1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <mdb/mdb_param.h> 29 #include <mdb/mdb_modapi.h> 30 #include <mdb/mdb_ks.h> 31 #include <mdb/mdb_ctf.h> 32 33 #include <sys/types.h> 34 #include <sys/thread.h> 35 #include <sys/session.h> 36 #include <sys/user.h> 37 #include <sys/proc.h> 38 #include <sys/var.h> 39 #include <sys/t_lock.h> 40 #include <sys/callo.h> 41 #include <sys/priocntl.h> 42 #include <sys/class.h> 43 #include <sys/regset.h> 44 #include <sys/stack.h> 45 #include <sys/cpuvar.h> 46 #include <sys/vnode.h> 47 #include <sys/vfs.h> 48 #include <sys/flock_impl.h> 49 #include <sys/kmem_impl.h> 50 #include <sys/vmem_impl.h> 51 #include <sys/kstat.h> 52 #include <vm/seg_vn.h> 53 #include <vm/anon.h> 54 #include <vm/as.h> 55 #include <vm/seg_map.h> 56 #include <sys/dditypes.h> 57 #include <sys/ddi_impldefs.h> 58 #include <sys/sysmacros.h> 59 #include <sys/sysconf.h> 60 #include <sys/task.h> 61 #include <sys/project.h> 62 #include <sys/taskq.h> 63 #include <sys/taskq_impl.h> 64 #include <sys/errorq_impl.h> 65 #include <sys/cred_impl.h> 66 #include <sys/zone.h> 67 #include <sys/panic.h> 68 #include <regex.h> 69 #include <sys/port_impl.h> 70 71 #include "avl.h" 72 #include "contract.h" 73 #include "cpupart_mdb.h" 74 #include "devinfo.h" 75 #include "leaky.h" 76 #include "lgrp.h" 77 #include "pg.h" 78 #include "group.h" 79 #include "list.h" 80 #include "log.h" 81 #include "kgrep.h" 82 #include "kmem.h" 83 #include "bio.h" 84 #include "streams.h" 85 #include "cyclic.h" 86 #include "findstack.h" 87 #include "ndievents.h" 88 #include "mmd.h" 89 #include "net.h" 90 #include "netstack.h" 91 #include "nvpair.h" 92 #include "ctxop.h" 93 #include "tsd.h" 94 #include "thread.h" 95 #include "memory.h" 96 #include "sobj.h" 97 #include "sysevent.h" 98 #include "rctl.h" 99 #include "tsol.h" 100 #include "typegraph.h" 101 #include "ldi.h" 102 #include "vfs.h" 103 #include "zone.h" 104 #include "modhash.h" 105 #include "mdi.h" 106 #include "fm.h" 107 108 /* 109 * Surely this is defined somewhere... 110 */ 111 #define NINTR 16 112 113 #ifndef STACK_BIAS 114 #define STACK_BIAS 0 115 #endif 116 117 static char 118 pstat2ch(uchar_t state) 119 { 120 switch (state) { 121 case SSLEEP: return ('S'); 122 case SRUN: return ('R'); 123 case SZOMB: return ('Z'); 124 case SIDL: return ('I'); 125 case SONPROC: return ('O'); 126 case SSTOP: return ('T'); 127 default: return ('?'); 128 } 129 } 130 131 #define PS_PRTTHREADS 0x1 132 #define PS_PRTLWPS 0x2 133 #define PS_PSARGS 0x4 134 #define PS_TASKS 0x8 135 #define PS_PROJECTS 0x10 136 #define PS_ZONES 0x20 137 138 static int 139 ps_threadprint(uintptr_t addr, const void *data, void *private) 140 { 141 const kthread_t *t = (const kthread_t *)data; 142 uint_t prt_flags = *((uint_t *)private); 143 144 static const mdb_bitmask_t t_state_bits[] = { 145 { "TS_FREE", UINT_MAX, TS_FREE }, 146 { "TS_SLEEP", TS_SLEEP, TS_SLEEP }, 147 { "TS_RUN", TS_RUN, TS_RUN }, 148 { "TS_ONPROC", TS_ONPROC, TS_ONPROC }, 149 { "TS_ZOMB", TS_ZOMB, TS_ZOMB }, 150 { "TS_STOPPED", TS_STOPPED, TS_STOPPED }, 151 { NULL, 0, 0 } 152 }; 153 154 if (prt_flags & PS_PRTTHREADS) 155 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits); 156 157 if (prt_flags & PS_PRTLWPS) 158 mdb_printf("\tL %?a ID: %u\n", t->t_lwp, t->t_tid); 159 160 return (WALK_NEXT); 161 } 162 163 int 164 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 165 { 166 uint_t prt_flags = 0; 167 proc_t pr; 168 struct pid pid, pgid, sid; 169 sess_t session; 170 cred_t cred; 171 task_t tk; 172 kproject_t pj; 173 zone_t zn; 174 175 if (!(flags & DCMD_ADDRSPEC)) { 176 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) { 177 mdb_warn("can't walk 'proc'"); 178 return (DCMD_ERR); 179 } 180 return (DCMD_OK); 181 } 182 183 if (mdb_getopts(argc, argv, 184 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags, 185 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags, 186 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags, 187 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags, 188 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags, 189 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc) 190 return (DCMD_USAGE); 191 192 if (DCMD_HDRSPEC(flags)) { 193 mdb_printf("%<u>%1s %6s %6s %6s %6s ", 194 "S", "PID", "PPID", "PGID", "SID"); 195 if (prt_flags & PS_TASKS) 196 mdb_printf("%5s ", "TASK"); 197 if (prt_flags & PS_PROJECTS) 198 mdb_printf("%5s ", "PROJ"); 199 if (prt_flags & PS_ZONES) 200 mdb_printf("%5s ", "ZONE"); 201 mdb_printf("%6s %10s %?s %s%</u>\n", 202 "UID", "FLAGS", "ADDR", "NAME"); 203 } 204 205 mdb_vread(&pr, sizeof (pr), addr); 206 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp); 207 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp); 208 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred); 209 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp); 210 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp); 211 if (prt_flags & (PS_TASKS | PS_PROJECTS)) 212 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task); 213 if (prt_flags & PS_PROJECTS) 214 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj); 215 if (prt_flags & PS_ZONES) 216 mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone); 217 218 mdb_printf("%c %6d %6d %6d %6d ", 219 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id, 220 sid.pid_id); 221 if (prt_flags & PS_TASKS) 222 mdb_printf("%5d ", tk.tk_tkid); 223 if (prt_flags & PS_PROJECTS) 224 mdb_printf("%5d ", pj.kpj_id); 225 if (prt_flags & PS_ZONES) 226 mdb_printf("%5d ", zn.zone_id); 227 mdb_printf("%6d 0x%08x %0?p %s\n", 228 cred.cr_uid, pr.p_flag, addr, 229 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm); 230 231 if (prt_flags & ~PS_PSARGS) 232 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr); 233 234 return (DCMD_OK); 235 } 236 237 #define PG_NEWEST 0x0001 238 #define PG_OLDEST 0x0002 239 #define PG_PIPE_OUT 0x0004 240 #define PG_EXACT_MATCH 0x0008 241 242 typedef struct pgrep_data { 243 uint_t pg_flags; 244 uint_t pg_psflags; 245 uintptr_t pg_xaddr; 246 hrtime_t pg_xstart; 247 const char *pg_pat; 248 #ifndef _KMDB 249 regex_t pg_reg; 250 #endif 251 } pgrep_data_t; 252 253 /*ARGSUSED*/ 254 static int 255 pgrep_cb(uintptr_t addr, const void *pdata, void *data) 256 { 257 const proc_t *prp = pdata; 258 pgrep_data_t *pgp = data; 259 #ifndef _KMDB 260 regmatch_t pmatch; 261 #endif 262 263 /* 264 * kmdb doesn't have access to the reg* functions, so we fall back 265 * to strstr/strcmp. 266 */ 267 #ifdef _KMDB 268 if ((pgp->pg_flags & PG_EXACT_MATCH) ? 269 (strcmp(prp->p_user.u_comm, pgp->pg_pat) != 0) : 270 (strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL)) 271 return (WALK_NEXT); 272 #else 273 if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0) 274 return (WALK_NEXT); 275 276 if ((pgp->pg_flags & PG_EXACT_MATCH) && 277 (pmatch.rm_so != 0 || prp->p_user.u_comm[pmatch.rm_eo] != '\0')) 278 return (WALK_NEXT); 279 #endif 280 281 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) { 282 hrtime_t start; 283 284 start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC + 285 prp->p_user.u_start.tv_nsec; 286 287 if (pgp->pg_flags & PG_NEWEST) { 288 if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) { 289 pgp->pg_xaddr = addr; 290 pgp->pg_xstart = start; 291 } 292 } else { 293 if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) { 294 pgp->pg_xaddr = addr; 295 pgp->pg_xstart = start; 296 } 297 } 298 299 } else if (pgp->pg_flags & PG_PIPE_OUT) { 300 mdb_printf("%p\n", addr); 301 302 } else { 303 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) { 304 mdb_warn("can't invoke 'ps'"); 305 return (WALK_DONE); 306 } 307 pgp->pg_psflags &= ~DCMD_LOOPFIRST; 308 } 309 310 return (WALK_NEXT); 311 } 312 313 /*ARGSUSED*/ 314 int 315 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 316 { 317 pgrep_data_t pg; 318 int i; 319 #ifndef _KMDB 320 int err; 321 #endif 322 323 if (flags & DCMD_ADDRSPEC) 324 return (DCMD_USAGE); 325 326 pg.pg_flags = 0; 327 pg.pg_xaddr = 0; 328 329 i = mdb_getopts(argc, argv, 330 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags, 331 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags, 332 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags, 333 NULL); 334 335 argc -= i; 336 argv += i; 337 338 if (argc != 1) 339 return (DCMD_USAGE); 340 341 /* 342 * -n and -o are mutually exclusive. 343 */ 344 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST)) 345 return (DCMD_USAGE); 346 347 if (argv->a_type != MDB_TYPE_STRING) 348 return (DCMD_USAGE); 349 350 if (flags & DCMD_PIPE_OUT) 351 pg.pg_flags |= PG_PIPE_OUT; 352 353 pg.pg_pat = argv->a_un.a_str; 354 if (DCMD_HDRSPEC(flags)) 355 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST; 356 else 357 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP; 358 359 #ifndef _KMDB 360 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) { 361 size_t nbytes; 362 char *buf; 363 364 nbytes = regerror(err, &pg.pg_reg, NULL, 0); 365 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC); 366 (void) regerror(err, &pg.pg_reg, buf, nbytes); 367 mdb_warn("%s\n", buf); 368 369 return (DCMD_ERR); 370 } 371 #endif 372 373 if (mdb_walk("proc", pgrep_cb, &pg) != 0) { 374 mdb_warn("can't walk 'proc'"); 375 return (DCMD_ERR); 376 } 377 378 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) { 379 if (pg.pg_flags & PG_PIPE_OUT) { 380 mdb_printf("%p\n", pg.pg_xaddr); 381 } else { 382 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags, 383 0, NULL) != 0) { 384 mdb_warn("can't invoke 'ps'"); 385 return (DCMD_ERR); 386 } 387 } 388 } 389 390 return (DCMD_OK); 391 } 392 393 int 394 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 395 { 396 task_t tk; 397 kproject_t pj; 398 399 if (!(flags & DCMD_ADDRSPEC)) { 400 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) { 401 mdb_warn("can't walk task_cache"); 402 return (DCMD_ERR); 403 } 404 return (DCMD_OK); 405 } 406 if (DCMD_HDRSPEC(flags)) { 407 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n", 408 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS"); 409 } 410 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) { 411 mdb_warn("can't read task_t structure at %p", addr); 412 return (DCMD_ERR); 413 } 414 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) { 415 mdb_warn("can't read project_t structure at %p", addr); 416 return (DCMD_ERR); 417 } 418 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n", 419 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count, 420 tk.tk_flags); 421 return (DCMD_OK); 422 } 423 424 int 425 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 426 { 427 kproject_t pj; 428 429 if (!(flags & DCMD_ADDRSPEC)) { 430 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) { 431 mdb_warn("can't walk projects"); 432 return (DCMD_ERR); 433 } 434 return (DCMD_OK); 435 } 436 if (DCMD_HDRSPEC(flags)) { 437 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n", 438 "ADDR", "PROJID", "ZONEID", "REFCNT"); 439 } 440 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 441 mdb_warn("can't read kproject_t structure at %p", addr); 442 return (DCMD_ERR); 443 } 444 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid, 445 pj.kpj_count); 446 return (DCMD_OK); 447 } 448 449 /*ARGSUSED*/ 450 int 451 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 452 { 453 callout_table_t *co_ktable[CALLOUT_TABLES]; 454 int co_kfanout; 455 callout_table_t co_table; 456 callout_t co_callout; 457 callout_t *co_ptr; 458 int co_id; 459 clock_t lbolt; 460 int i, j, k; 461 const char *lbolt_sym; 462 463 if ((flags & DCMD_ADDRSPEC) || argc != 0) 464 return (DCMD_USAGE); 465 466 if (mdb_prop_postmortem) 467 lbolt_sym = "panic_lbolt"; 468 else 469 lbolt_sym = "lbolt"; 470 471 if (mdb_readvar(&lbolt, lbolt_sym) == -1) { 472 mdb_warn("failed to read '%s'", lbolt_sym); 473 return (DCMD_ERR); 474 } 475 476 if (mdb_readvar(&co_kfanout, "callout_fanout") == -1) { 477 mdb_warn("failed to read callout_fanout"); 478 return (DCMD_ERR); 479 } 480 481 if (mdb_readvar(&co_ktable, "callout_table") == -1) { 482 mdb_warn("failed to read callout_table"); 483 return (DCMD_ERR); 484 } 485 486 mdb_printf("%<u>%-24s %-?s %-?s %-?s%</u>\n", 487 "FUNCTION", "ARGUMENT", "ID", "TIME"); 488 489 for (i = 0; i < CALLOUT_NTYPES; i++) { 490 for (j = 0; j < co_kfanout; j++) { 491 492 co_id = CALLOUT_TABLE(i, j); 493 494 if (mdb_vread(&co_table, sizeof (co_table), 495 (uintptr_t)co_ktable[co_id]) == -1) { 496 mdb_warn("failed to read table at %p", 497 (uintptr_t)co_ktable[co_id]); 498 continue; 499 } 500 501 for (k = 0; k < CALLOUT_BUCKETS; k++) { 502 co_ptr = co_table.ct_idhash[k]; 503 504 while (co_ptr != NULL) { 505 mdb_vread(&co_callout, 506 sizeof (co_callout), 507 (uintptr_t)co_ptr); 508 509 mdb_printf("%-24a %0?p %0?lx %?lx " 510 "(T%+ld)\n", co_callout.c_func, 511 co_callout.c_arg, co_callout.c_xid, 512 co_callout.c_runtime, 513 co_callout.c_runtime - lbolt); 514 515 co_ptr = co_callout.c_idnext; 516 } 517 } 518 } 519 } 520 521 return (DCMD_OK); 522 } 523 524 /*ARGSUSED*/ 525 int 526 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 527 { 528 long num_classes, i; 529 sclass_t *class_tbl; 530 GElf_Sym g_sclass; 531 char class_name[PC_CLNMSZ]; 532 size_t tbl_size; 533 534 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) { 535 mdb_warn("failed to find symbol sclass\n"); 536 return (DCMD_ERR); 537 } 538 539 tbl_size = (size_t)g_sclass.st_size; 540 num_classes = tbl_size / (sizeof (sclass_t)); 541 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC); 542 543 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) { 544 mdb_warn("failed to read sclass"); 545 return (DCMD_ERR); 546 } 547 548 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME", 549 "INIT FCN", "CLASS FCN"); 550 551 for (i = 0; i < num_classes; i++) { 552 if (mdb_vread(class_name, sizeof (class_name), 553 (uintptr_t)class_tbl[i].cl_name) == -1) 554 (void) strcpy(class_name, "???"); 555 556 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name, 557 class_tbl[i].cl_init, class_tbl[i].cl_funcs); 558 } 559 560 return (DCMD_OK); 561 } 562 563 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */ 564 565 int 566 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 567 { 568 uintptr_t rootdir; 569 vnode_t vn; 570 char buf[MAXPATHLEN]; 571 572 uint_t opt_F = FALSE; 573 574 if (mdb_getopts(argc, argv, 575 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc) 576 return (DCMD_USAGE); 577 578 if (!