1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <mdb/mdb_param.h> 29 #include <mdb/mdb_modapi.h> 30 #include <mdb/mdb_ks.h> 31 #include <mdb/mdb_ctf.h> 32 33 #include <sys/types.h> 34 #include <sys/thread.h> 35 #include <sys/session.h> 36 #include <sys/user.h> 37 #include <sys/proc.h> 38 #include <sys/var.h> 39 #include <sys/t_lock.h> 40 #include <sys/callo.h> 41 #include <sys/priocntl.h> 42 #include <sys/class.h> 43 #include <sys/regset.h> 44 #include <sys/stack.h> 45 #include <sys/cpuvar.h> 46 #include <sys/vnode.h> 47 #include <sys/vfs.h> 48 #include <sys/flock_impl.h> 49 #include <sys/kmem_impl.h> 50 #include <sys/vmem_impl.h> 51 #include <sys/kstat.h> 52 #include <vm/seg_vn.h> 53 #include <vm/anon.h> 54 #include <vm/as.h> 55 #include <vm/seg_map.h> 56 #include <sys/dditypes.h> 57 #include <sys/ddi_impldefs.h> 58 #include <sys/sysmacros.h> 59 #include <sys/sysconf.h> 60 #include <sys/task.h> 61 #include <sys/project.h> 62 #include <sys/taskq.h> 63 #include <sys/taskq_impl.h> 64 #include <sys/errorq_impl.h> 65 #include <sys/cred_impl.h> 66 #include <sys/zone.h> 67 #include <sys/panic.h> 68 #include <regex.h> 69 #include <sys/port_impl.h> 70 71 #include "avl.h" 72 #include "contract.h" 73 #include "cpupart_mdb.h" 74 #include "devinfo.h" 75 #include "leaky.h" 76 #include "lgrp.h" 77 #include "list.h" 78 #include "log.h" 79 #include "kgrep.h" 80 #include "kmem.h" 81 #include "bio.h" 82 #include "streams.h" 83 #include "cyclic.h" 84 #include "findstack.h" 85 #include "ndievents.h" 86 #include "mmd.h" 87 #include "net.h" 88 #include "nvpair.h" 89 #include "ctxop.h" 90 #include "tsd.h" 91 #include "thread.h" 92 #include "memory.h" 93 #include "sobj.h" 94 #include "sysevent.h" 95 #include "rctl.h" 96 #include "tsol.h" 97 #include "typegraph.h" 98 #include "ldi.h" 99 #include "vfs.h" 100 #include "zone.h" 101 #include "modhash.h" 102 #include "mdi.h" 103 #include "fm.h" 104 105 /* 106 * Surely this is defined somewhere... 107 */ 108 #define NINTR 16 109 110 #ifndef STACK_BIAS 111 #define STACK_BIAS 0 112 #endif 113 114 static char 115 pstat2ch(uchar_t state) 116 { 117 switch (state) { 118 case SSLEEP: return ('S'); 119 case SRUN: return ('R'); 120 case SZOMB: return ('Z'); 121 case SIDL: return ('I'); 122 case SONPROC: return ('O'); 123 case SSTOP: return ('T'); 124 default: return ('?'); 125 } 126 } 127 128 #define PS_PRTTHREADS 0x1 129 #define PS_PRTLWPS 0x2 130 #define PS_PSARGS 0x4 131 #define PS_TASKS 0x8 132 #define PS_PROJECTS 0x10 133 #define PS_ZONES 0x20 134 135 static int 136 ps_threadprint(uintptr_t addr, const void *data, void *private) 137 { 138 const kthread_t *t = (const kthread_t *)data; 139 uint_t prt_flags = *((uint_t *)private); 140 141 static const mdb_bitmask_t t_state_bits[] = { 142 { "TS_FREE", UINT_MAX, TS_FREE }, 143 { "TS_SLEEP", TS_SLEEP, TS_SLEEP }, 144 { "TS_RUN", TS_RUN, TS_RUN }, 145 { "TS_ONPROC", TS_ONPROC, TS_ONPROC }, 146 { "TS_ZOMB", TS_ZOMB, TS_ZOMB }, 147 { "TS_STOPPED", TS_STOPPED, TS_STOPPED }, 148 { NULL, 0, 0 } 149 }; 150 151 if (prt_flags & PS_PRTTHREADS) 152 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits); 153 154 if (prt_flags & PS_PRTLWPS) 155 mdb_printf("\tL %?a ID: %u\n", t->t_lwp, t->t_tid); 156 157 return (WALK_NEXT); 158 } 159 160 int 161 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 162 { 163 uint_t prt_flags = 0; 164 proc_t pr; 165 struct pid pid, pgid, sid; 166 sess_t session; 167 cred_t cred; 168 task_t tk; 169 kproject_t pj; 170 zone_t zn; 171 172 if (!(flags & DCMD_ADDRSPEC)) { 173 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) { 174 mdb_warn("can't walk 'proc'"); 175 return (DCMD_ERR); 176 } 177 return (DCMD_OK); 178 } 179 180 if (mdb_getopts(argc, argv, 181 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags, 182 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags, 183 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags, 184 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags, 185 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags, 186 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc) 187 return (DCMD_USAGE); 188 189 if (DCMD_HDRSPEC(flags)) { 190 mdb_printf("%<u>%1s %6s %6s %6s %6s ", 191 "S", "PID", "PPID", "PGID", "SID"); 192 if (prt_flags & PS_TASKS) 193 mdb_printf("%5s ", "TASK"); 194 if (prt_flags & PS_PROJECTS) 195 mdb_printf("%5s ", "PROJ"); 196 if (prt_flags & PS_ZONES) 197 mdb_printf("%5s ", "ZONE"); 198 mdb_printf("%6s %10s %?s %s%</u>\n", 199 "UID", "FLAGS", "ADDR", "NAME"); 200 } 201 202 mdb_vread(&pr, sizeof (pr), addr); 203 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp); 204 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp); 205 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred); 206 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp); 207 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp); 208 if (prt_flags & (PS_TASKS | PS_PROJECTS)) 209 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task); 210 if (prt_flags & PS_PROJECTS) 211 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj); 212 if (prt_flags & PS_ZONES) 213 mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone); 214 215 mdb_printf("%c %6d %6d %6d %6d ", 216 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id, 217 sid.pid_id); 218 if (prt_flags & PS_TASKS) 219 mdb_printf("%5d ", tk.tk_tkid); 220 if (prt_flags & PS_PROJECTS) 221 mdb_printf("%5d ", pj.kpj_id); 222 if (prt_flags & PS_ZONES) 223 mdb_printf("%5d ", zn.zone_id); 224 mdb_printf("%6d 0x%08x %0?p %s\n", 225 cred.cr_uid, pr.p_flag, addr, 226 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm); 227 228 if (prt_flags & ~PS_PSARGS) 229 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr); 230 231 return (DCMD_OK); 232 } 233 234 #define PG_NEWEST 0x0001 235 #define PG_OLDEST 0x0002 236 #define PG_PIPE_OUT 0x0004 237 #define PG_EXACT_MATCH 0x0008 238 239 typedef struct pgrep_data { 240 uint_t pg_flags; 241 uint_t pg_psflags; 242 uintptr_t pg_xaddr; 243 hrtime_t pg_xstart; 244 const char *pg_pat; 245 #ifndef _KMDB 246 regex_t pg_reg; 247 #endif 248 } pgrep_data_t; 249 250 /*ARGSUSED*/ 251 static int 252 pgrep_cb(uintptr_t addr, const void *pdata, void *data) 253 { 254 const proc_t *prp = pdata; 255 pgrep_data_t *pgp = data; 256 #ifndef _KMDB 257 regmatch_t pmatch; 258 #endif 259 260 /* 261 * kmdb doesn't have access to the reg* functions, so we fall back 262 * to strstr/strcmp. 263 */ 264 #ifdef _KMDB 265 if ((pgp->pg_flags & PG_EXACT_MATCH) ? 266 (strcmp(prp->p_user.u_comm, pgp->pg_pat) != 0) : 267 (strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL)) 268 return (WALK_NEXT); 269 #else 270 if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0) 271 return (WALK_NEXT); 272 273 if ((pgp->pg_flags & PG_EXACT_MATCH) && 274 (pmatch.rm_so != 0 || prp->p_user.u_comm[pmatch.rm_eo] != '\0')) 275 return (WALK_NEXT); 276 #endif 277 278 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) { 279 hrtime_t start; 280 281 start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC + 282 prp->p_user.u_start.tv_nsec; 283 284 if (pgp->pg_flags & PG_NEWEST) { 285 if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) { 286 pgp->pg_xaddr = addr; 287 pgp->pg_xstart = start; 288 } 289 } else { 290 if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) { 291 pgp->pg_xaddr = addr; 292 pgp->pg_xstart = start; 293 } 294 } 295 296 } else if (pgp->pg_flags & PG_PIPE_OUT) { 297 mdb_printf("%p\n", addr); 298 299 } else { 300 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) { 301 mdb_warn("can't invoke 'ps'"); 302 return (WALK_DONE); 303 } 304 pgp->pg_psflags &= ~DCMD_LOOPFIRST; 305 } 306 307 return (WALK_NEXT); 308 } 309 310 /*ARGSUSED*/ 311 int 312 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 313 { 314 pgrep_data_t pg; 315 int i; 316 #ifndef _KMDB 317 int err; 318 #endif 319 320 if (flags & DCMD_ADDRSPEC) 321 return (DCMD_USAGE); 322 323 pg.pg_flags = 0; 324 pg.pg_xaddr = 0; 325 326 i = mdb_getopts(argc, argv, 327 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags, 328 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags, 329 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags, 330 NULL); 331 332 argc -= i; 333 argv += i; 334 335 if (argc != 1) 336 return (DCMD_USAGE); 337 338 /* 339 * -n and -o are mutually exclusive. 340 */ 341 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST)) 342 return (DCMD_USAGE); 343 344 if (argv->a_type != MDB_TYPE_STRING) 345 return (DCMD_USAGE); 346 347 if (flags & DCMD_PIPE_OUT) 348 pg.pg_flags |= PG_PIPE_OUT; 349 350 pg.pg_pat = argv->a_un.a_str; 351 if (DCMD_HDRSPEC(flags)) 352 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST; 353 else 354 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP; 355 356 #ifndef _KMDB 357 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) { 358 size_t nbytes; 359 char *buf; 360 361 nbytes = regerror(err, &pg.pg_reg, NULL, 0); 362 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC); 363 (void) regerror(err, &pg.pg_reg, buf, nbytes); 364 mdb_warn("%s\n", buf); 365 366 return (DCMD_ERR); 367 } 368 #endif 369 370 if (mdb_walk("proc", pgrep_cb, &pg) != 0) { 371 mdb_warn("can't walk 'proc'"); 372 return (DCMD_ERR); 373 } 374 375 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) { 376 if (pg.pg_flags & PG_PIPE_OUT) { 377 mdb_printf("%p\n", pg.pg_xaddr); 378 } else { 379 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags, 380 0, NULL) != 0) { 381 mdb_warn("can't invoke 'ps'"); 382 return (DCMD_ERR); 383 } 384 } 385 } 386 387 return (DCMD_OK); 388 } 389 390 int 391 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 392 { 393 task_t tk; 394 kproject_t pj; 395 396 if (!(flags & DCMD_ADDRSPEC)) { 397 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) { 398 mdb_warn("can't walk task_cache"); 399 return (DCMD_ERR); 400 } 401 return (DCMD_OK); 402 } 403 if (DCMD_HDRSPEC(flags)) { 404 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n", 405 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS"); 406 } 407 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) { 408 mdb_warn("can't read task_t structure at %p", addr); 409 return (DCMD_ERR); 410 } 411 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) { 412 mdb_warn("can't read project_t structure at %p", addr); 413 return (DCMD_ERR); 414 } 415 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n", 416 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count, 417 tk.tk_flags); 418 return (DCMD_OK); 419 } 420 421 int 422 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 423 { 424 kproject_t pj; 425 426 if (!(flags & DCMD_ADDRSPEC)) { 427 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) { 428 mdb_warn("can't walk projects"); 429 return (DCMD_ERR); 430 } 431 return (DCMD_OK); 432 } 433 if (DCMD_HDRSPEC(flags)) { 434 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n", 435 "ADDR", "PROJID", "ZONEID", "REFCNT"); 436 } 437 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 438 mdb_warn("can't read kproject_t structure at %p", addr); 439 return (DCMD_ERR); 440 } 441 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid, 442 pj.kpj_count); 443 return (DCMD_OK); 444 } 445 446 /*ARGSUSED*/ 447 int 448 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 449 { 450 callout_table_t *co_ktable[CALLOUT_TABLES]; 451 int co_kfanout; 452 callout_table_t co_table; 453 callout_t co_callout; 454 callout_t *co_ptr; 455 int co_id; 456 clock_t lbolt; 457 int i, j, k; 458 const char *lbolt_sym; 459 460 if ((flags & DCMD_ADDRSPEC) || argc != 0) 461 return (DCMD_USAGE); 462 463 if (mdb_prop_postmortem) 464 lbolt_sym = "panic_lbolt"; 465 else 466 lbolt_sym = "lbolt"; 467 468 if (mdb_readvar(&lbolt, lbolt_sym) == -1) { 469 mdb_warn("failed to read '%s'", lbolt_sym); 470 return (DCMD_ERR); 471 } 472 473 if (mdb_readvar(&co_kfanout, "callout_fanout") == -1) { 474 mdb_warn("failed to read callout_fanout"); 475 return (DCMD_ERR); 476 } 477 478 if (mdb_readvar(&co_ktable, "callout_table") == -1) { 479 mdb_warn("failed to read callout_table"); 480 return (DCMD_ERR); 481 } 482 483 mdb_printf("%<u>%-24s %-?s %-?s %-?s%</u>\n", 484 "FUNCTION", "ARGUMENT", "ID", "TIME"); 485 486 for (i = 0; i < CALLOUT_NTYPES; i++) { 487 for (j = 0; j < co_kfanout; j++) { 488 489 co_id = CALLOUT_TABLE(i, j); 490 491 if (mdb_vread(&co_table, sizeof (co_table), 492 (uintptr_t)co_ktable[co_id]) == -1) { 493 mdb_warn("failed to read table at %p", 494 (uintptr_t)co_ktable[co_id]); 495 continue; 496 } 497 498 for (k = 0; k < CALLOUT_BUCKETS; k++) { 499 co_ptr = co_table.ct_idhash[k]; 500 501 while (co_ptr != NULL) { 502 mdb_vread(&co_callout, 503 sizeof (co_callout), 504 (uintptr_t)co_ptr); 505 506 mdb_printf("%-24a %0?p %0?lx %?lx " 507 "(T%+ld)\n", co_callout.c_func, 508 co_callout.c_arg, co_callout.c_xid, 509 co_callout.c_runtime, 510 co_callout.c_runtime - lbolt); 511 512 co_ptr = co_callout.c_idnext; 513 } 514 } 515 } 516 } 517 518 return (DCMD_OK); 519 } 520 521 /*ARGSUSED*/ 522 int 523 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 524 { 525 long num_classes, i; 526 sclass_t *class_tbl; 527 GElf_Sym g_sclass; 528 char class_name[PC_CLNMSZ]; 529 size_t tbl_size; 530 531 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) { 532 mdb_warn("failed to find symbol sclass\n"); 533 return (DCMD_ERR); 534 } 535 536 tbl_size = (size_t)g_sclass.st_size; 537 num_classes = tbl_size / (sizeof (sclass_t)); 538 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC); 539 540 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) { 541 mdb_warn("failed to read sclass"); 542 return (DCMD_ERR); 543 } 544 545 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME", 546 "INIT FCN", "CLASS FCN"); 547 548 for (i = 0; i < num_classes; i++) { 549 if (mdb_vread(class_name, sizeof (class_name), 550 (uintptr_t)class_tbl[i].cl_name) == -1) 551 (void) strcpy(class_name, "???"); 552 553 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name, 554 class_tbl[i].cl_init, class_tbl[i].cl_funcs); 555 } 556 557 return (DCMD_OK); 558 } 559 560 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */ 561 562 int 563 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 564 { 565 uintptr_t rootdir; 566 vnode_t vn; 567 char buf[MAXPATHLEN]; 568 569 uint_t opt_F = FALSE; 570 571 if (mdb_getopts(argc, argv, 572 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc) 573 return (DCMD_USAGE); 574 575 if (!