xref: /titanic_50/usr/src/cmd/mdb/common/modules/genunix/genunix.c (revision af79d7d9cd4d7b7b3b52261fc6f4be7426335485)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <mdb/mdb_param.h>
27 #include <mdb/mdb_modapi.h>
28 #include <mdb/mdb_ks.h>
29 #include <mdb/mdb_ctf.h>
30 
31 #include <sys/types.h>
32 #include <sys/thread.h>
33 #include <sys/session.h>
34 #include <sys/user.h>
35 #include <sys/proc.h>
36 #include <sys/var.h>
37 #include <sys/t_lock.h>
38 #include <sys/systm.h>
39 #include <sys/callo.h>
40 #include <sys/priocntl.h>
41 #include <sys/class.h>
42 #include <sys/regset.h>
43 #include <sys/stack.h>
44 #include <sys/cpuvar.h>
45 #include <sys/vnode.h>
46 #include <sys/vfs.h>
47 #include <sys/flock_impl.h>
48 #include <sys/kmem_impl.h>
49 #include <sys/vmem_impl.h>
50 #include <sys/kstat.h>
51 #include <vm/seg_vn.h>
52 #include <vm/anon.h>
53 #include <vm/as.h>
54 #include <vm/seg_map.h>
55 #include <sys/dditypes.h>
56 #include <sys/ddi_impldefs.h>
57 #include <sys/sysmacros.h>
58 #include <sys/sysconf.h>
59 #include <sys/task.h>
60 #include <sys/project.h>
61 #include <sys/taskq.h>
62 #include <sys/taskq_impl.h>
63 #include <sys/errorq_impl.h>
64 #include <sys/cred_impl.h>
65 #include <sys/zone.h>
66 #include <sys/panic.h>
67 #include <regex.h>
68 #include <sys/port_impl.h>
69 
70 #include "avl.h"
71 #include "combined.h"
72 #include "contract.h"
73 #include "cpupart_mdb.h"
74 #include "devinfo.h"
75 #include "irm.h"
76 #include "leaky.h"
77 #include "lgrp.h"
78 #include "pg.h"
79 #include "group.h"
80 #include "list.h"
81 #include "log.h"
82 #include "kgrep.h"
83 #include "kmem.h"
84 #include "bio.h"
85 #include "streams.h"
86 #include "cyclic.h"
87 #include "findstack.h"
88 #include "ndievents.h"
89 #include "mmd.h"
90 #include "net.h"
91 #include "netstack.h"
92 #include "nvpair.h"
93 #include "ctxop.h"
94 #include "tsd.h"
95 #include "thread.h"
96 #include "memory.h"
97 #include "sobj.h"
98 #include "sysevent.h"
99 #include "rctl.h"
100 #include "tsol.h"
101 #include "typegraph.h"
102 #include "ldi.h"
103 #include "vfs.h"
104 #include "zone.h"
105 #include "modhash.h"
106 #include "mdi.h"
107 #include "fm.h"
108 
109 /*
110  * Surely this is defined somewhere...
111  */
112 #define	NINTR		16
113 
114 #define	KILOS		10
115 #define	MEGS		20
116 #define	GIGS		30
117 
118 #ifndef STACK_BIAS
119 #define	STACK_BIAS	0
120 #endif
121 
122 static char
123 pstat2ch(uchar_t state)
124 {
125 	switch (state) {
126 		case SSLEEP: return ('S');
127 		case SRUN: return ('R');
128 		case SZOMB: return ('Z');
129 		case SIDL: return ('I');
130 		case SONPROC: return ('O');
131 		case SSTOP: return ('T');
132 		case SWAIT: return ('W');
133 		default: return ('?');
134 	}
135 }
136 
137 #define	PS_PRTTHREADS	0x1
138 #define	PS_PRTLWPS	0x2
139 #define	PS_PSARGS	0x4
140 #define	PS_TASKS	0x8
141 #define	PS_PROJECTS	0x10
142 #define	PS_ZONES	0x20
143 
144 static int
145 ps_threadprint(uintptr_t addr, const void *data, void *private)
146 {
147 	const kthread_t *t = (const kthread_t *)data;
148 	uint_t prt_flags = *((uint_t *)private);
149 
150 	static const mdb_bitmask_t t_state_bits[] = {
151 		{ "TS_FREE",	UINT_MAX,	TS_FREE		},
152 		{ "TS_SLEEP",	TS_SLEEP,	TS_SLEEP	},
153 		{ "TS_RUN",	TS_RUN,		TS_RUN		},
154 		{ "TS_ONPROC",	TS_ONPROC,	TS_ONPROC	},
155 		{ "TS_ZOMB",	TS_ZOMB,	TS_ZOMB		},
156 		{ "TS_STOPPED",	TS_STOPPED,	TS_STOPPED	},
157 		{ "TS_WAIT",	TS_WAIT,	TS_WAIT		},
158 		{ NULL,		0,		0		}
159 	};
160 
161 	if (prt_flags & PS_PRTTHREADS)
162 		mdb_printf("\tT  %?a <%b>\n", addr, t->t_state, t_state_bits);
163 
164 	if (prt_flags & PS_PRTLWPS)
165 		mdb_printf("\tL  %?a ID: %u\n", t->t_lwp, t->t_tid);
166 
167 	return (WALK_NEXT);
168 }
169 
170 int
171 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
172 {
173 	uint_t prt_flags = 0;
174 	proc_t pr;
175 	struct pid pid, pgid, sid;
176 	sess_t session;
177 	cred_t cred;
178 	task_t tk;
179 	kproject_t pj;
180 	zone_t zn;
181 
182 	if (!(flags & DCMD_ADDRSPEC)) {
183 		if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) {
184 			mdb_warn("can't walk 'proc'");
185 			return (DCMD_ERR);
186 		}
187 		return (DCMD_OK);
188 	}
189 
190 	if (mdb_getopts(argc, argv,
191 	    'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags,
192 	    'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags,
193 	    'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags,
194 	    'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags,
195 	    'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags,