(flags & DCMD_ADDRSPEC)) { 579 mdb_warn("expected explicit vnode_t address before ::\n"); 580 return (DCMD_USAGE); 581 } 582 583 if (mdb_readvar(&rootdir, "rootdir") == -1) { 584 mdb_warn("failed to read rootdir"); 585 return (DCMD_ERR); 586 } 587 588 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1) 589 return (DCMD_ERR); 590 591 if (*buf == '\0') { 592 mdb_printf("??\n"); 593 return (DCMD_OK); 594 } 595 596 mdb_printf("%s", buf); 597 if (opt_F && buf[strlen(buf)-1] != '/' && 598 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn)) 599 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0)); 600 mdb_printf("\n"); 601 602 return (DCMD_OK); 603 } 604 605 int 606 ld_walk_init(mdb_walk_state_t *wsp) 607 { 608 wsp->walk_data = (void *)wsp->walk_addr; 609 return (WALK_NEXT); 610 } 611 612 int 613 ld_walk_step(mdb_walk_state_t *wsp) 614 { 615 int status; 616 lock_descriptor_t ld; 617 618 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) { 619 mdb_warn("couldn't read lock_descriptor_t at %p\n", 620 wsp->walk_addr); 621 return (WALK_ERR); 622 } 623 624 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata); 625 if (status == WALK_ERR) 626 return (WALK_ERR); 627 628 wsp->walk_addr = (uintptr_t)ld.l_next; 629 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) 630 return (WALK_DONE); 631 632 return (status); 633 } 634 635 int 636 lg_walk_init(mdb_walk_state_t *wsp) 637 { 638 GElf_Sym sym; 639 640 if (mdb_lookup_by_name("lock_graph", &sym) == -1) { 641 mdb_warn("failed to find symbol 'lock_graph'\n"); 642 return (WALK_ERR); 643 } 644 645 wsp->walk_addr = (uintptr_t)sym.st_value; 646 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size); 647 648 return (WALK_NEXT); 649 } 650 651 typedef struct lg_walk_data { 652 uintptr_t startaddr; 653 mdb_walk_cb_t callback; 654 void *data; 655 } lg_walk_data_t; 656 657 /* 658 * We can't use ::walk lock_descriptor directly, because the head of each graph 659 * is really a dummy lock. Rather than trying to dynamically determine if this 660 * is a dummy node or not, we just filter out the initial element of the 661 * list. 662 */ 663 static int 664 lg_walk_cb(uintptr_t addr, const void *data, void *priv) 665 { 666 lg_walk_data_t *lw = priv; 667 668 if (addr != lw->startaddr) 669 return (lw->callback(addr, data, lw->data)); 670 671 return (WALK_NEXT); 672 } 673 674 int 675 lg_walk_step(mdb_walk_state_t *wsp) 676 { 677 graph_t *graph; 678 lg_walk_data_t lw; 679 680 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data) 681 return (WALK_DONE); 682 683 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) { 684 mdb_warn("failed to read graph_t at %p", wsp->walk_addr); 685 return (WALK_ERR); 686 } 687 688 wsp->walk_addr += sizeof (graph); 689 690 if (graph == NULL) 691 return (WALK_NEXT); 692 693 lw.callback = wsp->walk_callback; 694 lw.data = wsp->walk_cbdata; 695 696 lw.startaddr = (uintptr_t)&(graph->active_locks); 697 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 698 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 699 return (WALK_ERR); 700 } 701 702 lw.startaddr = (uintptr_t)&(graph->sleeping_locks); 703 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 704 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 705 return (WALK_ERR); 706 } 707 708 return (WALK_NEXT); 709 } 710 711 /* 712 * The space available for the path corresponding to the locked vnode depends 713 * on whether we are printing 32- or 64-bit addresses. 714 */ 715 #ifdef _LP64 716 #define LM_VNPATHLEN 20 717 #else 718 #define LM_VNPATHLEN 30 719 #endif 720 721 /*ARGSUSED*/ 722 static int 723 lminfo_cb(uintptr_t addr, const void *data, void *priv) 724 { 725 const lock_descriptor_t *ld = data; 726 char buf[LM_VNPATHLEN]; 727 proc_t p; 728 729 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ", 730 addr, ld->l_type == F_RDLCK ? "RD" : 731 ld->l_type == F_WRLCK ? "WR" : "??", 732 ld->l_state, ld->l_flock.l_pid, 733 ld->l_flock.l_pid == 0 ? "<kernel>" : 734 mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ? 735 "<defunct>" : p.p_user.u_comm, 736 ld->l_vnode); 737 738 mdb_vnode2path((uintptr_t)ld->l_vnode, buf, 739 sizeof (buf)); 740 mdb_printf("%s\n", buf); 741 742 return (WALK_NEXT); 743 } 744 745 /*ARGSUSED*/ 746 int 747 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 748 { 749 if (DCMD_HDRSPEC(flags)) 750 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n", 751 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH"); 752 753 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL)); 754 } 755 756 /*ARGSUSED*/ 757 int 758 seg(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 759 { 760 struct seg s; 761 762 if (argc != 0) 763 return (DCMD_USAGE); 764 765 if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) { 766 mdb_printf("%<u>%?s %?s %?s %?s %s%</u>\n", 767 "SEG", "BASE", "SIZE", "DATA", "OPS"); 768 } 769 770 if (mdb_vread(&s, sizeof (s), addr) == -1) { 771 mdb_warn("failed to read seg at %p", addr); 772 return (DCMD_ERR); 773 } 774 775 mdb_printf("%?p %?p %?lx %?p %a\n", 776 addr, s.s_base, s.s_size, s.s_data, s.s_ops); 777 778 return (DCMD_OK); 779 } 780 781 /*ARGSUSED*/ 782 static int 783 pmap_walk_anon(uintptr_t addr, const struct anon *anon, int *nres) 784 { 785 uintptr_t pp = 786 mdb_vnode2page((uintptr_t)anon->an_vp, (uintptr_t)anon->an_off); 787 788 if (pp != NULL) 789 (*nres)++; 790 791 return (WALK_NEXT); 792 } 793 794 static int 795 pmap_walk_seg(uintptr_t addr, const struct seg *seg, uintptr_t segvn) 796 { 797 798 mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024); 799 800 if (segvn == (uintptr_t)seg->s_ops) { 801 struct segvn_data svn; 802 int nres = 0; 803 804 (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data); 805 806 if (svn.amp == NULL) { 807 mdb_printf(" %8s", ""); 808 goto drive_on; 809 } 810 811 /* 812 * We've got an amp for this segment; walk through 813 * the amp, and determine mappings. 814 */ 815 if (mdb_pwalk("anon", (mdb_walk_cb_t)pmap_walk_anon, 816 &nres, (uintptr_t)svn.amp) == -1) 817 mdb_warn("failed to walk anon (amp=%p)", svn.amp); 818 819 mdb_printf(" %7dk", (nres * PAGESIZE) / 1024); 820 drive_on: 821 822 if (svn.vp != NULL) { 823 char buf[29]; 824 825 mdb_vnode2path((uintptr_t)svn.vp, buf, sizeof (buf)); 826 mdb_printf(" %s", buf); 827 } else 828 mdb_printf(" [ anon ]"); 829 } 830 831 mdb_printf("\n"); 832 return (WALK_NEXT); 833 } 834 835 static int 836 pmap_walk_seg_quick(uintptr_t addr, const struct seg *seg, uintptr_t segvn) 837 { 838 mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024); 839 840 if (segvn == (uintptr_t)seg->s_ops) { 841 struct segvn_data svn; 842 843 (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data); 844 845 if (svn.vp != NULL) { 846 mdb_printf(" %0?p", svn.vp); 847 } else { 848 mdb_printf(" [ anon ]"); 849 } 850 } 851 852 mdb_printf("\n"); 853 return (WALK_NEXT); 854 } 855 856 /*ARGSUSED*/ 857 int 858 pmap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 859 { 860 uintptr_t segvn; 861 proc_t proc; 862 uint_t quick = FALSE; 863 mdb_walk_cb_t cb = (mdb_walk_cb_t)pmap_walk_seg; 864 865 GElf_Sym sym; 866 867 if (!(flags & DCMD_ADDRSPEC)) 868 return (DCMD_USAGE); 869 870 if (mdb_getopts(argc, argv, 871 'q', MDB_OPT_SETBITS, TRUE, &quick, NULL) != argc) 872 return (DCMD_USAGE); 873 874 if (mdb_vread(&proc, sizeof (proc), addr) == -1) { 875 mdb_warn("failed to read proc at %p", addr); 876 return (DCMD_ERR); 877 } 878 879 if (mdb_lookup_by_name("segvn_ops", &sym) == 0) 880 segvn = (uintptr_t)sym.st_value; 881 else 882 segvn = NULL; 883 884 mdb_printf("%?s %?s %8s ", "SEG", "BASE", "SIZE"); 885 886 if (quick) { 887 mdb_printf("VNODE\n"); 888 cb = (mdb_walk_cb_t)pmap_walk_seg_quick; 889 } else { 890 mdb_printf("%8s %s\n", "RES", "PATH"); 891 } 892 893 if (mdb_pwalk("seg", cb, (void *)segvn, (uintptr_t)proc.p_as) == -1) { 894 mdb_warn("failed to walk segments of as %p", proc.p_as); 895 return (DCMD_ERR); 896 } 897 898 return (DCMD_OK); 899 } 900 901 typedef struct anon_walk_data { 902 uintptr_t *aw_levone; 903 uintptr_t *aw_levtwo; 904 int aw_nlevone; 905 int aw_levone_ndx; 906 int aw_levtwo_ndx; 907 struct anon_map aw_amp; 908 struct anon_hdr aw_ahp; 909 } anon_walk_data_t; 910 911 int 912 anon_walk_init(mdb_walk_state_t *wsp) 913 { 914 anon_walk_data_t *aw; 915 916 if (wsp->walk_addr == NULL) { 917 mdb_warn("anon walk doesn't support global walks\n"); 918 return (WALK_ERR); 919 } 920 921 aw = mdb_alloc(sizeof (anon_walk_data_t), UM_SLEEP); 922 923 if (mdb_vread(&aw->aw_amp, sizeof (aw->aw_amp), wsp->walk_addr) == -1) { 924 mdb_warn("failed to read anon map at %p", wsp->walk_addr); 925 mdb_free(aw, sizeof (anon_walk_data_t)); 926 return (WALK_ERR); 927 } 928 929 if (mdb_vread(&aw->aw_ahp, sizeof (aw->aw_ahp), 930 (uintptr_t)(aw->aw_amp.ahp)) == -1) { 931 mdb_warn("failed to read anon hdr ptr at %p", aw->aw_amp.ahp); 932 mdb_free(aw, sizeof (anon_walk_data_t)); 933 return (WALK_ERR); 934 } 935 936 if (aw->aw_ahp.size <= ANON_CHUNK_SIZE || 937 (aw->aw_ahp.flags & ANON_ALLOC_FORCE)) { 938 aw->aw_nlevone = aw->aw_ahp.size; 939 aw->aw_levtwo = NULL; 940 } else { 941 aw->aw_nlevone = 942 (aw->aw_ahp.size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT; 943 aw->aw_levtwo = 944 mdb_zalloc(ANON_CHUNK_SIZE * sizeof (uintptr_t), UM_SLEEP); 945 } 946 947 aw->aw_levone = 948 mdb_alloc(aw->aw_nlevone * sizeof (uintptr_t), UM_SLEEP); 949 950 aw->aw_levone_ndx = 0; 951 aw->aw_levtwo_ndx = 0; 952 953 mdb_vread(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t), 954 (uintptr_t)aw->aw_ahp.array_chunk); 955 956 if (aw->aw_levtwo != NULL) { 957 while (aw->aw_levone[aw->aw_levone_ndx] == NULL) { 958 aw->aw_levone_ndx++; 959 if (aw->aw_levone_ndx == aw->aw_nlevone) { 960 mdb_warn("corrupt anon; couldn't" 961 "find ptr to lev two map"); 962 goto out; 963 } 964 } 965 966 mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t), 967 aw->aw_levone[aw->aw_levone_ndx]); 968 } 969 970 out: 971 wsp->walk_data = aw; 972 return (0); 973 } 974 975 int 976 anon_walk_step(mdb_walk_state_t *wsp) 977 { 978 int status; 979 anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data; 980 struct anon anon; 981 uintptr_t anonptr; 982 983 again: 984 /* 985 * Once we've walked through level one, we're done. 986 */ 987 if (aw->aw_levone_ndx == aw->aw_nlevone) 988 return (WALK_DONE); 989 990 if (aw->aw_levtwo == NULL) { 991 anonptr = aw->aw_levone[aw->aw_levone_ndx]; 992 aw->aw_levone_ndx++; 993 } else { 994 anonptr = aw->aw_levtwo[aw->aw_levtwo_ndx]; 995 aw->aw_levtwo_ndx++; 996 997 if (aw->aw_levtwo_ndx == ANON_CHUNK_SIZE) { 998 aw->aw_levtwo_ndx = 0; 999 1000 do { 1001 aw->aw_levone_ndx++; 1002 1003 if (aw->aw_levone_ndx == aw->aw_nlevone) 1004 return (WALK_DONE); 1005 } while (aw->aw_levone[aw->aw_levone_ndx] == NULL); 1006 1007 mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * 1008 sizeof (uintptr_t), 1009 aw->aw_levone[aw->aw_levone_ndx]); 1010 } 1011 } 1012 1013 if (anonptr != NULL) { 1014 mdb_vread(&anon, sizeof (anon), anonptr); 1015 status = wsp->walk_callback(anonptr, &anon, wsp->walk_cbdata); 1016 } else 1017 goto again; 1018 1019 return (status); 1020 } 1021 1022 void 1023 anon_walk_fini(mdb_walk_state_t *wsp) 1024 { 1025 anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data; 1026 1027 if (aw->aw_levtwo != NULL) 1028 mdb_free(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t)); 1029 1030 mdb_free(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t)); 1031 mdb_free(aw, sizeof (anon_walk_data_t)); 1032 } 1033 1034 /*ARGSUSED*/ 1035 int 1036 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target) 1037 { 1038 if ((uintptr_t)f->f_vnode == *target) { 1039 mdb_printf("file %p\n", addr); 1040 *target = NULL; 1041 } 1042 1043 return (WALK_NEXT); 1044 } 1045 1046 /*ARGSUSED*/ 1047 int 1048 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target) 1049 { 1050 uintptr_t t = *target; 1051 1052 if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) { 1053 mdb_warn("couldn't file walk proc %p", addr); 1054 return (WALK_ERR); 1055 } 1056 1057 if (t == NULL) 1058 mdb_printf("%p\n", addr); 1059 1060 return (WALK_NEXT); 1061 } 1062 1063 /*ARGSUSED*/ 1064 int 1065 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1066 { 1067 uintptr_t target = addr; 1068 1069 if (!