(flags & DCMD_ADDRSPEC)) { 576 mdb_warn("expected explicit vnode_t address before ::\n"); 577 return (DCMD_USAGE); 578 } 579 580 if (mdb_readvar(&rootdir, "rootdir") == -1) { 581 mdb_warn("failed to read rootdir"); 582 return (DCMD_ERR); 583 } 584 585 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1) 586 return (DCMD_ERR); 587 588 if (*buf == '\0') { 589 mdb_printf("??\n"); 590 return (DCMD_OK); 591 } 592 593 mdb_printf("%s", buf); 594 if (opt_F && buf[strlen(buf)-1] != '/' && 595 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn)) 596 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0)); 597 mdb_printf("\n"); 598 599 return (DCMD_OK); 600 } 601 602 int 603 ld_walk_init(mdb_walk_state_t *wsp) 604 { 605 wsp->walk_data = (void *)wsp->walk_addr; 606 return (WALK_NEXT); 607 } 608 609 int 610 ld_walk_step(mdb_walk_state_t *wsp) 611 { 612 int status; 613 lock_descriptor_t ld; 614 615 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) { 616 mdb_warn("couldn't read lock_descriptor_t at %p\n", 617 wsp->walk_addr); 618 return (WALK_ERR); 619 } 620 621 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata); 622 if (status == WALK_ERR) 623 return (WALK_ERR); 624 625 wsp->walk_addr = (uintptr_t)ld.l_next; 626 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) 627 return (WALK_DONE); 628 629 return (status); 630 } 631 632 int 633 lg_walk_init(mdb_walk_state_t *wsp) 634 { 635 GElf_Sym sym; 636 637 if (mdb_lookup_by_name("lock_graph", &sym) == -1) { 638 mdb_warn("failed to find symbol 'lock_graph'\n"); 639 return (WALK_ERR); 640 } 641 642 wsp->walk_addr = (uintptr_t)sym.st_value; 643 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size); 644 645 return (WALK_NEXT); 646 } 647 648 typedef struct lg_walk_data { 649 uintptr_t startaddr; 650 mdb_walk_cb_t callback; 651 void *data; 652 } lg_walk_data_t; 653 654 /* 655 * We can't use ::walk lock_descriptor directly, because the head of each graph 656 * is really a dummy lock. Rather than trying to dynamically determine if this 657 * is a dummy node or not, we just filter out the initial element of the 658 * list. 659 */ 660 static int 661 lg_walk_cb(uintptr_t addr, const void *data, void *priv) 662 { 663 lg_walk_data_t *lw = priv; 664 665 if (addr != lw->startaddr) 666 return (lw->callback(addr, data, lw->data)); 667 668 return (WALK_NEXT); 669 } 670 671 int 672 lg_walk_step(mdb_walk_state_t *wsp) 673 { 674 graph_t *graph; 675 lg_walk_data_t lw; 676 677 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data) 678 return (WALK_DONE); 679 680 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) { 681 mdb_warn("failed to read graph_t at %p", wsp->walk_addr); 682 return (WALK_ERR); 683 } 684 685 wsp->walk_addr += sizeof (graph); 686 687 if (graph == NULL) 688 return (WALK_NEXT); 689 690 lw.callback = wsp->walk_callback; 691 lw.data = wsp->walk_cbdata; 692 693 lw.startaddr = (uintptr_t)&(graph->active_locks); 694 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 695 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 696 return (WALK_ERR); 697 } 698 699 lw.startaddr = (uintptr_t)&(graph->sleeping_locks); 700 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 701 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 702 return (WALK_ERR); 703 } 704 705 return (WALK_NEXT); 706 } 707 708 /* 709 * The space available for the path corresponding to the locked vnode depends 710 * on whether we are printing 32- or 64-bit addresses. 711 */ 712 #ifdef _LP64 713 #define LM_VNPATHLEN 20 714 #else 715 #define LM_VNPATHLEN 30 716 #endif 717 718 /*ARGSUSED*/ 719 static int 720 lminfo_cb(uintptr_t addr, const void *data, void *priv) 721 { 722 const lock_descriptor_t *ld = data; 723 char buf[LM_VNPATHLEN]; 724 proc_t p; 725 726 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ", 727 addr, ld->l_type == F_RDLCK ? "RD" : 728 ld->l_type == F_WRLCK ? "WR" : "??", 729 ld->l_state, ld->l_flock.l_pid, 730 ld->l_flock.l_pid == 0 ? "<kernel>" : 731 mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ? 732 "<defunct>" : p.p_user.u_comm, 733 ld->l_vnode); 734 735 mdb_vnode2path((uintptr_t)ld->l_vnode, buf, 736 sizeof (buf)); 737 mdb_printf("%s\n", buf); 738 739 return (WALK_NEXT); 740 } 741 742 /*ARGSUSED*/ 743 int 744 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 745 { 746 if (DCMD_HDRSPEC(flags)) 747 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n", 748 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH"); 749 750 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL)); 751 } 752 753 /*ARGSUSED*/ 754 int 755 seg(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 756 { 757 struct seg s; 758 759 if (argc != 0) 760 return (DCMD_USAGE); 761 762 if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) { 763 mdb_printf("%<u>%?s %?s %?s %?s %s%</u>\n", 764 "SEG", "BASE", "SIZE", "DATA", "OPS"); 765 } 766 767 if (mdb_vread(&s, sizeof (s), addr) == -1) { 768 mdb_warn("failed to read seg at %p", addr); 769 return (DCMD_ERR); 770 } 771 772 mdb_printf("%?p %?p %?lx %?p %a\n", 773 addr, s.s_base, s.s_size, s.s_data, s.s_ops); 774 775 return (DCMD_OK); 776 } 777 778 /*ARGSUSED*/ 779 static int 780 pmap_walk_anon(uintptr_t addr, const struct anon *anon, int *nres) 781 { 782 uintptr_t pp = 783 mdb_vnode2page((uintptr_t)anon->an_vp, (uintptr_t)anon->an_off); 784 785 if (pp != NULL) 786 (*nres)++; 787 788 return (WALK_NEXT); 789 } 790 791 static int 792 pmap_walk_seg(uintptr_t addr, const struct seg *seg, uintptr_t segvn) 793 { 794 795 mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024); 796 797 if (segvn == (uintptr_t)seg->s_ops) { 798 struct segvn_data svn; 799 int nres = 0; 800 801 (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data); 802 803 if (svn.amp == NULL) { 804 mdb_printf(" %8s", ""); 805 goto drive_on; 806 } 807 808 /* 809 * We've got an amp for this segment; walk through 810 * the amp, and determine mappings. 811 */ 812 if (mdb_pwalk("anon", (mdb_walk_cb_t)pmap_walk_anon, 813 &nres, (uintptr_t)svn.amp) == -1) 814 mdb_warn("failed to walk anon (amp=%p)", svn.amp); 815 816 mdb_printf(" %7dk", (nres * PAGESIZE) / 1024); 817 drive_on: 818 819 if (svn.vp != NULL) { 820 char buf[29]; 821 822 mdb_vnode2path((uintptr_t)svn.vp, buf, sizeof (buf)); 823 mdb_printf(" %s", buf); 824 } else 825 mdb_printf(" [ anon ]"); 826 } 827 828 mdb_printf("\n"); 829 return (WALK_NEXT); 830 } 831 832 static int 833 pmap_walk_seg_quick(uintptr_t addr, const struct seg *seg, uintptr_t segvn) 834 { 835 mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024); 836 837 if (segvn == (uintptr_t)seg->s_ops) { 838 struct segvn_data svn; 839 840 (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data); 841 842 if (svn.vp != NULL) { 843 mdb_printf(" %0?p", svn.vp); 844 } else { 845 mdb_printf(" [ anon ]"); 846 } 847 } 848 849 mdb_printf("\n"); 850 return (WALK_NEXT); 851 } 852 853 /*ARGSUSED*/ 854 int 855 pmap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 856 { 857 uintptr_t segvn; 858 proc_t proc; 859 uint_t quick = FALSE; 860 mdb_walk_cb_t cb = (mdb_walk_cb_t)pmap_walk_seg; 861 862 GElf_Sym sym; 863 864 if (!(flags & DCMD_ADDRSPEC)) 865 return (DCMD_USAGE); 866 867 if (mdb_getopts(argc, argv, 868 'q', MDB_OPT_SETBITS, TRUE, &quick, NULL) != argc) 869 return (DCMD_USAGE); 870 871 if (mdb_vread(&proc, sizeof (proc), addr) == -1) { 872 mdb_warn("failed to read proc at %p", addr); 873 return (DCMD_ERR); 874 } 875 876 if (mdb_lookup_by_name("segvn_ops", &sym) == 0) 877 segvn = (uintptr_t)sym.st_value; 878 else 879 segvn = NULL; 880 881 mdb_printf("%?s %?s %8s ", "SEG", "BASE", "SIZE"); 882 883 if (quick) { 884 mdb_printf("VNODE\n"); 885 cb = (mdb_walk_cb_t)pmap_walk_seg_quick; 886 } else { 887 mdb_printf("%8s %s\n", "RES", "PATH"); 888 } 889 890 if (mdb_pwalk("seg", cb, (void *)segvn, (uintptr_t)proc.p_as) == -1) { 891 mdb_warn("failed to walk segments of as %p", proc.p_as); 892 return (DCMD_ERR); 893 } 894 895 return (DCMD_OK); 896 } 897 898 typedef struct anon_walk_data { 899 uintptr_t *aw_levone; 900 uintptr_t *aw_levtwo; 901 int aw_nlevone; 902 int aw_levone_ndx; 903 int aw_levtwo_ndx; 904 struct anon_map aw_amp; 905 struct anon_hdr aw_ahp; 906 } anon_walk_data_t; 907 908 int 909 anon_walk_init(mdb_walk_state_t *wsp) 910 { 911 anon_walk_data_t *aw; 912 913 if (wsp->walk_addr == NULL) { 914 mdb_warn("anon walk doesn't support global walks\n"); 915 return (WALK_ERR); 916 } 917 918 aw = mdb_alloc(sizeof (anon_walk_data_t), UM_SLEEP); 919 920 if (mdb_vread(&aw->aw_amp, sizeof (aw->aw_amp), wsp->walk_addr) == -1) { 921 mdb_warn("failed to read anon map at %p", wsp->walk_addr); 922 mdb_free(aw, sizeof (anon_walk_data_t)); 923 return (WALK_ERR); 924 } 925 926 if (mdb_vread(&aw->aw_ahp, sizeof (aw->aw_ahp), 927 (uintptr_t)(aw->aw_amp.ahp)) == -1) { 928 mdb_warn("failed to read anon hdr ptr at %p", aw->aw_amp.ahp); 929 mdb_free(aw, sizeof (anon_walk_data_t)); 930 return (WALK_ERR); 931 } 932 933 if (aw->aw_ahp.size <= ANON_CHUNK_SIZE || 934 (aw->aw_ahp.flags & ANON_ALLOC_FORCE)) { 935 aw->aw_nlevone = aw->aw_ahp.size; 936 aw->aw_levtwo = NULL; 937 } else { 938 aw->aw_nlevone = 939 (aw->aw_ahp.size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT; 940 aw->aw_levtwo = 941 mdb_zalloc(ANON_CHUNK_SIZE * sizeof (uintptr_t), UM_SLEEP); 942 } 943 944 aw->aw_levone = 945 mdb_alloc(aw->aw_nlevone * sizeof (uintptr_t), UM_SLEEP); 946 947 aw->aw_levone_ndx = 0; 948 aw->aw_levtwo_ndx = 0; 949 950 mdb_vread(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t), 951 (uintptr_t)aw->aw_ahp.array_chunk); 952 953 if (aw->aw_levtwo != NULL) { 954 while (aw->aw_levone[aw->aw_levone_ndx] == NULL) { 955 aw->aw_levone_ndx++; 956 if (aw->aw_levone_ndx == aw->aw_nlevone) { 957 mdb_warn("corrupt anon; couldn't" 958 "find ptr to lev two map"); 959 goto out; 960 } 961 } 962 963 mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t), 964 aw->aw_levone[aw->aw_levone_ndx]); 965 } 966 967 out: 968 wsp->walk_data = aw; 969 return (0); 970 } 971 972 int 973 anon_walk_step(mdb_walk_state_t *wsp) 974 { 975 int status; 976 anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data; 977 struct anon anon; 978 uintptr_t anonptr; 979 980 again: 981 /* 982 * Once we've walked through level one, we're done. 983 */ 984 if (aw->aw_levone_ndx == aw->aw_nlevone) 985 return (WALK_DONE); 986 987 if (aw->aw_levtwo == NULL) { 988 anonptr = aw->aw_levone[aw->aw_levone_ndx]; 989 aw->aw_levone_ndx++; 990 } else { 991 anonptr = aw->aw_levtwo[aw->aw_levtwo_ndx]; 992 aw->aw_levtwo_ndx++; 993 994 if (aw->aw_levtwo_ndx == ANON_CHUNK_SIZE) { 995 aw->aw_levtwo_ndx = 0; 996 997 do { 998 aw->aw_levone_ndx++; 999 1000 if (aw->aw_levone_ndx == aw->aw_nlevone) 1001 return (WALK_DONE); 1002 } while (aw->aw_levone[aw->aw_levone_ndx] == NULL); 1003 1004 mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * 1005 sizeof (uintptr_t), 1006 aw->aw_levone[aw->aw_levone_ndx]); 1007 } 1008 } 1009 1010 if (anonptr != NULL) { 1011 mdb_vread(&anon, sizeof (anon), anonptr); 1012 status = wsp->walk_callback(anonptr, &anon, wsp->walk_cbdata); 1013 } else 1014 goto again; 1015 1016 return (status); 1017 } 1018 1019 void 1020 anon_walk_fini(mdb_walk_state_t *wsp) 1021 { 1022 anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data; 1023 1024 if (aw->aw_levtwo != NULL) 1025 mdb_free(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t)); 1026 1027 mdb_free(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t)); 1028 mdb_free(aw, sizeof (anon_walk_data_t)); 1029 } 1030 1031 /*ARGSUSED*/ 1032 int 1033 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target) 1034 { 1035 if ((uintptr_t)f->f_vnode == *target) { 1036 mdb_printf("file %p\n", addr); 1037 *target = NULL; 1038 } 1039 1040 return (WALK_NEXT); 1041 } 1042 1043 /*ARGSUSED*/ 1044 int 1045 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target) 1046 { 1047 uintptr_t t = *target; 1048 1049 if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) { 1050 mdb_warn("couldn't file walk proc %p", addr); 1051 return (WALK_ERR); 1052 } 1053 1054 if (t == NULL) 1055 mdb_printf("%p\n", addr); 1056 1057 return (WALK_NEXT); 1058 } 1059 1060 /*ARGSUSED*/ 1061 int 1062 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1063 { 1064 uintptr_t target = addr; 1065 1066 if (!