196 	    't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc)
197 		return (DCMD_USAGE);
198 
199 	if (DCMD_HDRSPEC(flags)) {
200 		mdb_printf("%<u>%1s %6s %6s %6s %6s ",
201 		    "S", "PID", "PPID", "PGID", "SID");
202 		if (prt_flags & PS_TASKS)
203 			mdb_printf("%5s ", "TASK");
204 		if (prt_flags & PS_PROJECTS)
205 			mdb_printf("%5s ", "PROJ");
206 		if (prt_flags & PS_ZONES)
207 			mdb_printf("%5s ", "ZONE");
208 		mdb_printf("%6s %10s %?s %s%</u>\n",
209 		    "UID", "FLAGS", "ADDR", "NAME");
210 	}
211 
212 	mdb_vread(&pr, sizeof (pr), addr);
213 	mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp);
214 	mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp);
215 	mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred);
216 	mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp);
217 	mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp);
218 	if (prt_flags & (PS_TASKS | PS_PROJECTS))
219 		mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task);
220 	if (prt_flags & PS_PROJECTS)
221 		mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj);
222 	if (prt_flags & PS_ZONES)
223 		mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone);
224 
225 	mdb_printf("%c %6d %6d %6d %6d ",
226 	    pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id,
227 	    sid.pid_id);
228 	if (prt_flags & PS_TASKS)
229 		mdb_printf("%5d ", tk.tk_tkid);
230 	if (prt_flags & PS_PROJECTS)
231 		mdb_printf("%5d ", pj.kpj_id);
232 	if (prt_flags & PS_ZONES)
233 		mdb_printf("%5d ", zn.zone_id);
234 	mdb_printf("%6d 0x%08x %0?p %s\n",
235 	    cred.cr_uid, pr.p_flag, addr,
236 	    (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm);
237 
238 	if (prt_flags & ~PS_PSARGS)
239 		(void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr);
240 
241 	return (DCMD_OK);
242 }
243 
244 #define	PG_NEWEST	0x0001
245 #define	PG_OLDEST	0x0002
246 #define	PG_PIPE_OUT	0x0004
247 #define	PG_EXACT_MATCH	0x0008
248 
249 typedef struct pgrep_data {
250 	uint_t pg_flags;
251 	uint_t pg_psflags;
252 	uintptr_t pg_xaddr;
253 	hrtime_t pg_xstart;
254 	const char *pg_pat;
255 #ifndef _KMDB
256 	regex_t pg_reg;
257 #endif
258 } pgrep_data_t;
259 
260 /*ARGSUSED*/
261 static int
262 pgrep_cb(uintptr_t addr, const void *pdata, void *data)
263 {
264 	const proc_t *prp = pdata;
265 	pgrep_data_t *pgp = data;
266 #ifndef _KMDB
267 	regmatch_t pmatch;
268 #endif
269 
270 	/*
271 	 * kmdb doesn't have access to the reg* functions, so we fall back
272 	 * to strstr/strcmp.
273 	 */
274 #ifdef _KMDB
275 	if ((pgp->pg_flags & PG_EXACT_MATCH) ?
276 	    (strcmp(prp->p_user.u_comm, pgp->pg_pat) != 0) :
277 	    (strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL))
278 		return (WALK_NEXT);
279 #else
280 	if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0)
281 		return (WALK_NEXT);
282 
283 	if ((pgp->pg_flags & PG_EXACT_MATCH) &&
284 	    (pmatch.rm_so != 0 || prp->p_user.u_comm[pmatch.rm_eo] != '\0'))
285 		return (WALK_NEXT);
286 #endif
287 
288 	if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) {
289 		hrtime_t start;
290 
291 		start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC +
292 		    prp->p_user.u_start.tv_nsec;
293 
294 		if (pgp->pg_flags & PG_NEWEST) {
295 			if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) {
296 				pgp->pg_xaddr = addr;
297 				pgp->pg_xstart = start;
298 			}
299 		} else {
300 			if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) {
301 				pgp->pg_xaddr = addr;
302 				pgp->pg_xstart = start;
303 			}
304 		}
305 
306 	} else if (pgp->pg_flags & PG_PIPE_OUT) {
307 		mdb_printf("%p\n", addr);
308 
309 	} else {
310 		if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) {
311 			mdb_warn("can't invoke 'ps'");
312 			return (WALK_DONE);
313 		}
314 		pgp->pg_psflags &= ~DCMD_LOOPFIRST;
315 	}
316 
317 	return (WALK_NEXT);
318 }
319 
320 /*ARGSUSED*/
321 int
322 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
323 {
324 	pgrep_data_t pg;
325 	int i;
326 #ifndef _KMDB
327 	int err;
328 #endif
329 
330 	if (flags & DCMD_ADDRSPEC)
331 		return (DCMD_USAGE);
332 
333 	pg.pg_flags = 0;
334 	pg.pg_xaddr = 0;
335 
336 	i = mdb_getopts(argc, argv,
337 	    'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags,
338 	    'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags,
339 	    'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags,
340 	    NULL);
341 
342 	argc -= i;
343 	argv += i;
344 
345 	if (argc != 1)
346 		return (DCMD_USAGE);
347 
348 	/*
349 	 * -n and -o are mutually exclusive.