(flags & DCMD_ADDRSPEC) || addr == NULL) 1070 return (DCMD_USAGE); 1071 1072 if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) { 1073 mdb_warn("can't proc walk"); 1074 return (DCMD_ERR); 1075 } 1076 1077 return (DCMD_OK); 1078 } 1079 1080 typedef struct datafmt { 1081 char *hdr1; 1082 char *hdr2; 1083 char *dashes; 1084 char *fmt; 1085 } datafmt_t; 1086 1087 static datafmt_t kmemfmt[] = { 1088 { "cache ", "name ", 1089 "-------------------------", "%-25s " }, 1090 { " buf", " size", "------", "%6u " }, 1091 { " buf", "in use", "------", "%6u " }, 1092 { " buf", " total", "------", "%6u " }, 1093 { " memory", " in use", "---------", "%9u " }, 1094 { " alloc", " succeed", "---------", "%9u " }, 1095 { "alloc", " fail", "-----", "%5u " }, 1096 { NULL, NULL, NULL, NULL } 1097 }; 1098 1099 static datafmt_t vmemfmt[] = { 1100 { "vmem ", "name ", 1101 "-------------------------", "%-*s " }, 1102 { " memory", " in use", "---------", "%9llu " }, 1103 { " memory", " total", "----------", "%10llu " }, 1104 { " memory", " import", "---------", "%9llu " }, 1105 { " alloc", " succeed", "---------", "%9llu " }, 1106 { "alloc", " fail", "-----", "%5llu " }, 1107 { NULL, NULL, NULL, NULL } 1108 }; 1109 1110 /*ARGSUSED*/ 1111 static int 1112 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail) 1113 { 1114 if (ccp->cc_rounds > 0) 1115 *avail += ccp->cc_rounds; 1116 if (ccp->cc_prounds > 0) 1117 *avail += ccp->cc_prounds; 1118 1119 return (WALK_NEXT); 1120 } 1121 1122 /*ARGSUSED*/ 1123 static int 1124 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc) 1125 { 1126 *alloc += ccp->cc_alloc; 1127 1128 return (WALK_NEXT); 1129 } 1130 1131 /*ARGSUSED*/ 1132 static int 1133 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail) 1134 { 1135 *avail += sp->slab_chunks - sp->slab_refcnt; 1136 1137 return (WALK_NEXT); 1138 } 1139 1140 typedef struct kmastat_vmem { 1141 uintptr_t kv_addr; 1142 struct kmastat_vmem *kv_next; 1143 int kv_meminuse; 1144 int kv_alloc; 1145 int kv_fail; 1146 } kmastat_vmem_t; 1147 1148 typedef struct kmastat_args { 1149 kmastat_vmem_t **ka_kvpp; 1150 uint_t ka_shift; 1151 } kmastat_args_t; 1152 1153 static int 1154 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap) 1155 { 1156 kmastat_vmem_t **kvp = kap->ka_kvpp; 1157 kmastat_vmem_t *kv; 1158 datafmt_t *dfp = kmemfmt; 1159 int magsize; 1160 1161 int avail, alloc, total; 1162 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) * 1163 cp->cache_slabsize; 1164 1165 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail; 1166 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc; 1167 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail; 1168 1169 magsize = kmem_get_magsize(cp); 1170 1171 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc; 1172 avail = cp->cache_full.ml_total * magsize; 1173 total = cp->cache_buftotal; 1174 1175 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr); 1176 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr); 1177 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr); 1178 1179 for (kv = *kvp; kv != NULL; kv = kv->kv_next) { 1180 if (kv->kv_addr == (uintptr_t)cp->cache_arena) 1181 goto out; 1182 } 1183 1184 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC); 1185 kv->kv_next = *kvp; 1186 kv->kv_addr = (uintptr_t)cp->cache_arena; 1187 *kvp = kv; 1188 out: 1189 kv->kv_meminuse += meminuse; 1190 kv->kv_alloc += alloc; 1191 kv->kv_fail += cp->cache_alloc_fail; 1192 1193 mdb_printf((dfp++)->fmt, cp->cache_name); 1194 mdb_printf((dfp++)->fmt, cp->cache_bufsize); 1195 mdb_printf((dfp++)->fmt, total - avail); 1196 mdb_printf((dfp++)->fmt, total); 1197 mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift); 1198 mdb_printf((dfp++)->fmt, alloc); 1199 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail); 1200 mdb_printf("\n"); 1201 1202 return (WALK_NEXT); 1203 } 1204 1205 static int 1206 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap) 1207 { 1208 kmastat_vmem_t *kv = *kap->ka_kvpp; 1209 size_t len; 1210 1211 while (kv != NULL && kv->kv_addr != addr) 1212 kv = kv->kv_next; 1213 1214 if (kv == NULL || kv->kv_alloc == 0) 1215 return (WALK_NEXT); 1216 1217 len = MIN(17, strlen(v->vm_name)); 1218 1219 mdb_printf("Total [%s]%*s %6s %6s %6s %9u %9u %5u\n", v->vm_name, 1220 17 - len, "", "", "", "", 1221 kv->kv_meminuse >> kap->ka_shift, kv->kv_alloc, kv->kv_fail); 1222 1223 return (WALK_NEXT); 1224 } 1225 1226 /*ARGSUSED*/ 1227 static int 1228 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp) 1229 { 1230 datafmt_t *dfp = vmemfmt; 1231 const vmem_kstat_t *vkp = &v->vm_kstat; 1232 uintptr_t paddr; 1233 vmem_t parent; 1234 int ident = 0; 1235 1236 for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) { 1237 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) { 1238 mdb_warn("couldn't trace %p's ancestry", addr); 1239 ident = 0; 1240 break; 1241 } 1242 paddr = (uintptr_t)parent.vm_source; 1243 } 1244 1245 mdb_printf("%*s", ident, ""); 1246 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name); 1247 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64); 1248 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64); 1249 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp); 1250 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64); 1251 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64); 1252 1253 mdb_printf("\n"); 1254 1255 return (WALK_NEXT); 1256 } 1257 1258 /*ARGSUSED*/ 1259 int 1260 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1261 { 1262 kmastat_vmem_t *kv = NULL; 1263 datafmt_t *dfp; 1264 kmastat_args_t ka; 1265 1266 ka.ka_shift = 0; 1267 if (mdb_getopts(argc, argv, 1268 'k', MDB_OPT_SETBITS, 10, &ka.ka_shift, 1269 'm', MDB_OPT_SETBITS, 20, &ka.ka_shift, 1270 'g', MDB_OPT_SETBITS, 30, &ka.ka_shift, NULL) != argc) 1271 return (DCMD_USAGE); 1272 1273 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1274 mdb_printf("%s ", dfp->hdr1); 1275 mdb_printf("\n"); 1276 1277 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1278 mdb_printf("%s ", dfp->hdr2); 1279 mdb_printf("\n"); 1280 1281 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1282 mdb_printf("%s ", dfp->dashes); 1283 mdb_printf("\n"); 1284 1285 ka.ka_kvpp = &kv; 1286 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) { 1287 mdb_warn("can't walk 'kmem_cache'"); 1288 return (DCMD_ERR); 1289 } 1290 1291 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1292 mdb_printf("%s ", dfp->dashes); 1293 mdb_printf("\n"); 1294 1295 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) { 1296 mdb_warn("can't walk 'vmem'"); 1297 return (DCMD_ERR); 1298 } 1299 1300 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1301 mdb_printf("%s ", dfp->dashes); 1302 mdb_printf("\n"); 1303 1304 mdb_printf("\n"); 1305 1306 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1307 mdb_printf("%s ", dfp->hdr1); 1308 mdb_printf("\n"); 1309 1310 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1311 mdb_printf("%s ", dfp->hdr2); 1312 mdb_printf("\n"); 1313 1314 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1315 mdb_printf("%s ", dfp->dashes); 1316 mdb_printf("\n"); 1317 1318 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) { 1319 mdb_warn("can't walk 'vmem'"); 1320 return (DCMD_ERR); 1321 } 1322 1323 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1324 mdb_printf("%s ", dfp->dashes); 1325 mdb_printf("\n"); 1326 return (DCMD_OK); 1327 } 1328 1329 /* 1330 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made 1331 * up of a set of 'struct seg's. We could just scan each seg en masse, but 1332 * unfortunately, a few of the segs are both large and sparse, so we could 1333 * spend quite a bit of time scanning VAs which have no backing pages. 1334 * 1335 * So for the few very sparse segs, we skip the segment itself, and scan 1336 * the allocated vmem_segs in the vmem arena which manages that part of kas. 1337 * Currently, we do this for: 1338 * 1339 * SEG VMEM ARENA 1340 * kvseg heap_arena 1341 * kvseg32 heap32_arena 1342 * kvseg_core heap_core_arena 1343 * 1344 * In addition, we skip the segkpm segment in its entirety, since it is very 1345 * sparse, and contains no new kernel data. 1346 */ 1347 typedef struct kgrep_walk_data { 1348 kgrep_cb_func *kg_cb; 1349 void *kg_cbdata; 1350 uintptr_t kg_kvseg; 1351 uintptr_t kg_kvseg32; 1352 uintptr_t kg_kvseg_core; 1353 uintptr_t kg_segkpm; 1354 uintptr_t kg_heap_lp_base; 1355 uintptr_t kg_heap_lp_end; 1356 } kgrep_walk_data_t; 1357 1358 static int 1359 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg) 1360 { 1361 uintptr_t base = (uintptr_t)seg->s_base; 1362 1363 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 || 1364 addr == kg->kg_kvseg_core) 1365 return (WALK_NEXT); 1366 1367 if ((uintptr_t)seg->s_ops == kg->kg_segkpm) 1368 return (WALK_NEXT); 1369 1370 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata)); 1371 } 1372 1373 /*ARGSUSED*/ 1374 static int 1375 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 1376 { 1377 /* 1378 * skip large page heap address range - it is scanned by walking 1379 * allocated vmem_segs in the heap_lp_arena 1380 */ 1381 if (seg->vs_start == kg->kg_heap_lp_base && 1382 seg->vs_end == kg->kg_heap_lp_end) 1383 return (WALK_NEXT); 1384 1385 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 1386 } 1387 1388 /*ARGSUSED*/ 1389 static int 1390 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 1391 { 1392 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 1393 } 1394 1395 static int 1396 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg) 1397 { 1398 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg; 1399 1400 if (strcmp(vmem->vm_name, "heap") != 0 && 1401 strcmp(vmem->vm_name, "heap32") != 0 && 1402 strcmp(vmem->vm_name, "heap_core") != 0 && 1403 strcmp(vmem->vm_name, "heap_lp") != 0) 1404 return (WALK_NEXT); 1405 1406 if (strcmp(vmem->vm_name, "heap_lp") == 0) 1407 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg; 1408 1409 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) { 1410 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr); 1411 return (WALK_ERR); 1412 } 1413 1414 return (WALK_NEXT); 1415 } 1416 1417 int 1418 kgrep_subr(kgrep_cb_func *cb, void *cbdata) 1419 { 1420 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm; 1421 kgrep_walk_data_t kg; 1422 1423 if (mdb_get_state() == MDB_STATE_RUNNING) { 1424 mdb_warn("kgrep can only be run on a system " 1425 "dump or under kmdb; see dumpadm(1M)\n"); 1426 return (DCMD_ERR); 1427 } 1428 1429 if (mdb_lookup_by_name("kas", &kas) == -1) { 1430 mdb_warn("failed to locate 'kas' symbol\n"); 1431 return (DCMD_ERR); 1432 } 1433 1434 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) { 1435 mdb_warn("failed to locate 'kvseg' symbol\n"); 1436 return (DCMD_ERR); 1437 } 1438 1439 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) { 1440 mdb_warn("failed to locate 'kvseg32' symbol\n"); 1441 return (DCMD_ERR); 1442 } 1443 1444 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) { 1445 mdb_warn("failed to locate 'kvseg_core' symbol\n"); 1446 return (DCMD_ERR); 1447 } 1448 1449 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) { 1450 mdb_warn("failed to locate 'segkpm_ops' symbol\n"); 1451 return (DCMD_ERR); 1452 } 1453 1454 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) { 1455 mdb_warn("failed to read 'heap_lp_base'\n"); 1456 return (DCMD_ERR); 1457 } 1458 1459 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) { 1460 mdb_warn("failed to read 'heap_lp_end'\n"); 1461 return (DCMD_ERR); 1462 } 1463 1464 kg.kg_cb = cb; 1465 kg.kg_cbdata = cbdata; 1466 kg.kg_kvseg = (uintptr_t)kvseg.st_value; 1467 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value; 1468 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value; 1469 kg.kg_segkpm = (uintptr_t)segkpm.st_value; 1470 1471 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg, 1472 &kg, kas.st_value) == -1) { 1473 mdb_warn("failed to walk kas segments"); 1474 return (DCMD_ERR); 1475 } 1476 1477 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) { 1478 mdb_warn("failed to walk heap/heap32 vmem arenas"); 1479 return (DCMD_ERR); 1480 } 1481 1482 return (DCMD_OK); 1483 } 1484 1485 size_t 1486 kgrep_subr_pagesize(void) 1487 { 1488 return (PAGESIZE); 1489 } 1490 1491 typedef struct file_walk_data { 1492 struct uf_entry *fw_flist; 1493 int fw_flistsz; 1494 int fw_ndx; 1495 int fw_nofiles; 1496 } file_walk_data_t; 1497 1498 int 1499 file_walk_init(mdb_walk_state_t *wsp) 1500 { 1501 file_walk_data_t *fw; 1502 proc_t p; 1503 1504 if (wsp->walk_addr == NULL) { 1505 mdb_warn("file walk doesn't support global walks\n"); 1506 return (WALK_ERR); 1507 } 1508 1509 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP); 1510 1511 if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) { 1512 mdb_free(fw, sizeof (file_walk_data_t)); 1513 mdb_warn("failed to read proc structure at %p", wsp->walk_addr); 1514 return (WALK_ERR); 1515 } 1516 1517 if (p.p_user.u_finfo.fi_nfiles == 0) { 1518 mdb_free(fw, sizeof (file_walk_data_t)); 1519 return (WALK_DONE); 1520 } 1521 1522 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles; 1523 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles; 1524 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP); 1525 1526 if (mdb_vread(fw->fw_flist, fw->fw_flistsz, 1527 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) { 1528 mdb_warn("failed to read file array at %p", 1529 p.p_user.u_finfo.fi_list); 1530 mdb_free(fw->fw_flist, fw->fw_flistsz); 1531 mdb_free(fw, sizeof (file_walk_data_t)); 1532 return (WALK_ERR); 1533 } 1534 1535 fw->fw_ndx = 0; 1536 wsp->walk_data = fw; 1537 1538 return (WALK_NEXT); 1539 } 1540 1541 int 1542 file_walk_step(mdb_walk_state_t *wsp) 1543 { 1544 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1545 struct file file; 1546 uintptr_t fp; 1547 1548 again: 1549 if (fw->fw_ndx == fw->fw_nofiles) 1550 return (WALK_DONE); 1551 1552 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL) 1553 goto again; 1554 1555 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 1556 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 1557 } 1558 1559 int 1560 allfile_walk_step(mdb_walk_state_t *wsp) 1561 { 1562 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1563 struct file file; 1564 uintptr_t fp; 1565 1566 if (fw->fw_ndx == fw->fw_nofiles) 1567 return (WALK_DONE); 1568 1569 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL) 1570 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 1571 else 1572 bzero(&file, sizeof (file)); 1573 1574 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 1575 } 1576 1577 void 1578 file_walk_fini(mdb_walk_state_t *wsp) 1579 { 1580 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1581 1582 mdb_free(fw->fw_flist, fw->fw_flistsz); 1583 mdb_free(fw, sizeof (file_walk_data_t)); 1584 } 1585 1586 int 1587 port_walk_init(mdb_walk_state_t *wsp) 1588 { 1589 if (wsp->walk_addr == NULL) { 1590 mdb_warn("port walk doesn't support global walks\n"); 1591 return (WALK_ERR); 1592 } 1593 1594 if (mdb_layered_walk("file", wsp) == -1) { 1595 mdb_warn("couldn't walk 'file'"); 1596 return (WALK_ERR); 1597 } 1598 return (WALK_NEXT); 1599 } 1600 1601 int 1602 port_walk_step(mdb_walk_state_t *wsp) 1603 { 1604 struct vnode vn; 1605 uintptr_t vp; 1606 uintptr_t pp; 1607 struct port port; 1608 1609 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode; 1610 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 1611 mdb_warn("failed to read vnode_t at %p", vp); 1612 return (WALK_ERR); 1613 } 1614 if (vn.v_type != VPORT) 1615 return (WALK_NEXT); 1616 1617 pp = (uintptr_t)vn.v_data; 1618 if (mdb_vread(&port, sizeof (port), pp) == -1) { 1619 mdb_warn("failed to read port_t at %p", pp); 1620 return (WALK_ERR); 1621 } 1622 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata)); 1623 } 1624 1625 typedef struct portev_walk_data { 1626 list_node_t *pev_node; 1627 list_node_t *pev_last; 1628 size_t pev_offset; 1629 } portev_walk_data_t; 1630 1631 int 1632 portev_walk_init(mdb_walk_state_t *wsp) 1633 { 1634 portev_walk_data_t *pevd; 1635 struct port port; 1636 struct vnode vn; 1637 struct list *list; 1638 uintptr_t vp; 1639 1640 if (wsp->walk_addr == NULL) { 1641 mdb_warn("portev walk doesn't support global walks\n"); 1642 return (WALK_ERR); 1643 } 1644 1645 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP); 1646 1647 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) { 