(flags & DCMD_ADDRSPEC) || addr == NULL) 1067 return (DCMD_USAGE); 1068 1069 if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) { 1070 mdb_warn("can't proc walk"); 1071 return (DCMD_ERR); 1072 } 1073 1074 return (DCMD_OK); 1075 } 1076 1077 typedef struct datafmt { 1078 char *hdr1; 1079 char *hdr2; 1080 char *dashes; 1081 char *fmt; 1082 } datafmt_t; 1083 1084 static datafmt_t kmemfmt[] = { 1085 { "cache ", "name ", 1086 "-------------------------", "%-25s " }, 1087 { " buf", " size", "------", "%6u " }, 1088 { " buf", "in use", "------", "%6u " }, 1089 { " buf", " total", "------", "%6u " }, 1090 { " memory", " in use", "---------", "%9u " }, 1091 { " alloc", " succeed", "---------", "%9u " }, 1092 { "alloc", " fail", "-----", "%5u " }, 1093 { NULL, NULL, NULL, NULL } 1094 }; 1095 1096 static datafmt_t vmemfmt[] = { 1097 { "vmem ", "name ", 1098 "-------------------------", "%-*s " }, 1099 { " memory", " in use", "---------", "%9llu " }, 1100 { " memory", " total", "----------", "%10llu " }, 1101 { " memory", " import", "---------", "%9llu " }, 1102 { " alloc", " succeed", "---------", "%9llu " }, 1103 { "alloc", " fail", "-----", "%5llu " }, 1104 { NULL, NULL, NULL, NULL } 1105 }; 1106 1107 /*ARGSUSED*/ 1108 static int 1109 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail) 1110 { 1111 if (ccp->cc_rounds > 0) 1112 *avail += ccp->cc_rounds; 1113 if (ccp->cc_prounds > 0) 1114 *avail += ccp->cc_prounds; 1115 1116 return (WALK_NEXT); 1117 } 1118 1119 /*ARGSUSED*/ 1120 static int 1121 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc) 1122 { 1123 *alloc += ccp->cc_alloc; 1124 1125 return (WALK_NEXT); 1126 } 1127 1128 /*ARGSUSED*/ 1129 static int 1130 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail) 1131 { 1132 *avail += sp->slab_chunks - sp->slab_refcnt; 1133 1134 return (WALK_NEXT); 1135 } 1136 1137 typedef struct kmastat_vmem { 1138 uintptr_t kv_addr; 1139 struct kmastat_vmem *kv_next; 1140 int kv_meminuse; 1141 int kv_alloc; 1142 int kv_fail; 1143 } kmastat_vmem_t; 1144 1145 typedef struct kmastat_args { 1146 kmastat_vmem_t **ka_kvpp; 1147 uint_t ka_shift; 1148 } kmastat_args_t; 1149 1150 static int 1151 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap) 1152 { 1153 kmastat_vmem_t **kvp = kap->ka_kvpp; 1154 kmastat_vmem_t *kv; 1155 datafmt_t *dfp = kmemfmt; 1156 int magsize; 1157 1158 int avail, alloc, total; 1159 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) * 1160 cp->cache_slabsize; 1161 1162 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail; 1163 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc; 1164 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail; 1165 1166 magsize = kmem_get_magsize(cp); 1167 1168 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc; 1169 avail = cp->cache_full.ml_total * magsize; 1170 total = cp->cache_buftotal; 1171 1172 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr); 1173 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr); 1174 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr); 1175 1176 for (kv = *kvp; kv != NULL; kv = kv->kv_next) { 1177 if (kv->kv_addr == (uintptr_t)cp->cache_arena) 1178 goto out; 1179 } 1180 1181 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC); 1182 kv->kv_next = *kvp; 1183 kv->kv_addr = (uintptr_t)cp->cache_arena; 1184 *kvp = kv; 1185 out: 1186 kv->kv_meminuse += meminuse; 1187 kv->kv_alloc += alloc; 1188 kv->kv_fail += cp->cache_alloc_fail; 1189 1190 mdb_printf((dfp++)->fmt, cp->cache_name); 1191 mdb_printf((dfp++)->fmt, cp->cache_bufsize); 1192 mdb_printf((dfp++)->fmt, total - avail); 1193 mdb_printf((dfp++)->fmt, total); 1194 mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift); 1195 mdb_printf((dfp++)->fmt, alloc); 1196 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail); 1197 mdb_printf("\n"); 1198 1199 return (WALK_NEXT); 1200 } 1201 1202 static int 1203 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap) 1204 { 1205 kmastat_vmem_t *kv = *kap->ka_kvpp; 1206 size_t len; 1207 1208 while (kv != NULL && kv->kv_addr != addr) 1209 kv = kv->kv_next; 1210 1211 if (kv == NULL || kv->kv_alloc == 0) 1212 return (WALK_NEXT); 1213 1214 len = MIN(17, strlen(v->vm_name)); 1215 1216 mdb_printf("Total [%s]%*s %6s %6s %6s %9u %9u %5u\n", v->vm_name, 1217 17 - len, "", "", "", "", 1218 kv->kv_meminuse >> kap->ka_shift, kv->kv_alloc, kv->kv_fail); 1219 1220 return (WALK_NEXT); 1221 } 1222 1223 /*ARGSUSED*/ 1224 static int 1225 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp) 1226 { 1227 datafmt_t *dfp = vmemfmt; 1228 const vmem_kstat_t *vkp = &v->vm_kstat; 1229 uintptr_t paddr; 1230 vmem_t parent; 1231 int ident = 0; 1232 1233 for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) { 1234 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) { 1235 mdb_warn("couldn't trace %p's ancestry", addr); 1236 ident = 0; 1237 break; 1238 } 1239 paddr = (uintptr_t)parent.vm_source; 1240 } 1241 1242 mdb_printf("%*s", ident, ""); 1243 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name); 1244 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64); 1245 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64); 1246 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp); 1247 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64); 1248 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64); 1249 1250 mdb_printf("\n"); 1251 1252 return (WALK_NEXT); 1253 } 1254 1255 /*ARGSUSED*/ 1256 int 1257 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1258 { 1259 kmastat_vmem_t *kv = NULL; 1260 datafmt_t *dfp; 1261 kmastat_args_t ka; 1262 1263 ka.ka_shift = 0; 1264 if (mdb_getopts(argc, argv, 1265 'k', MDB_OPT_SETBITS, 10, &ka.ka_shift, 1266 'm', MDB_OPT_SETBITS, 20, &ka.ka_shift, 1267 'g', MDB_OPT_SETBITS, 30, &ka.ka_shift, NULL) != argc) 1268 return (DCMD_USAGE); 1269 1270 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1271 mdb_printf("%s ", dfp->hdr1); 1272 mdb_printf("\n"); 1273 1274 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1275 mdb_printf("%s ", dfp->hdr2); 1276 mdb_printf("\n"); 1277 1278 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1279 mdb_printf("%s ", dfp->dashes); 1280 mdb_printf("\n"); 1281 1282 ka.ka_kvpp = &kv; 1283 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) { 1284 mdb_warn("can't walk 'kmem_cache'"); 1285 return (DCMD_ERR); 1286 } 1287 1288 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1289 mdb_printf("%s ", dfp->dashes); 1290 mdb_printf("\n"); 1291 1292 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) { 1293 mdb_warn("can't walk 'vmem'"); 1294 return (DCMD_ERR); 1295 } 1296 1297 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1298 mdb_printf("%s ", dfp->dashes); 1299 mdb_printf("\n"); 1300 1301 mdb_printf("\n"); 1302 1303 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1304 mdb_printf("%s ", dfp->hdr1); 1305 mdb_printf("\n"); 1306 1307 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1308 mdb_printf("%s ", dfp->hdr2); 1309 mdb_printf("\n"); 1310 1311 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1312 mdb_printf("%s ", dfp->dashes); 1313 mdb_printf("\n"); 1314 1315 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) { 1316 mdb_warn("can't walk 'vmem'"); 1317 return (DCMD_ERR); 1318 } 1319 1320 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1321 mdb_printf("%s ", dfp->dashes); 1322 mdb_printf("\n"); 1323 return (DCMD_OK); 1324 } 1325 1326 /* 1327 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made 1328 * up of a set of 'struct seg's. We could just scan each seg en masse, but 1329 * unfortunately, a few of the segs are both large and sparse, so we could 1330 * spend quite a bit of time scanning VAs which have no backing pages. 1331 * 1332 * So for the few very sparse segs, we skip the segment itself, and scan 1333 * the allocated vmem_segs in the vmem arena which manages that part of kas. 1334 * Currently, we do this for: 1335 * 1336 * SEG VMEM ARENA 1337 * kvseg heap_arena 1338 * kvseg32 heap32_arena 1339 * kvseg_core heap_core_arena 1340 * 1341 * In addition, we skip the segkpm segment in its entirety, since it is very 1342 * sparse, and contains no new kernel data. 1343 */ 1344 typedef struct kgrep_walk_data { 1345 kgrep_cb_func *kg_cb; 1346 void *kg_cbdata; 1347 uintptr_t kg_kvseg; 1348 uintptr_t kg_kvseg32; 1349 uintptr_t kg_kvseg_core; 1350 uintptr_t kg_segkpm; 1351 uintptr_t kg_heap_lp_base; 1352 uintptr_t kg_heap_lp_end; 1353 } kgrep_walk_data_t; 1354 1355 static int 1356 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg) 1357 { 1358 uintptr_t base = (uintptr_t)seg->s_base; 1359 1360 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 || 1361 addr == kg->kg_kvseg_core) 1362 return (WALK_NEXT); 1363 1364 if ((uintptr_t)seg->s_ops == kg->kg_segkpm) 1365 return (WALK_NEXT); 1366 1367 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata)); 1368 } 1369 1370 /*ARGSUSED*/ 1371 static int 1372 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 1373 { 1374 /* 1375 * skip large page heap address range - it is scanned by walking 1376 * allocated vmem_segs in the heap_lp_arena 1377 */ 1378 if (seg->vs_start == kg->kg_heap_lp_base && 1379 seg->vs_end == kg->kg_heap_lp_end) 1380 return (WALK_NEXT); 1381 1382 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 1383 } 1384 1385 /*ARGSUSED*/ 1386 static int 1387 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 1388 { 1389 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 1390 } 1391 1392 static int 1393 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg) 1394 { 1395 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg; 1396 1397 if (strcmp(vmem->vm_name, "heap") != 0 && 1398 strcmp(vmem->vm_name, "heap32") != 0 && 1399 strcmp(vmem->vm_name, "heap_core") != 0 && 1400 strcmp(vmem->vm_name, "heap_lp") != 0) 1401 return (WALK_NEXT); 1402 1403 if (strcmp(vmem->vm_name, "heap_lp") == 0) 1404 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg; 1405 1406 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) { 1407 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr); 1408 return (WALK_ERR); 1409 } 1410 1411 return (WALK_NEXT); 1412 } 1413 1414 int 1415 kgrep_subr(kgrep_cb_func *cb, void *cbdata) 1416 { 1417 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm; 1418 kgrep_walk_data_t kg; 1419 1420 if (mdb_get_state() == MDB_STATE_RUNNING) { 1421 mdb_warn("kgrep can only be run on a system " 1422 "dump or under kmdb; see dumpadm(1M)\n"); 1423 return (DCMD_ERR); 1424 } 1425 1426 if (mdb_lookup_by_name("kas", &kas) == -1) { 1427 mdb_warn("failed to locate 'kas' symbol\n"); 1428 return (DCMD_ERR); 1429 } 1430 1431 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) { 1432 mdb_warn("failed to locate 'kvseg' symbol\n"); 1433 return (DCMD_ERR); 1434 } 1435 1436 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) { 1437 mdb_warn("failed to locate 'kvseg32' symbol\n"); 1438 return (DCMD_ERR); 1439 } 1440 1441 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) { 1442 mdb_warn("failed to locate 'kvseg_core' symbol\n"); 1443 return (DCMD_ERR); 1444 } 1445 1446 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) { 1447 mdb_warn("failed to locate 'segkpm_ops' symbol\n"); 1448 return (DCMD_ERR); 1449 } 1450 1451 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) { 1452 mdb_warn("failed to read 'heap_lp_base'\n"); 1453 return (DCMD_ERR); 1454 } 1455 1456 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) { 1457 mdb_warn("failed to read 'heap_lp_end'\n"); 1458 return (DCMD_ERR); 1459 } 1460 1461 kg.kg_cb = cb; 1462 kg.kg_cbdata = cbdata; 1463 kg.kg_kvseg = (uintptr_t)kvseg.st_value; 1464 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value; 1465 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value; 1466 kg.kg_segkpm = (uintptr_t)segkpm.st_value; 1467 1468 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg, 1469 &kg, kas.st_value) == -1) { 1470 mdb_warn("failed to walk kas segments"); 1471 return (DCMD_ERR); 1472 } 1473 1474 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) { 1475 mdb_warn("failed to walk heap/heap32 vmem arenas"); 1476 return (DCMD_ERR); 1477 } 1478 1479 return (DCMD_OK); 1480 } 1481 1482 size_t 1483 kgrep_subr_pagesize(void) 1484 { 1485 return (PAGESIZE); 1486 } 1487 1488 typedef struct file_walk_data { 1489 struct uf_entry *fw_flist; 1490 int fw_flistsz; 1491 int fw_ndx; 1492 int fw_nofiles; 1493 } file_walk_data_t; 1494 1495 int 1496 file_walk_init(mdb_walk_state_t *wsp) 1497 { 1498 file_walk_data_t *fw; 1499 proc_t p; 1500 1501 if (wsp->walk_addr == NULL) { 1502 mdb_warn("file walk doesn't support global walks\n"); 1503 return (WALK_ERR); 1504 } 1505 1506 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP); 1507 1508 if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) { 1509 mdb_free(fw, sizeof (file_walk_data_t)); 1510 mdb_warn("failed to read proc structure at %p", wsp->walk_addr); 1511 return (WALK_ERR); 1512 } 1513 1514 if (p.p_user.u_finfo.fi_nfiles == 0) { 1515 mdb_free(fw, sizeof (file_walk_data_t)); 1516 return (WALK_DONE); 1517 } 1518 1519 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles; 1520 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles; 1521 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP); 1522 1523 if (mdb_vread(fw->fw_flist, fw->fw_flistsz, 1524 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) { 1525 mdb_warn("failed to read file array at %p", 1526 p.p_user.u_finfo.fi_list); 1527 mdb_free(fw->fw_flist, fw->fw_flistsz); 1528 mdb_free(fw, sizeof (file_walk_data_t)); 1529 return (WALK_ERR); 1530 } 1531 1532 fw->fw_ndx = 0; 1533 wsp->walk_data = fw; 1534 1535 return (WALK_NEXT); 1536 } 1537 1538 int 1539 file_walk_step(mdb_walk_state_t *wsp) 1540 { 1541 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1542 struct file file; 1543 uintptr_t fp; 1544 1545 again: 1546 if (fw->fw_ndx == fw->fw_nofiles) 1547 return (WALK_DONE); 1548 1549 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL) 1550 goto again; 1551 1552 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 1553 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 1554 } 1555 1556 int 1557 allfile_walk_step(mdb_walk_state_t *wsp) 1558 { 1559 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1560 struct file file; 1561 uintptr_t fp; 1562 1563 if (fw->fw_ndx == fw->fw_nofiles) 1564 return (WALK_DONE); 1565 1566 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL) 1567 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 1568 else 1569 bzero(&file, sizeof (file)); 1570 1571 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 1572 } 1573 1574 void 1575 file_walk_fini(mdb_walk_state_t *wsp) 1576 { 1577 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1578 1579 mdb_free(fw->fw_flist, fw->fw_flistsz); 1580 mdb_free(fw, sizeof (file_walk_data_t)); 1581 } 1582 1583 int 1584 port_walk_init(mdb_walk_state_t *wsp) 1585 { 1586 if (wsp->walk_addr == NULL) { 1587 mdb_warn("port walk doesn't support global walks\n"); 1588 return (WALK_ERR); 1589 } 1590 1591 if (mdb_layered_walk("file", wsp) == -1) { 1592 mdb_warn("couldn't walk 'file'"); 1593 return (WALK_ERR); 1594 } 1595 return (WALK_NEXT); 1596 } 1597 1598 int 1599 port_walk_step(mdb_walk_state_t *wsp) 1600 { 1601 struct vnode vn; 1602 uintptr_t vp; 1603 uintptr_t pp; 1604 struct port port; 1605 1606 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode; 1607 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 1608 mdb_warn("failed to read vnode_t at %p", vp); 1609 return (WALK_ERR); 1610 } 1611 if (vn.v_type != VPORT) 1612 return (WALK_NEXT); 1613 1614 pp = (uintptr_t)vn.v_data; 1615 if (mdb_vread(&port, sizeof (port), pp) == -1) { 1616 mdb_warn("failed to read port_t at %p", pp); 1617 return (WALK_ERR); 1618 } 1619 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata)); 1620 } 1621 1622 typedef struct portev_walk_data { 1623 list_node_t *pev_node; 1624 list_node_t *pev_last; 1625 size_t pev_offset; 1626 } portev_walk_data_t; 1627 1628 int 1629 portev_walk_init(mdb_walk_state_t *wsp) 1630 { 1631 portev_walk_data_t *pevd; 1632 struct port port; 1633 struct vnode vn; 