static void
2049 dyn_test(dyn_test_t test_type, Word sh_type, Cache *sec_cache, Dyn *dyn,
2050     Word dynsec_cnt, Ehdr *ehdr, const char *file)
2051 {
2052 	Conv_inv_buf_t	buf1, buf2;
2053 
2054 	/*
2055 	 * These tests are based around the implicit assumption that
2056 	 * there is only one dynamic section in an object, and also only
2057 	 * one of the sections it references. We have therefore gathered
2058 	 * all of the necessary information to test this in a single pass
2059 	 * over the section headers, which is very efficient. We are not
2060 	 * aware of any case where more than one dynamic section would
2061 	 * be meaningful in an ELF object, so this is a reasonable solution.
2062 	 *
2063 	 * To test multiple dynamic sections correctly would be more
2064 	 * expensive in code and time. We would have to build a data structure
2065 	 * containing all the dynamic elements. Then, we would use the address
2066 	 * to locate the section it references and ensure the section is of
2067 	 * the right type and that the address in the dynamic element is
2068 	 * to the start of the section. Then, we could check the size and
2069 	 * entsize values against those same sections. This is O(n^2), and
2070 	 * also complicated.
2071 	 *
2072 	 * In the highly unlikely case that there is more than one dynamic
2073 	 * section, we only test the first one, and simply allow the values
2074 	 * of the subsequent one to be displayed unchallenged.
2075 	 */
2076 	if (dynsec_cnt != 1)
2077 		return;
2078 
2079 	/*
2080 	 * A DT_ item that references a section address should always find
2081 	 * the section in the file.
2082 	 */
2083 	if (sec_cache == NULL) {
2084 		const char *name;
2085 
2086 		/*
2087 		 * Supply section names instead of section types for
2088 		 * things that reference progbits so that the error
2089 		 * message will make more sense.
2090 		 */
2091 		switch (dyn->d_tag) {
2092 		case DT_INIT:
2093 			name = MSG_ORIG(MSG_ELF_INIT);
2094 			break;
2095 		case DT_FINI:
2096 			name = MSG_ORIG(MSG_ELF_FINI);
2097 			break;
2098 		default:
2099 			name = conv_sec_type(ehdr->e_machine, sh_type,
2100 			    0, &buf1);
2101 			break;
2102 		}
2103 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNNOBCKSEC), file,
2104 		    name, conv_dyn_tag(dyn->d_tag, ehdr->e_machine, 0, &buf2));
2105 		return;
2106 	}
2107 
2108 
2109 	switch (test_type) {
2110 	case DYN_TEST_ADDR:
2111 		/* The section address should match the DT_ item value */
2112 		if (dyn->d_un.d_val != sec_cache->c_shdr->sh_addr)
2113 			(void) fprintf(stderr,
2114 			    MSG_INTL(MSG_ERR_DYNBADADDR), file,
2115 			    conv_dyn_tag(dyn->d_tag, ehdr->e_machine, 0, &buf1),
2116 			    EC_ADDR(dyn->d_un.d_val), sec_cache->c_ndx,
2117 			    sec_cache->c_name,
2118 			    EC_ADDR(sec_cache->c_shdr->sh_addr));
2119 		break;
2120 
2121 	case DYN_TEST_SIZE:
2122 		/* The section size should match the DT_ item value */
2123 		if (dyn->d_un.d_val != sec_cache->c_shdr->sh_size)
2124 			(void) fprintf(stderr,
2125 			    MSG_INTL(MSG_ERR_DYNBADSIZE), file,
2126 			    conv_dyn_tag(dyn->d_tag, ehdr->e_machine, 0, &buf1),
2127 			    EC_XWORD(dyn->d_un.d_val),
2128 			    sec_cache->c_ndx, sec_cache->c_name,
2129 			    EC_XWORD(sec_cache->c_shdr->sh_size));
2130 		break;
2131 
2132 	case DYN_TEST_ENTSIZE:
2133 		/* The sh_entsize value should match the DT_ item value */
2134 		if (dyn->d_un.d_val != sec_cache->c_shdr->sh_entsize)
2135 			(void) fprintf(stderr,
2136 			    MSG_INTL(MSG_ERR_DYNBADENTSIZE), file,
2137 			    conv_dyn_tag(dyn->d_tag, ehdr->e_machine, 0, &buf1),
2138 			    EC_XWORD(dyn->d_un.d_val),
2139 			    sec_cache->c_ndx, sec_cache->c_name,
2140 			    EC_XWORD(sec_cache->c_shdr->sh_entsize));
2141 		break;
2142 	}
2143 }
2144 
2145 
2146 /*
2147  * There are some DT_ entries that have corresponding symbols
2148  * (e.g. DT_INIT and _init). It is expected that these items will
2149  * both have the same value if both are present. This routine
2150  * examines the well known symbol tables for such symbols and
2151  * issues warnings for any that don't match.
2152  *
2153  * entry:
2154  *	dyn - Dyn entry to be tested
2155  *	symname - Name of symbol that corresponds to dyn
2156  *	symtab_cache, dynsym_cache, ldynsym_cache - Symbol tables to check
2157  *	cache - Cache of all section headers
2158  *	shnum - # of sections in cache
2159  *	ehdr - ELF header for file
2160  *	file - Name of file
2161  */
2162 static void
2163 dyn_symtest(Dyn *dyn, const char *symname, Cache *symtab_cache,
2164     Cache *dynsym_cache, Cache *ldynsym_cache, Cache *cache,
2165     Word shnum, Ehdr *ehdr, const char *file)
2166 {
2167 	Conv_inv_buf_t	buf;
2168 	int		i;
2169 	Sym		*sym;
2170 	Cache		*_cache;
2171 
2172 	for (i = 0; i < 3; i++) {
2173 		switch (i) {
2174 		case 0:
2175 			_cache = symtab_cache;
2176 			break;
2177 		case 1:
2178 			_cache = dynsym_cache;
2179 			break;
2180 		case 2:
2181 			_cache = ldynsym_cache;
2182 			break;
2183 		}
2184 
2185 		if ((_cache != NULL) &&
2186 		    symlookup(symname, cache, shnum, &sym, _cache, file) &&
2187 		    (sym->st_value != dyn->d_un.d_val))
2188 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNSYMVAL),
2189 			    file, _cache->c_name,
2190 			    conv_dyn_tag(dyn->d_tag, ehdr->e_machine, 0, &buf),
2191 			    symname, EC_ADDR(sym->st_value));
2192 	}
2193 }
2194 
2195 
2196 /*
2197  * Search for and process a .dynamic section.
2198  */
2199 static void
2200 dynamic(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
2201 {
2202 	struct {
2203 		Cache	*symtab;
2204 		Cache	*dynstr;
2205 		Cache	*dynsym;
2206 		Cache	*hash;
2207 		Cache	*fini;
2208 		Cache	*fini_array;
2209 		Cache	*init;
2210 		Cache	*init_array;
2211 		Cache	*preinit_array;
2212 		Cache	*rel;
2213 		Cache	*rela;
2214 		Cache	*sunw_cap;
2215 		Cache	*sunw_ldynsym;
2216 		Cache	*sunw_move;
2217 		Cache	*sunw_syminfo;
2218 		Cache	*sunw_symsort;
2219 		Cache	*sunw_tlssort;
2220 		Cache	*sunw_verdef;
2221 		Cache	*sunw_verneed;
2222 		Cache	*sunw_versym;
2223 	} sec;
2224 	Word	dynsec_ndx;
2225 	Word	dynsec_num;
2226 	int	dynsec_cnt;
2227 	Word	cnt;
2228 
2229 	/*
2230 	 * Make a pass over all the sections, gathering section information
2231 	 * we'll need below.
2232 	 */
2233 	dynsec_num = 0;
2234 	bzero(&sec, sizeof (sec));
2235 	for (cnt = 1; cnt < shnum; cnt++) {
2236 		Cache	*_cache = &cache[cnt];
2237 
2238 		switch (_cache->c_shdr->sh_type) {
2239 		case SHT_DYNAMIC:
2240 			if (dynsec_num == 0) {
2241 				dynsec_ndx = cnt;
2242 
2243 				/* Does it have a valid string table? */
2244 				(void) stringtbl(cache, 0, cnt, shnum, file,
2245 				    0, 0, &sec.dynstr);
2246 			}
2247 			dynsec_num++;
2248 			break;
2249 
2250 
2251 		case SHT_PROGBITS:
2252 			/*
2253 			 * We want to detect the .init and .fini sections,
2254 			 * if present. These are SHT_PROGBITS, so all we
2255 			 * have to go on is the section name. Normally comparing
2256 			 * names is a bad idea, but there are some special
2257 			 * names (i.e. .init/.fini/.interp) that are very
2258 			 * difficult to use in any other context, and for
2259 			 * these symbols, we do the heuristic match.
2260 			 */
2261 			if (strcmp(_cache->c_name,
2262 			    MSG_ORIG(MSG_ELF_INIT)) == 0) {
2263 				if (sec.init == NULL)
2264 					sec.init = _cache;
2265 			} else if (strcmp(_cache->c_name,
2266 			    MSG_ORIG(MSG_ELF_FINI)) == 0) {
2267 				if (sec.fini == NULL)
2268 					sec.fini = _cache;
2269 			}
2270 			break;
2271 
2272 		case SHT_REL:
2273 			/*
2274 			 * We want the SHT_REL section with the lowest
2275 			 * offset. The linker gathers them together,
2276 			 * and puts the address of the first one
2277 			 * into the DT_REL dynamic element.
2278 			 */
2279 			if ((sec.rel == NULL) ||
2280 			    (_cache->c_shdr->sh_offset <
2281 			    sec.rel->c_shdr->sh_offset))
2282 				sec.rel = _cache;
2283 			break;
2284 
2285 		case SHT_RELA:
2286 			/* RELA is handled just like RELA above */
2287 			if ((sec.rela == NULL) ||
2288 			    (_cache->c_shdr->sh_offset <
2289 			    sec.rela->c_shdr->sh_offset))
2290 				sec.rela = _cache;
2291 			break;
2292 
2293 		/*
2294 		 * The GRAB macro is used for the simple case in which
2295 		 * we simply grab the first section of the desired type.