1648 mdb_free(pevd, sizeof (portev_walk_data_t)); 1649 mdb_warn("failed to read port structure at %p", wsp->walk_addr); 1650 return (WALK_ERR); 1651 } 1652 1653 vp = (uintptr_t)port.port_vnode; 1654 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 1655 mdb_free(pevd, sizeof (portev_walk_data_t)); 1656 mdb_warn("failed to read vnode_t at %p", vp); 1657 return (WALK_ERR); 1658 } 1659 1660 if (vn.v_type != VPORT) { 1661 mdb_free(pevd, sizeof (portev_walk_data_t)); 1662 mdb_warn("input address (%p) does not point to an event port", 1663 wsp->walk_addr); 1664 return (WALK_ERR); 1665 } 1666 1667 if (port.port_queue.portq_nent == 0) { 1668 mdb_free(pevd, sizeof (portev_walk_data_t)); 1669 return (WALK_DONE); 1670 } 1671 list = &port.port_queue.portq_list; 1672 pevd->pev_offset = list->list_offset; 1673 pevd->pev_last = list->list_head.list_prev; 1674 pevd->pev_node = list->list_head.list_next; 1675 wsp->walk_data = pevd; 1676 return (WALK_NEXT); 1677 } 1678 1679 int 1680 portev_walk_step(mdb_walk_state_t *wsp) 1681 { 1682 portev_walk_data_t *pevd; 1683 struct port_kevent ev; 1684 uintptr_t evp; 1685 1686 pevd = (portev_walk_data_t *)wsp->walk_data; 1687 1688 if (pevd->pev_last == NULL) 1689 return (WALK_DONE); 1690 if (pevd->pev_node == pevd->pev_last) 1691 pevd->pev_last = NULL; /* last round */ 1692 1693 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset)); 1694 if (mdb_vread(&ev, sizeof (ev), evp) == -1) { 1695 mdb_warn("failed to read port_kevent at %p", evp); 1696 return (WALK_DONE); 1697 } 1698 pevd->pev_node = ev.portkev_node.list_next; 1699 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata)); 1700 } 1701 1702 void 1703 portev_walk_fini(mdb_walk_state_t *wsp) 1704 { 1705 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data; 1706 1707 if (pevd != NULL) 1708 mdb_free(pevd, sizeof (portev_walk_data_t)); 1709 } 1710 1711 typedef struct proc_walk_data { 1712 uintptr_t *pw_stack; 1713 int pw_depth; 1714 int pw_max; 1715 } proc_walk_data_t; 1716 1717 int 1718 proc_walk_init(mdb_walk_state_t *wsp) 1719 { 1720 GElf_Sym sym; 1721 proc_walk_data_t *pw; 1722 1723 if (wsp->walk_addr == NULL) { 1724 if (mdb_lookup_by_name("p0", &sym) == -1) { 1725 mdb_warn("failed to read 'practive'"); 1726 return (WALK_ERR); 1727 } 1728 wsp->walk_addr = (uintptr_t)sym.st_value; 1729 } 1730 1731 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP); 1732 1733 if (mdb_readvar(&pw->pw_max, "nproc") == -1) { 1734 mdb_warn("failed to read 'nproc'"); 1735 mdb_free(pw, sizeof (pw)); 1736 return (WALK_ERR); 1737 } 1738 1739 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP); 1740 wsp->walk_data = pw; 1741 1742 return (WALK_NEXT); 1743 } 1744 1745 int 1746 proc_walk_step(mdb_walk_state_t *wsp) 1747 { 1748 proc_walk_data_t *pw = wsp->walk_data; 1749 uintptr_t addr = wsp->walk_addr; 1750 uintptr_t cld, sib; 1751 1752 int status; 1753 proc_t pr; 1754 1755 if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) { 1756 mdb_warn("failed to read proc at %p", addr); 1757 return (WALK_DONE); 1758 } 1759 1760 cld = (uintptr_t)pr.p_child; 1761 sib = (uintptr_t)pr.p_sibling; 1762 1763 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) { 1764 pw->pw_depth--; 1765 goto sib; 1766 } 1767 1768 status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata); 1769 1770 if (status != WALK_NEXT) 1771 return (status); 1772 1773 if ((wsp->walk_addr = cld) != NULL) { 1774 if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) { 1775 mdb_warn("proc %p has invalid p_child %p; skipping\n", 1776 addr, cld); 1777 goto sib; 1778 } 1779 1780 pw->pw_stack[pw->pw_depth++] = addr; 1781 1782 if (pw->pw_depth == pw->pw_max) { 1783 mdb_warn("depth %d exceeds max depth; try again\n", 1784 pw->pw_depth); 1785 return (WALK_DONE); 1786 } 1787 return (WALK_NEXT); 1788 } 1789 1790 sib: 1791 /* 1792 * We know that p0 has no siblings, and if another starting proc 1793 * was given, we don't want to walk its siblings anyway. 1794 */ 1795 if (pw->pw_depth == 0) 1796 return (WALK_DONE); 1797 1798 if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) { 1799 mdb_warn("proc %p has invalid p_sibling %p; skipping\n", 1800 addr, sib); 1801 sib = NULL; 1802 } 1803 1804 if ((wsp->walk_addr = sib) == NULL) { 1805 if (pw->pw_depth > 0) { 1806 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1]; 1807 return (WALK_NEXT); 1808 } 1809 return (WALK_DONE); 1810 } 1811 1812 return (WALK_NEXT); 1813 } 1814 1815 void 1816 proc_walk_fini(mdb_walk_state_t *wsp) 1817 { 1818 proc_walk_data_t *pw = wsp->walk_data; 1819 1820 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t)); 1821 mdb_free(pw, sizeof (proc_walk_data_t)); 1822 } 1823 1824 int 1825 task_walk_init(mdb_walk_state_t *wsp) 1826 { 1827 task_t task; 1828 1829 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) { 1830 mdb_warn("failed to read task at %p", wsp->walk_addr); 1831 return (WALK_ERR); 1832 } 1833 wsp->walk_addr = (uintptr_t)task.tk_memb_list; 1834 wsp->walk_data = task.tk_memb_list; 1835 return (WALK_NEXT); 1836 } 1837 1838 int 1839 task_walk_step(mdb_walk_state_t *wsp) 1840 { 1841 proc_t proc; 1842 int status; 1843 1844 if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) { 1845 mdb_warn("failed to read proc at %p", wsp->walk_addr); 1846 return (WALK_DONE); 1847 } 1848 1849 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata); 1850 1851 if (proc.p_tasknext == wsp->walk_data) 1852 return (WALK_DONE); 1853 1854 wsp->walk_addr = (uintptr_t)proc.p_tasknext; 1855 return (status); 1856 } 1857 1858 int 1859 project_walk_init(mdb_walk_state_t *wsp) 1860 { 1861 if (wsp->walk_addr == NULL) { 1862 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) { 1863 mdb_warn("failed to read 'proj0p'"); 1864 return (WALK_ERR); 1865 } 1866 } 1867 wsp->walk_data = (void *)wsp->walk_addr; 1868 return (WALK_NEXT); 1869 } 1870 1871 int 1872 project_walk_step(mdb_walk_state_t *wsp) 1873 { 1874 uintptr_t addr = wsp->walk_addr; 1875 kproject_t pj; 1876 int status; 1877 1878 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 1879 mdb_warn("failed to read project at %p", addr); 1880 return (WALK_DONE); 1881 } 1882 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata); 1883 if (status != WALK_NEXT) 1884 return (status); 1885 wsp->walk_addr = (uintptr_t)pj.kpj_next; 1886 if ((void *)wsp->walk_addr == wsp->walk_data) 1887 return (WALK_DONE); 1888 return (WALK_NEXT); 1889 } 1890 1891 static int 1892 generic_walk_step(mdb_walk_state_t *wsp) 1893 { 1894 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer, 1895 wsp->walk_cbdata)); 1896 } 1897 1898 int 1899 seg_walk_init(mdb_walk_state_t *wsp) 1900 { 1901 if (wsp->walk_addr == NULL) { 1902 mdb_warn("seg walk must begin at struct as *\n"); 1903 return (WALK_ERR); 1904 } 1905 1906 /* 1907 * this is really just a wrapper to AVL tree walk 1908 */ 1909 wsp->walk_addr = (uintptr_t)&((struct as *)wsp->walk_addr)->a_segtree; 1910 return (avl_walk_init(wsp)); 1911 } 1912 1913 static int 1914 cpu_walk_cmp(const void *l, const void *r) 1915 { 1916 uintptr_t lhs = *((uintptr_t *)l); 1917 uintptr_t rhs = *((uintptr_t *)r); 1918 cpu_t lcpu, rcpu; 1919 1920 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs); 1921 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs); 1922 1923 if (lcpu.cpu_id < rcpu.cpu_id) 1924 return (-1); 1925 1926 if (lcpu.cpu_id > rcpu.cpu_id) 1927 return (1); 1928 1929 return (0); 1930 } 1931 1932 typedef struct cpu_walk { 1933 uintptr_t *cw_array; 1934 int cw_ndx; 1935 } cpu_walk_t; 1936 1937 int 1938 cpu_walk_init(mdb_walk_state_t *wsp) 1939 { 1940 cpu_walk_t *cw; 1941 int max_ncpus, i = 0; 1942 uintptr_t current, first; 1943 cpu_t cpu, panic_cpu; 1944 uintptr_t panicstr, addr; 1945 GElf_Sym sym; 1946 1947 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC); 1948 1949 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 1950 mdb_warn("failed to read 'max_ncpus'"); 1951 return (WALK_ERR); 1952 } 1953 1954 if (mdb_readvar(&panicstr, "panicstr") == -1) { 1955 mdb_warn("failed to read 'panicstr'"); 1956 return (WALK_ERR); 1957 } 1958 1959 if (panicstr != NULL) { 1960 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) { 1961 mdb_warn("failed to find 'panic_cpu'"); 1962 return (WALK_ERR); 1963 } 1964 1965 addr = (uintptr_t)sym.st_value; 1966 1967 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) { 1968 mdb_warn("failed to read 'panic_cpu'"); 1969 return (WALK_ERR); 1970 } 1971 } 1972 1973 /* 1974 * Unfortunately, there is no platform-independent way to walk 1975 * CPUs in ID order. We therefore loop through in cpu_next order, 1976 * building an array of CPU pointers which will subsequently be 1977 * sorted. 1978 */ 1979 cw->cw_array = 1980 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC); 1981 1982 if (mdb_readvar(&first, "cpu_list") == -1) { 1983 mdb_warn("failed to read 'cpu_list'"); 1984 return (WALK_ERR); 1985 } 1986 1987 current = first; 1988 do { 1989 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) { 1990 mdb_warn("failed to read cpu at %p", current); 1991 return (WALK_ERR); 1992 } 1993 1994 if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) { 1995 cw->cw_array[i++] = addr; 1996 } else { 1997 cw->cw_array[i++] = current; 1998 } 1999 } while ((current = (uintptr_t)cpu.cpu_next) != first); 2000 2001 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp); 2002 wsp->walk_data = cw; 2003 2004 return (WALK_NEXT); 2005 } 2006 2007 int 2008 cpu_walk_step(mdb_walk_state_t *wsp) 2009 { 2010 cpu_walk_t *cw = wsp->walk_data; 2011 cpu_t cpu; 2012 uintptr_t addr = cw->cw_array[cw->cw_ndx++]; 2013 2014 if (addr == NULL) 2015 return (WALK_DONE); 2016 2017 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) { 2018 mdb_warn("failed to read cpu at %p", addr); 2019 return (WALK_DONE); 2020 } 2021 2022 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata)); 2023 } 2024 2025 typedef struct cpuinfo_data { 2026 intptr_t cid_cpu; 2027 uintptr_t cid_lbolt; 2028 uintptr_t **cid_ithr; 2029 char cid_print_head; 2030 char cid_print_thr; 2031 char cid_print_ithr; 2032 char cid_print_flags; 2033 } cpuinfo_data_t; 2034 2035 int 2036 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid) 2037 { 2038 cpu_t c; 2039 int id; 2040 uint8_t pil; 2041 2042 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE) 2043 return (WALK_NEXT); 2044 2045 if (thr->t_bound_cpu == NULL) { 2046 mdb_warn("thr %p is intr thread w/out a CPU\n", addr); 2047 return (WALK_NEXT); 2048 } 2049 2050 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu); 2051 2052 if ((id = c.cpu_id) >= NCPU) { 2053 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n", 2054 thr->t_bound_cpu, id, NCPU); 2055 return (WALK_NEXT); 2056 } 2057 2058 if ((pil = thr->t_pil) >= NINTR) { 2059 mdb_warn("thread %p has pil (%d) greater than %d\n", 2060 addr, pil, NINTR); 2061 return (WALK_NEXT); 2062 } 2063 2064 if (cid->cid_ithr[id][pil] != NULL) { 2065 mdb_warn("CPU %d has multiple threads at pil %d (at least " 2066 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]); 2067 return (WALK_NEXT); 2068 } 2069 2070 cid->cid_ithr[id][pil] = addr; 2071 2072 return (WALK_NEXT); 2073 } 2074 2075 #define CPUINFO_IDWIDTH 3 2076 #define CPUINFO_FLAGWIDTH 9 2077 2078 #ifdef _LP64 2079 #if defined(__amd64) 2080 #define CPUINFO_TWIDTH 16 2081 #define CPUINFO_CPUWIDTH 16 2082 #else 2083 #define CPUINFO_CPUWIDTH 11 2084 #define CPUINFO_TWIDTH 11 2085 #endif 2086 #else 2087 #define CPUINFO_CPUWIDTH 8 2088 #define CPUINFO_TWIDTH 8 2089 #endif 2090 2091 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9) 2092 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4) 2093 #define CPUINFO_ITHRDELT 4 2094 2095 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \ 2096 flagline < nflaglines ? flagbuf[flagline++] : "") 2097 2098 int 2099 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid) 2100 { 2101 kthread_t t; 2102 disp_t disp; 2103 proc_t p; 2104 uintptr_t pinned; 2105 char **flagbuf; 2106 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT; 2107 2108 const char *flags[] = { 2109 "RUNNING", "READY", "QUIESCED", "EXISTS", 2110 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN", 2111 "SPARE", "FAULTED", NULL 2112 }; 2113 2114 if (cid->cid_cpu != -1) { 2115 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu) 2116 return (WALK_NEXT); 2117 2118 /* 2119 * Set cid_cpu to -1 to indicate that we found a matching CPU. 2120 */ 2121 cid->cid_cpu = -1; 2122 rval = WALK_DONE; 2123 } 2124 2125 if (cid->cid_print_head) { 2126 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n", 2127 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL", 2128 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD", 2129 "PROC"); 2130 cid->cid_print_head = FALSE; 2131 } 2132 2133 bspl = cpu->cpu_base_spl; 2134 2135 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) { 2136 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp); 2137 return (WALK_ERR); 2138 } 2139 2140 mdb_printf("%3d %0*p %3x %4d %4d ", 2141 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags, 2142 disp.disp_nrunnable, bspl); 2143 2144 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) { 2145 mdb_printf("%3d ", t.t_pri); 2146 } else { 2147 mdb_printf("%3s ", "-"); 2148 } 2149 2150 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no", 2151 cpu->cpu_kprunrun ? "yes" : "no"); 2152 2153 if (cpu->cpu_last_swtch) { 2154 clock_t lbolt; 2155 2156 if (mdb_vread(&lbolt, sizeof (lbolt), cid->cid_lbolt) == -1) { 2157 mdb_warn("failed to read lbolt at %p", cid->cid_lbolt); 2158 return (WALK_ERR); 2159 } 2160 mdb_printf("t-%-4d ", lbolt - cpu->cpu_last_swtch); 2161 } else { 2162 mdb_printf("%-6s ", "-"); 2163 } 2164 2165 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread); 2166 2167 if (cpu->cpu_thread == cpu->cpu_idle_thread) 2168 mdb_printf(" (idle)\n"); 2169 else if (cpu->cpu_thread == NULL) 2170 mdb_printf(" -\n"); 2171 else { 2172 if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) { 2173 mdb_printf(" %s\n", p.p_user.u_comm); 2174 } else { 2175 mdb_printf(" ?\n"); 2176 } 2177 } 2178 2179 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC); 2180 2181 if (cid->cid_print_flags) { 2182 int first = 1, i, j, k; 2183 char *s; 2184 2185 cid->cid_print_head = TRUE; 2186 2187 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) { 2188 if (!