1634 struct list *list; 1635 uintptr_t vp; 1636 1637 if (wsp->walk_addr == NULL) { 1638 mdb_warn("portev walk doesn't support global walks\n"); 1639 return (WALK_ERR); 1640 } 1641 1642 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP); 1643 1644 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) { 1645 mdb_free(pevd, sizeof (portev_walk_data_t)); 1646 mdb_warn("failed to read port structure at %p", wsp->walk_addr); 1647 return (WALK_ERR); 1648 } 1649 1650 vp = (uintptr_t)port.port_vnode; 1651 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 1652 mdb_free(pevd, sizeof (portev_walk_data_t)); 1653 mdb_warn("failed to read vnode_t at %p", vp); 1654 return (WALK_ERR); 1655 } 1656 1657 if (vn.v_type != VPORT) { 1658 mdb_free(pevd, sizeof (portev_walk_data_t)); 1659 mdb_warn("input address (%p) does not point to an event port", 1660 wsp->walk_addr); 1661 return (WALK_ERR); 1662 } 1663 1664 if (port.port_queue.portq_nent == 0) { 1665 mdb_free(pevd, sizeof (portev_walk_data_t)); 1666 return (WALK_DONE); 1667 } 1668 list = &port.port_queue.portq_list; 1669 pevd->pev_offset = list->list_offset; 1670 pevd->pev_last = list->list_head.list_prev; 1671 pevd->pev_node = list->list_head.list_next; 1672 wsp->walk_data = pevd; 1673 return (WALK_NEXT); 1674 } 1675 1676 int 1677 portev_walk_step(mdb_walk_state_t *wsp) 1678 { 1679 portev_walk_data_t *pevd; 1680 struct port_kevent ev; 1681 uintptr_t evp; 1682 1683 pevd = (portev_walk_data_t *)wsp->walk_data; 1684 1685 if (pevd->pev_last == NULL) 1686 return (WALK_DONE); 1687 if (pevd->pev_node == pevd->pev_last) 1688 pevd->pev_last = NULL; /* last round */ 1689 1690 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset)); 1691 if (mdb_vread(&ev, sizeof (ev), evp) == -1) { 1692 mdb_warn("failed to read port_kevent at %p", evp); 1693 return (WALK_DONE); 1694 } 1695 pevd->pev_node = ev.portkev_node.list_next; 1696 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata)); 1697 } 1698 1699 void 1700 portev_walk_fini(mdb_walk_state_t *wsp) 1701 { 1702 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data; 1703 1704 if (pevd != NULL) 1705 mdb_free(pevd, sizeof (portev_walk_data_t)); 1706 } 1707 1708 typedef struct proc_walk_data { 1709 uintptr_t *pw_stack; 1710 int pw_depth; 1711 int pw_max; 1712 } proc_walk_data_t; 1713 1714 int 1715 proc_walk_init(mdb_walk_state_t *wsp) 1716 { 1717 GElf_Sym sym; 1718 proc_walk_data_t *pw; 1719 1720 if (wsp->walk_addr == NULL) { 1721 if (mdb_lookup_by_name("p0", &sym) == -1) { 1722 mdb_warn("failed to read 'practive'"); 1723 return (WALK_ERR); 1724 } 1725 wsp->walk_addr = (uintptr_t)sym.st_value; 1726 } 1727 1728 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP); 1729 1730 if (mdb_readvar(&pw->pw_max, "nproc") == -1) { 1731 mdb_warn("failed to read 'nproc'"); 1732 mdb_free(pw, sizeof (pw)); 1733 return (WALK_ERR); 1734 } 1735 1736 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP); 1737 wsp->walk_data = pw; 1738 1739 return (WALK_NEXT); 1740 } 1741 1742 int 1743 proc_walk_step(mdb_walk_state_t *wsp) 1744 { 1745 proc_walk_data_t *pw = wsp->walk_data; 1746 uintptr_t addr = wsp->walk_addr; 1747 uintptr_t cld, sib; 1748 1749 int status; 1750 proc_t pr; 1751 1752 if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) { 1753 mdb_warn("failed to read proc at %p", addr); 1754 return (WALK_DONE); 1755 } 1756 1757 cld = (uintptr_t)pr.p_child; 1758 sib = (uintptr_t)pr.p_sibling; 1759 1760 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) { 1761 pw->pw_depth--; 1762 goto sib; 1763 } 1764 1765 status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata); 1766 1767 if (status != WALK_NEXT) 1768 return (status); 1769 1770 if ((wsp->walk_addr = cld) != NULL) { 1771 if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) { 1772 mdb_warn("proc %p has invalid p_child %p; skipping\n", 1773 addr, cld); 1774 goto sib; 1775 } 1776 1777 pw->pw_stack[pw->pw_depth++] = addr; 1778 1779 if (pw->pw_depth == pw->pw_max) { 1780 mdb_warn("depth %d exceeds max depth; try again\n", 1781 pw->pw_depth); 1782 return (WALK_DONE); 1783 } 1784 return (WALK_NEXT); 1785 } 1786 1787 sib: 1788 /* 1789 * We know that p0 has no siblings, and if another starting proc 1790 * was given, we don't want to walk its siblings anyway. 1791 */ 1792 if (pw->pw_depth == 0) 1793 return (WALK_DONE); 1794 1795 if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) { 1796 mdb_warn("proc %p has invalid p_sibling %p; skipping\n", 1797 addr, sib); 1798 sib = NULL; 1799 } 1800 1801 if ((wsp->walk_addr = sib) == NULL) { 1802 if (pw->pw_depth > 0) { 1803 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1]; 1804 return (WALK_NEXT); 1805 } 1806 return (WALK_DONE); 1807 } 1808 1809 return (WALK_NEXT); 1810 } 1811 1812 void 1813 proc_walk_fini(mdb_walk_state_t *wsp) 1814 { 1815 proc_walk_data_t *pw = wsp->walk_data; 1816 1817 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t)); 1818 mdb_free(pw, sizeof (proc_walk_data_t)); 1819 } 1820 1821 int 1822 task_walk_init(mdb_walk_state_t *wsp) 1823 { 1824 task_t task; 1825 1826 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) { 1827 mdb_warn("failed to read task at %p", wsp->walk_addr); 1828 return (WALK_ERR); 1829 } 1830 wsp->walk_addr = (uintptr_t)task.tk_memb_list; 1831 wsp->walk_data = task.tk_memb_list; 1832 return (WALK_NEXT); 1833 } 1834 1835 int 1836 task_walk_step(mdb_walk_state_t *wsp) 1837 { 1838 proc_t proc; 1839 int status; 1840 1841 if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) { 1842 mdb_warn("failed to read proc at %p", wsp->walk_addr); 1843 return (WALK_DONE); 1844 } 1845 1846 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata); 1847 1848 if (proc.p_tasknext == wsp->walk_data) 1849 return (WALK_DONE); 1850 1851 wsp->walk_addr = (uintptr_t)proc.p_tasknext; 1852 return (status); 1853 } 1854 1855 int 1856 project_walk_init(mdb_walk_state_t *wsp) 1857 { 1858 if (wsp->walk_addr == NULL) { 1859 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) { 1860 mdb_warn("failed to read 'proj0p'"); 1861 return (WALK_ERR); 1862 } 1863 } 1864 wsp->walk_data = (void *)wsp->walk_addr; 1865 return (WALK_NEXT); 1866 } 1867 1868 int 1869 project_walk_step(mdb_walk_state_t *wsp) 1870 { 1871 uintptr_t addr = wsp->walk_addr; 1872 kproject_t pj; 1873 int status; 1874 1875 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 1876 mdb_warn("failed to read project at %p", addr); 1877 return (WALK_DONE); 1878 } 1879 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata); 1880 if (status != WALK_NEXT) 1881 return (status); 1882 wsp->walk_addr = (uintptr_t)pj.kpj_next; 1883 if ((void *)wsp->walk_addr == wsp->walk_data) 1884 return (WALK_DONE); 1885 return (WALK_NEXT); 1886 } 1887 1888 static int 1889 generic_walk_step(mdb_walk_state_t *wsp) 1890 { 1891 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer, 1892 wsp->walk_cbdata)); 1893 } 1894 1895 int 1896 seg_walk_init(mdb_walk_state_t *wsp) 1897 { 1898 if (wsp->walk_addr == NULL) { 1899 mdb_warn("seg walk must begin at struct as *\n"); 1900 return (WALK_ERR); 1901 } 1902 1903 /* 1904 * this is really just a wrapper to AVL tree walk 1905 */ 1906 wsp->walk_addr = (uintptr_t)&((struct as *)wsp->walk_addr)->a_segtree; 1907 return (avl_walk_init(wsp)); 1908 } 1909 1910 static int 1911 cpu_walk_cmp(const void *l, const void *r) 1912 { 1913 uintptr_t lhs = *((uintptr_t *)l); 1914 uintptr_t rhs = *((uintptr_t *)r); 1915 cpu_t lcpu, rcpu; 1916 1917 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs); 1918 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs); 1919 1920 if (lcpu.cpu_id < rcpu.cpu_id) 1921 return (-1); 1922 1923 if (lcpu.cpu_id > rcpu.cpu_id) 1924 return (1); 1925 1926 return (0); 1927 } 1928 1929 typedef struct cpu_walk { 1930 uintptr_t *cw_array; 1931 int cw_ndx; 1932 } cpu_walk_t; 1933 1934 int 1935 cpu_walk_init(mdb_walk_state_t *wsp) 1936 { 1937 cpu_walk_t *cw; 1938 int max_ncpus, i = 0; 1939 uintptr_t current, first; 1940 cpu_t cpu, panic_cpu; 1941 uintptr_t panicstr, addr; 1942 GElf_Sym sym; 1943 1944 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC); 1945 1946 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 1947 mdb_warn("failed to read 'max_ncpus'"); 1948 return (WALK_ERR); 1949 } 1950 1951 if (mdb_readvar(&panicstr, "panicstr") == -1) { 1952 mdb_warn("failed to read 'panicstr'"); 1953 return (WALK_ERR); 1954 } 1955 1956 if (panicstr != NULL) { 1957 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) { 1958 mdb_warn("failed to find 'panic_cpu'"); 1959 return (WALK_ERR); 1960 } 1961 1962 addr = (uintptr_t)sym.st_value; 1963 1964 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) { 1965 mdb_warn("failed to read 'panic_cpu'"); 1966 return (WALK_ERR); 1967 } 1968 } 1969 1970 /* 1971 * Unfortunately, there is no platform-independent way to walk 1972 * CPUs in ID order. We therefore loop through in cpu_next order, 1973 * building an array of CPU pointers which will subsequently be 1974 * sorted. 1975 */ 1976 cw->cw_array = 1977 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC); 1978 1979 if (mdb_readvar(&first, "cpu_list") == -1) { 1980 mdb_warn("failed to read 'cpu_list'"); 1981 return (WALK_ERR); 1982 } 1983 1984 current = first; 1985 do { 1986 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) { 1987 mdb_warn("failed to read cpu at %p", current); 1988 return (WALK_ERR); 1989 } 1990 1991 if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) { 1992 cw->cw_array[i++] = addr; 1993 } else { 1994 cw->cw_array[i++] = current; 1995 } 1996 } while ((current = (uintptr_t)cpu.cpu_next) != first); 1997 1998 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp); 1999 wsp->walk_data = cw; 2000 2001 return (WALK_NEXT); 2002 } 2003 2004 int 2005 cpu_walk_step(mdb_walk_state_t *wsp) 2006 { 2007 cpu_walk_t *cw = wsp->walk_data; 2008 cpu_t cpu; 2009 uintptr_t addr = cw->cw_array[cw->cw_ndx++]; 2010 2011 if (addr == NULL) 2012 return (WALK_DONE); 2013 2014 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) { 2015 mdb_warn("failed to read cpu at %p", addr); 2016 return (WALK_DONE); 2017 } 2018 2019 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata)); 2020 } 2021 2022 typedef struct cpuinfo_data { 2023 intptr_t cid_cpu; 2024 uintptr_t cid_lbolt; 2025 uintptr_t **cid_ithr; 2026 char cid_print_head; 2027 char cid_print_thr; 2028 char cid_print_ithr; 2029 char cid_print_flags; 2030 } cpuinfo_data_t; 2031 2032 int 2033 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid) 2034 { 2035 cpu_t c; 2036 int id; 2037 uint8_t pil; 2038 2039 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE) 2040 return (WALK_NEXT); 2041 2042 if (thr->t_bound_cpu == NULL) { 2043 mdb_warn("thr %p is intr thread w/out a CPU\n", addr); 2044 return (WALK_NEXT); 2045 } 2046 2047 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu); 2048 2049 if ((id = c.cpu_id) >= NCPU) { 2050 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n", 2051 thr->t_bound_cpu, id, NCPU); 2052 return (WALK_NEXT); 2053 } 2054 2055 if ((pil = thr->t_pil) >= NINTR) { 2056 mdb_warn("thread %p has pil (%d) greater than %d\n", 2057 addr, pil, NINTR); 2058 return (WALK_NEXT); 2059 } 2060 2061 if (cid->cid_ithr[id][pil] != NULL) { 2062 mdb_warn("CPU %d has multiple threads at pil %d (at least " 2063 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]); 2064 return (WALK_NEXT); 2065 } 2066 2067 cid->cid_ithr[id][pil] = addr; 2068 2069 return (WALK_NEXT); 2070 } 2071 2072 #define CPUINFO_IDWIDTH 3 2073 #define CPUINFO_FLAGWIDTH 9 2074 2075 #ifdef _LP64 2076 #if defined(__amd64) 2077 #define CPUINFO_TWIDTH 16 2078 #define CPUINFO_CPUWIDTH 16 2079 #else 2080 #define CPUINFO_CPUWIDTH 11 2081 #define CPUINFO_TWIDTH 11 2082 #endif 2083 #else 2084 #define CPUINFO_CPUWIDTH 8 2085 #define CPUINFO_TWIDTH 8 2086 #endif 2087 2088 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9) 2089 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4) 2090 #define CPUINFO_ITHRDELT 4 2091 2092 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \ 2093 flagline < nflaglines ? flagbuf[flagline++] : "") 2094 2095 int 2096 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid) 2097 { 2098 kthread_t t; 2099 disp_t disp; 2100 proc_t p; 2101 uintptr_t pinned; 2102 char **flagbuf; 2103 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT; 2104 2105 const char *flags[] = { 2106 "RUNNING", "READY", "QUIESCED", "EXISTS", 2107 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN", 2108 "SPARE", "FAULTED", NULL 2109 }; 2110 2111 if (cid->cid_cpu != -1) { 2112 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu) 2113 return (WALK_NEXT); 2114 2115 /* 2116 * Set cid_cpu to -1 to indicate that we found a matching CPU. 2117 */ 2118 cid->cid_cpu = -1; 2119 rval = WALK_DONE; 2120 } 2121 2122 if (cid->cid_print_head) { 2123 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n", 2124 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL", 2125 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD", 2126 "PROC"); 2127 cid->cid_print_head = FALSE; 2128 } 2129 2130 bspl = cpu->cpu_base_spl; 2131 2132 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) { 2133 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp); 2134 return (WALK_ERR); 2135 } 2136 2137 mdb_printf("%3d %0*p %3x %4d %4d ", 2138 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags, 2139 disp.disp_nrunnable, bspl); 2140 2141 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) { 2142 mdb_printf("%3d ", t.t_pri); 2143 } else { 2144 mdb_printf("%3s ", "-"); 2145 } 2146 2147 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no", 2148 cpu->cpu_kprunrun ? "yes" : "no"); 2149 2150 if (cpu->cpu_last_swtch) { 2151 clock_t lbolt; 2152 2153 if (mdb_vread(&lbolt, sizeof (lbolt), cid->cid_lbolt) == -1) { 2154 mdb_warn("failed to read lbolt at %p", cid->cid_lbolt); 2155 return (WALK_ERR); 2156 } 2157 mdb_printf("t-%-4d ", lbolt - cpu->cpu_last_swtch); 2158 } else { 2159 mdb_printf("%-6s ", "-"); 2160 } 2161 2162 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread); 2163 2164 if (cpu->cpu_thread == cpu->cpu_idle_thread) 2165 mdb_printf(" (idle)\n"); 2166 else if (cpu->cpu_thread == NULL) 2167 mdb_printf(" -\n"); 2168 else { 2169 if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) { 2170 mdb_printf(" %s\n", p.p_user.u_comm); 2171 } else { 2172 mdb_printf(" ?