350 	 */
351 	if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST))
352 		return (DCMD_USAGE);
353 
354 	if (argv->a_type != MDB_TYPE_STRING)
355 		return (DCMD_USAGE);
356 
357 	if (flags & DCMD_PIPE_OUT)
358 		pg.pg_flags |= PG_PIPE_OUT;
359 
360 	pg.pg_pat = argv->a_un.a_str;
361 	if (DCMD_HDRSPEC(flags))
362 		pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST;
363 	else
364 		pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP;
365 
366 #ifndef _KMDB
367 	if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) {
368 		size_t nbytes;
369 		char *buf;
370 
371 		nbytes = regerror(err, &pg.pg_reg, NULL, 0);
372 		buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC);
373 		(void) regerror(err, &pg.pg_reg, buf, nbytes);
374 		mdb_warn("%s\n", buf);
375 
376 		return (DCMD_ERR);
377 	}
378 #endif
379 
380 	if (mdb_walk("proc", pgrep_cb, &pg) != 0) {
381 		mdb_warn("can't walk 'proc'");
382 		return (DCMD_ERR);
383 	}
384 
385 	if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) {
386 		if (pg.pg_flags & PG_PIPE_OUT) {
387 			mdb_printf("%p\n", pg.pg_xaddr);
388 		} else {
389 			if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags,
390 			    0, NULL) != 0) {
391 				mdb_warn("can't invoke 'ps'");
392 				return (DCMD_ERR);
393 			}
394 		}
395 	}
396 
397 	return (DCMD_OK);
398 }
399 
400 int
401 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
402 {
403 	task_t tk;
404 	kproject_t pj;
405 
406 	if (!(flags & DCMD_ADDRSPEC)) {
407 		if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) {
408 			mdb_warn("can't walk task_cache");
409 			return (DCMD_ERR);
410 		}
411 		return (DCMD_OK);
412 	}
413 	if (DCMD_HDRSPEC(flags)) {
414 		mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n",
415 		    "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS");
416 	}
417 	if (mdb_vread(&tk, sizeof (task_t), addr) == -1) {
418 		mdb_warn("can't read task_t structure at %p", addr);
419 		return (DCMD_ERR);
420 	}
421 	if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) {
422 		mdb_warn("can't read project_t structure at %p", addr);
423 		return (DCMD_ERR);
424 	}
425 	mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n",
426 	    addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count,
427 	    tk.tk_flags);
428 	return (DCMD_OK);
429 }
430 
431 int
432 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
433 {
434 	kproject_t pj;
435 
436 	if (!(flags & DCMD_ADDRSPEC)) {
437 		if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) {
438 			mdb_warn("can't walk projects");
439 			return (DCMD_ERR);
440 		}
441 		return (DCMD_OK);
442 	}
443 	if (DCMD_HDRSPEC(flags)) {
444 		mdb_printf("%<u>%?s %6s %6s %6s%</u>\n",
445 		    "ADDR", "PROJID", "ZONEID", "REFCNT");
446 	}
447 	if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
448 		mdb_warn("can't read kproject_t structure at %p", addr);
449 		return (DCMD_ERR);
450 	}
451 	mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid,
452 	    pj.kpj_count);
453 	return (DCMD_OK);
454 }
455 
456 /* walk callouts themselves, either by list or id hash. */
457 int
458 callout_walk_init(mdb_walk_state_t *wsp)
459 {
460 	if (wsp->walk_addr == NULL) {
461 		mdb_warn("callout doesn't support global walk");
462 		return (WALK_ERR);
463 	}
464 	wsp->walk_data = mdb_alloc(sizeof (callout_t), UM_SLEEP);
465 	return (WALK_NEXT);
466 }
467 
468 #define	CALLOUT_WALK_BYLIST	0
469 #define	CALLOUT_WALK_BYID	1
470 
471 /* the walker arg switches between walking by list (0) and walking by id (1). */
472 int
473 callout_walk_step(mdb_walk_state_t *wsp)
474 {
475 	int retval;
476 
477 	if (wsp->walk_addr == NULL) {
478 		return (WALK_DONE);
479 	}
480 	if (mdb_vread(wsp->walk_data, sizeof (callout_t),
481 	    wsp->walk_addr) == -1) {
482 		mdb_warn("failed to read callout at %p", wsp->walk_addr);
483 		return (WALK_DONE);
484 	}
485 	retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
486 	    wsp->walk_cbdata);
487 
488 	if ((ulong_t)wsp->walk_arg == CALLOUT_WALK_BYID) {
489 		wsp->walk_addr =
490 		    (uintptr_t)(((callout_t *)wsp->walk_data)->c_idnext);
491 	} else {
492 		wsp->walk_addr =
493 		    (uintptr_t)(((callout_t *)wsp->walk_data)->c_clnext);
494 	}
495 
496 	return (retval);
497 }
498 
499 void
500 callout_walk_fini(mdb_walk_state_t *wsp)
501 {
502 	mdb_free(wsp->walk_data, sizeof (callout_t));
503 }
504 
505 /*
506  * walker for callout lists. This is different from hashes and callouts.