(cpu->cpu_flags & i)) 2189 continue; 2190 2191 if (first) { 2192 s = mdb_alloc(CPUINFO_THRDELT + 1, 2193 UM_GC | UM_SLEEP); 2194 2195 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, 2196 "%*s|%*s", CPUINFO_FLAGDELT, "", 2197 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, ""); 2198 flagbuf[nflaglines++] = s; 2199 } 2200 2201 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP); 2202 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s", 2203 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH - 2204 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j], 2205 first ? "<--+" : ""); 2206 2207 for (k = strlen(s); k < CPUINFO_THRDELT; k++) 2208 s[k] = ' '; 2209 s[k] = '\0'; 2210 2211 flagbuf[nflaglines++] = s; 2212 first = 0; 2213 } 2214 } 2215 2216 if (cid->cid_print_ithr) { 2217 int i, found_one = FALSE; 2218 int print_thr = disp.disp_nrunnable && cid->cid_print_thr; 2219 2220 for (i = NINTR - 1; i >= 0; i--) { 2221 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i]; 2222 2223 if (iaddr == NULL) 2224 continue; 2225 2226 if (!found_one) { 2227 found_one = TRUE; 2228 2229 CPUINFO_INDENT; 2230 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ', 2231 CPUINFO_ITHRDELT, ""); 2232 2233 CPUINFO_INDENT; 2234 mdb_printf("%c%*s+--> %3s %s\n", 2235 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, 2236 "", "PIL", "THREAD"); 2237 } 2238 2239 if (mdb_vread(&t, sizeof (t), iaddr) == -1) { 2240 mdb_warn("failed to read kthread_t at %p", 2241 iaddr); 2242 return (WALK_ERR); 2243 } 2244 2245 CPUINFO_INDENT; 2246 mdb_printf("%c%*s %3d %0*p\n", 2247 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", 2248 t.t_pil, CPUINFO_TWIDTH, iaddr); 2249 2250 pinned = (uintptr_t)t.t_intr; 2251 } 2252 2253 if (found_one && pinned != NULL) { 2254 cid->cid_print_head = TRUE; 2255 (void) strcpy(p.p_user.u_comm, "?"); 2256 2257 if (mdb_vread(&t, sizeof (t), 2258 (uintptr_t)pinned) == -1) { 2259 mdb_warn("failed to read kthread_t at %p", 2260 pinned); 2261 return (WALK_ERR); 2262 } 2263 if (mdb_vread(&p, sizeof (p), 2264 (uintptr_t)t.t_procp) == -1) { 2265 mdb_warn("failed to read proc_t at %p", 2266 t.t_procp); 2267 return (WALK_ERR); 2268 } 2269 2270 CPUINFO_INDENT; 2271 mdb_printf("%c%*s %3s %0*p %s\n", 2272 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-", 2273 CPUINFO_TWIDTH, pinned, 2274 pinned == (uintptr_t)cpu->cpu_idle_thread ? 2275 "(idle)" : p.p_user.u_comm); 2276 } 2277 } 2278 2279 if (disp.disp_nrunnable && cid->cid_print_thr) { 2280 dispq_t *dq; 2281 2282 int i, npri = disp.disp_npri; 2283 2284 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC); 2285 2286 if (mdb_vread(dq, sizeof (dispq_t) * npri, 2287 (uintptr_t)disp.disp_q) == -1) { 2288 mdb_warn("failed to read dispq_t at %p", disp.disp_q); 2289 return (WALK_ERR); 2290 } 2291 2292 CPUINFO_INDENT; 2293 mdb_printf("|\n"); 2294 2295 CPUINFO_INDENT; 2296 mdb_printf("+--> %3s %-*s %s\n", "PRI", 2297 CPUINFO_TWIDTH, "THREAD", "PROC"); 2298 2299 for (i = npri - 1; i >= 0; i--) { 2300 uintptr_t taddr = (uintptr_t)dq[i].dq_first; 2301 2302 while (taddr != NULL) { 2303 if (mdb_vread(&t, sizeof (t), taddr) == -1) { 2304 mdb_warn("failed to read kthread_t " 2305 "at %p", taddr); 2306 return (WALK_ERR); 2307 } 2308 if (mdb_vread(&p, sizeof (p), 2309 (uintptr_t)t.t_procp) == -1) { 2310 mdb_warn("failed to read proc_t at %p", 2311 t.t_procp); 2312 return (WALK_ERR); 2313 } 2314 2315 CPUINFO_INDENT; 2316 mdb_printf(" %3d %0*p %s\n", t.t_pri, 2317 CPUINFO_TWIDTH, taddr, p.p_user.u_comm); 2318 2319 taddr = (uintptr_t)t.t_link; 2320 } 2321 } 2322 cid->cid_print_head = TRUE; 2323 } 2324 2325 while (flagline < nflaglines) 2326 mdb_printf("%s\n", flagbuf[flagline++]); 2327 2328 if (cid->cid_print_head) 2329 mdb_printf("\n"); 2330 2331 return (rval); 2332 } 2333 2334 int 2335 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2336 { 2337 uint_t verbose = FALSE; 2338 cpuinfo_data_t cid; 2339 GElf_Sym sym; 2340 clock_t lbolt; 2341 2342 cid.cid_print_ithr = FALSE; 2343 cid.cid_print_thr = FALSE; 2344 cid.cid_print_flags = FALSE; 2345 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE; 2346 cid.cid_cpu = -1; 2347 2348 if (flags & DCMD_ADDRSPEC) 2349 cid.cid_cpu = addr; 2350 2351 if (mdb_getopts(argc, argv, 2352 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc) 2353 return (DCMD_USAGE); 2354 2355 if (verbose) { 2356 cid.cid_print_ithr = TRUE; 2357 cid.cid_print_thr = TRUE; 2358 cid.cid_print_flags = TRUE; 2359 cid.cid_print_head = TRUE; 2360 } 2361 2362 if (cid.cid_print_ithr) { 2363 int i; 2364 2365 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **) 2366 * NCPU, UM_SLEEP | UM_GC); 2367 2368 for (i = 0; i < NCPU; i++) 2369 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) * 2370 NINTR, UM_SLEEP | UM_GC); 2371 2372 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread, 2373 &cid) == -1) { 2374 mdb_warn("couldn't walk thread"); 2375 return (DCMD_ERR); 2376 } 2377 } 2378 2379 if (mdb_lookup_by_name("panic_lbolt", &sym) == -1) { 2380 mdb_warn("failed to find panic_lbolt"); 2381 return (DCMD_ERR); 2382 } 2383 2384 cid.cid_lbolt = (uintptr_t)sym.st_value; 2385 2386 if (mdb_vread(&lbolt, sizeof (lbolt), cid.cid_lbolt) == -1) { 2387 mdb_warn("failed to read panic_lbolt"); 2388 return (DCMD_ERR); 2389 } 2390 2391 if (lbolt == 0) { 2392 if (mdb_lookup_by_name("lbolt", &sym) == -1) { 2393 mdb_warn("failed to find lbolt"); 2394 return (DCMD_ERR); 2395 } 2396 cid.cid_lbolt = (uintptr_t)sym.st_value; 2397 } 2398 2399 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) { 2400 mdb_warn("can't walk cpus"); 2401 return (DCMD_ERR); 2402 } 2403 2404 if (cid.cid_cpu != -1) { 2405 /* 2406 * We didn't find this CPU when we walked through the CPUs 2407 * (i.e. the address specified doesn't show up in the "cpu" 2408 * walk). However, the specified address may still correspond 2409 * to a valid cpu_t (for example, if the specified address is 2410 * the actual panicking cpu_t and not the cached panic_cpu). 2411 * Point is: even if we didn't find it, we still want to try 2412 * to print the specified address as a cpu_t. 2413 */ 2414 cpu_t cpu; 2415 2416 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) { 2417 mdb_warn("%p is neither a valid CPU ID nor a " 2418 "valid cpu_t address\n", cid.cid_cpu); 2419 return (DCMD_ERR); 2420 } 2421 2422 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid); 2423 } 2424 2425 return (DCMD_OK); 2426 } 2427 2428 /*ARGSUSED*/ 2429 int 2430 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2431 { 2432 int i; 2433 2434 if (!(flags & DCMD_ADDRSPEC)) 2435 return (DCMD_USAGE); 2436 2437 for (i = 0; i < sizeof (addr) * NBBY; i++) 2438 mdb_printf("%p\n", addr ^ (1UL << i)); 2439 2440 return (DCMD_OK); 2441 } 2442 2443 /* 2444 * Grumble, grumble. 2445 */ 2446 #define SMAP_HASHFUNC(vp, off) \ 2447 ((((uintptr_t)(vp) >> 6) + ((uintptr_t)(vp) >> 3) + \ 2448 ((off) >> MAXBSHIFT)) & smd_hashmsk) 2449 2450 int 2451 vnode2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2452 { 2453 long smd_hashmsk; 2454 int hash; 2455 uintptr_t offset = 0; 2456 struct smap smp; 2457 uintptr_t saddr, kaddr; 2458 uintptr_t smd_hash, smd_smap; 2459 struct seg seg; 2460 2461 if (!(flags & DCMD_ADDRSPEC)) 2462 return (DCMD_USAGE); 2463 2464 if (mdb_readvar(&smd_hashmsk, "smd_hashmsk") == -1) { 2465 mdb_warn("failed to read smd_hashmsk"); 2466 return (DCMD_ERR); 2467 } 2468 2469 if (mdb_readvar(&smd_hash, "smd_hash") == -1) { 2470 mdb_warn("failed to read smd_hash"); 2471 return (DCMD_ERR); 2472 } 2473 2474 if (mdb_readvar(&smd_smap, "smd_smap") == -1) { 2475 mdb_warn("failed to read smd_hash"); 2476 return (DCMD_ERR); 2477 } 2478 2479 if (mdb_readvar(&kaddr, "segkmap") == -1) { 2480 mdb_warn("failed to read segkmap"); 2481 return (DCMD_ERR); 2482 } 2483 2484 if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) { 2485 mdb_warn("failed to read segkmap at %p", kaddr); 2486 return (DCMD_ERR); 2487 } 2488 2489 if (argc != 0) { 2490 const mdb_arg_t *arg = &argv[0]; 2491 2492 if (arg->a_type == MDB_TYPE_IMMEDIATE) 2493 offset = arg->a_un.a_val; 2494 else 2495 offset = (uintptr_t)mdb_strtoull(arg->a_un.a_str); 2496 } 2497 2498 hash = SMAP_HASHFUNC(addr, offset); 2499 2500 if (mdb_vread(&saddr, sizeof (saddr), 2501 smd_hash + hash * sizeof (uintptr_t)) == -1) { 2502 mdb_warn("couldn't read smap at %p", 2503 smd_hash + hash * sizeof (uintptr_t)); 2504 return (DCMD_ERR); 2505 } 2506 2507 do { 2508 if (mdb_vread(&smp, sizeof (smp), saddr) == -1) { 2509 mdb_warn("couldn't read smap at %p", saddr); 2510 return (DCMD_ERR); 2511 } 2512 2513 if ((uintptr_t)smp.sm_vp == addr && smp.sm_off == offset) { 2514 mdb_printf("vnode %p, offs %p is smap %p, vaddr %p\n", 2515 addr, offset, saddr, ((saddr - smd_smap) / 2516 sizeof (smp)) * MAXBSIZE + seg.s_base); 2517 return (DCMD_OK); 2518 } 2519 2520 saddr = (uintptr_t)smp.sm_hash; 2521 } while (saddr != NULL); 2522 2523 mdb_printf("no smap for vnode %p, offs %p\n", addr, offset); 2524 return (DCMD_OK); 2525 } 2526 2527 /*ARGSUSED*/ 2528 int 2529 addr2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2530 { 2531 uintptr_t kaddr; 2532 struct seg seg; 2533 struct segmap_data sd; 2534 2535 if (!(flags & DCMD_ADDRSPEC)) 2536 return (DCMD_USAGE); 2537 2538 if (mdb_readvar(&kaddr, "segkmap") == -1) { 2539 mdb_warn("failed to read segkmap"); 2540 return (DCMD_ERR); 2541 } 2542 2543 if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) { 2544 mdb_warn("failed to read segkmap at %p", kaddr); 2545 return (DCMD_ERR); 2546 } 2547 2548 if (mdb_vread(&sd, sizeof (sd), (uintptr_t)seg.s_data) == -1) { 2549 mdb_warn("failed to read segmap_data at %p", seg.s_data); 2550 return (DCMD_ERR); 2551 } 2552 2553 mdb_printf("%p is smap %p\n", addr, 2554 ((addr - (uintptr_t)seg.s_base) >> MAXBSHIFT) * 2555 sizeof (struct smap) + (uintptr_t)sd.smd_sm); 2556 2557 return (DCMD_OK); 2558 } 2559 2560 int 2561 as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp) 2562 { 2563 if (p->p_as == *asp) 2564 mdb_printf("%p\n", addr); 2565 return (WALK_NEXT); 2566 } 2567 2568 /*ARGSUSED*/ 2569 int 2570 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2571 { 2572 if (!(flags & DCMD_ADDRSPEC) || argc != 0) 2573 return (DCMD_USAGE); 2574 2575 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) { 2576 mdb_warn("failed to walk proc"); 2577 return (DCMD_ERR); 2578 } 2579 2580 return (DCMD_OK); 2581 } 2582 2583 /*ARGSUSED*/ 2584 int 2585 ptree_walk(uintptr_t addr, const proc_t *p, void *ignored) 2586 { 2587 proc_t parent; 2588 int ident = 0; 2589 uintptr_t paddr; 2590 2591 for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) { 2592 mdb_vread(&parent, sizeof (parent), paddr); 2593 paddr = (uintptr_t)parent.p_parent; 2594 } 2595 2596 mdb_inc_indent(ident); 2597 mdb_printf("%0?p %s\n", addr, p->p_user.u_comm); 2598 mdb_dec_indent(ident); 2599 2600 return (WALK_NEXT); 2601 } 2602 2603 void 2604 ptree_ancestors(uintptr_t addr, uintptr_t start) 2605 { 2606 proc_t p; 2607 2608 if (mdb_vread(&p, sizeof (p), addr) == -1) { 2609 mdb_warn("couldn't read ancestor at %p", addr); 2610 return; 2611 } 2612 2613 if (p.p_parent != NULL) 2614 ptree_ancestors((uintptr_t)p.p_parent, start); 2615 2616 if (addr != start) 2617 (void) ptree_walk(addr, &p, NULL); 2618 } 2619 2620 /*ARGSUSED*/ 2621 int 2622 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2623 { 2624 if (!(flags & DCMD_ADDRSPEC)) 2625 addr = NULL; 2626 else 2627 ptree_ancestors(addr, addr); 2628 2629 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) { 2630 mdb_warn("couldn't walk 'proc'"); 2631 return (DCMD_ERR); 2632 } 2633 2634 return (DCMD_OK); 2635 } 2636 2637 /*ARGSUSED*/ 2638 static int 2639 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2640 { 2641 int fdnum; 2642 const mdb_arg_t *argp = &argv[0]; 2643 proc_t p; 2644 uf_entry_t uf; 2645 2646 if ((flags & DCMD_ADDRSPEC) == 0) { 2647 mdb_warn("fd doesn't give global information\n"); 2648 return (DCMD_ERR); 2649 } 2650 if (argc != 1) 2651 return (DCMD_USAGE); 2652 2653 if (argp->a_type == MDB_TYPE_IMMEDIATE) 2654 fdnum = argp->a_un.a_val; 2655 else 2656 fdnum = mdb_strtoull(argp->a_un.a_str); 2657 2658 if (mdb_vread(&p, sizeof (struct proc), addr) == -1) { 2659 mdb_warn("couldn't read proc_t at %p", addr); 2660 return (DCMD_ERR); 2661 } 2662 if (fdnum > p.p_user.u_finfo.fi_nfiles) { 2663 mdb_warn("process %p only has %d files open.\n", 2664 addr, p.p_user.u_finfo.fi_nfiles); 2665 return (DCMD_ERR); 2666 } 2667 if (mdb_vread(&uf, sizeof (uf_entry_t), 2668 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) { 2669 mdb_warn("couldn't read uf_entry_t at %p", 2670 &p.p_user.u_finfo.fi_list[fdnum]); 2671 return (DCMD_ERR); 2672 } 2673 2674 mdb_printf("%p\n", uf.uf_file); 2675 return (DCMD_OK); 2676 } 2677 2678 /*ARGSUSED*/ 2679 static int 2680 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2681 { 2682 pid_t pid = (pid_t)addr; 2683 2684 if (argc != 0) 2685 return (DCMD_USAGE); 2686 2687 if ((addr = mdb_pid2proc(pid, NULL)) == NULL) { 2688 mdb_warn("PID 0t%d not found\n", pid); 2689 return (DCMD_ERR); 2690 } 2691 2692 mdb_printf("%p\n", addr); 2693 return (DCMD_OK); 2694 } 2695 2696 static char *sysfile_cmd[] = { 2697 "exclude:", 2698 "include:", 2699 "forceload:", 2700 "rootdev:", 2701 "rootfs:", 2702 "swapdev:", 2703 "swapfs:", 2704 "moddir:", 2705 "set", 2706 "unknown", 2707 }; 2708 2709 static char *sysfile_ops[] = { "", "=", "&", "|" }; 2710 2711 /*ARGSUSED*/ 2712 static int 2713 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target) 2714 { 2715 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) { 2716 *target = NULL; 2717 return (WALK_DONE); 2718 } 2719 return (WALK_NEXT); 2720 } 2721 2722 /*ARGSUSED*/ 2723 static int 2724 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2725 { 2726 struct sysparam *sysp, sys; 2727 char var[256]; 2728 char modname[256]; 2729 char val[256]; 2730 char strval[256]; 2731 vmem_t *mod_sysfile_arena; 2732 void *straddr; 2733 2734 if (mdb_readvar(&sysp, "sysparam_hd") == -1) { 2735 mdb_warn("failed to read sysparam_hd"); 2736 return (DCMD_ERR); 2737 } 2738 2739 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) { 2740 mdb_warn("failed to read mod_sysfile_arena"); 2741 return (DCMD_ERR); 2742 } 2743 2744 while (sysp != NULL) { 2745 var[0] = '\0'; 2746 val[0] = '\0'; 2747 modname[0] = '\0'; 2748 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) { 2749 mdb_warn("couldn't read sysparam %p", sysp); 2750 return (DCMD_ERR); 2751 } 2752 if (sys.sys_modnam != NULL && 2753 mdb_readstr(modname, 256, 2754 (uintptr_t)sys.sys_modnam) == -1) { 2755 mdb_warn("couldn't read modname in %p", sysp); 2756 return (DCMD_ERR); 2757 } 2758 if (sys.sys_ptr != NULL && 2759 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) { 2760 mdb_warn("couldn't read ptr in %p", sysp); 2761 return (DCMD_ERR); 2762 } 2763 if (sys.sys_op != SETOP_NONE) { 2764 /* 2765 * Is this an int or a string? We determine this 2766 * by checking whether straddr is contained in 2767 * mod_sysfile_arena. If so, the walker will set 2768 * straddr to NULL. 2769 */ 2770 straddr = (void *)(uintptr_t)sys.sys_info; 2771 if (sys.sys_op == SETOP_ASSIGN && 2772 sys.sys_info != 0 && 2773 mdb_pwalk("vmem_seg", 2774 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr, 2775 (uintptr_t)mod_sysfile_arena) == 0 && 2776 straddr == NULL && 2777 mdb_readstr(strval, 256, 2778 (uintptr_t)sys.sys_info) != -1) { 2779 (void) mdb_snprintf(val, sizeof (val), "\"%s\"", 2780 strval); 2781 } else { 2782 (void) mdb_snprintf(val, sizeof (val), 2783 "0x%llx [0t%llu]", sys.sys_info, 2784 sys.sys_info); 2785 } 2786 } 2787 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type], 2788 modname, modname[0] == '\0' ? "" : ":", 2789 var, sysfile_ops[sys.sys_op], val); 2790 2791 sysp = sys.sys_next; 2792 } 2793 2794 return (DCMD_OK); 2795 } 2796 2797 /* 2798 * Dump a taskq_ent_t given its address. 