\n"); 2173 } 2174 } 2175 2176 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC); 2177 2178 if (cid->cid_print_flags) { 2179 int first = 1, i, j, k; 2180 char *s; 2181 2182 cid->cid_print_head = TRUE; 2183 2184 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) { 2185 if (!(cpu->cpu_flags & i)) 2186 continue; 2187 2188 if (first) { 2189 s = mdb_alloc(CPUINFO_THRDELT + 1, 2190 UM_GC | UM_SLEEP); 2191 2192 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, 2193 "%*s|%*s", CPUINFO_FLAGDELT, "", 2194 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, ""); 2195 flagbuf[nflaglines++] = s; 2196 } 2197 2198 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP); 2199 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s", 2200 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH - 2201 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j], 2202 first ? "<--+" : ""); 2203 2204 for (k = strlen(s); k < CPUINFO_THRDELT; k++) 2205 s[k] = ' '; 2206 s[k] = '\0'; 2207 2208 flagbuf[nflaglines++] = s; 2209 first = 0; 2210 } 2211 } 2212 2213 if (cid->cid_print_ithr) { 2214 int i, found_one = FALSE; 2215 int print_thr = disp.disp_nrunnable && cid->cid_print_thr; 2216 2217 for (i = NINTR - 1; i >= 0; i--) { 2218 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i]; 2219 2220 if (iaddr == NULL) 2221 continue; 2222 2223 if (!found_one) { 2224 found_one = TRUE; 2225 2226 CPUINFO_INDENT; 2227 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ', 2228 CPUINFO_ITHRDELT, ""); 2229 2230 CPUINFO_INDENT; 2231 mdb_printf("%c%*s+--> %3s %s\n", 2232 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, 2233 "", "PIL", "THREAD"); 2234 } 2235 2236 if (mdb_vread(&t, sizeof (t), iaddr) == -1) { 2237 mdb_warn("failed to read kthread_t at %p", 2238 iaddr); 2239 return (WALK_ERR); 2240 } 2241 2242 CPUINFO_INDENT; 2243 mdb_printf("%c%*s %3d %0*p\n", 2244 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", 2245 t.t_pil, CPUINFO_TWIDTH, iaddr); 2246 2247 pinned = (uintptr_t)t.t_intr; 2248 } 2249 2250 if (found_one && pinned != NULL) { 2251 cid->cid_print_head = TRUE; 2252 (void) strcpy(p.p_user.u_comm, "?"); 2253 2254 if (mdb_vread(&t, sizeof (t), 2255 (uintptr_t)pinned) == -1) { 2256 mdb_warn("failed to read kthread_t at %p", 2257 pinned); 2258 return (WALK_ERR); 2259 } 2260 if (mdb_vread(&p, sizeof (p), 2261 (uintptr_t)t.t_procp) == -1) { 2262 mdb_warn("failed to read proc_t at %p", 2263 t.t_procp); 2264 return (WALK_ERR); 2265 } 2266 2267 CPUINFO_INDENT; 2268 mdb_printf("%c%*s %3s %0*p %s\n", 2269 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-", 2270 CPUINFO_TWIDTH, pinned, 2271 pinned == (uintptr_t)cpu->cpu_idle_thread ? 2272 "(idle)" : p.p_user.u_comm); 2273 } 2274 } 2275 2276 if (disp.disp_nrunnable && cid->cid_print_thr) { 2277 dispq_t *dq; 2278 2279 int i, npri = disp.disp_npri; 2280 2281 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC); 2282 2283 if (mdb_vread(dq, sizeof (dispq_t) * npri, 2284 (uintptr_t)disp.disp_q) == -1) { 2285 mdb_warn("failed to read dispq_t at %p", disp.disp_q); 2286 return (WALK_ERR); 2287 } 2288 2289 CPUINFO_INDENT; 2290 mdb_printf("|\n"); 2291 2292 CPUINFO_INDENT; 2293 mdb_printf("+--> %3s %-*s %s\n", "PRI", 2294 CPUINFO_TWIDTH, "THREAD", "PROC"); 2295 2296 for (i = npri - 1; i >= 0; i--) { 2297 uintptr_t taddr = (uintptr_t)dq[i].dq_first; 2298 2299 while (taddr != NULL) { 2300 if (mdb_vread(&t, sizeof (t), taddr) == -1) { 2301 mdb_warn("failed to read kthread_t " 2302 "at %p", taddr); 2303 return (WALK_ERR); 2304 } 2305 if (mdb_vread(&p, sizeof (p), 2306 (uintptr_t)t.t_procp) == -1) { 2307 mdb_warn("failed to read proc_t at %p", 2308 t.t_procp); 2309 return (WALK_ERR); 2310 } 2311 2312 CPUINFO_INDENT; 2313 mdb_printf(" %3d %0*p %s\n", t.t_pri, 2314 CPUINFO_TWIDTH, taddr, p.p_user.u_comm); 2315 2316 taddr = (uintptr_t)t.t_link; 2317 } 2318 } 2319 cid->cid_print_head = TRUE; 2320 } 2321 2322 while (flagline < nflaglines) 2323 mdb_printf("%s\n", flagbuf[flagline++]); 2324 2325 if (cid->cid_print_head) 2326 mdb_printf("\n"); 2327 2328 return (rval); 2329 } 2330 2331 int 2332 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2333 { 2334 uint_t verbose = FALSE; 2335 cpuinfo_data_t cid; 2336 GElf_Sym sym; 2337 clock_t lbolt; 2338 2339 cid.cid_print_ithr = FALSE; 2340 cid.cid_print_thr = FALSE; 2341 cid.cid_print_flags = FALSE; 2342 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE; 2343 cid.cid_cpu = -1; 2344 2345 if (flags & DCMD_ADDRSPEC) 2346 cid.cid_cpu = addr; 2347 2348 if (mdb_getopts(argc, argv, 2349 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc) 2350 return (DCMD_USAGE); 2351 2352 if (verbose) { 2353 cid.cid_print_ithr = TRUE; 2354 cid.cid_print_thr = TRUE; 2355 cid.cid_print_flags = TRUE; 2356 cid.cid_print_head = TRUE; 2357 } 2358 2359 if (cid.cid_print_ithr) { 2360 int i; 2361 2362 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **) 2363 * NCPU, UM_SLEEP | UM_GC); 2364 2365 for (i = 0; i < NCPU; i++) 2366 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) * 2367 NINTR, UM_SLEEP | UM_GC); 2368 2369 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread, 2370 &cid) == -1) { 2371 mdb_warn("couldn't walk thread"); 2372 return (DCMD_ERR); 2373 } 2374 } 2375 2376 if (mdb_lookup_by_name("panic_lbolt", &sym) == -1) { 2377 mdb_warn("failed to find panic_lbolt"); 2378 return (DCMD_ERR); 2379 } 2380 2381 cid.cid_lbolt = (uintptr_t)sym.st_value; 2382 2383 if (mdb_vread(&lbolt, sizeof (lbolt), cid.cid_lbolt) == -1) { 2384 mdb_warn("failed to read panic_lbolt"); 2385 return (DCMD_ERR); 2386 } 2387 2388 if (lbolt == 0) { 2389 if (mdb_lookup_by_name("lbolt", &sym) == -1) { 2390 mdb_warn("failed to find lbolt"); 2391 return (DCMD_ERR); 2392 } 2393 cid.cid_lbolt = (uintptr_t)sym.st_value; 2394 } 2395 2396 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) { 2397 mdb_warn("can't walk cpus"); 2398 return (DCMD_ERR); 2399 } 2400 2401 if (cid.cid_cpu != -1) { 2402 /* 2403 * We didn't find this CPU when we walked through the CPUs 2404 * (i.e. the address specified doesn't show up in the "cpu" 2405 * walk). However, the specified address may still correspond 2406 * to a valid cpu_t (for example, if the specified address is 2407 * the actual panicking cpu_t and not the cached panic_cpu). 2408 * Point is: even if we didn't find it, we still want to try 2409 * to print the specified address as a cpu_t. 2410 */ 2411 cpu_t cpu; 2412 2413 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) { 2414 mdb_warn("%p is neither a valid CPU ID nor a " 2415 "valid cpu_t address\n", cid.cid_cpu); 2416 return (DCMD_ERR); 2417 } 2418 2419 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid); 2420 } 2421 2422 return (DCMD_OK); 2423 } 2424 2425 /*ARGSUSED*/ 2426 int 2427 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2428 { 2429 int i; 2430 2431 if (!(flags & DCMD_ADDRSPEC)) 2432 return (DCMD_USAGE); 2433 2434 for (i = 0; i < sizeof (addr) * NBBY; i++) 2435 mdb_printf("%p\n", addr ^ (1UL << i)); 2436 2437 return (DCMD_OK); 2438 } 2439 2440 /* 2441 * Grumble, grumble. 2442 */ 2443 #define SMAP_HASHFUNC(vp, off) \ 2444 ((((uintptr_t)(vp) >> 6) + ((uintptr_t)(vp) >> 3) + \ 2445 ((off) >> MAXBSHIFT)) & smd_hashmsk) 2446 2447 int 2448 vnode2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2449 { 2450 long smd_hashmsk; 2451 int hash; 2452 uintptr_t offset = 0; 2453 struct smap smp; 2454 uintptr_t saddr, kaddr; 2455 uintptr_t smd_hash, smd_smap; 2456 struct seg seg; 2457 2458 if (!(flags & DCMD_ADDRSPEC)) 2459 return (DCMD_USAGE); 2460 2461 if (mdb_readvar(&smd_hashmsk, "smd_hashmsk") == -1) { 2462 mdb_warn("failed to read smd_hashmsk"); 2463 return (DCMD_ERR); 2464 } 2465 2466 if (mdb_readvar(&smd_hash, "smd_hash") == -1) { 2467 mdb_warn("failed to read smd_hash"); 2468 return (DCMD_ERR); 2469 } 2470 2471 if (mdb_readvar(&smd_smap, "smd_smap") == -1) { 2472 mdb_warn("failed to read smd_hash"); 2473 return (DCMD_ERR); 2474 } 2475 2476 if (mdb_readvar(&kaddr, "segkmap") == -1) { 2477 mdb_warn("failed to read segkmap"); 2478 return (DCMD_ERR); 2479 } 2480 2481 if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) { 2482 mdb_warn("failed to read segkmap at %p", kaddr); 2483 return (DCMD_ERR); 2484 } 2485 2486 if (argc != 0) { 2487 const mdb_arg_t *arg = &argv[0]; 2488 2489 if (arg->a_type == MDB_TYPE_IMMEDIATE) 2490 offset = arg->a_un.a_val; 2491 else 2492 offset = (uintptr_t)mdb_strtoull(arg->a_un.a_str); 2493 } 2494 2495 hash = SMAP_HASHFUNC(addr, offset); 2496 2497 if (mdb_vread(&saddr, sizeof (saddr), 2498 smd_hash + hash * sizeof (uintptr_t)) == -1) { 2499 mdb_warn("couldn't read smap at %p", 2500 smd_hash + hash * sizeof (uintptr_t)); 2501 return (DCMD_ERR); 2502 } 2503 2504 do { 2505 if (mdb_vread(&smp, sizeof (smp), saddr) == -1) { 2506 mdb_warn("couldn't read smap at %p", saddr); 2507 return (DCMD_ERR); 2508 } 2509 2510 if ((uintptr_t)smp.sm_vp == addr && smp.sm_off == offset) { 2511 mdb_printf("vnode %p, offs %p is smap %p, vaddr %p\n", 2512 addr, offset, saddr, ((saddr - smd_smap) / 2513 sizeof (smp)) * MAXBSIZE + seg.s_base); 2514 return (DCMD_OK); 2515 } 2516 2517 saddr = (uintptr_t)smp.sm_hash; 2518 } while (saddr != NULL); 2519 2520 mdb_printf("no smap for vnode %p, offs %p\n", addr, offset); 2521 return (DCMD_OK); 2522 } 2523 2524 /*ARGSUSED*/ 2525 int 2526 addr2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2527 { 2528 uintptr_t kaddr; 2529 struct seg seg; 2530 struct segmap_data sd; 2531 2532 if (!(flags & DCMD_ADDRSPEC)) 2533 return (DCMD_USAGE); 2534 2535 if (mdb_readvar(&kaddr, "segkmap") == -1) { 2536 mdb_warn("failed to read segkmap"); 2537 return (DCMD_ERR); 2538 } 2539 2540 if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) { 2541 mdb_warn("failed to read segkmap at %p", kaddr); 2542 return (DCMD_ERR); 2543 } 2544 2545 if (mdb_vread(&sd, sizeof (sd), (uintptr_t)seg.s_data) == -1) { 2546 mdb_warn("failed to read segmap_data at %p", seg.s_data); 2547 return (DCMD_ERR); 2548 } 2549 2550 mdb_printf("%p is smap %p\n", addr, 2551 ((addr - (uintptr_t)seg.s_base) >> MAXBSHIFT) * 2552 sizeof (struct smap) + (uintptr_t)sd.smd_sm); 2553 2554 return (DCMD_OK); 2555 } 2556 2557 int 2558 as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp) 2559 { 2560 if (p->p_as == *asp) 2561 mdb_printf("%p\n", addr); 2562 return (WALK_NEXT); 2563 } 2564 2565 /*ARGSUSED*/ 2566 int 2567 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2568 { 2569 if (!(flags & DCMD_ADDRSPEC) || argc != 0) 2570 return (DCMD_USAGE); 2571 2572 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) { 2573 mdb_warn("failed to walk proc"); 2574 return (DCMD_ERR); 2575 } 2576 2577 return (DCMD_OK); 2578 } 2579 2580 /*ARGSUSED*/ 2581 int 2582 ptree_walk(uintptr_t addr, const proc_t *p, void *ignored) 2583 { 2584 proc_t parent; 2585 int ident = 0; 2586 uintptr_t paddr; 2587 2588 for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) { 2589 mdb_vread(&parent, sizeof (parent), paddr); 2590 paddr = (uintptr_t)parent.p_parent; 2591 } 2592 2593 mdb_inc_indent(ident); 2594 mdb_printf("%0?p %s\n", addr, p->p_user.u_comm); 2595 mdb_dec_indent(ident); 2596 2597 return (WALK_NEXT); 2598 } 2599 2600 void 2601 ptree_ancestors(uintptr_t addr, uintptr_t start) 2602 { 2603 proc_t p; 2604 2605 if (mdb_vread(&p, sizeof (p), addr) == -1) { 2606 mdb_warn("couldn't read ancestor at %p", addr); 2607 return; 2608 } 2609 2610 if (p.p_parent != NULL) 2611 ptree_ancestors((uintptr_t)p.p_parent, start); 2612 2613 if (addr != start) 2614 (void) ptree_walk(addr, &p, NULL); 2615 } 2616 2617 /*ARGSUSED*/ 2618 int 2619 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2620 { 2621 if (!(flags & DCMD_ADDRSPEC)) 2622 addr = NULL; 2623 else 2624 ptree_ancestors(addr, addr); 2625 2626 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) { 2627 mdb_warn("couldn't walk 'proc'"); 2628 return (DCMD_ERR); 2629 } 2630 2631 return (DCMD_OK); 2632 } 2633 2634 /*ARGSUSED*/ 2635 static int 2636 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2637 { 2638 int fdnum; 2639 const mdb_arg_t *argp = &argv[0]; 2640 proc_t p; 2641 uf_entry_t uf; 2642 2643 if ((flags & DCMD_ADDRSPEC) == 0) { 2644 mdb_warn("fd doesn't give global information\n"); 2645 return (DCMD_ERR); 2646 } 2647 if (argc != 1) 2648 return (DCMD_USAGE); 2649 2650 if (argp->a_type == MDB_TYPE_IMMEDIATE) 2651 fdnum = argp->a_un.a_val; 2652 else 2653 fdnum = mdb_strtoull(argp->a_un.a_str); 2654 2655 if (mdb_vread(&p, sizeof (struct proc), addr) == -1) { 2656 mdb_warn("couldn't read proc_t at %p", addr); 2657 return (DCMD_ERR); 2658 } 2659 if (fdnum > p.p_user.u_finfo.fi_nfiles) { 2660 mdb_warn("process %p only has %d files open.