507  * Thankfully, it's also simpler.
508  */
509 int
510 callout_list_walk_init(mdb_walk_state_t *wsp)
511 {
512 	if (wsp->walk_addr == NULL) {
513 		mdb_warn("callout list doesn't support global walk");
514 		return (WALK_ERR);
515 	}
516 	wsp->walk_data = mdb_alloc(sizeof (callout_list_t), UM_SLEEP);
517 	return (WALK_NEXT);
518 }
519 
520 int
521 callout_list_walk_step(mdb_walk_state_t *wsp)
522 {
523 	int retval;
524 
525 	if (wsp->walk_addr == NULL) {
526 		return (WALK_DONE);
527 	}
528 	if (mdb_vread(wsp->walk_data, sizeof (callout_list_t),
529 	    wsp->walk_addr) != sizeof (callout_list_t)) {
530 		mdb_warn("failed to read callout_list at %p", wsp->walk_addr);
531 		return (WALK_ERR);
532 	}
533 	retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
534 	    wsp->walk_cbdata);
535 
536 	wsp->walk_addr = (uintptr_t)
537 	    (((callout_list_t *)wsp->walk_data)->cl_next);
538 
539 	return (retval);
540 }
541 
542 void
543 callout_list_walk_fini(mdb_walk_state_t *wsp)
544 {
545 	mdb_free(wsp->walk_data, sizeof (callout_list_t));
546 }
547 
548 /* routines/structs to walk callout table(s) */
549 typedef struct cot_data {
550 	callout_table_t *ct0;
551 	callout_table_t ct;
552 	callout_hash_t cot_idhash[CALLOUT_BUCKETS];
553 	callout_hash_t cot_clhash[CALLOUT_BUCKETS];
554 	kstat_named_t ct_kstat_data[CALLOUT_NUM_STATS];
555 	int cotndx;
556 	int cotsize;
557 } cot_data_t;
558 
559 int
560 callout_table_walk_init(mdb_walk_state_t *wsp)
561 {
562 	int max_ncpus;
563 	cot_data_t *cot_walk_data;
564 
565 	cot_walk_data = mdb_alloc(sizeof (cot_data_t), UM_SLEEP);
566 
567 	if (wsp->walk_addr == NULL) {
568 		if (mdb_readvar(&cot_walk_data->ct0, "callout_table") == -1) {
569 			mdb_warn("failed to read 'callout_table'");
570 			return (WALK_ERR);
571 		}
572 		if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
573 			mdb_warn("failed to get callout_table array size");
574 			return (WALK_ERR);
575 		}
576 		cot_walk_data->cotsize = CALLOUT_NTYPES * max_ncpus;
577 		wsp->walk_addr = (uintptr_t)cot_walk_data->ct0;
578 	} else {
579 		/* not a global walk */
580 		cot_walk_data->cotsize = 1;
581 	}
582 
583 	cot_walk_data->cotndx = 0;
584 	wsp->walk_data = cot_walk_data;
585 
586 	return (WALK_NEXT);
587 }
588 
589 int
590 callout_table_walk_step(mdb_walk_state_t *wsp)
591 {
592 	int retval;
593 	cot_data_t *cotwd = (cot_data_t *)wsp->walk_data;
594 	size_t size;
595 
596 	if (cotwd->cotndx >= cotwd->cotsize) {
597 		return (WALK_DONE);
598 	}
599 	if (mdb_vread(&(cotwd->ct), sizeof (callout_table_t),
600 	    wsp->walk_addr) != sizeof (callout_table_t)) {
601 		mdb_warn("failed to read callout_table at %p", wsp->walk_addr);
602 		return (WALK_ERR);
603 	}
604 
605 	size = sizeof (callout_hash_t) * CALLOUT_BUCKETS;
606 	if (cotwd->ct.ct_idhash != NULL) {
607 		if (mdb_vread(cotwd->cot_idhash, size,
608 		    (uintptr_t)(cotwd->ct.ct_idhash)) != size) {
609 			mdb_warn("failed to read id_hash at %p",
610 			    cotwd->ct.ct_idhash);
611 			return (WALK_ERR);
612 		}
613 	}
614 	if (cotwd->ct.ct_clhash != NULL) {
615 		if (mdb_vread(&(cotwd->cot_clhash), size,
616 		    (uintptr_t)cotwd->ct.ct_clhash) == -1) {
617 			mdb_warn("failed to read cl_hash at %p",
618 			    cotwd->ct.ct_clhash);
619 			return (WALK_ERR);
620 		}
621 	}
622 	size = sizeof (kstat_named_t) * CALLOUT_NUM_STATS;
623 	if (cotwd->ct.ct_kstat_data != NULL) {
624 		if (mdb_vread(&(cotwd->ct_kstat_data), size,
625 		    (uintptr_t)cotwd->ct.ct_kstat_data) == -1) {
626 			mdb_warn("failed to read kstats at %p",