2296 		 */
2297 #define	GRAB(_sec_type, _sec_field) \
2298 		case _sec_type: \
2299 			if (sec._sec_field == NULL) \
2300 				sec._sec_field = _cache; \
2301 				break
2302 		GRAB(SHT_SYMTAB,	symtab);
2303 		GRAB(SHT_DYNSYM,	dynsym);
2304 		GRAB(SHT_FINI_ARRAY,	fini_array);
2305 		GRAB(SHT_HASH,		hash);
2306 		GRAB(SHT_INIT_ARRAY,	init_array);
2307 		GRAB(SHT_SUNW_move,	sunw_move);
2308 		GRAB(SHT_PREINIT_ARRAY,	preinit_array);
2309 		GRAB(SHT_SUNW_cap,	sunw_cap);
2310 		GRAB(SHT_SUNW_LDYNSYM,	sunw_ldynsym);
2311 		GRAB(SHT_SUNW_syminfo,	sunw_syminfo);
2312 		GRAB(SHT_SUNW_symsort,	sunw_symsort);
2313 		GRAB(SHT_SUNW_tlssort,	sunw_tlssort);
2314 		GRAB(SHT_SUNW_verdef,	sunw_verdef);
2315 		GRAB(SHT_SUNW_verneed,	sunw_verneed);
2316 		GRAB(SHT_SUNW_versym,	sunw_versym);
2317 #undef GRAB
2318 		}
2319 	}
2320 
2321 	/*
2322 	 * If no dynamic section, return immediately. If more than one
2323 	 * dynamic section, then something odd is going on and an error
2324 	 * is in order, but then continue on and display them all.
2325 	 */
2326 	if (dynsec_num == 0)
2327 		return;
2328 	if (dynsec_num > 1)
2329 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MULTDYN),
2330 		    file, EC_WORD(dynsec_num));
2331 
2332 
2333 	dynsec_cnt = 0;
2334 	for (cnt = dynsec_ndx; (cnt < shnum) && (dynsec_cnt < dynsec_num);
2335 	    cnt++) {
2336 		Dyn	*dyn;
2337 		ulong_t	numdyn;
2338 		int	ndx, end_ndx;
2339 		Cache	*_cache = &cache[cnt], *strsec;
2340 		Shdr	*shdr = _cache->c_shdr;
2341 		int	dumped = 0;
2342 
2343 		if (shdr->sh_type != SHT_DYNAMIC)
2344 			continue;
2345 		dynsec_cnt++;
2346 
2347 		/*
2348 		 * Verify the associated string table section.
2349 		 */
2350 		if (stringtbl(cache, 0, cnt, shnum, file, 0, 0, &strsec) == 0)
2351 			continue;
2352 
2353 		if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
2354 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2355 			    file, _cache->c_name);
2356 			continue;
2357 		}
2358 		if (_cache->c_data == NULL)
2359 			continue;
2360 
2361 		numdyn = shdr->sh_size / shdr->sh_entsize;
2362 		dyn = (Dyn *)_cache->c_data->d_buf;
2363 
2364 		/*
2365 		 * We expect the REL/RELA entries to reference the reloc
2366 		 * section with the lowest address. However, this is
2367 		 * not true for dumped objects. Detect if this object has
2368 		 * been dumped so that we can skip the reloc address test
2369 		 * in that case.
2370 		 */
2371 		for (ndx = 0; ndx < numdyn; dyn++, ndx++) {
2372 			if (dyn->d_tag == DT_FLAGS_1) {
2373 				dumped = (dyn->d_un.d_val & DF_1_CONFALT) != 0;
2374 				break;
2375 			}
2376 		}
2377 		dyn = (Dyn *)_cache->c_data->d_buf;
2378 
2379 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2380 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_DYNAMIC), _cache->c_name);
2381 
2382 		Elf_dyn_title(0);
2383 
2384 		for (ndx = 0; ndx < numdyn; dyn++, ndx++) {
2385 			union {
2386 				Conv_inv_buf_t		inv;
2387 				Conv_dyn_flag_buf_t	flag;
2388 				Conv_dyn_flag1_buf_t	flag1;
2389 				Conv_dyn_posflag1_buf_t	posflag1;
2390 				Conv_dyn_feature1_buf_t	feature1;
2391 			} c_buf;
2392 			const char	*name = NULL;
2393 
2394 			/*
2395 			 * Print the information numerically, and if possible
2396 			 * as a string. If a string is available, name is
2397 			 * set to reference it.
2398 			 *
2399 			 * Also, take this opportunity to sanity check
2400 			 * the values of DT elements. In the code above,
2401 			 * we gathered information on sections that are
2402 			 * referenced by the dynamic section. Here, we
2403 			 * compare the attributes of those sections to
2404 			 * the DT_ items that reference them and report
2405 			 * on inconsistencies.
2406 			 *
2407 			 * Things not currently tested that could be improved
2408 			 * in later revisions include:
2409 			 *	- We don't check PLT or GOT related items
2410 			 *	- We don't handle computing the lengths of
2411 			 *		relocation arrays. To handle this
2412 			 *		requires examining data that spans
2413 			 *		across sections, in a contiguous span
2414 			 *		within a single segment.
2415 			 *	- DT_VERDEFNUM and DT_VERNEEDNUM can't be
2416 			 *		verified without parsing the sections.
2417 			 *	- We don't handle DT_SUNW_SYMSZ, which would
2418 			 *		be the sum of the lengths of .dynsym and
2419 			 *		.SUNW_ldynsym
2420 			 *	- DT_SUNW_STRPAD can't be verified other than
2421 			 *		to check that it's not larger than
2422 			 *		the string table.
2423 			 *	- Some items come in "all or none" clusters
2424 			 *		that give an address, element size,
2425 			 *		and data length in bytes. We don't
2426 			 *		verify that there are no missing items
2427 			 *		in such groups.
2428 			 */
2429 			switch (dyn->d_tag) {
2430 			case DT_NULL:
2431 				/*
2432 				 * Special case: DT_NULLs can come in groups
2433 				 * that we prefer to reduce to a single line.
2434 				 */
2435 				end_ndx = ndx;
2436 				while ((end_ndx < (numdyn - 1)) &&
2437 				    ((dyn + 1)->d_tag == DT_NULL)) {
2438 					dyn++;
2439 					end_ndx++;
2440 				}
2441 				Elf_dyn_null_entry(0, dyn, ndx, end_ndx);
2442 				ndx = end_ndx;
2443 				continue;
2444 
2445 			/*
2446 			 * String items all reference the dynstr. The string()
2447 			 * function does the necessary sanity checking.
2448 			 */
2449 			case DT_NEEDED:
2450 			case DT_SONAME:
2451 			case DT_FILTER:
2452 			case DT_AUXILIARY:
2453 			case DT_CONFIG:
2454 			case DT_RPATH:
2455 			case DT_RUNPATH:
2456 			case DT_USED:
2457 			case DT_DEPAUDIT:
2458 			case DT_AUDIT:
2459 			case DT_SUNW_AUXILIARY:
2460 			case DT_SUNW_FILTER:
2461 				name = string(_cache, ndx, strsec,
2462 				    file, dyn->d_un.d_ptr);
2463 				break;
2464 
2465 			case DT_FLAGS:
2466 				name = conv_dyn_flag(dyn->d_un.d_val,
2467 				    0, &c_buf.flag);
2468 				break;
2469 			case DT_FLAGS_1:
2470 				name = conv_dyn_flag1(dyn->d_un.d_val, 0,
2471 				    &c_buf.flag1);
2472 				break;
2473 			case DT_POSFLAG_1:
2474 				name = conv_dyn_posflag1(dyn->d_un.d_val, 0,
2475 				    &c_buf.posflag1);
2476 				break;
2477 			case DT_FEATURE_1:
2478 				name = conv_dyn_feature1(dyn->d_un.d_val, 0,
2479 				    &c_buf.feature1);
2480 				break;
2481 			case DT_DEPRECATED_SPARC_REGISTER:
2482 				name = MSG_INTL(MSG_STR_DEPRECATED);
2483 				break;
2484 
2485 			case DT_SUNW_LDMACH:
2486 				name = conv_ehdr_mach((Half)dyn->d_un.d_val, 0,
2487 				    &c_buf.inv);
2488 				break;
2489 
2490 			/*
2491 			 * Cases below this point are strictly sanity checking,
2492 			 * and do not generate a name string. The TEST_ macros
2493 			 * are used to hide the boilerplate arguments neeeded
2494 			 * by dyn_test().
2495 			 */
2496 #define	TEST_ADDR(_sh_type, _sec_field) \
2497 				dyn_test(DYN_TEST_ADDR, _sh_type, \
2498 				    sec._sec_field, dyn, dynsec_cnt, ehdr, file)
2499 #define	TEST_SIZE(_sh_type, _sec_field) \
2500 				dyn_test(DYN_TEST_SIZE, _sh_type, \
2501 				    sec._sec_field, dyn, dynsec_cnt, ehdr, file)
2502 #define	TEST_ENTSIZE(_sh_type, _sec_field) \
2503 				dyn_test(DYN_TEST_ENTSIZE, _sh_type, \
2504 				    sec._sec_field, dyn, dynsec_cnt, ehdr, file)
2505 
2506 			case DT_FINI:
2507 				dyn_symtest(dyn, MSG_ORIG(MSG_SYM_FINI),
2508 				    sec.symtab, sec.dynsym, sec.sunw_ldynsym,
2509 				    cache, shnum, ehdr, file);
2510 				TEST_ADDR(SHT_PROGBITS, fini);
2511 				break;
2512 
2513 			case DT_FINI_ARRAY:
2514 				TEST_ADDR(SHT_FINI_ARRAY, fini_array);
2515 				break;
2516 
2517 			case DT_FINI_ARRAYSZ:
2518 				TEST_SIZE(SHT_FINI_ARRAY, fini_array);
2519 				break;
2520 
2521 			case DT_HASH:
2522 				TEST_ADDR(SHT_HASH, hash);
2523 				break;
2524 
2525 			case DT_INIT:
2526 				dyn_symtest(dyn, MSG_ORIG(MSG_SYM_INIT),
2527 				    sec.symtab, sec.dynsym, sec.sunw_ldynsym,
2528 				    cache, shnum, ehdr, file);
2529 				TEST_ADDR(SHT_PROGBITS, init);
2530 				break;
2531 
2532 			case DT_INIT_ARRAY:
2533 				TEST_ADDR(SHT_INIT_ARRAY, init_array);
2534 				break;
2535 
2536 			case DT_INIT_ARRAYSZ:
2537 				TEST_SIZE(SHT_INIT_ARRAY, init_array);
2538 				break;
2539 
2540 			case DT_MOVEENT:
2541 				TEST_ENTSIZE(SHT_SUNW_move, sunw_move);
2542 				break;
2543 
2544 			case DT_MOVESZ:
2545 				TEST_SIZE(SHT_SUNW_move, sunw_move);
2546 				break;
2547 
2548 			case DT_MOVETAB:
2549 				TEST_ADDR(SHT_SUNW_move, sunw_move);
2550 				break;
2551 
2552 			case DT_PREINIT_ARRAY:
2553 				TEST_ADDR(SHT_PREINIT_ARRAY, preinit_array);
2554 				break;
2555 
2556 			case DT_PREINIT_ARRAYSZ:
2557 				TEST_SIZE(SHT_PREINIT_ARRAY, preinit_array);
2558 				break;
2559 
2560 			case DT_REL:
2561 				if (!dumped)
2562 					TEST_ADDR(SHT_REL, rel);
2563 				break;
2564 
2565 			case DT_RELENT:
2566 				TEST_ENTSIZE(SHT_REL, rel);
2567 				break;
2568 
2569 			case DT_RELA:
2570 				if (!dumped)
2571 					TEST_ADDR(SHT_RELA, rela);
2572 				break;
2573 
2574 			case DT_RELAENT:
2575 				TEST_ENTSIZE(SHT_RELA, rela);
2576 				break;
2577 
2578 			case DT_STRTAB:
2579 				TEST_ADDR(SHT_STRTAB, dynstr);
2580 				break;
2581 
2582 			case DT_STRSZ:
2583 				TEST_SIZE(SHT_STRTAB, dynstr);
2584 				break;
2585 
2586 			case DT_SUNW_CAP:
2587 				TEST_ADDR(SHT_SUNW_cap, sunw_cap);
2588 				break;
2589 
2590 			case DT_SUNW_SYMTAB:
2591 				TEST_ADDR(SHT_SUNW_LDYNSYM, sunw_ldynsym);
2592 				break;
2593 
2594 			case DT_SYMENT:
2595 				TEST_ENTSIZE(SHT_DYNSYM, dynsym);
2596 				break;
2597 
2598 			case DT_SYMINENT:
2599 				TEST_ENTSIZE(SHT_SUNW_syminfo, sunw_syminfo);
2600 				break;
2601 
2602 			case DT_SYMINFO:
2603 				TEST_ADDR(SHT_SUNW_syminfo, sunw_syminfo);
2604 				break;
2605 
2606 			case DT_SYMINSZ:
2607 				TEST_SIZE(SHT_SUNW_syminfo, sunw_syminfo);
2608 				break;
2609 
2610 			case DT_SYMTAB:
2611 				TEST_ADDR(SHT_DYNSYM, dynsym);
2612 				break;
2613 
2614 			case DT_SUNW_SORTENT:
2615 				/*
2616 				 * This entry is related to both the symsort and
2617 				 * tlssort sections.