\n", 2661 addr, p.p_user.u_finfo.fi_nfiles); 2662 return (DCMD_ERR); 2663 } 2664 if (mdb_vread(&uf, sizeof (uf_entry_t), 2665 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) { 2666 mdb_warn("couldn't read uf_entry_t at %p", 2667 &p.p_user.u_finfo.fi_list[fdnum]); 2668 return (DCMD_ERR); 2669 } 2670 2671 mdb_printf("%p\n", uf.uf_file); 2672 return (DCMD_OK); 2673 } 2674 2675 /*ARGSUSED*/ 2676 static int 2677 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2678 { 2679 pid_t pid = (pid_t)addr; 2680 2681 if (argc != 0) 2682 return (DCMD_USAGE); 2683 2684 if ((addr = mdb_pid2proc(pid, NULL)) == NULL) { 2685 mdb_warn("PID 0t%d not found\n", pid); 2686 return (DCMD_ERR); 2687 } 2688 2689 mdb_printf("%p\n", addr); 2690 return (DCMD_OK); 2691 } 2692 2693 static char *sysfile_cmd[] = { 2694 "exclude:", 2695 "include:", 2696 "forceload:", 2697 "rootdev:", 2698 "rootfs:", 2699 "swapdev:", 2700 "swapfs:", 2701 "moddir:", 2702 "set", 2703 "unknown", 2704 }; 2705 2706 static char *sysfile_ops[] = { "", "=", "&", "|" }; 2707 2708 /*ARGSUSED*/ 2709 static int 2710 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target) 2711 { 2712 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) { 2713 *target = NULL; 2714 return (WALK_DONE); 2715 } 2716 return (WALK_NEXT); 2717 } 2718 2719 /*ARGSUSED*/ 2720 static int 2721 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2722 { 2723 struct sysparam *sysp, sys; 2724 char var[256]; 2725 char modname[256]; 2726 char val[256]; 2727 char strval[256]; 2728 vmem_t *mod_sysfile_arena; 2729 void *straddr; 2730 2731 if (mdb_readvar(&sysp, "sysparam_hd") == -1) { 2732 mdb_warn("failed to read sysparam_hd"); 2733 return (DCMD_ERR); 2734 } 2735 2736 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) { 2737 mdb_warn("failed to read mod_sysfile_arena"); 2738 return (DCMD_ERR); 2739 } 2740 2741 while (sysp != NULL) { 2742 var[0] = '\0'; 2743 val[0] = '\0'; 2744 modname[0] = '\0'; 2745 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) { 2746 mdb_warn("couldn't read sysparam %p", sysp); 2747 return (DCMD_ERR); 2748 } 2749 if (sys.sys_modnam != NULL && 2750 mdb_readstr(modname, 256, 2751 (uintptr_t)sys.sys_modnam) == -1) { 2752 mdb_warn("couldn't read modname in %p", sysp); 2753 return (DCMD_ERR); 2754 } 2755 if (sys.sys_ptr != NULL && 2756 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) { 2757 mdb_warn("couldn't read ptr in %p", sysp); 2758 return (DCMD_ERR); 2759 } 2760 if (sys.sys_op != SETOP_NONE) { 2761 /* 2762 * Is this an int or a string? We determine this 2763 * by checking whether straddr is contained in 2764 * mod_sysfile_arena. If so, the walker will set 2765 * straddr to NULL. 2766 */ 2767 straddr = (void *)(uintptr_t)sys.sys_info; 2768 if (sys.sys_op == SETOP_ASSIGN && 2769 sys.sys_info != 0 && 2770 mdb_pwalk("vmem_seg", 2771 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr, 2772 (uintptr_t)mod_sysfile_arena) == 0 && 2773 straddr == NULL && 2774 mdb_readstr(strval, 256, 2775 (uintptr_t)sys.sys_info) != -1) { 2776 (void) mdb_snprintf(val, sizeof (val), "\"%s\"", 2777 strval); 2778 } else { 2779 (void) mdb_snprintf(val, sizeof (val), 2780 "0x%llx [0t%llu]", sys.sys_info, 2781 sys.sys_info); 2782 } 2783 } 2784 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type], 2785 modname, modname[0] == '\0' ? "" : ":", 2786 var, sysfile_ops[sys.sys_op], val); 2787 2788 sysp = sys.sys_next; 2789 } 2790 2791 return (DCMD_OK); 2792 } 2793 2794 /* 2795 * Dump a taskq_ent_t given its address. 2796 */ 2797 /*ARGSUSED*/ 2798 int 2799 taskq_ent(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2800 { 2801 taskq_ent_t taskq_ent; 2802 GElf_Sym sym; 2803 char buf[MDB_SYM_NAMLEN+1]; 2804 2805 2806 if (!(flags & DCMD_ADDRSPEC)) { 2807 mdb_warn("expected explicit taskq_ent_t address before ::\n"); 2808 return (DCMD_USAGE); 2809 } 2810 2811 if (mdb_vread(&taskq_ent, sizeof (taskq_ent_t), addr) == -1) { 2812 mdb_warn("failed to read taskq_ent_t at %p", addr); 2813 return (DCMD_ERR); 2814 } 2815 2816 if (DCMD_HDRSPEC(flags)) { 2817 mdb_printf("%<u>%-?s %-?s %-s%</u>\n", 2818 "ENTRY", "ARG", "FUNCTION"); 2819 } 2820 2821 if (mdb_lookup_by_addr((uintptr_t)taskq_ent.tqent_func, MDB_SYM_EXACT, 2822 buf, sizeof (buf), &sym) == -1) { 2823 (void) strcpy(buf, "????"); 2824 } 2825 2826 mdb_printf("%-?p %-?p %s\n", addr, taskq_ent.tqent_arg, buf); 2827 2828 return (DCMD_OK); 2829 } 2830 2831 /* 2832 * Given the address of the (taskq_t) task queue head, walk the queue listing 2833 * the address of every taskq_ent_t. 2834 */ 2835 int 2836 taskq_walk_init(mdb_walk_state_t *wsp) 2837 { 2838 taskq_t tq_head; 2839 2840 2841 if (wsp->walk_addr == NULL) { 2842 mdb_warn("start address required\n"); 2843 return (WALK_ERR); 2844 } 2845 2846 2847 /* 2848 * Save the address of the list head entry. This terminates the list. 2849 */ 2850 wsp->walk_data = (void *) 2851 ((size_t)wsp->walk_addr + offsetof(taskq_t, tq_task)); 2852 2853 2854 /* 2855 * Read in taskq head, set walk_addr to point to first taskq_ent_t. 2856 */ 2857 if (mdb_vread((void *)&tq_head, sizeof (taskq_t), wsp->walk_addr) == 2858 -1) { 2859 mdb_warn("failed to read taskq list head at %p", 2860 wsp->walk_addr); 2861 } 2862 wsp->walk_addr = (uintptr_t)tq_head.tq_task.tqent_next; 2863 2864 2865 /* 2866 * Check for null list (next=head) 2867 */ 2868 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) { 2869 return (WALK_DONE); 2870 } 2871 2872 return (WALK_NEXT); 2873 } 2874 2875 2876 int 2877 taskq_walk_step(mdb_walk_state_t *wsp) 2878 { 2879 taskq_ent_t tq_ent; 2880 int status; 2881 2882 2883 if (mdb_vread((void *)&tq_ent, sizeof (taskq_ent_t), wsp->walk_addr) == 2884 -1) { 2885 mdb_warn("failed to read taskq_ent_t at %p", wsp->walk_addr); 2886 return (DCMD_ERR); 2887 } 2888 2889 status = wsp->walk_callback(wsp->walk_addr, (void *)&tq_ent, 2890 wsp->walk_cbdata); 2891 2892 wsp->walk_addr = (uintptr_t)tq_ent.tqent_next; 2893 2894 2895 /* Check if we're at the last element (next=head) */ 2896 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) { 2897 return (WALK_DONE); 2898 } 2899 2900 return (status); 2901 } 2902 2903 int 2904 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp) 2905 { 2906 2907 if (*didp == thr->t_did) { 2908 mdb_printf("%p\n", addr); 2909 return (WALK_DONE); 2910 } else 2911 return (WALK_NEXT); 2912 } 2913 2914 /*ARGSUSED*/ 2915 int 2916 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2917 { 2918 const mdb_arg_t *argp = &argv[0]; 2919 kt_did_t did; 2920 2921 if (argc != 1) 2922 return (DCMD_USAGE); 2923 2924 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str); 2925 2926 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) { 2927 mdb_warn("failed to walk thread"); 2928 return (DCMD_ERR); 2929 2930 } 2931 return (DCMD_OK); 2932 2933 } 2934 2935 static int 2936 errorq_walk_init(mdb_walk_state_t *wsp) 2937 { 2938 if (wsp->walk_addr == NULL && 2939 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) { 2940 mdb_warn("failed to read errorq_list"); 2941 return (WALK_ERR); 2942 } 2943 2944 return (WALK_NEXT); 2945 } 2946 2947 static int 2948 errorq_walk_step(mdb_walk_state_t *wsp) 2949 { 2950 uintptr_t addr = wsp->walk_addr; 2951 errorq_t eq; 2952 2953 if (addr == NULL) 2954 return (WALK_DONE); 2955 2956 if (mdb_vread(&eq, sizeof (eq), addr) == -1) { 2957 mdb_warn("failed to read errorq at %p", addr); 2958 return (WALK_ERR); 2959 } 2960 2961 wsp->walk_addr = (uintptr_t)eq.eq_next; 2962 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata)); 2963 } 2964 2965 typedef struct eqd_walk_data { 2966 uintptr_t *eqd_stack; 2967 void *eqd_buf; 2968 ulong_t eqd_qpos; 2969 ulong_t eqd_qlen; 2970 size_t eqd_size; 2971 } eqd_walk_data_t; 2972 2973 /* 2974 * In order to walk the list of pending error queue elements, we push the 2975 * addresses of the corresponding data buffers in to the eqd_stack array. 2976 * The error lists are in reverse chronological order when iterating using 2977 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the 2978 * walker client gets addresses in order from oldest error to newest error. 2979 */ 2980 static void 2981 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr) 2982 { 2983 errorq_elem_t eqe; 2984 2985 while (addr != NULL) { 2986 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) { 2987 mdb_warn("failed to read errorq element at %p", addr); 2988 break; 2989 } 2990 2991 if (eqdp->eqd_qpos == eqdp->eqd_qlen) { 2992 mdb_warn("errorq is overfull -- more than %lu " 2993 "elems found\n", eqdp->eqd_qlen); 2994 break; 2995 } 2996 2997 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data; 2998 addr = (uintptr_t)eqe.eqe_prev; 2999 } 3000 } 3001 3002 static int 3003 eqd_walk_init(mdb_walk_state_t *wsp) 3004 { 3005 eqd_walk_data_t *eqdp; 3006 errorq_elem_t eqe, *addr; 3007 errorq_t eq; 3008 ulong_t i; 3009 3010 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) { 3011 mdb_warn("failed to read errorq at %p", wsp->walk_addr); 3012 return (WALK_ERR); 3013 } 3014 3015 if (eq.eq_ptail != NULL && 3016 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) { 3017 mdb_warn("failed to read errorq element at %p", eq.eq_ptail); 3018 return (WALK_ERR); 3019 } 3020 3021 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP); 3022 wsp->walk_data = eqdp; 3023 3024 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP); 3025 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP); 3026 eqdp->eqd_qlen = eq.eq_qlen; 3027 eqdp->eqd_qpos = 0; 3028 eqdp->eqd_size = eq.eq_size; 3029 3030 /* 3031 * The newest elements in the queue are on the pending list, so we 3032 * push those on to our stack first. 3033 */ 3034 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend); 3035 3036 /* 3037 * If eq_ptail is set, it may point to a subset of the errors on the 3038 * pending list in the event a casptr() failed; if ptail's data is 3039 * already in our stack, NULL out eq_ptail and ignore it. 3040 */ 3041 if (eq.eq_ptail != NULL) { 3042 for (i = 0; i < eqdp->eqd_qpos; i++) { 3043 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) { 3044 eq.eq_ptail = NULL; 3045 break; 3046 } 3047 } 3048 } 3049 3050 /* 3051 * If eq_phead is set, it has the processing list in order from oldest 3052 * to newest. Use this to recompute eq_ptail as best we can and then 3053 * we nicely fall into eqd_push_list() of eq_ptail below. 3054 */ 3055 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe), 3056 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next) 3057 eq.eq_ptail = addr; 3058 3059 /* 3060 * The oldest elements in the queue are on the processing list, subject 3061 * to machinations in the if-clauses above. Push any such elements. 3062 */ 3063 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail); 3064 return (WALK_NEXT); 3065 } 3066 3067 static int 3068 eqd_walk_step(mdb_walk_state_t *wsp) 3069 { 3070 eqd_walk_data_t *eqdp = wsp->walk_data; 3071 uintptr_t addr; 3072 3073 if (eqdp->eqd_qpos == 0) 3074 return (WALK_DONE); 3075 3076 addr = eqdp->eqd_stack[--eqdp->eqd_qpos]; 3077 3078 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) { 3079 mdb_warn("failed to read errorq data at %p", addr); 3080 return (WALK_ERR); 3081 } 3082 3083 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata)); 3084 } 3085 3086 static void 3087 eqd_walk_fini(mdb_walk_state_t *wsp) 3088 { 3089 eqd_walk_data_t *eqdp = wsp->walk_data; 3090 3091 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen); 3092 mdb_free(eqdp->eqd_buf, eqdp->eqd_size); 3093 mdb_free(eqdp, sizeof (eqd_walk_data_t)); 3094 } 3095 3096 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64) 3097 3098 static int 3099 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3100 { 3101 int i; 3102 errorq_t eq; 3103 uint_t opt_v = FALSE; 3104 3105 if (!(flags & DCMD_ADDRSPEC)) { 3106 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) { 3107 mdb_warn("can't walk 'errorq'"); 3108 return (DCMD_ERR); 3109 } 3110 return (DCMD_OK); 3111 } 3112 3113 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL); 3114 argc -= i; 3115 argv += i; 3116 3117 if (argc != 0) 3118 return (DCMD_USAGE); 3119 3120 if (opt_v || DCMD_HDRSPEC(flags)) { 3121 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ", 3122 "ADDR", "NAME", "S", "V", "N"); 3123 if (!opt_v) { 3124 mdb_printf("%7s %7s %7s%</u>\n", 3125 "ACCEPT", "DROP", "LOG"); 3126 } else { 3127 mdb_printf("%5s %6s %6s %3s %16s%</u>\n", 3128 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC"); 3129 } 3130 } 3131 3132 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) { 3133 mdb_warn("failed to read errorq at %p", addr); 3134 return (DCMD_ERR); 3135 } 3136 3137 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name, 3138 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-', 3139 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ', 3140 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' '); 3141 3142 if (!opt_v) { 3143 mdb_printf("%7llu %7llu %7llu\n", 3144 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed), 3145 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) + 3146 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged)); 3147 } else { 3148 mdb_printf("%5s %6lu %6lu %3u %a\n", 3149 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func); 3150 mdb_printf("%38s\n%41s" 3151 "%12s %llu\n" 3152 "%53s %llu\n" 3153 "%53s %llu\n" 3154 "%53s %llu\n" 3155 "%53s %llu\n" 3156 "%53s %llu\n" 3157 "%53s %llu\n" 3158 "%53s %llu\n\n", 3159 "|", "+-> ", 3160 "DISPATCHED", EQKSVAL(eq, eqk_dispatched), 3161 "DROPPED", EQKSVAL(eq, eqk_dropped), 3162 "LOGGED", EQKSVAL(eq, eqk_logged), 3163 "RESERVED", EQKSVAL(eq, eqk_reserved), 3164 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail), 3165 "COMMITTED", EQKSVAL(eq, eqk_committed), 3166 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail), 3167 "CANCELLED", EQKSVAL(eq, eqk_cancelled)); 3168 } 3169 3170 return (DCMD_OK); 3171 } 3172 3173 /*ARGSUSED*/ 3174 static int 3175 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3176 { 3177 cpu_t panic_cpu; 3178 kthread_t *panic_thread; 3179 void *panicbuf; 3180 panic_data_t *pd; 3181 int i, n; 3182 3183 if (!mdb_prop_postmortem) { 3184 mdb_warn("panicinfo can only be run on a system " 3185 "dump; see dumpadm(1M)\n"); 3186 return (DCMD_ERR); 3187 } 3188 3189 if (flags & DCMD_ADDRSPEC || argc != 0) 3190 return (DCMD_USAGE); 3191 3192 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1) 3193 mdb_warn("failed to read 'panic_cpu'"); 3194 else 3195 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id); 3196 3197 if (mdb_readvar(&panic_thread, "panic_thread") == -1) 3198 mdb_warn("failed to read 'panic_thread'"); 3199 else 3200 mdb_printf("%16s %?p\n", "thread", panic_thread); 3201 3202 panicbuf = mdb_alloc(PANICBUFSIZE, UM_SLEEP); 3203 pd = (panic_data_t *)panicbuf; 3204 3205 if (mdb_readsym(panicbuf, PANICBUFSIZE, "panicbuf") == -1 || 3206 pd->pd_version != PANICBUFVERS) { 3207 mdb_warn("failed to read 'panicbuf'"); 3208 mdb_free(panicbuf, PANICBUFSIZE); 3209 return (DCMD_ERR); 3210 } 3211 3212 mdb_printf("%16s %s\n", "message", (char *)panicbuf + pd->pd_msgoff); 3213 3214 n = (pd->pd_msgoff - (sizeof (panic_data_t) - 3215 sizeof (panic_nv_t))) / sizeof (panic_nv_t); 3216 3217 for (i = 0; i < n; i++) 3218 mdb_printf("%16s %?llx\n", 3219 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value); 3220 3221 mdb_free(panicbuf, PANICBUFSIZE); 3222 return (DCMD_OK); 3223 } 3224 3225 static const mdb_dcmd_t dcmds[] = { 3226 3227 /* from genunix.c */ 3228 { "addr2smap", ":[offset]", "translate address to smap", addr2smap }, 3229 { "as2proc", ":", "convert as to proc_t address", as2proc }, 3230 { "binding_hash_entry", ":", "print driver names hash table entry", 3231 binding_hash_entry }, 3232 { "callout", NULL, "print callout table", callout }, 3233 { "class", NULL, "print process scheduler classes", class }, 3234 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo }, 3235 { "did2thread", "? kt_did", "find kernel thread for this id", 3236 did2thread }, 3237 { "errorq", "?