627 			    cotwd->ct.ct_kstat_data);
628 			return (WALK_ERR);
629 		}
630 	}
631 	retval = wsp->walk_callback(wsp->walk_addr, (void *)cotwd,
632 	    wsp->walk_cbdata);
633 
634 	cotwd->cotndx++;
635 	if (cotwd->cotndx >= cotwd->cotsize) {
636 		return (WALK_DONE);
637 	}
638 	wsp->walk_addr = (uintptr_t)((char *)wsp->walk_addr +
639 	    sizeof (callout_table_t));
640 
641 	return (retval);
642 }
643 
644 void
645 callout_table_walk_fini(mdb_walk_state_t *wsp)
646 {
647 	mdb_free(wsp->walk_data, sizeof (cot_data_t));
648 }
649 
650 static const char *co_typenames[] = { "R", "N" };
651 
652 #define	CO_PLAIN_ID(xid)	((xid) & CALLOUT_ID_MASK)
653 
654 #define	TABLE_TO_SEQID(x)	((x) >> CALLOUT_TYPE_BITS)
655 
656 /* callout flags, in no particular order */
657 #define	COF_REAL	0x0000001
658 #define	COF_NORM	0x0000002
659 #define	COF_LONG	0x0000004
660 #define	COF_SHORT	0x0000008
661 #define	COF_EMPTY	0x0000010
662 #define	COF_TIME	0x0000020
663 #define	COF_BEFORE	0x0000040
664 #define	COF_AFTER	0x0000080
665 #define	COF_SEQID	0x0000100
666 #define	COF_FUNC	0x0000200
667 #define	COF_ADDR	0x0000400
668 #define	COF_EXEC	0x0000800
669 #define	COF_HIRES	0x0001000
670 #define	COF_ABS		0x0002000
671 #define	COF_TABLE	0x0004000
672 #define	COF_BYIDH	0x0008000
673 #define	COF_FREE	0x0010000
674 #define	COF_LIST	0x0020000
675 #define	COF_EXPREL	0x0040000
676 #define	COF_HDR		0x0080000
677 #define	COF_VERBOSE	0x0100000
678 #define	COF_LONGLIST	0x0200000
679 #define	COF_THDR	0x0400000
680 #define	COF_LHDR	0x0800000
681 #define	COF_CHDR	0x1000000
682 #define	COF_PARAM	0x2000000
683 #define	COF_DECODE	0x4000000
684 
685 /* show real and normal, short and long, expired and unexpired. */
686 #define	COF_DEFAULT	(COF_REAL | COF_NORM | COF_LONG | COF_SHORT)
687 
688 /* private callout data for callback functions */
689 typedef struct callout_data {
690 	uint_t flags;		/* COF_* */
691 	cpu_t *cpu;		/* cpu pointer if given */
692 	int seqid;		/* cpu seqid, or -1 */
693 	hrtime_t time;		/* expiration time value */
694 	hrtime_t atime;		/* expiration before value */
695 	hrtime_t btime;		/* expiration after value */
696 	uintptr_t funcaddr;	/* function address or NULL */
697 	uintptr_t param;	/* parameter to function or NULL */
698 	hrtime_t now;		/* current system time */
699 	int nsec_per_tick;	/* for conversions */
700 	ulong_t ctbits;		/* for decoding xid */
701 	callout_table_t *co_table;	/* top of callout table array */
702 	int ndx;		/* table index. */
703 	int bucket;		/* which list/id bucket are we in */
704 	hrtime_t exp;		/* expire time */
705 	int list_flags;		/* copy of cl_flags */
706 } callout_data_t;
707 
708 /* this callback does the actual callback itself (finally). */
709 /*ARGSUSED*/
710 static int
711 callouts_cb(uintptr_t addr, const void *data, void *priv)
712 {
713 	callout_data_t *coargs = (callout_data_t *)priv;
714 	callout_t *co = (callout_t *)data;
715 	int tableid;
716 	callout_id_t coid;
717 
718 	if ((coargs == NULL) || (co == NULL)) {
719 		return (WALK_ERR);
720 	}
721 
722 	if ((coargs->flags & COF_FUNC) &&
723 	    (coargs->funcaddr != (uintptr_t)co->c_func)) {
724 		return (WALK_NEXT);
725 	}
726 	if ((coargs->flags & COF_PARAM) &&
727 	    (coargs->param != (uintptr_t)co->c_arg)) {
728 		return (WALK_NEXT);
729 	}
730 	if (!(coargs->flags & COF_LONG) && (co->c_xid & CALLOUT_LONGTERM)) {
731 		return (WALK_NEXT);
732 	}
733 	if (!(coargs->flags & COF_SHORT) && !(co->c_xid & CALLOUT_LONGTERM)) {
734 		return (WALK_NEXT);
735 	}
736 	if ((coargs->flags & COF_EXEC) && !(co->c_xid & CALLOUT_EXECUTING)) {