2618 				 */
2619 				{
2620 					int test_tls =
2621 					    (sec.sunw_tlssort != NULL);
2622 					int test_sym =
2623 					    (sec.sunw_symsort != NULL) ||
2624 					    !test_tls;
2625 					if (test_sym)
2626 						TEST_ENTSIZE(SHT_SUNW_symsort,
2627 						    sunw_symsort);
2628 					if (test_tls)
2629 						TEST_ENTSIZE(SHT_SUNW_tlssort,
2630 						    sunw_tlssort);
2631 				}
2632 				break;
2633 
2634 
2635 			case DT_SUNW_SYMSORT:
2636 				TEST_ADDR(SHT_SUNW_symsort, sunw_symsort);
2637 				break;
2638 
2639 			case DT_SUNW_SYMSORTSZ:
2640 				TEST_SIZE(SHT_SUNW_symsort, sunw_symsort);
2641 				break;
2642 
2643 			case DT_SUNW_TLSSORT:
2644 				TEST_ADDR(SHT_SUNW_tlssort, sunw_tlssort);
2645 				break;
2646 
2647 			case DT_SUNW_TLSSORTSZ:
2648 				TEST_SIZE(SHT_SUNW_tlssort, sunw_tlssort);
2649 				break;
2650 
2651 			case DT_VERDEF:
2652 				TEST_ADDR(SHT_SUNW_verdef, sunw_verdef);
2653 				break;
2654 
2655 			case DT_VERNEED:
2656 				TEST_ADDR(SHT_SUNW_verneed, sunw_verneed);
2657 				break;
2658 
2659 			case DT_VERSYM:
2660 				TEST_ADDR(SHT_SUNW_versym, sunw_versym);
2661 				break;
2662 #undef TEST_ADDR
2663 #undef TEST_SIZE
2664 #undef TEST_ENTSIZE
2665 			}
2666 
2667 			if (name == NULL)
2668 				name = MSG_ORIG(MSG_STR_EMPTY);
2669 			Elf_dyn_entry(0, dyn, ndx, name, ehdr->e_machine);
2670 		}
2671 	}
2672 }
2673 
2674 /*
2675  * Search for and process a MOVE section.
2676  */
2677 static void
2678 move(Cache *cache, Word shnum, const char *file, uint_t flags)
2679 {
2680 	Word		cnt;
2681 	const char	*fmt = 0;
2682 
2683 	for (cnt = 1; cnt < shnum; cnt++) {
2684 		Word	movenum, symnum, ndx;
2685 		Sym	*syms;
2686 		Cache	*_cache = &cache[cnt];
2687 		Shdr	*shdr = _cache->c_shdr;
2688 		Cache	*symsec, *strsec;
2689 		Move	*move;
2690 
2691 		if (shdr->sh_type != SHT_SUNW_move)
2692 			continue;
2693 		if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
2694 			continue;
2695 
2696 		/*
2697 		 * Determine the move data and number.
2698 		 */
2699 		if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
2700 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2701 			    file, _cache->c_name);
2702 			continue;
2703 		}
2704 		if (_cache->c_data == NULL)
2705 			continue;
2706 
2707 		move = (Move *)_cache->c_data->d_buf;
2708 		movenum = shdr->sh_size / shdr->sh_entsize;
2709 
2710 		/*
2711 		 * Get the data buffer for the associated symbol table and
2712 		 * string table.
2713 		 */
2714 		if (stringtbl(cache, 1, cnt, shnum, file,
2715 		    &symnum, &symsec, &strsec) == 0)
2716 			return;
2717 
2718 		syms = (Sym *)symsec->c_data->d_buf;
2719 
2720 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2721 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_MOVE), _cache->c_name);
2722 		dbg_print(0, MSG_INTL(MSG_MOVE_TITLE));
2723 
2724 		if (fmt == 0)
2725 			fmt = MSG_INTL(MSG_MOVE_ENTRY);
2726 
2727 		for (ndx = 0; ndx < movenum; move++, ndx++) {
2728 			const char	*symname;
2729 			char		index[MAXNDXSIZE], section[BUFSIZ];
2730 			Word		symndx, shndx;
2731 			Sym		*sym;
2732 
2733 			/*
2734 			 * Check for null entries
2735 			 */
2736 			if ((move->m_info == 0) && (move->m_value == 0) &&
2737 			    (move->m_poffset == 0) && (move->m_repeat == 0) &&
2738 			    (move->m_stride == 0)) {
2739 				dbg_print(0, fmt, MSG_ORIG(MSG_STR_EMPTY),
2740 				    EC_XWORD(move->m_poffset), 0, 0, 0,
2741 				    EC_LWORD(0), MSG_ORIG(MSG_STR_EMPTY));
2742 				continue;
2743 			}
2744 			if (((symndx = ELF_M_SYM(move->m_info)) == 0) ||
2745 			    (symndx >= symnum)) {
2746 				(void) fprintf(stderr,
2747 				    MSG_INTL(MSG_ERR_BADMINFO), file,
2748 				    _cache->c_name, EC_XWORD(move->m_info));
2749 
2750 				(void) snprintf(index, MAXNDXSIZE,
2751 				    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx));
2752 				dbg_print(0, fmt, index,
2753 				    EC_XWORD(move->m_poffset),
2754 				    ELF_M_SIZE(move->m_info), move->m_repeat,
2755 				    move->m_stride, move->m_value,
2756 				    MSG_INTL(MSG_STR_UNKNOWN));
2757 				continue;
2758 			}
2759 
2760 			symname = relsymname(cache, _cache, strsec,
2761 			    symndx, symnum, ndx, syms, section, BUFSIZ, file);
2762 			sym = (Sym *)(syms + symndx);
2763 
2764 			/*
2765 			 * Additional sanity check.
2766 			 */
2767 			shndx = sym->st_shndx;
2768 			if (!((shndx == SHN_COMMON) ||
2769 			    (((shndx >= 1) && (shndx <= shnum)) &&
2770 			    (cache[shndx].c_shdr)->sh_type == SHT_NOBITS))) {
2771 				(void) fprintf(stderr,
2772 				    MSG_INTL(MSG_ERR_BADSYM2), file,
2773 				    _cache->c_name, EC_WORD(symndx),
2774 				    demangle(symname, flags));
2775 			}
2776 
2777 			(void) snprintf(index, MAXNDXSIZE,
2778 			    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx));
2779 			dbg_print(0, fmt, index, EC_XWORD(move->m_poffset),
2780 			    ELF_M_SIZE(move->m_info), move->m_repeat,
2781 			    move->m_stride, move->m_value,
2782 			    demangle(symname, flags));
2783 		}
2784 	}
2785 }
2786 
2787 /*
2788  * Callback function for use with conv_str_to_c_literal() below.
2789  */
2790 /*ARGSUSED2*/
2791 static void
2792 c_literal_cb(const void *ptr, size_t size, void *uvalue)
2793 {
2794 	(void) fwrite(ptr, size, 1, stdout);
2795 }
2796 
2797 /*
2798  * Traverse a note section analyzing each note information block.
2799  * The data buffers size is used to validate references before they are made,
2800  * and is decremented as each element is processed.
2801  */
2802 void
2803 note_entry(Cache *cache, Word *data, size_t size, Ehdr *ehdr, const char *file)
2804 {
2805 	size_t		bsize = size;
2806 	int		cnt = 0;
2807 	int		is_corenote;
2808 	int		do_swap;
2809 	Conv_inv_buf_t	inv_buf;
2810 
2811 	do_swap =  _elf_sys_encoding() != ehdr->e_ident[EI_DATA];
2812 
2813 	/*
2814 	 * Print out a single `note' information block.
2815 	 */
2816 	while (size > 0) {
2817 		size_t	namesz, descsz, type, pad, noteoff;
2818 
2819 		noteoff = bsize - size;
2820 		/*
2821 		 * Make sure we can at least reference the 3 initial entries
2822 		 * (4-byte words) of the note information block.
2823 		 */
2824 		if (size >= (sizeof (Word) * 3))
2825 			size -= (sizeof (Word) * 3);
2826 		else {
2827 			(void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADDATASZ),
2828 			    file, cache->c_name, EC_WORD(noteoff));
2829 			return;
2830 		}
2831 
2832 		/*
2833 		 * Make sure any specified name string can be referenced.
2834 		 */
2835 		if ((namesz = *data++) != 0) {
2836 			if (size >= namesz)
2837 				size -= namesz;
2838 			else {
2839 				(void) fprintf(stderr,
2840 				    MSG_INTL(MSG_NOTE_BADNMSZ), file,
2841 				    cache->c_name, EC_WORD(noteoff),
2842 				    EC_WORD(namesz));
2843 				return;
2844 			}
2845 		}
2846 
2847 		/*
2848 		 * Make sure any specified descriptor can be referenced.