2799 */ 2800 /*ARGSUSED*/ 2801 int 2802 taskq_ent(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2803 { 2804 taskq_ent_t taskq_ent; 2805 GElf_Sym sym; 2806 char buf[MDB_SYM_NAMLEN+1]; 2807 2808 2809 if (!(flags & DCMD_ADDRSPEC)) { 2810 mdb_warn("expected explicit taskq_ent_t address before ::\n"); 2811 return (DCMD_USAGE); 2812 } 2813 2814 if (mdb_vread(&taskq_ent, sizeof (taskq_ent_t), addr) == -1) { 2815 mdb_warn("failed to read taskq_ent_t at %p", addr); 2816 return (DCMD_ERR); 2817 } 2818 2819 if (DCMD_HDRSPEC(flags)) { 2820 mdb_printf("%<u>%-?s %-?s %-s%</u>\n", 2821 "ENTRY", "ARG", "FUNCTION"); 2822 } 2823 2824 if (mdb_lookup_by_addr((uintptr_t)taskq_ent.tqent_func, MDB_SYM_EXACT, 2825 buf, sizeof (buf), &sym) == -1) { 2826 (void) strcpy(buf, "????"); 2827 } 2828 2829 mdb_printf("%-?p %-?p %s\n", addr, taskq_ent.tqent_arg, buf); 2830 2831 return (DCMD_OK); 2832 } 2833 2834 /* 2835 * Given the address of the (taskq_t) task queue head, walk the queue listing 2836 * the address of every taskq_ent_t. 2837 */ 2838 int 2839 taskq_walk_init(mdb_walk_state_t *wsp) 2840 { 2841 taskq_t tq_head; 2842 2843 2844 if (wsp->walk_addr == NULL) { 2845 mdb_warn("start address required\n"); 2846 return (WALK_ERR); 2847 } 2848 2849 2850 /* 2851 * Save the address of the list head entry. This terminates the list. 2852 */ 2853 wsp->walk_data = (void *) 2854 ((size_t)wsp->walk_addr + offsetof(taskq_t, tq_task)); 2855 2856 2857 /* 2858 * Read in taskq head, set walk_addr to point to first taskq_ent_t. 2859 */ 2860 if (mdb_vread((void *)&tq_head, sizeof (taskq_t), wsp->walk_addr) == 2861 -1) { 2862 mdb_warn("failed to read taskq list head at %p", 2863 wsp->walk_addr); 2864 } 2865 wsp->walk_addr = (uintptr_t)tq_head.tq_task.tqent_next; 2866 2867 2868 /* 2869 * Check for null list (next=head) 2870 */ 2871 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) { 2872 return (WALK_DONE); 2873 } 2874 2875 return (WALK_NEXT); 2876 } 2877 2878 2879 int 2880 taskq_walk_step(mdb_walk_state_t *wsp) 2881 { 2882 taskq_ent_t tq_ent; 2883 int status; 2884 2885 2886 if (mdb_vread((void *)&tq_ent, sizeof (taskq_ent_t), wsp->walk_addr) == 2887 -1) { 2888 mdb_warn("failed to read taskq_ent_t at %p", wsp->walk_addr); 2889 return (DCMD_ERR); 2890 } 2891 2892 status = wsp->walk_callback(wsp->walk_addr, (void *)&tq_ent, 2893 wsp->walk_cbdata); 2894 2895 wsp->walk_addr = (uintptr_t)tq_ent.tqent_next; 2896 2897 2898 /* Check if we're at the last element (next=head) */ 2899 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) { 2900 return (WALK_DONE); 2901 } 2902 2903 return (status); 2904 } 2905 2906 int 2907 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp) 2908 { 2909 2910 if (*didp == thr->t_did) { 2911 mdb_printf("%p\n", addr); 2912 return (WALK_DONE); 2913 } else 2914 return (WALK_NEXT); 2915 } 2916 2917 /*ARGSUSED*/ 2918 int 2919 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2920 { 2921 const mdb_arg_t *argp = &argv[0]; 2922 kt_did_t did; 2923 2924 if (argc != 1) 2925 return (DCMD_USAGE); 2926 2927 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str); 2928 2929 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) { 2930 mdb_warn("failed to walk thread"); 2931 return (DCMD_ERR); 2932 2933 } 2934 return (DCMD_OK); 2935 2936 } 2937 2938 static int 2939 errorq_walk_init(mdb_walk_state_t *wsp) 2940 { 2941 if (wsp->walk_addr == NULL && 2942 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) { 2943 mdb_warn("failed to read errorq_list"); 2944 return (WALK_ERR); 2945 } 2946 2947 return (WALK_NEXT); 2948 } 2949 2950 static int 2951 errorq_walk_step(mdb_walk_state_t *wsp) 2952 { 2953 uintptr_t addr = wsp->walk_addr; 2954 errorq_t eq; 2955 2956 if (addr == NULL) 2957 return (WALK_DONE); 2958 2959 if (mdb_vread(&eq, sizeof (eq), addr) == -1) { 2960 mdb_warn("failed to read errorq at %p", addr); 2961 return (WALK_ERR); 2962 } 2963 2964 wsp->walk_addr = (uintptr_t)eq.eq_next; 2965 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata)); 2966 } 2967 2968 typedef struct eqd_walk_data { 2969 uintptr_t *eqd_stack; 2970 void *eqd_buf; 2971 ulong_t eqd_qpos; 2972 ulong_t eqd_qlen; 2973 size_t eqd_size; 2974 } eqd_walk_data_t; 2975 2976 /* 2977 * In order to walk the list of pending error queue elements, we push the 2978 * addresses of the corresponding data buffers in to the eqd_stack array. 2979 * The error lists are in reverse chronological order when iterating using 2980 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the 2981 * walker client gets addresses in order from oldest error to newest error. 2982 */ 2983 static void 2984 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr) 2985 { 2986 errorq_elem_t eqe; 2987 2988 while (addr != NULL) { 2989 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) { 2990 mdb_warn("failed to read errorq element at %p", addr); 2991 break; 2992 } 2993 2994 if (eqdp->eqd_qpos == eqdp->eqd_qlen) { 2995 mdb_warn("errorq is overfull -- more than %lu " 2996 "elems found\n", eqdp->eqd_qlen); 2997 break; 2998 } 2999 3000 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data; 3001 addr = (uintptr_t)eqe.eqe_prev; 3002 } 3003 } 3004 3005 static int 3006 eqd_walk_init(mdb_walk_state_t *wsp) 3007 { 3008 eqd_walk_data_t *eqdp; 3009 errorq_elem_t eqe, *addr; 3010 errorq_t eq; 3011 ulong_t i; 3012 3013 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) { 3014 mdb_warn("failed to read errorq at %p", wsp->walk_addr); 3015 return (WALK_ERR); 3016 } 3017 3018 if (eq.eq_ptail != NULL && 3019 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) { 3020 mdb_warn("failed to read errorq element at %p", eq.eq_ptail); 3021 return (WALK_ERR); 3022 } 3023 3024 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP); 3025 wsp->walk_data = eqdp; 3026 3027 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP); 3028 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP); 3029 eqdp->eqd_qlen = eq.eq_qlen; 3030 eqdp->eqd_qpos = 0; 3031 eqdp->eqd_size = eq.eq_size; 3032 3033 /* 3034 * The newest elements in the queue are on the pending list, so we 3035 * push those on to our stack first. 3036 */ 3037 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend); 3038 3039 /* 3040 * If eq_ptail is set, it may point to a subset of the errors on the 3041 * pending list in the event a casptr() failed; if ptail's data is 3042 * already in our stack, NULL out eq_ptail and ignore it. 3043 */ 3044 if (eq.eq_ptail != NULL) { 3045 for (i = 0; i < eqdp->eqd_qpos; i++) { 3046 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) { 3047 eq.eq_ptail = NULL; 3048 break; 3049 } 3050 } 3051 } 3052 3053 /* 3054 * If eq_phead is set, it has the processing list in order from oldest 3055 * to newest. Use this to recompute eq_ptail as best we can and then 3056 * we nicely fall into eqd_push_list() of eq_ptail below. 3057 */ 3058 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe), 3059 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next) 3060 eq.eq_ptail = addr; 3061 3062 /* 3063 * The oldest elements in the queue are on the processing list, subject 3064 * to machinations in the if-clauses above. Push any such elements. 3065 */ 3066 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail); 3067 return (WALK_NEXT); 3068 } 3069 3070 static int 3071 eqd_walk_step(mdb_walk_state_t *wsp) 3072 { 3073 eqd_walk_data_t *eqdp = wsp->walk_data; 3074 uintptr_t addr; 3075 3076 if (eqdp->eqd_qpos == 0) 3077 return (WALK_DONE); 3078 3079 addr = eqdp->eqd_stack[--eqdp->eqd_qpos]; 3080 3081 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) { 3082 mdb_warn("failed to read errorq data at %p", addr); 3083 return (WALK_ERR); 3084 } 3085 3086 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata)); 3087 } 3088 3089 static void 3090 eqd_walk_fini(mdb_walk_state_t *wsp) 3091 { 3092 eqd_walk_data_t *eqdp = wsp->walk_data; 3093 3094 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen); 3095 mdb_free(eqdp->eqd_buf, eqdp->eqd_size); 3096 mdb_free(eqdp, sizeof (eqd_walk_data_t)); 3097 } 3098 3099 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64) 3100 3101 static int 3102 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3103 { 3104 int i; 3105 errorq_t eq; 3106 uint_t opt_v = FALSE; 3107 3108 if (!(flags & DCMD_ADDRSPEC)) { 3109 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) { 3110 mdb_warn("can't walk 'errorq'"); 3111 return (DCMD_ERR); 3112 } 3113 return (DCMD_OK); 3114 } 3115 3116 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL); 3117 argc -= i; 3118 argv += i; 3119 3120 if (argc != 0) 3121 return (DCMD_USAGE); 3122 3123 if (opt_v || DCMD_HDRSPEC(flags)) { 3124 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ", 3125 "ADDR", "NAME", "S", "V", "N"); 3126 if (!opt_v) { 3127 mdb_printf("%7s %7s %7s%</u>\n", 3128 "ACCEPT", "DROP", "LOG"); 3129 } else { 3130 mdb_printf("%5s %6s %6s %3s %16s%</u>\n", 3131 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC"); 3132 } 3133 } 3134 3135 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) { 3136 mdb_warn("failed to read errorq at %p", addr); 3137 return (DCMD_ERR); 3138 } 3139 3140 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name, 3141 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-', 3142 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ', 3143 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' '); 3144 3145 if (!opt_v) { 3146 mdb_printf("%7llu %7llu %7llu\n", 3147 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed), 3148 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) + 3149 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged)); 3150 } else { 3151 mdb_printf("%5s %6lu %6lu %3u %a\n", 3152 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func); 3153 mdb_printf("%38s\n%41s" 3154 "%12s %llu\n" 3155 "%53s %llu\n" 3156 "%53s %llu\n" 3157 "%53s %llu\n" 3158 "%53s %llu\n" 3159 "%53s %llu\n" 3160 "%53s %llu\n" 3161 "%53s %llu\n\n", 3162 "|", "+-> ", 3163 "DISPATCHED", EQKSVAL(eq, eqk_dispatched), 3164 "DROPPED", EQKSVAL(eq, eqk_dropped), 3165 "LOGGED", EQKSVAL(eq, eqk_logged), 3166 "RESERVED", EQKSVAL(eq, eqk_reserved), 3167 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail), 3168 "COMMITTED", EQKSVAL(eq, eqk_committed), 3169 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail), 3170 "CANCELLED", EQKSVAL(eq, eqk_cancelled)); 3171 } 3172 3173 return (DCMD_OK); 3174 } 3175 3176 /*ARGSUSED*/ 3177 static int 3178 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3179 { 3180 cpu_t panic_cpu; 3181 kthread_t *panic_thread; 3182 void *panicbuf; 3183 panic_data_t *pd; 3184 int i, n; 3185 3186 if (!mdb_prop_postmortem) { 3187 mdb_warn("panicinfo can only be run on a system " 3188 "dump; see dumpadm(1M)\n"); 3189 return (DCMD_ERR); 3190 } 3191 3192 if (flags & DCMD_ADDRSPEC || argc != 0) 3193 return (DCMD_USAGE); 3194 3195 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1) 3196 mdb_warn("failed to read 'panic_cpu'"); 3197 else 3198 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id); 3199 3200 if (mdb_readvar(&panic_thread, "panic_thread") == -1) 3201 mdb_warn("failed to read 'panic_thread'"); 3202 else 3203 mdb_printf("%16s %?p\n", "thread", panic_thread); 3204 3205 panicbuf = mdb_alloc(PANICBUFSIZE, UM_SLEEP); 3206 pd = (panic_data_t *)panicbuf; 3207 3208 if (mdb_readsym(panicbuf, PANICBUFSIZE, "panicbuf") == -1 || 3209 pd->pd_version != PANICBUFVERS) { 3210 mdb_warn("failed to read 'panicbuf'"); 3211 mdb_free(panicbuf, PANICBUFSIZE); 3212 return (DCMD_ERR); 3213 } 3214 3215 mdb_printf("%16s %s\n", "message", (char *)panicbuf + pd->pd_msgoff); 3216 3217 n = (pd->pd_msgoff - (sizeof (panic_data_t) - 3218 sizeof (panic_nv_t))) / sizeof (panic_nv_t); 3219 3220 for (i = 0; i < n; i++) 3221 mdb_printf("%16s %?llx\n", 3222 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value); 3223 3224 mdb_free(panicbuf, PANICBUFSIZE); 3225 return (DCMD_OK); 3226 } 3227 3228 static const mdb_dcmd_t dcmds[] = { 3229 3230 /* from genunix.c */ 3231 { "addr2smap", ":[offset]", "translate address to smap", addr2smap }, 3232 { "as2proc", ":", "convert as to proc_t address", as2proc }, 3233 { "binding_hash_entry", ":", "print driver names hash table entry", 3234 binding_hash_entry }, 3235 { "callout", NULL, "print callout table", callout }, 3236 { "class", NULL, "print process scheduler classes", class }, 3237 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo }, 3238 { "did2thread", "? kt_did", "find kernel thread for this id", 3239 did2thread }, 3240 { "errorq", "?[-v]", "display kernel error queues", errorq }, 3241 { "fd", ":[fd num]", "get a file pointer from an fd", fd }, 3242 { "flipone", ":", "the vik_rev_level 2 special", flipone }, 3243 { "lminfo", NULL, "print lock manager information", lminfo }, 3244 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl }, 3245 { "panicinfo", NULL, "print panic information", panicinfo }, 3246 { "pid2proc", "?", "convert PID to proc_t address", pid2proc }, 3247 { "pmap", ":[-q]", "print process memory map", pmap }, 3248 { "project", NULL, "display kernel project(s)", project }, 3249 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps }, 3250 { "pgrep", "[-x] [-n | -o] pattern", 3251 "pattern match against all processes", pgrep }, 3252 { "ptree", NULL, "print process tree", ptree }, 3253 { "seg", ":", "print address space segment", seg }, 3254 { "sysevent", "?