[-v]", "display kernel error queues", errorq }, 3238 { "fd", ":[fd num]", "get a file pointer from an fd", fd }, 3239 { "flipone", ":", "the vik_rev_level 2 special", flipone }, 3240 { "lminfo", NULL, "print lock manager information", lminfo }, 3241 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl }, 3242 { "panicinfo", NULL, "print panic information", panicinfo }, 3243 { "pid2proc", "?", "convert PID to proc_t address", pid2proc }, 3244 { "pmap", ":[-q]", "print process memory map", pmap }, 3245 { "project", NULL, "display kernel project(s)", project }, 3246 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps }, 3247 { "pgrep", "[-x] [-n | -o] pattern", 3248 "pattern match against all processes", pgrep }, 3249 { "ptree", NULL, "print process tree", ptree }, 3250 { "seg", ":", "print address space segment", seg }, 3251 { "sysevent", "?[-sv]", "print sysevent pending or sent queue", 3252 sysevent}, 3253 { "sysevent_channel", "?", "print sysevent channel database", 3254 sysevent_channel}, 3255 { "sysevent_class_list", ":", "print sysevent class list", 3256 sysevent_class_list}, 3257 { "sysevent_subclass_list", ":", 3258 "print sysevent subclass list", sysevent_subclass_list}, 3259 { "system", NULL, "print contents of /etc/system file", sysfile }, 3260 { "task", NULL, "display kernel task(s)", task }, 3261 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent }, 3262 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path }, 3263 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap }, 3264 { "whereopen", ":", "given a vnode, dumps procs which have it open", 3265 whereopen }, 3266 3267 /* from zone.c */ 3268 { "zone", "?", "display kernel zone(s)", zoneprt }, 3269 { "zsd", ":[zsd key]", "lookup zsd value from a key", zsd }, 3270 3271 /* from bio.c */ 3272 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind }, 3273 3274 /* from contract.c */ 3275 { "contract", "?", "display a contract", cmd_contract }, 3276 { "ctevent", ":", "display a contract event", cmd_ctevent }, 3277 { "ctid", ":", "convert id to a contract pointer", cmd_ctid }, 3278 3279 /* from cpupart.c */ 3280 { "cpupart", "?[-v]", "print cpu partition info", cpupart }, 3281 3282 /* from cyclic.c */ 3283 { "cyccover", NULL, "dump cyclic coverage information", cyccover }, 3284 { "cycid", "?", "dump a cyclic id", cycid }, 3285 { "cycinfo", "?", "dump cyc_cpu info", cycinfo }, 3286 { "cyclic", ":", "developer information", cyclic }, 3287 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace }, 3288 3289 /* from devinfo.c */ 3290 { "devbindings", "?[-qs] [device-name | major-num]", 3291 "print devinfo nodes bound to device-name or major-num", 3292 devbindings, devinfo_help }, 3293 { "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo, 3294 devinfo_help }, 3295 { "devinfo_audit", ":[-v]", "devinfo configuration audit record", 3296 devinfo_audit }, 3297 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log", 3298 devinfo_audit_log }, 3299 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history", 3300 devinfo_audit_node }, 3301 { "devinfo2driver", ":", "find driver name for this devinfo node", 3302 devinfo2driver }, 3303 { "devnames", "?[-vm] [num]", "print devnames array", devnames }, 3304 { "dev2major", "?<dev_t>", "convert dev_t to a major number", 3305 dev2major }, 3306 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number", 3307 dev2minor }, 3308 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers", 3309 devt }, 3310 { "major2name", "?<major-num>", "convert major number to dev name", 3311 major2name }, 3312 { "minornodes", ":", "given a devinfo node, print its minor nodes", 3313 minornodes }, 3314 { "modctl2devinfo", ":", "given a modctl, list its devinfos", 3315 modctl2devinfo }, 3316 { "name2major", "<dev-name>", "convert dev name to major number", 3317 name2major }, 3318 { "prtconf", "?[-vpc]", "print devinfo tree", prtconf, prtconf_help }, 3319 { "softstate", ":<instance>", "retrieve soft-state pointer", 3320 softstate }, 3321 { "devinfo_fm", ":", "devinfo fault managment configuration", 3322 devinfo_fm }, 3323 { "devinfo_fmce", ":", "devinfo fault managment cache entry", 3324 devinfo_fmce}, 3325 3326 /* from fm.c */ 3327 { "ereport", "[-v]", "print ereports logged in dump", 3328 ereport }, 3329 3330 /* from findstack.c */ 3331 { "findstack", ":[-v]", "find kernel thread stack", findstack }, 3332 { "findstack_debug", NULL, "toggle findstack debugging", 3333 findstack_debug }, 3334 3335 /* from kgrep.c + genunix.c */ 3336 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep, 3337 kgrep_help }, 3338 3339 /* from kmem.c */ 3340 { "allocdby", ":", "given a thread, print its allocated buffers", 3341 allocdby }, 3342 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] " 3343 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help }, 3344 { "freedby", ":", "given a thread, print its freed buffers", freedby }, 3345 { "kmalog", "?[ fail | slab ]", 3346 "display kmem transaction log and stack traces", kmalog }, 3347 { "kmastat", "[-kmg]", "kernel memory allocator stats", 3348 kmastat }, 3349 { "kmausers", "?[-ef] [cache ...]", "current medium and large users " 3350 "of the kmem allocator", kmausers, kmausers_help }, 3351 { "kmem_cache", "?", "print kernel memory caches", kmem_cache }, 3352 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug }, 3353 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log }, 3354 { "kmem_verify", "?", "check integrity of kmem-managed memory", 3355 kmem_verify }, 3356 { "vmem", "?", "print a vmem_t", vmem }, 3357 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] " 3358 "[-m minsize] [-M maxsize] [-t thread] [-T type]", 3359 "print or filter a vmem_seg", vmem_seg, vmem_seg_help }, 3360 { "whatis", ":[-abiv]", "given an address, return information", whatis, 3361 whatis_help }, 3362 { "whatthread", ":[-v]", "print threads whose stack contains the " 3363 "given address", whatthread }, 3364 3365 /* from ldi.c */ 3366 { "ldi_handle", "?[-i]", "display a layered driver handle", 3367 ldi_handle, ldi_handle_help }, 3368 { "ldi_ident", NULL, "display a layered driver identifier", 3369 ldi_ident, ldi_ident_help }, 3370 3371 /* from leaky.c + leaky_subr.c */ 3372 { "findleaks", FINDLEAKS_USAGE, 3373 "search for potential kernel memory leaks", findleaks, 3374 findleaks_help }, 3375 3376 /* from lgrp.c */ 3377 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp}, 3378 { "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set}, 3379 3380 /* from log.c */ 3381 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf }, 3382 3383 /* from memory.c */ 3384 { "page", "?", "display a summarized page_t", page }, 3385 { "memstat", NULL, "display memory usage summary", memstat }, 3386 { "memlist", "?[-iav]", "display a struct memlist", memlist }, 3387 { "swapinfo", "?", "display a struct swapinfo", swapinfof }, 3388 3389 /* from mmd.c */ 3390 { "multidata", ":[-sv]", "display a summarized multidata_t", 3391 multidata }, 3392 { "pattbl", ":", "display a summarized multidata attribute table", 3393 pattbl }, 3394 { "pattr2multidata", ":", "print multidata pointer from pattr_t", 3395 pattr2multidata }, 3396 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t", 3397 pdesc2slab }, 3398 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify }, 3399 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t", 3400 slab2multidata }, 3401 3402 /* from modhash.c */ 3403 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]", 3404 "display information about one or all mod_hash structures", 3405 modhash, modhash_help }, 3406 { "modent", ":[-k | -v | -t type]", 3407 "display information about a mod_hash_entry", modent, 3408 modent_help }, 3409 3410 /* from net.c */ 3411 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload", 3412 mi }, 3413 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp]", 3414 "show network statistics", netstat }, 3415 { "sonode", "?[-f inet | inet6 | unix | #] " 3416 "[-t stream | dgram | raw | #] [-p #]", 3417 "filter and display sonode", sonode }, 3418 3419 /* from nvpair.c */ 3420 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR, 3421 nvpair_print }, 3422 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR, 3423 print_nvlist }, 3424 3425 /* from rctl.c */ 3426 { "rctl_dict", "?", "print systemwide default rctl definitions", 3427 rctl_dict }, 3428 { "rctl_list", ":[handle]", "print rctls for the given proc", 3429 rctl_list }, 3430 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle", 3431 rctl }, 3432 { "rctl_validate", ":[-v] [-n #]", "test resource control value " 3433 "sequence", rctl_validate }, 3434 3435 /* from sobj.c */ 3436 { "rwlock", ":", "dump out a readers/writer lock", rwlock }, 3437 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex, 3438 mutex_help }, 3439 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts }, 3440 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo }, 3441 { "turnstile", "?", "display a turnstile", turnstile }, 3442 3443 /* from stream.c */ 3444 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]", 3445 "print an mblk", mblk_prt, mblk_help }, 3446 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify }, 3447 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address", 3448 mblk2dblk }, 3449 { "q2otherq", ":", "print peer queue for a given queue", q2otherq }, 3450 { "q2rdq", ":", "print read queue for a given queue", q2rdq }, 3451 { "q2syncq", ":", "print syncq for a given queue", q2syncq }, 3452 { "q2stream", ":", "print stream pointer for a given queue", q2stream }, 3453 { "q2wrq", ":", "print write queue for a given queue", q2wrq }, 3454 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]", 3455 "filter and display STREAM queue", queue, queue_help }, 3456 { "stdata", ":[-q|v] [-f flag] [-F flag]", 3457 "filter and display STREAM head", stdata, stdata_help }, 3458 { "str2mate", ":", "print mate of this stream", str2mate }, 3459 { "str2wrq", ":", "print write queue of this stream", str2wrq }, 3460 { "stream", ":", "display STREAM", stream }, 3461 { "strftevent", ":", "print STREAMS flow trace event", strftevent }, 3462 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]", 3463 "filter and display STREAM sync queue", syncq, syncq_help }, 3464 { "syncq2q", ":", "print queue for a given syncq", syncq2q }, 3465 3466 /* from thread.c */ 3467 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread, 3468 thread_help }, 3469 { "threadlist", "?[-v [count]]", 3470 "display threads and associated C stack traces", threadlist, 3471 threadlist_help }, 3472 3473 /* from tsd.c */ 3474 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd }, 3475 { "tsdtot", ":", "find thread with this tsd", tsdtot }, 3476 3477 /* 3478 * typegraph does not work under kmdb, as it requires too much memory 3479 * for its internal data structures. 3480 */ 3481 #ifndef _KMDB 3482 /* from typegraph.c */ 3483 { "findlocks", ":", "find locks held by specified thread", findlocks }, 3484 { "findfalse", "?[-v]", "find potentially falsely shared structures", 3485 findfalse }, 3486 { "typegraph", NULL, "build type graph", typegraph }, 3487 { "istype", ":type", "manually set object type", istype }, 3488 { "notype", ":", "manually clear object type", notype }, 3489 { "whattype", ":", "determine object type", whattype }, 3490 #endif 3491 3492 /* from vfs.c */ 3493 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo }, 3494 { "pfiles", ":[-fp]", "print process file information", pfiles, 3495 pfiles_help }, 3496 3497 /* from mdi.c */ 3498 { "mdipi", NULL, "given a path, dump mdi_pathinfo " 3499 "and detailed pi_prop list", mdipi }, 3500 { "mdiprops", NULL, "given a pi_prop, dump the pi_prop list", 3501 mdiprops }, 3502 { "mdiphci", NULL, "given a phci, dump mdi_phci and " 3503 "list all paths", mdiphci }, 3504 { "mdivhci", NULL, "given a vhci, dump mdi_vhci and list " 3505 "all phcis", mdivhci }, 3506 { "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo " 3507 "client links", mdiclient_paths }, 3508 { "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo " 3509 "phci links", mdiphci_paths }, 3510 { "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links", 3511 mdiphcis }, 3512 3513 { NULL } 3514 }; 3515 3516 static const mdb_walker_t walkers[] = { 3517 3518 /* from genunix.c */ 3519 { "anon", "given an amp, list of anon structures", 3520 anon_walk_init, anon_walk_step, anon_walk_fini }, 3521 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step }, 3522 { "ereportq_dump", "walk list of ereports in dump error queue", 3523 ereportq_dump_walk_init, ereportq_dump_walk_step, NULL }, 3524 { "ereportq_pend", "walk list of ereports in pending error queue", 3525 ereportq_pend_walk_init, ereportq_pend_walk_step, NULL }, 3526 { "errorq", "walk list of system error queues", 3527 errorq_walk_init, errorq_walk_step, NULL }, 3528 { "errorq_data", "walk pending error queue data buffers", 3529 eqd_walk_init, eqd_walk_step, eqd_walk_fini }, 3530 { "allfile", "given a proc pointer, list all file pointers", 3531 file_walk_init, allfile_walk_step, file_walk_fini }, 3532 { "file", "given a proc pointer, list of open file pointers", 3533 file_walk_init, file_walk_step, file_walk_fini }, 3534 { "lock_descriptor", "walk lock_descriptor_t structures", 3535 ld_walk_init, ld_walk_step, NULL }, 3536 { "lock_graph", "walk lock graph", 3537 lg_walk_init, lg_walk_step, NULL }, 3538 { "port", "given a proc pointer, list of created event ports", 3539 port_walk_init, port_walk_step, NULL }, 3540 { "portev", "given a port pointer, list of events in the queue", 3541 portev_walk_init, portev_walk_step, portev_walk_fini }, 3542 { "proc", "list of active proc_t structures", 3543 proc_walk_init, proc_walk_step, proc_walk_fini }, 3544 { "projects", "walk a list of kernel projects", 3545 project_walk_init, project_walk_step, NULL }, 3546 { "seg", "given an as, list of segments", 3547 seg_walk_init, avl_walk_step, avl_walk_fini }, 3548 { "sysevent_pend", "walk sysevent pending queue", 3549 