737 		return (WALK_NEXT);
738 	}
739 
740 	/* it is possible we don't have the exp time */
741 	if (coargs->flags & COF_BYIDH) {
742 		if (!(coargs->flags & COF_FREE)) {
743 			/* we have to fetch the expire time ourselves. */
744 			if (mdb_vread(&coargs->exp, sizeof (hrtime_t),
745 			    (uintptr_t)co->c_list + offsetof(callout_list_t,
746 			    cl_expiration)) == -1) {
747 				mdb_warn("failed to read expiration "
748 				    "time from %p", co->c_list);
749 				coargs->exp = 0;
750 			}
751 			/* and flags. */
752 			if (mdb_vread(&coargs->list_flags, sizeof (int),
753 			    (uintptr_t)co->c_list + offsetof(callout_list_t,
754 			    cl_flags)) == -1) {
755 				mdb_warn("failed to read list flags"
756 				    "from %p", co->c_list);
757 				coargs->list_flags = 0;
758 			}
759 		} else {
760 			/* free callouts can't use list pointer. */
761 			coargs->exp = 0;
762 			coargs->list_flags = 0;
763 		}
764 		if (coargs->exp != 0) {
765 			if ((coargs->flags & COF_TIME) &&
766 			    (coargs->exp != coargs->time)) {
767 				return (WALK_NEXT);
768 			}
769 			if ((coargs->flags & COF_BEFORE) &&
770 			    (coargs->exp > coargs->btime)) {
771 				return (WALK_NEXT);
772 			}
773 			if ((coargs->flags & COF_AFTER) &&
774 			    (coargs->exp < coargs->atime)) {
775 				return (WALK_NEXT);
776 			}
777 		}
778 		/* tricky part, since both HIRES and ABS can be set */
779 		if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) {
780 			/* both flags are set, only skip "regular" ones */
781 			if (! (coargs->list_flags &
782 			    (CALLOUT_FLAG_HRESTIME | CALLOUT_FLAG_ABSOLUTE))) {
783 				return (WALK_NEXT);
784 			}
785 		} else {
786 			/* individual flags, or no flags */
787 			if ((coargs->flags & COF_HIRES) &&
788 			    !(coargs->list_flags & CALLOUT_FLAG_HRESTIME)) {
789 				return (WALK_NEXT);
790 			}
791 			if ((coargs->flags & COF_ABS) &&
792 			    !(coargs->list_flags & CALLOUT_FLAG_ABSOLUTE)) {
793 				return (WALK_NEXT);
794 			}
795 		}
796 	}
797 
798 #define	callout_table_mask	((1 << coargs->ctbits) - 1)
799 	tableid = CALLOUT_ID_TO_TABLE(co->c_xid);
800 #undef	callout_table_mask
801 	coid = CO_PLAIN_ID(co->c_xid);
802 
803 	if ((coargs->flags & COF_CHDR) && !(coargs->flags & COF_ADDR)) {
804 		/*
805 		 * We need to print the headers. If walking by id, then
806 		 * the list header isn't printed, so we must include
807 		 * that info here.
808 		 */
809 		if (!(coargs->flags & COF_VERBOSE)) {
810 			mdb_printf("%<u>%3s %-1s %-14s %</u>",
811 			    "SEQ", "T", "EXP");
812 		} else if (coargs->flags & COF_BYIDH) {
813 			mdb_printf("%<u>%-14s %</u>", "EXP");
814 		}
815 		mdb_printf("%<u>%-4s %-?s %-20s%</u>",
816 		    "XHAL", "XID", "FUNC(ARG)");
817 		if (coargs->flags & COF_LONGLIST) {
818 			mdb_printf("%<u> %-?s %-?s %-?s %-?s%</u>",
819 			    "PREVID", "NEXTID", "PREVL", "NEXTL");
820 			mdb_printf("%<u> %-?s %-4s %-?s%</u>",
821 			    "DONE", "UTOS", "THREAD");
822 		}
823 		mdb_printf("\n");
824 		coargs->flags &= ~COF_CHDR;
825 		coargs->flags |= (COF_THDR | COF_LHDR);
826 	}
827 
828 	if (!(coargs->flags & COF_ADDR)) {
829 		int list_flags = coargs->list_flags;
830 		if (!(coargs->flags & COF_VERBOSE)) {
831 			mdb_printf("%-3d %1s %-14llx ",
832 			    TABLE_TO_SEQID(tableid),
833 			    co_typenames[tableid & CALLOUT_TYPE_MASK],
834 			    (coargs->flags & COF_EXPREL) ?
835 			    coargs->exp - coargs->now : coargs->exp);
836 		} else if (coargs->flags & COF_BYIDH) {
837 			mdb_printf("%-14x ",
838 			    (coargs->flags & COF_EXPREL) ?