[-sv]", "print sysevent pending or sent queue", 3255 sysevent}, 3256 { "sysevent_channel", "?", "print sysevent channel database", 3257 sysevent_channel}, 3258 { "sysevent_class_list", ":", "print sysevent class list", 3259 sysevent_class_list}, 3260 { "sysevent_subclass_list", ":", 3261 "print sysevent subclass list", sysevent_subclass_list}, 3262 { "system", NULL, "print contents of /etc/system file", sysfile }, 3263 { "task", NULL, "display kernel task(s)", task }, 3264 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent }, 3265 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path }, 3266 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap }, 3267 { "whereopen", ":", "given a vnode, dumps procs which have it open", 3268 whereopen }, 3269 3270 /* from zone.c */ 3271 { "zone", "?", "display kernel zone(s)", zoneprt }, 3272 { "zsd", ":[zsd key]", "lookup zsd value from a key", zsd }, 3273 3274 /* from bio.c */ 3275 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind }, 3276 3277 /* from contract.c */ 3278 { "contract", "?", "display a contract", cmd_contract }, 3279 { "ctevent", ":", "display a contract event", cmd_ctevent }, 3280 { "ctid", ":", "convert id to a contract pointer", cmd_ctid }, 3281 3282 /* from cpupart.c */ 3283 { "cpupart", "?[-v]", "print cpu partition info", cpupart }, 3284 3285 /* from cyclic.c */ 3286 { "cyccover", NULL, "dump cyclic coverage information", cyccover }, 3287 { "cycid", "?", "dump a cyclic id", cycid }, 3288 { "cycinfo", "?", "dump cyc_cpu info", cycinfo }, 3289 { "cyclic", ":", "developer information", cyclic }, 3290 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace }, 3291 3292 /* from devinfo.c */ 3293 { "devbindings", "?[-qs] [device-name | major-num]", 3294 "print devinfo nodes bound to device-name or major-num", 3295 devbindings, devinfo_help }, 3296 { "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo, 3297 devinfo_help }, 3298 { "devinfo_audit", ":[-v]", "devinfo configuration audit record", 3299 devinfo_audit }, 3300 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log", 3301 devinfo_audit_log }, 3302 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history", 3303 devinfo_audit_node }, 3304 { "devinfo2driver", ":", "find driver name for this devinfo node", 3305 devinfo2driver }, 3306 { "devnames", "?[-vm] [num]", "print devnames array", devnames }, 3307 { "dev2major", "?<dev_t>", "convert dev_t to a major number", 3308 dev2major }, 3309 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number", 3310 dev2minor }, 3311 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers", 3312 devt }, 3313 { "major2name", "?<major-num>", "convert major number to dev name", 3314 major2name }, 3315 { "minornodes", ":", "given a devinfo node, print its minor nodes", 3316 minornodes }, 3317 { "modctl2devinfo", ":", "given a modctl, list its devinfos", 3318 modctl2devinfo }, 3319 { "name2major", "<dev-name>", "convert dev name to major number", 3320 name2major }, 3321 { "prtconf", "?[-vpc]", "print devinfo tree", prtconf, prtconf_help }, 3322 { "softstate", ":<instance>", "retrieve soft-state pointer", 3323 softstate }, 3324 { "devinfo_fm", ":", "devinfo fault managment configuration", 3325 devinfo_fm }, 3326 { "devinfo_fmce", ":", "devinfo fault managment cache entry", 3327 devinfo_fmce}, 3328 3329 /* from fm.c */ 3330 { "ereport", "[-v]", "print ereports logged in dump", 3331 ereport }, 3332 3333 /* from findstack.c */ 3334 { "findstack", ":[-v]", "find kernel thread stack", findstack }, 3335 { "findstack_debug", NULL, "toggle findstack debugging", 3336 findstack_debug }, 3337 3338 /* from kgrep.c + genunix.c */ 3339 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep, 3340 kgrep_help }, 3341 3342 /* from kmem.c */ 3343 { "allocdby", ":", "given a thread, print its allocated buffers", 3344 allocdby }, 3345 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] " 3346 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help }, 3347 { "freedby", ":", "given a thread, print its freed buffers", freedby }, 3348 { "kmalog", "?[ fail | slab ]", 3349 "display kmem transaction log and stack traces", kmalog }, 3350 { "kmastat", "[-kmg]", "kernel memory allocator stats", 3351 kmastat }, 3352 { "kmausers", "?[-ef] [cache ...]", "current medium and large users " 3353 "of the kmem allocator", kmausers, kmausers_help }, 3354 { "kmem_cache", "?", "print kernel memory caches", kmem_cache }, 3355 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug }, 3356 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log }, 3357 { "kmem_verify", "?", "check integrity of kmem-managed memory", 3358 kmem_verify }, 3359 { "vmem", "?", "print a vmem_t", vmem }, 3360 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] " 3361 "[-m minsize] [-M maxsize] [-t thread] [-T type]", 3362 "print or filter a vmem_seg", vmem_seg, vmem_seg_help }, 3363 { "whatis", ":[-abiv]", "given an address, return information", whatis, 3364 whatis_help }, 3365 { "whatthread", ":[-v]", "print threads whose stack contains the " 3366 "given address", whatthread }, 3367 3368 /* from ldi.c */ 3369 { "ldi_handle", "?[-i]", "display a layered driver handle", 3370 ldi_handle, ldi_handle_help }, 3371 { "ldi_ident", NULL, "display a layered driver identifier", 3372 ldi_ident, ldi_ident_help }, 3373 3374 /* from leaky.c + leaky_subr.c */ 3375 { "findleaks", FINDLEAKS_USAGE, 3376 "search for potential kernel memory leaks", findleaks, 3377 findleaks_help }, 3378 3379 /* from lgrp.c */ 3380 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp}, 3381 { "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set}, 3382 3383 /* from log.c */ 3384 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf }, 3385 3386 /* from memory.c */ 3387 { "page", "?", "display a summarized page_t", page }, 3388 { "memstat", NULL, "display memory usage summary", memstat }, 3389 { "memlist", "?[-iav]", "display a struct memlist", memlist }, 3390 { "swapinfo", "?", "display a struct swapinfo", swapinfof }, 3391 3392 /* from mmd.c */ 3393 { "multidata", ":[-sv]", "display a summarized multidata_t", 3394 multidata }, 3395 { "pattbl", ":", "display a summarized multidata attribute table", 3396 pattbl }, 3397 { "pattr2multidata", ":", "print multidata pointer from pattr_t", 3398 pattr2multidata }, 3399 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t", 3400 pdesc2slab }, 3401 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify }, 3402 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t", 3403 slab2multidata }, 3404 3405 /* from modhash.c */ 3406 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]", 3407 "display information about one or all mod_hash structures", 3408 modhash, modhash_help }, 3409 { "modent", ":[-k | -v | -t type]", 3410 "display information about a mod_hash_entry", modent, 3411 modent_help }, 3412 3413 /* from net.c */ 3414 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload", 3415 mi }, 3416 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp]", 3417 "show network statistics", netstat }, 3418 { "sonode", "?[-f inet | inet6 | unix | #] " 3419 "[-t stream | dgram | raw | #] [-p #]", 3420 "filter and display sonode", sonode }, 3421 3422 /* from netstack.c */ 3423 { "netstack", "", "show stack instances", netstack }, 3424 3425 /* from nvpair.c */ 3426 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR, 3427 nvpair_print }, 3428 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR, 3429 print_nvlist }, 3430 3431 /* from pg.c */ 3432 { "pg", "?[-q]", "display a pg", pg}, 3433 /* from group.c */ 3434 { "group", "?[-q]", "display a group", group}, 3435 3436 /* from log.c */ 3437 /* from rctl.c */ 3438 { "rctl_dict", "?", "print systemwide default rctl definitions", 3439 rctl_dict }, 3440 { "rctl_list", ":[handle]", "print rctls for the given proc", 3441 rctl_list }, 3442 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle", 3443 rctl }, 3444 { "rctl_validate", ":[-v] [-n #]", "test resource control value " 3445 "sequence", rctl_validate }, 3446 3447 /* from sobj.c */ 3448 { "rwlock", ":", "dump out a readers/writer lock", rwlock }, 3449 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex, 3450 mutex_help }, 3451 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts }, 3452 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo }, 3453 { "turnstile", "?", "display a turnstile", turnstile }, 3454 3455 /* from stream.c */ 3456 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]", 3457 "print an mblk", mblk_prt, mblk_help }, 3458 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify }, 3459 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address", 3460 mblk2dblk }, 3461 { "q2otherq", ":", "print peer queue for a given queue", q2otherq }, 3462 { "q2rdq", ":", "print read queue for a given queue", q2rdq }, 3463 { "q2syncq", ":", "print syncq for a given queue", q2syncq }, 3464 { "q2stream", ":", "print stream pointer for a given queue", q2stream }, 3465 { "q2wrq", ":", "print write queue for a given queue", q2wrq }, 3466 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]", 3467 "filter and display STREAM queue", queue, queue_help }, 3468 { "stdata", ":[-q|v] [-f flag] [-F flag]", 3469 "filter and display STREAM head", stdata, stdata_help }, 3470 { "str2mate", ":", "print mate of this stream", str2mate }, 3471 { "str2wrq", ":", "print write queue of this stream", str2wrq }, 3472 { "stream", ":", "display STREAM", stream }, 3473 { "strftevent", ":", "print STREAMS flow trace event", strftevent }, 3474 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]", 3475 "filter and display STREAM sync queue", syncq, syncq_help }, 3476 { "syncq2q", ":", "print queue for a given syncq", syncq2q }, 3477 3478 /* from thread.c */ 3479 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread, 3480 thread_help }, 3481 { "threadlist", "?[-v [count]]", 3482 "display threads and associated C stack traces", threadlist, 3483 threadlist_help }, 3484 3485 /* from tsd.c */ 3486 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd }, 3487 { "tsdtot", ":", "find thread with this tsd", tsdtot }, 3488 3489 /* 3490 * typegraph does not work under kmdb, as it requires too much memory 3491 * for its internal data structures. 3492 */ 3493 #ifndef _KMDB 3494 /* from typegraph.c */ 3495 { "findlocks", ":", "find locks held by specified thread", findlocks }, 3496 { "findfalse", "?[-v]", "find potentially falsely shared structures", 3497 findfalse }, 3498 { "typegraph", NULL, "build type graph", typegraph }, 3499 { "istype", ":type", "manually set object type", istype }, 3500 { "notype", ":", "manually clear object type", notype }, 3501 { "whattype", ":", "determine object type", whattype }, 3502 #endif 3503 3504 /* from vfs.c */ 3505 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo }, 3506 { "pfiles", ":[-fp]", "print process file information", pfiles, 3507 pfiles_help }, 3508 3509 /* from mdi.c */ 3510 { "mdipi", NULL, "given a path, dump mdi_pathinfo " 3511 "and detailed pi_prop list", mdipi }, 3512 { "mdiprops", NULL, "given a pi_prop, dump the pi_prop list", 3513 mdiprops }, 3514 { "mdiphci", NULL, "given a phci, dump mdi_phci and " 3515 "list all paths", mdiphci }, 3516 { "mdivhci", NULL, "given a vhci, dump mdi_vhci and list " 3517 "all phcis", mdivhci }, 3518 { "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo " 3519 "client links", mdiclient_paths }, 3520 { "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo " 3521 "phci links", mdiphci_paths }, 3522 { "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links", 3523 mdiphcis }, 3524 3525 { NULL } 3526 }; 3527 3528 static const mdb_walker_t walkers[] = { 3529 3530 /* from genunix.c */ 3531 { "anon", "given an amp, list of anon structures", 3532 anon_walk_init, anon_walk_step, anon_walk_fini }, 3533 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step }, 3534 { "ereportq_dump", "walk list of ereports in dump error queue", 3535 ereportq_dump_walk_init, ereportq_dump_walk_step, NULL }, 3536 { "ereportq_pend", "walk list of ereports in pending error queue", 3537 ereportq_pend_walk_init, ereportq_pend_walk_step, NULL }, 3538 { "errorq", "walk list of system error queues", 3539 errorq_walk_init, errorq_walk_step, NULL }, 3540 { "errorq_data", "walk pending error queue data buffers", 3541 eqd_walk_init, eqd_walk_step, eqd_walk_fini }, 3542 { "allfile", "given a proc pointer, list all file pointers", 3543 file_walk_init, allfile_walk_step, file_walk_fini }, 3544 { "file", "given a proc pointer, list of open file pointers", 3545 file_walk_init, file_walk_step, file_walk_fini }, 3546 { "lock_descriptor", "walk lock_descriptor_t structures", 3547 ld_walk_init, ld_walk_step, NULL }, 3548 { "lock_graph", "walk lock graph", 3549 lg_walk_init, lg_walk_step, NULL }, 3550 { "port", "given a proc pointer, list of created event ports", 3551 port_walk_init, port_walk_step, NULL }, 3552 { "portev", "given a port pointer, list of events in the queue", 3553 portev_walk_init, portev_walk_step, portev_walk_fini }, 3554 { "proc", "list of active proc_t structures", 3555 proc_walk_init, proc_walk_step, proc_walk_fini }, 3556 { "projects", "walk a list of kernel projects", 3557 project_walk_init, project_walk_step, NULL }, 3558 { "seg", "given an as, list of segments", 3559 seg_walk_init, avl_walk_step, avl_walk_fini }, 3560 { "sysevent_pend", "walk sysevent pending queue", 3561 sysevent_pend_walk_init, sysevent_walk_step, 3562 sysevent_walk_fini}, 3563 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init, 3564 sysevent_walk_step, sysevent_walk_fini}, 3565 { "sysevent_channel", "walk sysevent channel subscriptions", 3566 sysevent_channel_walk_init, sysevent_channel_walk_step, 3567 sysevent_channel_walk_fini}, 3568 { "sysevent_class_list", "walk sysevent subscription's class list", 3569 sysevent_class_list_walk_init, sysevent_class_list_walk_step, 3570 sysevent_class_list_walk_fini}, 3571 { "sysevent_subclass_list", 3572 "walk sysevent