2849 		 */
2850 		if ((descsz = *data++) != 0) {
2851 			/*
2852 			 * If namesz isn't a 4-byte multiple, account for any
2853 			 * padding that must exist before the descriptor.
2854 			 */
2855 			if ((pad = (namesz & (sizeof (Word) - 1))) != 0) {
2856 				pad = sizeof (Word) - pad;
2857 				size -= pad;
2858 			}
2859 			if (size >= descsz)
2860 				size -= descsz;
2861 			else {
2862 				(void) fprintf(stderr,
2863 				    MSG_INTL(MSG_NOTE_BADDESZ), file,
2864 				    cache->c_name, EC_WORD(noteoff),
2865 				    EC_WORD(namesz));
2866 				return;
2867 			}
2868 		}
2869 
2870 		type = *data++;
2871 
2872 		/*
2873 		 * Is this a Solaris core note? Such notes all have
2874 		 * the name "CORE".
2875 		 */
2876 		is_corenote = (ehdr->e_type == ET_CORE) &&
2877 		    (namesz == (MSG_STR_CORE_SIZE + 1)) &&
2878 		    (strncmp(MSG_ORIG(MSG_STR_CORE), (char *)data,
2879 		    MSG_STR_CORE_SIZE + 1) == 0);
2880 
2881 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2882 		dbg_print(0, MSG_INTL(MSG_FMT_NOTEENTNDX), EC_WORD(cnt));
2883 		cnt++;
2884 		dbg_print(0, MSG_ORIG(MSG_NOTE_NAMESZ), EC_WORD(namesz));
2885 		dbg_print(0, MSG_ORIG(MSG_NOTE_DESCSZ), EC_WORD(descsz));
2886 
2887 		if (is_corenote)
2888 			dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE_STR),
2889 			    conv_cnote_type(type, 0, &inv_buf));
2890 		else
2891 			dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE), EC_WORD(type));
2892 		if (namesz) {
2893 			char	*name = (char *)data;
2894 
2895 
2896 			dbg_print(0, MSG_ORIG(MSG_NOTE_NAME));
2897 			/*
2898 			 * The name string can contain embedded 'null'
2899 			 * bytes and/or unprintable characters. Also,
2900 			 * the final NULL is documented in the ELF ABI
2901 			 * as being included in the namesz. So, display
2902 			 * the name using C literal string notation, and
2903 			 * include the terminating NULL in the output.
2904 			 * We don't show surrounding double quotes, as
2905 			 * that implies the termination that we are showing
2906 			 * explicitly.
2907 			 */
2908 			(void) fwrite(MSG_ORIG(MSG_STR_8SP),
2909 			    MSG_STR_8SP_SIZE, 1, stdout);
2910 			conv_str_to_c_literal(name, namesz, c_literal_cb, NULL);
2911 			name = name + ((namesz + (sizeof (Word) - 1)) &
2912 			    ~(sizeof (Word) - 1));
2913 			/* LINTED */
2914 			data = (Word *)name;
2915 			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2916 		}
2917 
2918 		/*
2919 		 * If multiple information blocks exist within a .note section
2920 		 * account for any padding that must exist before the next
2921 		 * information block.
2922 		 */
2923 		if ((pad = (descsz & (sizeof (Word) - 1))) != 0) {
2924 			pad = sizeof (Word) - pad;
2925 			if (size > pad)
2926 				size -= pad;
2927 		}
2928 
2929 		if (descsz) {
2930 			int		hexdump = 1;
2931 			const char	*desc = (const char *)data;
2932 
2933 			/*
2934 			 * If this is a core note, let the corenote()
2935 			 * function handle it.
2936 			 */
2937 			if (is_corenote) {
2938 				/* We only issue the bad arch error once */
2939 				static int	badnote_done = 0;
2940 				corenote_ret_t	corenote_ret;
2941 
2942 				corenote_ret = corenote(ehdr->e_machine,
2943 				    do_swap, type, desc, descsz);
2944 				switch (corenote_ret) {
2945 				case CORENOTE_R_OK:
2946 					hexdump = 0;
2947 					break;
2948 				case CORENOTE_R_BADDATA:
2949 					(void) fprintf(stderr,
2950 					    MSG_INTL(MSG_NOTE_BADCOREDATA),
2951 					    file);
2952 					break;
2953 				case CORENOTE_R_BADARCH:
2954 					if (badnote_done)
2955 						break;
2956 					(void) fprintf(stderr,
2957 					    MSG_INTL(MSG_NOTE_BADCOREARCH),
2958 					    file,
2959 					    conv_ehdr_mach(ehdr->e_machine,
2960 					    0, &inv_buf));
2961 					break;
2962 				}
2963 			}
2964 
2965 			/*
2966 			 * The default thing when we don't understand
2967 			 * the note data is to display it as hex bytes.
2968 			 */
2969 			if (hexdump) {
2970 				dbg_print(0, MSG_ORIG(MSG_NOTE_DESC));
2971 				dump_hex_bytes(desc, descsz, 8, 4, 4);
2972 			}
2973 			desc += descsz + pad;
2974 
2975 			/* LINTED */
2976 			data = (Word *)desc;
2977 		}
2978 	}
2979 }
2980 
2981 /*
2982  * Search for and process .note sections.
2983  *
2984  * Returns the number of note sections seen.
2985  */
2986 static Word
2987 note(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
2988 {
2989 	Word	cnt, note_cnt = 0;
2990 
2991 	/*
2992 	 * Otherwise look for any .note sections.
2993 	 */
2994 	for (cnt = 1; cnt < shnum; cnt++) {
2995 		Cache	*_cache = &cache[cnt];
2996 		Shdr	*shdr = _cache->c_shdr;
2997 
2998 		if (shdr->sh_type != SHT_NOTE)
2999 			continue;
3000 		note_cnt++;
3001 		if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
3002 			continue;
3003 
3004 		/*
3005 		 * As these sections are often hand rolled, make sure they're
3006 		 * properly aligned before proceeding, and issue an error
3007 		 * as necessary.
3008 		 *
3009 		 * Note that we will continue on to display the note even
3010 		 * if it has bad alignment. We can do this safely, because
3011 		 * libelf knows the alignment required for SHT_NOTE, and
3012 		 * takes steps to deliver a properly aligned buffer to us
3013 		 * even if the actual file is misaligned.
3014 		 */
3015 		if (shdr->sh_offset & (sizeof (Word) - 1))
3016 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADALIGN),
3017 			    file, _cache->c_name);
3018 
3019 		if (_cache->c_data == NULL)
3020 			continue;
3021 
3022 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3023 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_NOTE), _cache->c_name);
3024 		note_entry(_cache, (Word *)_cache->c_data->d_buf,
3025 		/* LINTED */
3026 		    (Word)_cache->c_data->d_size, ehdr, file);
3027 	}
3028 
3029 	return (note_cnt);
3030 }
3031 
3032 /*
3033  * Determine an individual hash entry.  This may be the initial hash entry,
3034  * or an associated chain entry.
3035  */
3036 static void
3037 hash_entry(Cache *refsec, Cache *strsec, const char *hsecname, Word hashndx,
3038     Word symndx, Word symn, Sym *syms, const char *file, ulong_t bkts,
3039     uint_t flags, int chain)
3040 {
3041 	Sym		*sym;
3042 	const char	*symname, *str;
3043 	char		_bucket[MAXNDXSIZE], _symndx[MAXNDXSIZE];
3044 	ulong_t		nbkt, nhash;
3045 
3046 	if (symndx > symn) {
3047 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_HSBADSYMNDX), file,
3048 		    EC_WORD(symndx), EC_WORD(hashndx));
3049 		symname = MSG_INTL(MSG_STR_UNKNOWN);
3050 	} else {
3051 		sym = (Sym *)(syms + symndx);
3052 		symname = string(refsec, symndx, strsec, file, sym->st_name);
3053 	}
3054 
3055 	if (chain == 0) {
3056 		(void) snprintf(_bucket, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER),
3057 		    hashndx);
3058 		str = (const char *)_bucket;
3059 	} else
3060 		str = MSG_ORIG(MSG_STR_EMPTY);
3061 
3062 	(void) snprintf(_symndx, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX2),
3063 	    EC_WORD(symndx));
3064 	dbg_print(0, MSG_ORIG(MSG_FMT_HASH_INFO), str, _symndx,
3065 	    demangle(symname, flags));
3066 
3067 	/*
3068 	 * Determine if this string is in the correct bucket.
3069 	 */
3070 	nhash = elf_hash(symname);
3071 	nbkt = nhash % bkts;
3072 
3073 	if (nbkt != hashndx) {
3074 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADHASH), file,
3075 		    hsecname, symname, EC_WORD(hashndx), nbkt);
3076 	}
3077 }
3078 
3079 #define	MAXCOUNT	500
3080 
3081 static void
3082 hash(Cache *cache, Word shnum, const char *file, uint_t flags)
3083 {
3084 	static int	count[MAXCOUNT];
3085 	Word		cnt;
3086 	ulong_t		ndx, bkts;
3087 	char		number[MAXNDXSIZE];
3088 
3089 	for (cnt = 1; cnt < shnum; cnt++) {
3090 		uint_t		*hash, *chain;
3091 		Cache		*_cache = &cache[cnt];
3092 		Shdr		*sshdr, *hshdr = _cache->c_shdr;
3093 		char		*ssecname, *hsecname = _cache->c_name;
3094 		Sym		*syms;
3095 		Word		symn;
3096 
3097 		if (hshdr->sh_type != SHT_HASH)
3098 			continue;
3099 
3100 		/*
3101 		 * Determine the hash table data and size.
3102 		 */
3103 		if ((hshdr->sh_entsize == 0) || (hshdr->sh_size == 0)) {
3104 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3105 			    file, hsecname);
3106 			continue;
3107 		}
3108 		if (_cache->c_data == NULL)
3109 			continue;
3110 
3111 		hash = (uint_t *)_cache->c_data->d_buf;
3112 		bkts = *hash;
3113 		chain = hash + 2 + bkts;
3114 		hash += 2;
3115 
3116 		/*
3117 		 * Get the data buffer for the associated symbol table.
3118 		 */
3119 		if ((hshdr->sh_link == 0) || (hshdr->sh_link >= shnum)) {
3120 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
3121 			    file, hsecname, EC_WORD(hshdr->sh_link));
3122 			continue;
3123 		}
3124 
3125 		_cache = &cache[hshdr->sh_link];
3126 		ssecname = _cache->c_name;
3127 
3128 		if (_cache->c_data == NULL)
3129 			continue;
3130 
3131 		if ((syms = (Sym *)_cache->c_data->d_buf) == NULL) {
3132 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3133 			    file, ssecname);
3134 			continue;
3135 		}
3136 
3137 		sshdr = _cache->c_shdr;
3138 		/* LINTED */
3139 		symn = (Word)(sshdr->sh_size / sshdr->sh_entsize);
3140 
3141 		/*
3142 		 * Get the associated string table section.