839 			    coargs->exp - coargs->now : coargs->exp);
840 		}
841 		mdb_printf("%1s%1s%1s%1s %-?llx %a(%p)",
842 		    (co->c_xid & CALLOUT_EXECUTING) ? "X" : " ",
843 		    (list_flags & CALLOUT_FLAG_HRESTIME) ? "H" : " ",
844 		    (list_flags & CALLOUT_FLAG_ABSOLUTE) ? "A" : " ",
845 		    (co->c_xid & CALLOUT_LONGTERM) ? "L" : " ",
846 		    (long long)coid, co->c_func, co->c_arg);
847 		if (coargs->flags & COF_LONGLIST) {
848 			mdb_printf(" %-?p %-?p %-?p %-?p",
849 			    co->c_idprev, co->c_idnext, co->c_clprev,
850 			    co->c_clnext);
851 			mdb_printf(" %-?p %-4d %-0?p",
852 			    co->c_done, co->c_waiting, co->c_executor);
853 		}
854 	} else {
855 		/* address only */
856 		mdb_printf("%-0p", addr);
857 	}
858 	mdb_printf("\n");
859 	return (WALK_NEXT);
860 }
861 
862 /* this callback is for callout list handling. idhash is done by callout_t_cb */
863 /*ARGSUSED*/
864 static int
865 callout_list_cb(uintptr_t addr, const void *data, void *priv)
866 {
867 	callout_data_t *coargs = (callout_data_t *)priv;
868 	callout_list_t *cl = (callout_list_t *)data;
869 	callout_t *coptr;
870 
871 	if ((coargs == NULL) || (cl == NULL)) {
872 		return (WALK_ERR);
873 	}
874 
875 	coargs->exp = cl->cl_expiration;
876 	coargs->list_flags = cl->cl_flags;
877 
878 	if ((coargs->flags & COF_TIME) &&
879 	    (cl->cl_expiration != coargs->time)) {
880 		return (WALK_NEXT);
881 	}
882 	if ((coargs->flags & COF_BEFORE) &&
883 	    (cl->cl_expiration > coargs->btime)) {
884 		return (WALK_NEXT);
885 	}
886 	if ((coargs->flags & COF_AFTER) &&
887 	    (cl->cl_expiration < coargs->atime)) {
888 		return (WALK_NEXT);
889 	}
890 	if (!(coargs->flags & COF_EMPTY) &&
891 	    (cl->cl_callouts.ch_head == NULL)) {
892 		return (WALK_NEXT);
893 	}
894 	/* FOUR cases, each different, !A!B, !AB, A!B, AB */
895 	if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) {
896 		/* both flags are set, only skip "regular" ones */
897 		if (! (cl->cl_flags &
898 		    (CALLOUT_FLAG_HRESTIME | CALLOUT_FLAG_ABSOLUTE))) {
899 			return (WALK_NEXT);
900 		}
901 	} else {
902 		if ((coargs->flags & COF_HIRES) &&
903 		    !(cl->cl_flags & CALLOUT_FLAG_HRESTIME)) {
904 			return (WALK_NEXT);
905 		}
906 		if ((coargs->flags & COF_ABS) &&
907 		    !(cl->cl_flags & CALLOUT_FLAG_ABSOLUTE)) {
908 			return (WALK_NEXT);
909 		}
910 	}
911 
912 	if ((coargs->flags & COF_LHDR) && !(coargs->flags & COF_ADDR) &&
913 	    (coargs->flags & (COF_LIST | COF_VERBOSE))) {
914 		if (!(coargs->flags & COF_VERBOSE)) {
915 			/* don't be redundant again */
916 			mdb_printf("%<u>SEQ T %</u>");
917 		}
918 		mdb_printf("%<u>EXP            HA BUCKET "
919 		    "CALLOUTS         %</u>");
920 
921 		if (coargs->flags & COF_LONGLIST) {
922 			mdb_printf("%<u> %-?s %-?s%</u>",
923 			    "PREV", "NEXT");
924 		}
925 		mdb_printf("\n");
926 		coargs->flags &= ~COF_LHDR;
927 		coargs->flags |= (COF_THDR | COF_CHDR);
928 	}
929 	if (coargs->flags & (COF_LIST | COF_VERBOSE)) {
930 		if (!(coargs->flags & COF_ADDR)) {
931 			if (!(coargs->flags & COF_VERBOSE)) {
932 				mdb_printf("%3d %1s ",
933 				    TABLE_TO_SEQID(coargs->ndx),
934 				    co_typenames[coargs->ndx &
935 				    CALLOUT_TYPE_MASK]);
936 			}
937 
938 			mdb_printf("%-14llx %1s%1s %-6d %-0?p ",
939 			    (coargs->flags & COF_EXPREL) ?
940 			    coargs->exp - coargs->now : coargs->exp,
941 			    (coargs->list_flags & CALLOUT_FLAG_HRESTIME) ?
942 			    "H" : " ",
943 			    (coargs->list_flags & CALLOUT_FLAG_ABSOLUTE) ?
944 			    "A" : " ",
945 			    coargs->bucket, cl->cl_callouts.ch_head);
946 
947 			if (coargs->flags & COF_LONGLIST) {
948 				mdb_printf(" %-?p %-?p",
949 				    cl->cl_prev, cl->cl_next);
950 			}
951 		} else {
952 			/* address only */
953 			mdb_printf("%-0p", addr);
954 		}
955 		mdb_printf("\n");
956 		if (coargs->flags & COF_LIST) {
957 			return (WALK_NEXT);
958 		}
959 	}
960 	/* yet another layer as we walk the actual callouts via list. */
961 	if (cl->cl_callouts.ch_head == NULL) {
962 		return (WALK_NEXT);
963 	}
964 	/* free list structures do not have valid callouts off of them. */
965 	if (coargs->flags & COF_FREE) {
966 		return (WALK_NEXT);
967 	}
968 	coptr = (callout_t *)cl->cl_callouts.ch_head;
969 
970 	if (coargs->flags & COF_VERBOSE) {
971 		mdb_inc_indent(4);
972 	}
973 	/*
974 	 * walk callouts using yet another callback routine.
975 	 * we use callouts_bytime because id hash is handled via
976 	 * the callout_t_cb callback.