sysevent_pend_walk_init, sysevent_walk_step, 3550 sysevent_walk_fini}, 3551 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init, 3552 sysevent_walk_step, sysevent_walk_fini}, 3553 { "sysevent_channel", "walk sysevent channel subscriptions", 3554 sysevent_channel_walk_init, sysevent_channel_walk_step, 3555 sysevent_channel_walk_fini}, 3556 { "sysevent_class_list", "walk sysevent subscription's class list", 3557 sysevent_class_list_walk_init, sysevent_class_list_walk_step, 3558 sysevent_class_list_walk_fini}, 3559 { "sysevent_subclass_list", 3560 "walk sysevent subscription's subclass list", 3561 sysevent_subclass_list_walk_init, 3562 sysevent_subclass_list_walk_step, 3563 sysevent_subclass_list_walk_fini}, 3564 { "task", "given a task pointer, walk its processes", 3565 task_walk_init, task_walk_step, NULL }, 3566 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list", 3567 taskq_walk_init, taskq_walk_step, NULL, NULL }, 3568 3569 /* from avl.c */ 3570 { AVL_WALK_NAME, AVL_WALK_DESC, 3571 avl_walk_init, avl_walk_step, avl_walk_fini }, 3572 3573 /* from zone.c */ 3574 { "zone", "walk a list of kernel zones", 3575 zone_walk_init, zone_walk_step, NULL }, 3576 { "zsd", "walk list of zsd entries for a zone", 3577 zsd_walk_init, zsd_walk_step, NULL }, 3578 3579 /* from bio.c */ 3580 { "buf", "walk the bio buf hash", 3581 buf_walk_init, buf_walk_step, buf_walk_fini }, 3582 3583 /* from contract.c */ 3584 { "contract", "walk all contracts, or those of the specified type", 3585 ct_walk_init, generic_walk_step, NULL }, 3586 { "ct_event", "walk events on a contract event queue", 3587 ct_event_walk_init, generic_walk_step, NULL }, 3588 { "ct_listener", "walk contract event queue listeners", 3589 ct_listener_walk_init, generic_walk_step, NULL }, 3590 3591 /* from cpupart.c */ 3592 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition", 3593 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step, 3594 NULL }, 3595 { "cpupart_walk", "walk the set of cpu partitions", 3596 cpupart_walk_init, cpupart_walk_step, NULL }, 3597 3598 /* from ctxop.c */ 3599 { "ctxop", "walk list of context ops on a thread", 3600 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini }, 3601 3602 /* from cyclic.c */ 3603 { "cyccpu", "walk per-CPU cyc_cpu structures", 3604 cyccpu_walk_init, cyccpu_walk_step, NULL }, 3605 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list", 3606 cycomni_walk_init, cycomni_walk_step, NULL }, 3607 { "cyctrace", "walk cyclic trace buffer", 3608 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini }, 3609 3610 /* from devinfo.c */ 3611 { "binding_hash", "walk all entries in binding hash table", 3612 binding_hash_walk_init, binding_hash_walk_step, NULL }, 3613 { "devinfo", "walk devinfo tree or subtree", 3614 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini }, 3615 { "devinfo_audit_log", "walk devinfo audit system-wide log", 3616 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step, 3617 devinfo_audit_log_walk_fini}, 3618 { "devinfo_audit_node", "walk per-devinfo audit history", 3619 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step, 3620 devinfo_audit_node_walk_fini}, 3621 { "devinfo_children", "walk children of devinfo node", 3622 devinfo_children_walk_init, devinfo_children_walk_step, 3623 devinfo_children_walk_fini }, 3624 { "devinfo_parents", "walk ancestors of devinfo node", 3625 devinfo_parents_walk_init, devinfo_parents_walk_step, 3626 devinfo_parents_walk_fini }, 3627 { "devinfo_siblings", "walk siblings of devinfo node", 3628 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL }, 3629 { "devi_next", "walk devinfo list", 3630 NULL, devi_next_walk_step, NULL }, 3631 { "devnames", "walk devnames array", 3632 devnames_walk_init, devnames_walk_step, devnames_walk_fini }, 3633 { "minornode", "given a devinfo node, walk minor nodes", 3634 minornode_walk_init, minornode_walk_step, NULL }, 3635 { "softstate", 3636 "given an i_ddi_soft_state*, list all in-use driver stateps", 3637 soft_state_walk_init, soft_state_walk_step, 3638 NULL, NULL }, 3639 { "softstate_all", 3640 "given an i_ddi_soft_state*, list all driver stateps", 3641 soft_state_walk_init, soft_state_all_walk_step, 3642 NULL, NULL }, 3643 { "devinfo_fmc", 3644 "walk a fault management handle cache active list", 3645 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL }, 3646 3647 /* from kmem.c */ 3648 { "allocdby", "given a thread, walk its allocated bufctls", 3649 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 3650 { "bufctl", "walk a kmem cache's bufctls", 3651 bufctl_walk_init, kmem_walk_step, kmem_walk_fini }, 3652 { "bufctl_history", "walk the available history of a bufctl", 3653 bufctl_history_walk_init, bufctl_history_walk_step, 3654 bufctl_history_walk_fini }, 3655 { "freedby", "given a thread, walk its freed bufctls", 3656 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 3657 { "freectl", "walk a kmem cache's free bufctls", 3658 freectl_walk_init, kmem_walk_step, kmem_walk_fini }, 3659 { "freectl_constructed", "walk a kmem cache's constructed free bufctls", 3660 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 3661 { "freemem", "walk a kmem cache's free memory", 3662 freemem_walk_init, kmem_walk_step, kmem_walk_fini }, 3663 { "freemem_constructed", "walk a kmem cache's constructed free memory", 3664 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 3665 { "kmem", "walk a kmem cache", 3666 kmem_walk_init, kmem_walk_step, kmem_walk_fini }, 3667 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches", 3668 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL }, 3669 { "kmem_hash", "given a kmem cache, walk its allocated hash table", 3670 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini }, 3671 { "kmem_log", "walk the kmem transaction log", 3672 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini }, 3673 { "kmem_slab", "given a kmem cache, walk its slabs", 3674 kmem_slab_walk_init, kmem_slab_walk_step, NULL }, 3675 { "kmem_slab_partial", 3676 "given a kmem cache, walk its partially allocated slabs (min 1)", 3677 kmem_slab_walk_partial_init, kmem_slab_walk_step, NULL }, 3678 { "vmem", "walk vmem structures in pre-fix, depth-first order", 3679 vmem_walk_init, vmem_walk_step, vmem_walk_fini }, 3680 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs", 3681 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3682 { "vmem_free", "given a vmem_t, walk its free vmem_segs", 3683 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3684 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order", 3685 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini }, 3686 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs", 3687 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3688 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs", 3689 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3690 3691 /* from ldi.c */ 3692 { "ldi_handle", "walk the layered driver handle hash", 3693 ldi_handle_walk_init, ldi_handle_walk_step, NULL }, 3694 { "ldi_ident", "walk the layered driver identifier hash", 3695 ldi_ident_walk_init, ldi_ident_walk_step, NULL }, 3696 3697 /* from leaky.c + leaky_subr.c */ 3698 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same " 3699 "stack trace", 3700 leaky_walk_init, leaky_walk_step, leaky_walk_fini }, 3701 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for " 3702 "leaks w/ same stack trace", 3703 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini }, 3704 3705 /* from lgrp.c */ 3706 { "lgrp_cpulist", "walk CPUs in a given lgroup", 3707 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL }, 3708 { "lgrptbl", "walk lgroup table", 3709 lgrp_walk_init, lgrp_walk_step, NULL }, 3710 { "lgrp_parents", "walk up lgroup lineage from given lgroup", 3711 lgrp_parents_walk_init, lgrp_parents_walk_step, NULL }, 3712 { "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup", 3713 lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL }, 3714 { "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup", 3715 lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL }, 3716 3717 /* from list.c */ 3718 { LIST_WALK_NAME, LIST_WALK_DESC, 3719 list_walk_init, list_walk_step, list_walk_fini }, 3720 3721 /* from memory.c */ 3722 { "page", "walk all pages, or those from the specified vnode", 3723 page_walk_init, page_walk_step, page_walk_fini }, 3724 { "memlist", "walk specified memlist", 3725 NULL, memlist_walk_step, NULL }, 3726 { "swapinfo", "walk swapinfo structures", 3727 swap_walk_init, swap_walk_step, NULL }, 3728 3729 /* from mmd.c */ 3730 { "pattr", "walk pattr_t structures", pattr_walk_init, 3731 mmdq_walk_step, mmdq_walk_fini }, 3732 { "pdesc", "walk pdesc_t structures", 3733 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini }, 3734 { "pdesc_slab", "walk pdesc_slab_t structures", 3735 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini }, 3736 3737 /* from modhash.c */ 3738 { "modhash", "walk list of mod_hash structures", modhash_walk_init, 3739 modhash_walk_step, NULL }, 3740 { "modent", "walk list of entries in a given mod_hash", 3741 modent_walk_init, modent_walk_step, modent_walk_fini }, 3742 { "modchain", "walk list of entries in a given mod_hash_entry", 3743 NULL, modchain_walk_step, NULL }, 3744 3745 /* from net.c */ 3746 { "ar", "walk ar_t structures using MI", 3747 mi_payload_walk_init, mi_payload_walk_step, 3748 mi_payload_walk_fini, &mi_ar_arg }, 3749 { "icmp", "walk ICMP control structures using MI", 3750 mi_payload_walk_init, mi_payload_walk_step, 3751 mi_payload_walk_fini, &mi_icmp_arg }, 3752 { "ill", "walk ill_t structures using MI", 3753 mi_payload_walk_init, mi_payload_walk_step, 3754 mi_payload_walk_fini, &mi_ill_arg }, 3755 { "mi", "given a MI_O, walk the MI", 3756 mi_walk_init, mi_walk_step, mi_walk_fini, NULL }, 3757 { "sonode", "given a sonode, walk its children", 3758 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL }, 3759 3760 /* from nvpair.c */ 3761 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR, 3762 nvpair_walk_init, nvpair_walk_step, NULL }, 3763 3764 /* from rctl.c */ 3765 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists", 3766 rctl_dict_walk_init, rctl_dict_walk_step, NULL }, 3767 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init, 3768 rctl_set_walk_step, NULL }, 3769 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated", 3770 rctl_val_walk_init, rctl_val_walk_step }, 3771 3772 /* from sobj.c */ 3773 { "blocked", "walk threads blocked on a given sobj", 3774 blocked_walk_init, blocked_walk_step, NULL }, 3775 { "wchan", "given a wchan, list of blocked threads", 3776 wchan_walk_init, wchan_walk_step, wchan_walk_fini }, 3777 3778 /* from stream.c */ 3779 { "b_cont", "walk mblk_t list using b_cont", 3780 mblk_walk_init, b_cont_step, mblk_walk_fini }, 3781 { "b_next", "walk mblk_t list using b_next", 3782 mblk_walk_init, b_next_step, mblk_walk_fini }, 3783 { "qlink", "walk queue_t list using q_link", 3784 queue_walk_init, queue_link_step, queue_walk_fini }, 3785 { "qnext", "walk queue_t list using q_next", 3786 queue_walk_init, queue_next_step, queue_walk_fini }, 3787 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list", 3788 strftblk_walk_init, strftblk_step, strftblk_walk_fini }, 3789 { "readq", "walk read queue side of stdata", 3790 str_walk_init, strr_walk_step, str_walk_fini }, 3791 { "writeq", "walk write queue side of stdata", 3792 str_walk_init, strw_walk_step, str_walk_fini }, 3793 3794 /* from thread.c */ 3795 { "deathrow", "walk threads on both lwp_ and thread_deathrow", 3796 deathrow_walk_init, deathrow_walk_step, NULL }, 3797 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues", 3798 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 3799 { "cpupart_dispq", 3800 "given a cpupart_t, walk threads in dispatcher queues", 3801 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 3802 { "lwp_deathrow", "walk lwp_deathrow", 3803 lwp_deathrow_walk_init, deathrow_walk_step, NULL }, 3804 { "thread", "global or per-process kthread_t structures", 3805 thread_walk_init, thread_walk_step, thread_walk_fini }, 3806 { "thread_deathrow", "walk threads on thread_deathrow", 3807 thread_deathrow_walk_init, deathrow_walk_step, NULL }, 3808 3809 /* from tsd.c */ 3810 { "tsd", "walk list of thread-specific data", 3811 tsd_walk_init, tsd_walk_step, tsd_walk_fini }, 3812 3813 /* from tsol.c */ 3814 { "tnrh", "walk remote host cache structures", 3815 tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini }, 3816 { "tnrhtp", "walk remote host template structures", 3817 tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini }, 3818 3819 /* 3820 * typegraph does not work under kmdb, as it requires too much memory 3821 * for its internal data structures. 3822 */ 3823 #ifndef _KMDB 3824 /* from typegraph.c */ 3825 { "typeconflict", "walk buffers with conflicting type inferences", 3826 typegraph_walk_init, typeconflict_walk_step }, 3827 { "typeunknown", "walk buffers with unknown types", 3828 typegraph_walk_init, typeunknown_walk_step }, 3829 #endif 3830 3831 /* from vfs.c */ 3832 { "vfs", "walk file system list", 3833 vfs_walk_init, vfs_walk_step }, 3834 3835 /* from mdi.c */ 3836 { "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link", 3837 mdi_pi_client_link_walk_init, 3838 mdi_pi_client_link_walk_step, 3839 mdi_pi_client_link_walk_fini }, 3840 3841 { "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link", 3842 mdi_pi_phci_link_walk_init, 3843 mdi_pi_phci_link_walk_step, 3844 mdi_pi_phci_link_walk_fini }, 3845 3846 { "mdiphci_list", "Walker for mdi_phci ph_next link", 3847 mdi_phci_ph_next_walk_init, 3848 mdi_phci_ph_next_walk_step, 3849 mdi_phci_ph_next_walk_fini }, 3850 3851 { NULL } 3852 }; 3853 3854 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers }; 3855 3856 const mdb_modinfo_t * 3857 _mdb_init(void) 3858 { 3859 if (mdb_readvar(&devinfo_root, "top_devinfo") == -1) { 3860 mdb_warn("failed to read 'top_devinfo'"); 3861 return (NULL); 3862 } 3863 3864 if (findstack_init() != DCMD_OK) 3865 return (NULL); 3866 3867 kmem_init(); 3868 3869 return (&modinfo); 3870 } 3871 3872 void 3873 _mdb_fini(void) 3874 { 3875 /* 3876 * Force ::findleaks to let go any cached memory 3877 */ 3878 leaky_cleanup(1); 3879 } 3880