3143 		 */
3144 		if ((sshdr->sh_link == 0) || (sshdr->sh_link >= shnum)) {
3145 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
3146 			    file, ssecname, EC_WORD(sshdr->sh_link));
3147 			continue;
3148 		}
3149 
3150 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3151 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_HASH), hsecname);
3152 		dbg_print(0, MSG_INTL(MSG_ELF_HASH_INFO));
3153 
3154 		/*
3155 		 * Loop through the hash buckets, printing the appropriate
3156 		 * symbols.
3157 		 */
3158 		for (ndx = 0; ndx < bkts; ndx++, hash++) {
3159 			Word	_ndx, _cnt;
3160 
3161 			if (*hash == 0) {
3162 				count[0]++;
3163 				continue;
3164 			}
3165 
3166 			hash_entry(_cache, &cache[sshdr->sh_link], hsecname,
3167 			    ndx, *hash, symn, syms, file, bkts, flags, 0);
3168 
3169 			/*
3170 			 * Determine if any other symbols are chained to this
3171 			 * bucket.
3172 			 */
3173 			_ndx = chain[*hash];
3174 			_cnt = 1;
3175 			while (_ndx) {
3176 				hash_entry(_cache, &cache[sshdr->sh_link],
3177 				    hsecname, ndx, _ndx, symn, syms, file,
3178 				    bkts, flags, 1);
3179 				_ndx = chain[_ndx];
3180 				_cnt++;
3181 			}
3182 
3183 			if (_cnt >= MAXCOUNT) {
3184 				(void) fprintf(stderr,
3185 				    MSG_INTL(MSG_HASH_OVERFLW), file,
3186 				    _cache->c_name, EC_WORD(ndx),
3187 				    EC_WORD(_cnt));
3188 			} else
3189 				count[_cnt]++;
3190 		}
3191 		break;
3192 	}
3193 
3194 	/*
3195 	 * Print out the count information.
3196 	 */
3197 	bkts = cnt = 0;
3198 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3199 
3200 	for (ndx = 0; ndx < MAXCOUNT; ndx++) {
3201 		Word	_cnt;
3202 
3203 		if ((_cnt = count[ndx]) == 0)
3204 			continue;
3205 
3206 		(void) snprintf(number, MAXNDXSIZE,
3207 		    MSG_ORIG(MSG_FMT_INTEGER), _cnt);
3208 		dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS1), number,
3209 		    EC_WORD(ndx));
3210 		bkts += _cnt;
3211 		cnt += (Word)(ndx * _cnt);
3212 	}
3213 	if (cnt) {
3214 		(void) snprintf(number, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER),
3215 		    bkts);
3216 		dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS2), number,
3217 		    EC_WORD(cnt));
3218 	}
3219 }
3220 
3221 static void
3222 group(Cache *cache, Word shnum, const char *file, uint_t flags)
3223 {
3224 	Word	scnt;
3225 
3226 	for (scnt = 1; scnt < shnum; scnt++) {
3227 		Cache	*_cache = &cache[scnt];
3228 		Shdr	*shdr = _cache->c_shdr;
3229 		Word	*grpdata, gcnt, grpcnt, symnum, unknown;
3230 		Cache	*symsec, *strsec;
3231 		Sym	*syms, *sym;
3232 		char	flgstrbuf[MSG_GRP_COMDAT_SIZE + 10];
3233 
3234 		if (shdr->sh_type != SHT_GROUP)
3235 			continue;
3236 		if (!match(MATCH_F_ALL, _cache->c_name, scnt, shdr->sh_type))
3237 			continue;
3238 		if ((_cache->c_data == NULL) ||
3239 		    ((grpdata = (Word *)_cache->c_data->d_buf) == NULL))
3240 			continue;
3241 		grpcnt = shdr->sh_size / sizeof (Word);
3242 
3243 		/*
3244 		 * Get the data buffer for the associated symbol table and
3245 		 * string table.
3246 		 */
3247 		if (stringtbl(cache, 1, scnt, shnum, file,
3248 		    &symnum, &symsec, &strsec) == 0)
3249 			return;
3250 
3251 		syms = symsec->c_data->d_buf;
3252 
3253 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3254 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_GRP), _cache->c_name);
3255 		dbg_print(0, MSG_INTL(MSG_GRP_TITLE));
3256 
3257 		/*
3258 		 * The first element of the group defines the group.  The
3259 		 * associated symbol is defined by the sh_link field.
3260 		 */
3261 		if ((shdr->sh_info == SHN_UNDEF) || (shdr->sh_info > symnum)) {
3262 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO),
3263 			    file, _cache->c_name, EC_WORD(shdr->sh_info));
3264 			return;
3265 		}
3266 
3267 		(void) strcpy(flgstrbuf, MSG_ORIG(MSG_STR_OSQBRKT));
3268 		if (grpdata[0] & GRP_COMDAT) {
3269 			(void) strcat(flgstrbuf, MSG_ORIG(MSG_GRP_COMDAT));
3270 		}
3271 		if ((unknown = (grpdata[0] & ~GRP_COMDAT)) != 0) {
3272 			size_t	len = strlen(flgstrbuf);
3273 
3274 			(void) snprintf(&flgstrbuf[len],
3275 			    (MSG_GRP_COMDAT_SIZE + 10 - len),
3276 			    MSG_ORIG(MSG_GRP_UNKNOWN), unknown);
3277 		}
3278 		(void) strcat(flgstrbuf, MSG_ORIG(MSG_STR_CSQBRKT));
3279 		sym = (Sym *)(syms + shdr->sh_info);
3280 
3281 		dbg_print(0, MSG_INTL(MSG_GRP_SIGNATURE), flgstrbuf,
3282 		    demangle(string(_cache, 0, strsec, file, sym->st_name),
3283 		    flags));
3284 
3285 		for (gcnt = 1; gcnt < grpcnt; gcnt++) {
3286 			char		index[MAXNDXSIZE];
3287 			const char	*name;
3288 
3289 			(void) snprintf(index, MAXNDXSIZE,
3290 			    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(gcnt));
3291 
3292 			if (grpdata[gcnt] >= shnum)
3293 				name = MSG_INTL(MSG_GRP_INVALSCN);
3294 			else
3295 				name = cache[grpdata[gcnt]].c_name;
3296 
3297 			(void) printf(MSG_ORIG(MSG_GRP_ENTRY), index, name,
3298 			    EC_XWORD(grpdata[gcnt]));
3299 		}
3300 	}
3301 }
3302 
3303 static void
3304 got(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
3305 {
3306 	Cache		*gotcache = NULL, *symtab = NULL;
3307 	Addr		gotbgn, gotend;
3308 	Shdr		*gotshdr;
3309 	Word		cnt, gotents, gotndx;
3310 	size_t		gentsize;
3311 	Got_info	*gottable;
3312 	char		*gotdata;
3313 	Sym		*gotsym;
3314 	Xword		gotsymaddr;
3315 	uint_t		sys_encoding;
3316 
3317 	/*
3318 	 * First, find the got.
3319 	 */
3320 	for (cnt = 1; cnt < shnum; cnt++) {
3321 		if (strncmp(cache[cnt].c_name, MSG_ORIG(MSG_ELF_GOT),
3322 		    MSG_ELF_GOT_SIZE) == 0) {
3323 			gotcache = &cache[cnt];
3324 			break;
3325 		}
3326 	}
3327 	if (gotcache == NULL)
3328 		return;
3329 
3330 	/*
3331 	 * A got section within a relocatable object is suspicious.
3332 	 */
3333 	if (ehdr->e_type == ET_REL) {
3334 		(void) fprintf(stderr, MSG_INTL(MSG_GOT_UNEXPECTED), file,
3335 		    gotcache->c_name);
3336 	}
3337 
3338 	gotshdr = gotcache->c_shdr;
3339 	if (gotshdr->sh_size == 0) {
3340 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3341 		    file, gotcache->c_name);
3342 		return;
3343 	}
3344 
3345 	gotbgn = gotshdr->sh_addr;
3346 	gotend = gotbgn + gotshdr->sh_size;
3347 
3348 	/*
3349 	 * Some architectures don't properly set the sh_entsize for the GOT
3350 	 * table.  If it's not set, default to a size of a pointer.
3351 	 */
3352 	if ((gentsize = gotshdr->sh_entsize) == 0)
3353 		gentsize = sizeof (Xword);
3354 
3355 	if (gotcache->c_data == NULL)
3356 		return;
3357 
3358 	/* LINTED */
3359 	gotents = (Word)(gotshdr->sh_size / gentsize);
3360 	gotdata = gotcache->c_data->d_buf;
3361 
3362 	if ((gottable = calloc(gotents, sizeof (Got_info))) == 0) {
3363 		int err = errno;
3364 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), file,
3365 		    strerror(err));
3366 		return;
3367 	}
3368 
3369 	/*
3370 	 * Now we scan through all the sections looking for any relocations
3371 	 * that may be against the GOT.  Since these may not be isolated to a
3372 	 * .rel[a].got section we check them all.
3373 	 * While scanning sections save the symbol table entry (a symtab
3374 	 * overriding a dynsym) so that we can lookup _GLOBAL_OFFSET_TABLE_.
3375 	 */
3376 	for (cnt = 1; cnt < shnum; cnt++) {
3377 		Word		type, symnum;
3378 		Xword		relndx, relnum, relsize;
3379 		void		*rels;
3380 		Sym		*syms;
3381 		Cache		*symsec, *strsec;
3382 		Cache		*_cache = &cache[cnt];
3383 		Shdr		*shdr;
3384 
3385 		shdr = _cache->c_shdr;
3386 		type = shdr->sh_type;
3387 
3388 		if ((symtab == 0) && (type == SHT_DYNSYM)) {
3389 			symtab = _cache;
3390 			continue;
3391 		}
3392 		if (type == SHT_SYMTAB) {
3393 			symtab = _cache;
3394 			continue;
3395 		}
3396 		if ((type != SHT_RELA) && (type != SHT_REL))
3397 			continue;
3398 
3399 		/*
3400 		 * Decide entry size.
3401 		 */
3402 		if (((relsize = shdr->sh_entsize) == 0) ||
3403 		    (relsize > shdr->sh_size)) {
3404 			if (type == SHT_RELA)
3405 				relsize = sizeof (Rela);
3406 			else
3407 				relsize = sizeof (Rel);
3408 		}
3409 
3410 		/*
3411 		 * Determine the number of relocations available.