subscription's subclass list", 3573 sysevent_subclass_list_walk_init, 3574 sysevent_subclass_list_walk_step, 3575 sysevent_subclass_list_walk_fini}, 3576 { "task", "given a task pointer, walk its processes", 3577 task_walk_init, task_walk_step, NULL }, 3578 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list", 3579 taskq_walk_init, taskq_walk_step, NULL, NULL }, 3580 3581 /* from avl.c */ 3582 { AVL_WALK_NAME, AVL_WALK_DESC, 3583 avl_walk_init, avl_walk_step, avl_walk_fini }, 3584 3585 /* from zone.c */ 3586 { "zone", "walk a list of kernel zones", 3587 zone_walk_init, zone_walk_step, NULL }, 3588 { "zsd", "walk list of zsd entries for a zone", 3589 zsd_walk_init, zsd_walk_step, NULL }, 3590 3591 /* from bio.c */ 3592 { "buf", "walk the bio buf hash", 3593 buf_walk_init, buf_walk_step, buf_walk_fini }, 3594 3595 /* from contract.c */ 3596 { "contract", "walk all contracts, or those of the specified type", 3597 ct_walk_init, generic_walk_step, NULL }, 3598 { "ct_event", "walk events on a contract event queue", 3599 ct_event_walk_init, generic_walk_step, NULL }, 3600 { "ct_listener", "walk contract event queue listeners", 3601 ct_listener_walk_init, generic_walk_step, NULL }, 3602 3603 /* from cpupart.c */ 3604 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition", 3605 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step, 3606 NULL }, 3607 { "cpupart_walk", "walk the set of cpu partitions", 3608 cpupart_walk_init, cpupart_walk_step, NULL }, 3609 3610 /* from ctxop.c */ 3611 { "ctxop", "walk list of context ops on a thread", 3612 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini }, 3613 3614 /* from cyclic.c */ 3615 { "cyccpu", "walk per-CPU cyc_cpu structures", 3616 cyccpu_walk_init, cyccpu_walk_step, NULL }, 3617 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list", 3618 cycomni_walk_init, cycomni_walk_step, NULL }, 3619 { "cyctrace", "walk cyclic trace buffer", 3620 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini }, 3621 3622 /* from devinfo.c */ 3623 { "binding_hash", "walk all entries in binding hash table", 3624 binding_hash_walk_init, binding_hash_walk_step, NULL }, 3625 { "devinfo", "walk devinfo tree or subtree", 3626 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini }, 3627 { "devinfo_audit_log", "walk devinfo audit system-wide log", 3628 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step, 3629 devinfo_audit_log_walk_fini}, 3630 { "devinfo_audit_node", "walk per-devinfo audit history", 3631 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step, 3632 devinfo_audit_node_walk_fini}, 3633 { "devinfo_children", "walk children of devinfo node", 3634 devinfo_children_walk_init, devinfo_children_walk_step, 3635 devinfo_children_walk_fini }, 3636 { "devinfo_parents", "walk ancestors of devinfo node", 3637 devinfo_parents_walk_init, devinfo_parents_walk_step, 3638 devinfo_parents_walk_fini }, 3639 { "devinfo_siblings", "walk siblings of devinfo node", 3640 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL }, 3641 { "devi_next", "walk devinfo list", 3642 NULL, devi_next_walk_step, NULL }, 3643 { "devnames", "walk devnames array", 3644 devnames_walk_init, devnames_walk_step, devnames_walk_fini }, 3645 { "minornode", "given a devinfo node, walk minor nodes", 3646 minornode_walk_init, minornode_walk_step, NULL }, 3647 { "softstate", 3648 "given an i_ddi_soft_state*, list all in-use driver stateps", 3649 soft_state_walk_init, soft_state_walk_step, 3650 NULL, NULL }, 3651 { "softstate_all", 3652 "given an i_ddi_soft_state*, list all driver stateps", 3653 soft_state_walk_init, soft_state_all_walk_step, 3654 NULL, NULL }, 3655 { "devinfo_fmc", 3656 "walk a fault management handle cache active list", 3657 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL }, 3658 3659 /* from kmem.c */ 3660 { "allocdby", "given a thread, walk its allocated bufctls", 3661 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 3662 { "bufctl", "walk a kmem cache's bufctls", 3663 bufctl_walk_init, kmem_walk_step, kmem_walk_fini }, 3664 { "bufctl_history", "walk the available history of a bufctl", 3665 bufctl_history_walk_init, bufctl_history_walk_step, 3666 bufctl_history_walk_fini }, 3667 { "freedby", "given a thread, walk its freed bufctls", 3668 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 3669 { "freectl", "walk a kmem cache's free bufctls", 3670 freectl_walk_init, kmem_walk_step, kmem_walk_fini }, 3671 { "freectl_constructed", "walk a kmem cache's constructed free bufctls", 3672 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 3673 { "freemem", "walk a kmem cache's free memory", 3674 freemem_walk_init, kmem_walk_step, kmem_walk_fini }, 3675 { "freemem_constructed", "walk a kmem cache's constructed free memory", 3676 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 3677 { "kmem", "walk a kmem cache", 3678 kmem_walk_init, kmem_walk_step, kmem_walk_fini }, 3679 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches", 3680 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL }, 3681 { "kmem_hash", "given a kmem cache, walk its allocated hash table", 3682 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini }, 3683 { "kmem_log", "walk the kmem transaction log", 3684 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini }, 3685 { "kmem_slab", "given a kmem cache, walk its slabs", 3686 kmem_slab_walk_init, kmem_slab_walk_step, NULL }, 3687 { "kmem_slab_partial", 3688 "given a kmem cache, walk its partially allocated slabs (min 1)", 3689 kmem_slab_walk_partial_init, kmem_slab_walk_step, NULL }, 3690 { "vmem", "walk vmem structures in pre-fix, depth-first order", 3691 vmem_walk_init, vmem_walk_step, vmem_walk_fini }, 3692 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs", 3693 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3694 { "vmem_free", "given a vmem_t, walk its free vmem_segs", 3695 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3696 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order", 3697 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini }, 3698 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs", 3699 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3700 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs", 3701 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3702 3703 /* from ldi.c */ 3704 { "ldi_handle", "walk the layered driver handle hash", 3705 ldi_handle_walk_init, ldi_handle_walk_step, NULL }, 3706 { "ldi_ident", "walk the layered driver identifier hash", 3707 ldi_ident_walk_init, ldi_ident_walk_step, NULL }, 3708 3709 /* from leaky.c + leaky_subr.c */ 3710 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same " 3711 "stack trace", 3712 leaky_walk_init, leaky_walk_step, leaky_walk_fini }, 3713 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for " 3714 "leaks w/ same stack trace", 3715 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini }, 3716 3717 /* from lgrp.c */ 3718 { "lgrp_cpulist", "walk CPUs in a given lgroup", 3719 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL }, 3720 { "lgrptbl", "walk lgroup table", 3721 lgrp_walk_init, lgrp_walk_step, NULL }, 3722 { "lgrp_parents", "walk up lgroup lineage from given lgroup", 3723 lgrp_parents_walk_init, lgrp_parents_walk_step, NULL }, 3724 { "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup", 3725 lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL }, 3726 { "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup", 3727 lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL }, 3728 3729 /* from group.c */ 3730 { "group", "walk all elements of a group", 3731 group_walk_init, group_walk_step, NULL }, 3732 3733 /* from list.c */ 3734 { LIST_WALK_NAME, LIST_WALK_DESC, 3735 list_walk_init, list_walk_step, list_walk_fini }, 3736 3737 /* from memory.c */ 3738 { "page", "walk all pages, or those from the specified vnode", 3739 page_walk_init, page_walk_step, page_walk_fini }, 3740 { "memlist", "walk specified memlist", 3741 NULL, memlist_walk_step, NULL }, 3742 { "swapinfo", "walk swapinfo structures", 3743 swap_walk_init, swap_walk_step, NULL }, 3744 3745 /* from mmd.c */ 3746 { "pattr", "walk pattr_t structures", pattr_walk_init, 3747 mmdq_walk_step, mmdq_walk_fini }, 3748 { "pdesc", "walk pdesc_t structures", 3749 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini }, 3750 { "pdesc_slab", "walk pdesc_slab_t structures", 3751 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini }, 3752 3753 /* from modhash.c */ 3754 { "modhash", "walk list of mod_hash structures", modhash_walk_init, 3755 modhash_walk_step, NULL }, 3756 { "modent", "walk list of entries in a given mod_hash", 3757 modent_walk_init, modent_walk_step, modent_walk_fini }, 3758 { "modchain", "walk list of entries in a given mod_hash_entry", 3759 NULL, modchain_walk_step, NULL }, 3760 3761 /* from net.c */ 3762 { "ar", "walk ar_t structures using MI for all stacks", 3763 mi_payload_walk_init, mi_payload_walk_step, NULL, &mi_ar_arg }, 3764 { "icmp", "walk ICMP control structures using MI for all stacks", 3765 mi_payload_walk_init, mi_payload_walk_step, NULL, 3766 &mi_icmp_arg }, 3767 { "ill", "walk ill_t structures using MI for all stacks", 3768 mi_payload_walk_init, mi_payload_walk_step, NULL, &mi_ill_arg }, 3769 3770 { "mi", "given a MI_O, walk the MI", 3771 mi_walk_init, mi_walk_step, mi_walk_fini, NULL }, 3772 { "sonode", "given a sonode, walk its children", 3773 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL }, 3774 3775 { "ar_stacks", "walk all the ar_stack_t", 3776 ar_stacks_walk_init, ar_stacks_walk_step, NULL }, 3777 { "icmp_stacks", "walk all the icmp_stack_t", 3778 icmp_stacks_walk_init, icmp_stacks_walk_step, NULL }, 3779 { "tcp_stacks", "walk all the tcp_stack_t", 3780 tcp_stacks_walk_init, tcp_stacks_walk_step, NULL }, 3781 { "udp_stacks", "walk all the udp_stack_t", 3782 udp_stacks_walk_init, udp_stacks_walk_step, NULL }, 3783 3784 /* from nvpair.c */ 3785 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR, 3786 nvpair_walk_init, nvpair_walk_step, NULL }, 3787 3788 /* from rctl.c */ 3789 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists", 3790 rctl_dict_walk_init, rctl_dict_walk_step, NULL }, 3791 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init, 3792 rctl_set_walk_step, NULL }, 3793 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated", 3794 rctl_val_walk_init, rctl_val_walk_step }, 3795 3796 /* from sobj.c */ 3797 { "blocked", "walk threads blocked on a given sobj", 3798 blocked_walk_init, blocked_walk_step, NULL }, 3799 { "wchan", "given a wchan, list of blocked threads", 3800 wchan_walk_init, wchan_walk_step, wchan_walk_fini }, 3801 3802 /* from stream.c */ 3803 { "b_cont", "walk mblk_t list using b_cont", 3804 mblk_walk_init, b_cont_step, mblk_walk_fini }, 3805 { "b_next", "walk mblk_t list using b_next", 3806 mblk_walk_init, b_next_step, mblk_walk_fini }, 3807 { "qlink", "walk queue_t list using q_link", 3808 queue_walk_init, queue_link_step, queue_walk_fini }, 3809 { "qnext", "walk queue_t list using q_next", 3810 queue_walk_init, queue_next_step, queue_walk_fini }, 3811 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list", 3812 strftblk_walk_init, strftblk_step, strftblk_walk_fini }, 3813 { "readq", "walk read queue side of stdata", 3814 str_walk_init, strr_walk_step, str_walk_fini }, 3815 { "writeq", "walk write queue side of stdata", 3816 str_walk_init, strw_walk_step, str_walk_fini }, 3817 3818 /* from thread.c */ 3819 { "deathrow", "walk threads on both lwp_ and thread_deathrow", 3820 deathrow_walk_init, deathrow_walk_step, NULL }, 3821 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues", 3822 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 3823 { "cpupart_dispq", 3824 "given a cpupart_t, walk threads in dispatcher queues", 3825 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 3826 { "lwp_deathrow", "walk lwp_deathrow", 3827 lwp_deathrow_walk_init, deathrow_walk_step, NULL }, 3828 { "thread", "global or per-process kthread_t structures", 3829 thread_walk_init, thread_walk_step, thread_walk_fini }, 3830 { "thread_deathrow", "walk threads on thread_deathrow", 3831 thread_deathrow_walk_init, deathrow_walk_step, NULL }, 3832 3833 /* from tsd.c */ 3834 { "tsd", "walk list of thread-specific data", 3835 tsd_walk_init, tsd_walk_step, tsd_walk_fini }, 3836 3837 /* from tsol.c */ 3838 { "tnrh", "walk remote host cache structures", 3839 tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini }, 3840 { "tnrhtp", "walk remote host template structures", 3841 tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini }, 3842 3843 /* 3844 * typegraph does not work under kmdb, as it requires too much memory 3845 * for its internal data structures. 3846 */ 3847 #ifndef _KMDB 3848 /* from typegraph.c */ 3849 { "typeconflict", "walk buffers with conflicting type inferences", 3850 typegraph_walk_init, typeconflict_walk_step }, 3851 { "typeunknown", "walk buffers with unknown types", 3852 typegraph_walk_init, typeunknown_walk_step }, 3853 #endif 3854 3855 /* from vfs.c */ 3856 { "vfs", "walk file system list", 3857 vfs_walk_init, vfs_walk_step }, 3858 3859 /* from mdi.c */ 3860 { "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link", 3861 mdi_pi_client_link_walk_init, 3862 mdi_pi_client_link_walk_step, 3863 mdi_pi_client_link_walk_fini }, 3864 3865 { "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link", 3866 mdi_pi_phci_link_walk_init, 3867 mdi_pi_phci_link_walk_step, 3868 mdi_pi_phci_link_walk_fini }, 3869 3870 { "mdiphci_list", "Walker for mdi_phci ph_next link", 3871 mdi_phci_ph_next_walk_init, 3872 mdi_phci_ph_next_walk_step, 3873 mdi_phci_ph_next_walk_fini }, 3874 3875 /* from netstack.c */ 3876 { "netstack", "walk a list of kernel netstacks", 3877 netstack_walk_init, netstack_walk_step, NULL }, 3878 3879 { NULL } 3880 }; 3881 3882 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers }; 3883 3884 const mdb_modinfo_t * 3885 _mdb_init(void) 3886 { 3887 if (mdb_readvar(&devinfo_root, "top_devinfo") == -1) { 3888 mdb_warn("failed to read 'top_devinfo'"); 3889 return (NULL); 3890 } 3891 3892 if (findstack_init() != DCMD_OK) 3893 return (NULL); 3894 3895 kmem_init(); 3896 3897 return (&modinfo); 3898 } 3899 3900 void 3901 _mdb_fini(void) 3902 { 3903 /* 3904 * Force ::findleaks to let go any cached memory 3905 */ 3906 leaky_cleanup(1); 3907 } 3908