3412 		 */
3413 		if (shdr->sh_size == 0) {
3414 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3415 			    file, _cache->c_name);
3416 			continue;
3417 		}
3418 		if (_cache->c_data == NULL)
3419 			continue;
3420 
3421 		rels = _cache->c_data->d_buf;
3422 		relnum = shdr->sh_size / relsize;
3423 
3424 		/*
3425 		 * Get the data buffer for the associated symbol table and
3426 		 * string table.
3427 		 */
3428 		if (stringtbl(cache, 1, cnt, shnum, file,
3429 		    &symnum, &symsec, &strsec) == 0)
3430 			continue;
3431 
3432 		syms = symsec->c_data->d_buf;
3433 
3434 		/*
3435 		 * Loop through the relocation entries.
3436 		 */
3437 		for (relndx = 0; relndx < relnum; relndx++,
3438 		    rels = (void *)((char *)rels + relsize)) {
3439 			char		section[BUFSIZ];
3440 			Addr		offset;
3441 			Got_info	*gip;
3442 			Word		symndx, reltype;
3443 			Rela		*rela;
3444 			Rel		*rel;
3445 
3446 			/*
3447 			 * Unravel the relocation.
3448 			 */
3449 			if (type == SHT_RELA) {
3450 				rela = (Rela *)rels;
3451 				symndx = ELF_R_SYM(rela->r_info);
3452 				reltype = ELF_R_TYPE(rela->r_info,
3453 				    ehdr->e_machine);
3454 				offset = rela->r_offset;
3455 			} else {
3456 				rel = (Rel *)rels;
3457 				symndx = ELF_R_SYM(rel->r_info);
3458 				reltype = ELF_R_TYPE(rel->r_info,
3459 				    ehdr->e_machine);
3460 				offset = rel->r_offset;
3461 			}
3462 
3463 			/*
3464 			 * Only pay attention to relocations against the GOT.
3465 			 */
3466 			if ((offset < gotbgn) || (offset >= gotend))
3467 				continue;
3468 
3469 			/* LINTED */
3470 			gotndx = (Word)((offset - gotbgn) /
3471 			    gotshdr->sh_entsize);
3472 			gip = &gottable[gotndx];
3473 
3474 			if (gip->g_reltype != 0) {
3475 				(void) fprintf(stderr,
3476 				    MSG_INTL(MSG_GOT_MULTIPLE), file,
3477 				    EC_WORD(gotndx), EC_ADDR(offset));
3478 				continue;
3479 			}
3480 
3481 			if (symndx)
3482 				gip->g_symname = relsymname(cache, _cache,
3483 				    strsec, symndx, symnum, relndx, syms,
3484 				    section, BUFSIZ, file);
3485 			gip->g_reltype = reltype;
3486 			gip->g_rel = rels;
3487 		}
3488 	}
3489 
3490 	if (symlookup(MSG_ORIG(MSG_SYM_GOT), cache, shnum, &gotsym, symtab,
3491 	    file))
3492 		gotsymaddr = gotsym->st_value;
3493 	else
3494 		gotsymaddr = gotbgn;
3495 
3496 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3497 	dbg_print(0, MSG_INTL(MSG_ELF_SCN_GOT), gotcache->c_name);
3498 	Elf_got_title(0);
3499 
3500 	sys_encoding = _elf_sys_encoding();
3501 	for (gotndx = 0; gotndx < gotents; gotndx++) {
3502 		Got_info	*gip;
3503 		Sword		gindex;
3504 		Addr		gaddr;
3505 		Xword		gotentry;
3506 
3507 		gip = &gottable[gotndx];
3508 
3509 		gaddr = gotbgn + (gotndx * gentsize);
3510 		gindex = (Sword)(gaddr - gotsymaddr) / (Sword)gentsize;
3511 
3512 		if (gentsize == sizeof (Word))
3513 			/* LINTED */
3514 			gotentry = (Xword)(*((Word *)(gotdata) + gotndx));
3515 		else
3516 			/* LINTED */
3517 			gotentry = *((Xword *)(gotdata) + gotndx);
3518 
3519 		Elf_got_entry(0, gindex, gaddr, gotentry, ehdr->e_machine,
3520 		    ehdr->e_ident[EI_DATA], sys_encoding,
3521 		    gip->g_reltype, gip->g_rel, gip->g_symname);
3522 	}
3523 	free(gottable);
3524 }
3525 
3526 void
3527 checksum(Elf *elf)
3528 {
3529 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3530 	dbg_print(0, MSG_INTL(MSG_STR_CHECKSUM), elf_checksum(elf));
3531 }
3532 
3533 /*
3534  * This variable is used by regular() to communicate the address of
3535  * the section header cache to sort_shdr_ndx_arr(). Unfortunately,
3536  * the qsort() interface does not include a userdata argument by which
3537  * such arbitrary data can be passed, so we are stuck using global data.
3538  */
3539 static Cache *sort_shdr_ndx_arr_cache;
3540 
3541 
3542 /*
3543  * Used with qsort() to sort the section indices so that they can be
3544  * used to access the section headers in order of increasing data offset.
3545  *
3546  * entry:
3547  *	sort_shdr_ndx_arr_cache - Contains address of
3548  *		section header cache.
3549  *	v1, v2 - Point at elements of sort_shdr_bits array to be compared.
3550  *
3551  * exit:
3552  *	Returns -1 (less than), 0 (equal) or 1 (greater than).
3553  */
3554 static int
3555 sort_shdr_ndx_arr(const void *v1, const void *v2)
3556 {
3557 	Cache	*cache1 = sort_shdr_ndx_arr_cache + *((size_t *)v1);
3558 	Cache	*cache2 = sort_shdr_ndx_arr_cache + *((size_t *)v2);
3559 
3560 	if (cache1->c_shdr->sh_offset < cache2->c_shdr->sh_offset)
3561 		return (-1);
3562 
3563 	if (cache1->c_shdr->sh_offset > cache2->c_shdr->sh_offset)
3564 		return (1);
3565 
3566 	return (0);
3567 }
3568 
3569 
3570 static int
3571 shdr_cache(const char *file, Elf *elf, Ehdr *ehdr, size_t shstrndx,
3572     size_t shnum, Cache **cache_ret, Word flags)
3573 {
3574 	Elf_Scn		*scn;
3575 	Elf_Data	*data;
3576 	size_t		ndx;
3577 	Shdr		*nameshdr;
3578 	char		*names = 0;
3579 	Cache		*cache, *_cache;
3580 	size_t		*shdr_ndx_arr, shdr_ndx_arr_cnt;
3581 
3582 
3583 	/*
3584 	 * Obtain the .shstrtab data buffer to provide the required section
3585 	 * name strings.
3586 	 */
3587 	if (shstrndx == SHN_UNDEF) {
3588 		/*
3589 		 * It is rare, but legal, for an object to lack a
3590 		 * header string table section.
3591 		 */
3592 		names = NULL;
3593 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHSTRSEC), file);
3594 	} else if ((scn = elf_getscn(elf, shstrndx)) == NULL) {
3595 		failure(file, MSG_ORIG(MSG_ELF_GETSCN));
3596 		(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SHDR),
3597 		    EC_XWORD(shstrndx));
3598 
3599 	} else if ((data = elf_getdata(scn, NULL)) == NULL) {
3600 		failure(file, MSG_ORIG(MSG_ELF_GETDATA));
3601 		(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_DATA),
3602 		    EC_XWORD(shstrndx));
3603 
3604 	} else if ((nameshdr = elf_getshdr(scn)) == NULL) {
3605 		failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
3606 		(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN),
3607 		    EC_WORD(elf_ndxscn(scn)));
3608 
3609 	} else if ((names = data->d_buf) == 0)
3610 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_SHSTRNULL), file);
3611 
3612 	/*
3613 	 * Allocate a cache to maintain a descriptor for each section.
3614 	 */
3615 	if ((*cache_ret = cache = malloc(shnum * sizeof (Cache))) == NULL) {
3616 		int err = errno;
3617 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
3618 		    file, strerror(err));
3619 		return (0);
3620 	}
3621 
3622 	*cache = cache_init;
3623 	_cache = cache;
3624 	_cache++;
3625 
3626 	/*
3627 	 * Allocate an array that will hold the section index for
3628 	 * each section that has data in the ELF file:
3629 	 *
3630 	 *	- Is not a NOBITS section
3631 	 *	- Data has non-zero length
3632 	 *
3633 	 * Note that shnum is an upper bound on the size required. It
3634 	 * is likely that we won't use a few of these array elements.
3635 	 * Allocating a modest amount of extra memory in this case means
3636 	 * that we can avoid an extra loop to count the number of needed
3637 	 * items, and can fill this array immediately in the first loop
3638 	 * below.
3639 	 */
3640 	if ((shdr_ndx_arr = malloc(shnum * sizeof (*shdr_ndx_arr))) == NULL) {
3641 		int err = errno;
3642 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
3643 		    file, strerror(err));
3644 		return (0);
3645 	}
3646 	shdr_ndx_arr_cnt = 0;
3647 
3648 	/*
3649 	 * Traverse the sections of the file.  This gathering of data is
3650 	 * carried out in two passes.  First, the section headers are captured
3651 	 * and the section header names are evaluated.  A verification pass is
3652 	 * then carried out over the section information.  Files have been
3653 	 * known to exhibit overlapping (and hence erroneous) section header
3654 	 * information.
3655 	 *
3656 	 * Finally, the data for each section is obtained.  This processing is
3657 	 * carried out after section verification because should any section
3658 	 * header overlap occur, and a file needs translating (ie. xlate'ing
3659 	 * information from a non-native architecture file), then the process
3660 	 * of translation can corrupt the section header information.  Of
3661 	 * course, if there is any section overlap, the data related to the
3662 	 * sections is going to be compromised.  However, it is the translation
3663 	 * of this data that has caused problems with elfdump()'s ability to
3664 	 * extract the data.
3665 	 */
3666 	for (ndx = 1, scn = NULL; scn = elf_nextscn(elf, scn);
3667 	    ndx++, _cache++) {
3668 		char	scnndxnm[100];
3669 
3670 		_cache->c_ndx = ndx;
3671 		_cache->c_scn = scn;
3672 
3673 		if ((_cache->c_shdr = elf_getshdr(scn)) == NULL) {
3674 			failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
3675 			(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN),
3676 			    EC_WORD(elf_ndxscn(scn)));
3677 		}
3678 
3679 		/*
3680 		 * If this section has data in the file, include it in
3681 		 * the array of sections to check for address overlap.
3682 		 */
3683 		if ((_cache->c_shdr->sh_size != 0) &&
3684 		    (_cache->c_shdr->sh_type != SHT_NOBITS))
3685 			shdr_ndx_arr[shdr_ndx_arr_cnt++] = ndx;
3686 
3687 		/*
3688 		 * If a shstrtab exists, assign the section name.
3689 		 */
3690 		if (names && _cache->c_shdr) {
3691 			if (_cache->c_shdr->sh_name &&
3692 			    /* LINTED */
3693 			    (nameshdr->sh_size > _cache->c_shdr->sh_name)) {
3694 				const char	*symname;
3695 				char		*secname;
3696 
3697 				secname = names + _cache->c_shdr->sh_name;
3698 
3699 				/*
3700 				 * A SUN naming convention employs a "%" within
3701 				 * a section name to indicate a section/symbol
3702 				 * name.  This originated from the compilers
3703 				 * -xF option, that places functions into their
3704 				 * own sections.  This convention (which has no
3705 				 * formal standard) has also been followed for
3706 				 * COMDAT sections.  To demangle the symbol
3707 				 * name, the name must be separated from the
3708 				 * section name.
3709 				 */
3710 				if (((flags & FLG_CTL_DEMANGLE) == 0) ||
3711 				    ((symname = strchr(secname, '%')) == NULL))
3712 					_cache->c_name = secname;
3713 				else {
3714 					size_t	secsz = ++symname - secname;
3715 					size_t	strsz;
3716 
3717 					symname = demangle(symname, flags);
3718 					strsz = secsz + strlen(symname) + 1;
3719 
3720 					if ((_cache->c_name =
3721 					    malloc(strsz)) == NULL) {
3722 						int err = errno;
3723 						(void) fprintf(stderr,
3724 						    MSG_INTL(MSG_ERR_MALLOC),
3725 						    file, strerror(err));
3726 						return (0);
3727 					}
3728 					(void) snprintf(_cache->c_name, strsz,
3729 					    MSG_ORIG(MSG_FMT_SECSYM),
3730 					    EC_WORD(secsz), secname, symname);
3731 				}
3732 				continue;
3733 			}
3734 
3735 			/*
3736 			 * Generate an error if the section name index is zero
3737 			 * or exceeds the shstrtab data.  Fall through to
3738 			 * fabricate a section name.
3739 			 */
3740 			if ((_cache->c_shdr->sh_name == 0) ||
3741 			    /* LINTED */
3742 			    (nameshdr->sh_size <= _cache->c_shdr->sh_name)) {
3743 				(void) fprintf(stderr,
3744 				    MSG_INTL(MSG_ERR_BADSHNAME), file,
3745 				    EC_WORD(ndx),
3746 				    EC_XWORD(_cache->c_shdr->sh_name));
3747 			}
3748 		}
3749 
3750 		/*
3751 		 * If there exists no shstrtab data, or a section header has no
3752 		 * name (an invalid index of 0), then compose a name for the
3753 		 * section.
3754 		 */
3755 		(void) snprintf(scnndxnm, sizeof (scnndxnm),
3756 		    MSG_INTL(MSG_FMT_SCNNDX), ndx);
3757 
3758 		if ((_cache->c_name = malloc(strlen(scnndxnm) + 1)) == NULL) {
3759 			int err = errno;
3760 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
3761 			    file, strerror(err));
3762 			return (0);
3763 		}
3764 		(void) strcpy(_cache->c_name, scnndxnm);
3765 	}
3766 
3767 	/*
3768 	 * Having collected all the sections, validate their address range.
3769 	 * Cases have existed where the section information has been invalid.
3770 	 * This can lead to all sorts of other, hard to diagnose errors, as
3771 	 * each section is processed individually (ie. with elf_getdata()).
3772 	 * Here, we carry out some address comparisons to catch a family of
3773 	 * overlapping memory issues we have observed (likely, there are others
3774 	 * that we have yet to discover).
3775 	 *
3776 	 * Note, should any memory overlap occur, obtaining any additional
3777 	 * data from the file is questionable.  However, it might still be
3778 	 * possible to inspect the ELF header, Programs headers, or individual
3779 	 * sections, so rather than bailing on an error condition, continue
3780 	 * processing to see if any data can be salvaged.
3781 	 */
3782 	if (shdr_ndx_arr_cnt > 1) {
3783 		sort_shdr_ndx_arr_cache = cache;
3784 		qsort(shdr_ndx_arr, shdr_ndx_arr_cnt,
3785 		    sizeof (*shdr_ndx_arr), sort_shdr_ndx_arr);
3786 	}
3787 	for (ndx = 0; ndx < shdr_ndx_arr_cnt; ndx++) {
3788 		Cache	*_cache = cache + shdr_ndx_arr[ndx];
3789 		Shdr	*shdr = _cache->c_shdr;
3790 		Off	bgn1, bgn = shdr->sh_offset;
3791 		Off	end1, end = shdr->sh_offset + shdr->sh_size;
3792 		size_t	ndx1;
3793 
3794 		/*
3795 		 * Check the section against all following ones, reporting
3796 		 * any overlaps. Since we've sorted the sections by offset,
3797 		 * we can stop after the first comparison that fails. There
3798 		 * are no overlaps in a properly formed ELF file, in which
3799 		 * case this algorithm runs in O(n) time. This will degenerate
3800 		 * to O(n^2) for a completely broken file. Such a file is
3801 		 * (1) highly unlikely, and (2) unusable, so it is reasonable
3802 		 * for the analysis to take longer.
3803 		 */
3804 		for (ndx1 = ndx + 1; ndx1 < shdr_ndx_arr_cnt; ndx1++) {
3805 			Cache	*_cache1 = cache + shdr_ndx_arr[ndx1];
3806 			Shdr	*shdr1 = _cache1->c_shdr;
3807 
3808 			bgn1 = shdr1->sh_offset;
3809 			end1 = shdr1->sh_offset + shdr1->sh_size;
3810 
3811 			if (((bgn1 <= bgn) && (end1 > bgn)) ||
3812 			    ((bgn1 < end) && (end1 >= end))) {
3813 				(void) fprintf(stderr,
3814 				    MSG_INTL(MSG_ERR_SECMEMOVER), file,
3815 				    EC_WORD(elf_ndxscn(_cache->c_scn)),
3816 				    _cache->c_name, EC_OFF(bgn), EC_OFF(end),
3817 				    EC_WORD(elf_ndxscn(_cache1->c_scn)),
3818 				    _cache1->c_name, EC_OFF(bgn1),
3819 				    EC_OFF(end1));
3820 			} else {	/* No overlap, so can stop */
3821 				break;
3822 			}
3823 		}
3824 
3825 		/*
3826 		 * In addition to checking for sections overlapping
3827 		 * each other (done above), we should also make sure
3828 		 * the section doesn't overlap the section header array.
3829 		 */
3830 		bgn1 = ehdr->e_shoff;
3831 		end1 = ehdr->e_shoff + (ehdr->e_shentsize * ehdr->e_shnum);
3832 
3833 		if (((bgn1 <= bgn) && (end1 > bgn)) ||
3834 		    ((bgn1 < end) && (end1 >= end))) {
3835 			(void) fprintf(stderr,
3836 			    MSG_INTL(MSG_ERR_SHDRMEMOVER), file, EC_OFF(bgn1),
3837 			    EC_OFF(end1),
3838 			    EC_WORD(elf_ndxscn(_cache->c_scn)),
3839 			    _cache->c_name, EC_OFF(bgn), EC_OFF(end));
3840 		}
3841 	}
3842 
3843 	/*
3844 	 * Obtain the data for each section.
3845 	 */
3846 	for (ndx = 1; ndx < shnum; ndx++) {
3847 		Cache	*_cache = &cache[ndx];
3848 		Elf_Scn	*scn = _cache->c_scn;
3849 
3850 		if ((_cache->c_data = elf_getdata(scn, NULL)) == NULL) {
3851 			failure(file, MSG_ORIG(MSG_ELF_GETDATA));
3852 			(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCNDATA),
3853 			    EC_WORD(elf_ndxscn(scn)));
3854 		}
3855 	}
3856 
3857 	return (1);
3858 }
3859 
3860 
3861 
3862 int
3863 regular(const char *file, int fd, Elf *elf, uint_t flags,
3864     const char *wname, int wfd)
3865 {
3866 	Elf_Scn		*scn;
3867 	Ehdr		*ehdr;
3868 	size_t		ndx, shstrndx, shnum, phnum;
3869 	Shdr		*shdr;
3870 	Cache		*cache;
3871 	VERSYM_STATE	versym;
3872 	int		ret = 0;
3873 	int		addr_align;
3874 
3875 	if ((ehdr = elf_getehdr(elf)) == NULL) {
3876 		failure(file, MSG_ORIG(MSG_ELF_GETEHDR));
3877 		return (ret);
3878 	}
3879 
3880 	if (elf_getshnum(elf, &shnum) == 0) {
3881 		failure(file, MSG_ORIG(MSG_ELF_GETSHNUM));
3882 		return (ret);
3883 	}
3884 
3885 	if (elf_getshstrndx(elf, &shstrndx) == 0) {
3886 		failure(file, MSG_ORIG(MSG_ELF_GETSHSTRNDX));
3887 		return (ret);
3888 	}
3889 
3890 	if (elf_getphnum(elf, &phnum) == 0) {
3891 		failure(file, MSG_ORIG(MSG_ELF_GETPHNUM));
3892 		return (ret);
3893 	}
3894 	/*
3895 	 * If the user requested section headers derived from the
3896 	 * program headers (-P option) and this file doesn't have
3897 	 * any program headers (i.e. ET_REL), then we can't do it.
3898 	 */
3899 	if ((phnum == 0) && (flags & FLG_CTL_FAKESHDR)) {
3900 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_PNEEDSPH), file);
3901 		return (ret);
3902 	}
3903 
3904 
3905 	if ((scn = elf_getscn(elf, 0)) != NULL) {
3906 		if ((shdr = elf_getshdr(scn)) == NULL) {
3907 			failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
3908 			(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN), 0);
3909 			return (ret);
3910 		}
3911 	} else
3912 		shdr = 0;
3913 
3914 	/*
3915 	 * Print the elf header.
3916 	 */
3917 	if (flags & FLG_SHOW_EHDR)
3918 		Elf_ehdr(0, ehdr, shdr);
3919 
3920 	/*
3921 	 * If the section headers or program headers have inadequate
3922 	 * alignment for the class of object, print a warning. libelf
3923 	 * can handle such files, but programs that use them can crash
3924 	 * when they dereference unaligned items.
3925 	 *
3926 	 * Note that the AMD64 ABI, although it is a 64-bit architecture,
3927 	 * allows access to data types smaller than 128-bits to be on
3928 	 * word alignment.
3929 	 */
3930 	if (ehdr->e_machine == EM_AMD64)
3931 		addr_align = sizeof (Word);
3932 	else
3933 		addr_align = sizeof (Addr);
3934 
3935 	if (ehdr->e_phoff & (addr_align - 1))
3936 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADPHDRALIGN), file);
3937 	if (ehdr->e_shoff & (addr_align - 1))
3938 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHDRALIGN), file);
3939 
3940 	/*
3941 	 * Print the program headers.
3942 	 */
3943 	if ((flags & FLG_SHOW_PHDR) && (phnum != 0)) {
3944 		Phdr	*phdr;
3945 
3946 		if ((phdr = elf_getphdr(elf)) == NULL) {
3947 			failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
3948 			return (ret);
3949 		}
3950 
3951 		for (ndx = 0; ndx < phnum; phdr++, ndx++) {
3952 			if (!match(MATCH_F_PHDR| MATCH_F_NDX | MATCH_F_TYPE,
3953 			    NULL, ndx, phdr->p_type))
3954 				continue;
3955 
3956 			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3957 			dbg_print(0, MSG_INTL(MSG_ELF_PHDR), EC_WORD(ndx));
3958 			Elf_phdr(0, ehdr->e_machine, phdr);
3959 		}
3960 	}
3961 
3962 	/*
3963 	 * If we have flag bits set that explicitly require a show or calc
3964 	 * operation, but none of them require the section headers, then
3965 	 * we are done and can return now.
3966 	 */
3967 	if (((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) != 0) &&
3968 	    ((flags & (FLG_MASK_SHOW_SHDR | FLG_MASK_CALC_SHDR)) == 0))
3969 		return (ret);
3970 
3971 	/*
3972 	 * If there are no section headers, then resort to synthesizing
3973 	 * section headers from the program headers. This is normally
3974 	 * only done by explicit request, but in this case there's no
3975 	 * reason not to go ahead, since the alternative is simply to quit.
3976 	 */
3977 	if ((shnum <= 1) && ((flags & FLG_CTL_FAKESHDR) == 0)) {
3978 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHDR), file);
3979 		flags |= FLG_CTL_FAKESHDR;
3980 	}
3981 
3982 	/*
3983 	 * Generate a cache of section headers and related information
3984 	 * for use by the rest of elfdump. If requested (or the file
3985 	 * contains no section headers), we generate a fake set of
3986 	 * headers from the information accessible from the program headers.
3987 	 * Otherwise, we use the real section headers contained in the file.
3988 	 */
3989 
3990 	if (flags & FLG_CTL_FAKESHDR) {
3991 		if (fake_shdr_cache(file, fd, elf, ehdr, &cache, &shnum) == 0)
3992 			return (ret);
3993 	} else {
3994 		if (shdr_cache(file, elf, ehdr, shstrndx, shnum,
3995 		    &cache, flags) == 0)
3996 			return (ret);
3997 	}
3998 
3999 	/*
4000 	 * Everything from this point on requires section headers.
4001 	 * If we have no section headers, there is no reason to continue.
4002 	 */
4003 	if (shnum <= 1)
4004 		goto done;
4005 
4006 	/*
4007 	 * If -w was specified, find and write out the section(s) data.
4008 	 */
4009 	if (wfd) {
4010 		for (ndx = 1; ndx < shnum; ndx++) {
4011 			Cache	*_cache = &cache[ndx];
4012 
4013 			if (match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name,
4014 			    ndx, _cache->c_shdr->sh_type) &&
4015 			    _cache->c_data && _cache->c_data->d_buf) {
4016 				if (write(wfd, _cache->c_data->d_buf,
4017 				    _cache->c_data->d_size) !=
4018 				    _cache->c_data->d_size) {
4019 					int err = errno;
4020 					(void) fprintf(stderr,
4021 					    MSG_INTL(MSG_ERR_WRITE), wname,
4022 					    strerror(err));
4023 					/*
4024 					 * Return an exit status of 1, because
4025 					 * the failure is not related to the
4026 					 * ELF file, but by system resources.
4027 					 */
4028 					ret = 1;
4029 					goto done;
4030 				}
4031 			}
4032 		}
4033 	}
4034 
4035 	/*
4036 	 * If we have no flag bits set that explicitly require a show or calc
4037 	 * operation, but match options (-I, -N, -T) were used, then run
4038 	 * through the section headers and see if we can't deduce show flags
4039 	 * from the match options given.
4040 	 *
4041 	 * We don't do this if -w was specified, because (-I, -N, -T) used
4042 	 * with -w in lieu of some other option is supposed to be quiet.
4043 	 */
4044 	if ((wfd == 0) && (flags & FLG_CTL_MATCH) &&
4045 	    ((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) == 0)) {
4046 		for (ndx = 1; ndx < shnum; ndx++) {
4047 			Cache	*_cache = &cache[ndx];
4048 
4049 			if (!match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name,
4050 			    ndx, _cache->c_shdr->sh_type))
4051 				continue;
4052 
4053 			switch (_cache->c_shdr->sh_type) {
4054 			case SHT_PROGBITS:
4055 				/*
4056 				 * Heuristic time: It is usually bad form
4057 				 * to assume that specific section names
4058 				 * have a given meaning. However, the
4059 				 * ELF ABI does specify a few such names. Try
4060 				 * to match them:
4061 				 */
4062 				if (strcmp(_cache->c_name,
4063 				    MSG_ORIG(MSG_ELF_INTERP)) == 0)
4064 					flags |= FLG_SHOW_INTERP;
4065 				else if (strcmp(_cache->c_name,
4066 				    MSG_ORIG(MSG_ELF_GOT)) == 0)
4067 					flags |= FLG_SHOW_GOT;
4068 				break;
4069 
4070 			case SHT_SYMTAB:
4071 			case SHT_DYNSYM:
4072 			case SHT_SUNW_LDYNSYM:
4073 			case SHT_SUNW_versym:
4074 			case SHT_SYMTAB_SHNDX:
4075 				flags |= FLG_SHOW_SYMBOLS;
4076 				break;
4077 
4078 			case SHT_RELA:
4079 			case SHT_REL:
4080 				flags |= FLG_SHOW_RELOC;
4081 				break;
4082 
4083 			case SHT_HASH:
4084 				flags |= FLG_SHOW_HASH;
4085 				break;
4086 
4087 			case SHT_DYNAMIC:
4088 				flags |= FLG_SHOW_DYNAMIC;
4089 				break;
4090 
4091 			case SHT_NOTE:
4092 				flags |= FLG_SHOW_NOTE;
4093 				break;
4094 
4095 			case SHT_GROUP:
4096 				flags |= FLG_SHOW_GROUP;
4097 				break;
4098 
4099 			case SHT_SUNW_symsort:
4100 			case SHT_SUNW_tlssort:
4101 				flags |= FLG_SHOW_SORT;
4102 				break;
4103 
4104 			case SHT_SUNW_cap:
4105 				flags |= FLG_SHOW_CAP;
4106 				break;
4107 
4108 			case SHT_SUNW_move:
4109 				flags |= FLG_SHOW_MOVE;
4110 				break;
4111 
4112 			case SHT_SUNW_syminfo:
4113 				flags |= FLG_SHOW_SYMINFO;
4114 				break;
4115 
4116 			case SHT_SUNW_verdef:
4117 			case SHT_SUNW_verneed:
4118 				flags |= FLG_SHOW_VERSIONS;
4119 				break;
4120 
4121 			case SHT_AMD64_UNWIND:
4122 				flags |= FLG_SHOW_UNWIND;
4123 				break;
4124 			}
4125 		}
4126 	}
4127 
4128 
4129 	if (flags & FLG_SHOW_SHDR)
4130 		sections(file, cache, shnum, ehdr);
4131 
4132 	if (flags & FLG_SHOW_INTERP)
4133 		interp(file, cache, shnum, phnum, elf);
4134 
4135 	versions(cache, shnum, file, flags, &versym);
4136 
4137 	if (flags & FLG_SHOW_SYMBOLS)
4138 		symbols(cache, shnum, ehdr, &versym, file, flags);
4139 
4140 	if (flags & FLG_SHOW_SORT)
4141 		sunw_sort(cache, shnum, ehdr, &versym, file, flags);
4142 
4143 	if (flags & FLG_SHOW_HASH)
4144 		hash(cache, shnum, file, flags);
4145 
4146 	if (flags & FLG_SHOW_GOT)
4147 		got(cache, shnum, ehdr, file);
4148 
4149 	if (flags & FLG_SHOW_GROUP)
4150 		group(cache, shnum, file, flags);
4151 
4152 	if (flags & FLG_SHOW_SYMINFO)
4153 		syminfo(cache, shnum, file);
4154 
4155 	if (flags & FLG_SHOW_RELOC)
4156 		reloc(cache, shnum, ehdr, file);
4157 
4158 	if (flags & FLG_SHOW_DYNAMIC)
4159 		dynamic(cache, shnum, ehdr, file);
4160 
4161 	if (flags & FLG_SHOW_NOTE) {
4162 		Word	note_cnt;
4163 		size_t	note_shnum;
4164 		Cache	*note_cache;
4165 
4166 		note_cnt = note(cache, shnum, ehdr, file);
4167 
4168 		/*
4169 		 * Solaris core files have section headers, but these
4170 		 * headers do not include SHT_NOTE sections that reference
4171 		 * the core note sections. This means that note() won't
4172 		 * find the core notes. Fake section headers (-P option)
4173 		 * recover these sections, but it is inconvenient to require
4174 		 * users to specify -P in this situation. If the following
4175 		 * are all true:
4176 		 *
4177 		 *	- No note sections were found
4178 		 *	- This is a core file
4179 		 *	- We are not already using fake section headers
4180 		 *
4181 		 * then we will automatically generate fake section headers
4182 		 * and then process them in a second call to note().
4183 		 */
4184 		if ((note_cnt == 0) && (ehdr->e_type == ET_CORE) &&
4185 		    !(flags & FLG_CTL_FAKESHDR) &&
4186 		    (fake_shdr_cache(file, fd, elf, ehdr,
4187 		    &note_cache, &note_shnum) != 0)) {
4188 			(void) note(note_cache, note_shnum, ehdr, file);
4189 			fake_shdr_cache_free(note_cache, note_shnum);
4190 		}
4191 	}
4192 
4193 	if (flags & FLG_SHOW_MOVE)
4194 		move(cache, shnum, file, flags);
4195 
4196 	if (flags & FLG_CALC_CHECKSUM)
4197 		checksum(elf);
4198 
4199 	if (flags & FLG_SHOW_CAP)
4200 		cap(file, cache, shnum, phnum, ehdr, elf);
4201 
4202 	if (flags & FLG_SHOW_UNWIND)
4203 		unwind(cache, shnum, phnum, ehdr, file, elf);
4204 
4205 
4206 	/* Release the memory used to cache section headers */
4207 done:
4208 	if (flags & FLG_CTL_FAKESHDR)
4209 		fake_shdr_cache_free(cache, shnum);
4210 	else
4211 		free(cache);
4212 
4213 	return (ret);
4214 }
4215