977 	 */
978 	if (mdb_pwalk("callouts_bytime", callouts_cb, coargs,
979 	    (uintptr_t)coptr) == -1) {
980 		mdb_warn("cannot walk callouts at %p", coptr);
981 		return (WALK_ERR);
982 	}
983 	if (coargs->flags & COF_VERBOSE) {
984 		mdb_dec_indent(4);
985 	}
986 
987 	return (WALK_NEXT);
988 }
989 
990 /* this callback handles the details of callout table walking. */
991 static int
992 callout_t_cb(uintptr_t addr, const void *data, void *priv)
993 {
994 	callout_data_t *coargs = (callout_data_t *)priv;
995 	cot_data_t *cotwd = (cot_data_t *)data;
996 	callout_table_t *ct = &(cotwd->ct);
997 	int index, seqid, cotype;
998 	int i;
999 	callout_list_t *clptr;
1000 	callout_t *coptr;
1001 
1002 	if ((coargs == NULL) || (ct == NULL) || (coargs->co_table == NULL)) {
1003 		return (WALK_ERR);
1004 	}
1005 
1006 	index =  ((char *)addr - (char *)coargs->co_table) /
1007 	    sizeof (callout_table_t);
1008 	cotype = index & CALLOUT_TYPE_MASK;
1009 	seqid = TABLE_TO_SEQID(index);
1010 
1011 	if ((coargs->flags & COF_SEQID) && (coargs->seqid != seqid)) {
1012 		return (WALK_NEXT);
1013 	}
1014 
1015 	if (!(coargs->flags & COF_REAL) && (cotype == CALLOUT_REALTIME)) {
1016 		return (WALK_NEXT);
1017 	}
1018 
1019 	if (!(coargs->flags & COF_NORM) && (cotype == CALLOUT_NORMAL)) {
1020 		return (WALK_NEXT);
1021 	}
1022 
1023 	if (!(coargs->flags & COF_EMPTY) && (
1024 	    (ct->ct_heap == NULL) || (ct->ct_cyclic == NULL))) {
1025 		return (WALK_NEXT);
1026 	}
1027 
1028 	if ((coargs->flags & COF_THDR) && !(coargs->flags & COF_ADDR) &&
1029 	    (coargs->flags & (COF_TABLE | COF_VERBOSE))) {
1030 		/* print table hdr */
1031 		mdb_printf("%<u>%-3s %-1s %-?s %-?s %-?s %-?s%</u>",
1032 		    "SEQ", "T", "FREE", "LFREE", "CYCLIC", "HEAP");
1033 		coargs->flags &= ~COF_THDR;
1034 		coargs->flags |= (COF_LHDR | COF_CHDR);
1035 		if (coargs->flags & COF_LONGLIST) {
1036 			/* more info! */
1037 			mdb_printf("%<u> %-T%-7s %-7s %-?s %-?s"
1038 			    " %-?s %-?s %-?s%</u>",
1039 			    "HEAPNUM", "HEAPMAX", "TASKQ", "EXPQ",
1040 			    "PEND", "FREE", "LOCK");
1041 		}
1042 		mdb_printf("\n");
1043 	}
1044 	if (coargs->flags & (COF_TABLE | COF_VERBOSE)) {
1045 		if (!(coargs->flags & COF_ADDR)) {
1046 			mdb_printf("%-3d %-1s %-0?p %-0?p %-0?p %-?p",
1047 			    seqid, co_typenames[cotype],
1048 			    ct->ct_free, ct->ct_lfree, ct->ct_cyclic,
1049 			    ct->ct_heap);
1050 			if (coargs->flags & COF_LONGLIST)  {
1051 				/* more info! */
1052 				mdb_printf(" %-7d %-7d %-?p %-?p"
1053 				    " %-?lld %-?lld %-?p",
1054 				    ct->ct_heap_num,  ct->ct_heap_max,
1055 				    ct->ct_taskq, ct->ct_expired.ch_head,
1056 				    cotwd->ct_timeouts_pending,
1057 				    cotwd->ct_allocations -
1058 				    cotwd->ct_timeouts_pending,
1059 				    ct->ct_mutex);
1060 			}
1061 		} else {
1062 			/* address only */
1063 			mdb_printf("%-0?p", addr);
1064 		}
1065 		mdb_printf("\n");
1066 		if (coargs->flags & COF_TABLE) {
1067 			return (WALK_NEXT);
1068 		}
1069 	}
1070 
1071 	coargs->ndx = index;
1072 	if (coargs->flags & COF_VERBOSE) {
1073 		mdb_inc_indent(4);
1074 	}
1075 	/* keep digging. */
1076 	if (!(coargs->flags & COF_BYIDH)) {
1077 		/* walk the list hash table */
1078 		if (coargs->flags & COF_FREE) {
1079 			clptr = ct->ct_lfree;
1080 			coargs->bucket = 0;
1081 			if (clptr == NULL) {
1082 				return (WALK_NEXT);
1083 			}
1084 			if (mdb_pwalk("callout_list", callout_list_cb, coargs,
1085 			    (uintptr_t)clptr) == -1) {
1086 				mdb_warn("cannot walk callout free list at %p",
1087 				    clptr);
1088 				return (WALK_ERR);
1089 			}
1090 		} else {
1091 			/* first print the expired list. */
1092 			clptr = (callout_list_t *)ct->ct_expired.ch_head;
1093 			if (clptr != NULL) {
1094 				coargs->bucket = -1;
1095 				if (mdb_pwalk("callout_list", callout_list_cb,
1096 				    coargs, (uintptr_t)clptr) == -1) {
1097 					mdb_warn("cannot walk callout_list"
1098 					    " at %p", clptr);
1099 					return (WALK_ERR);
1100 				}
1101 			}
1102 			for (i = 0; i < CALLOUT_BUCKETS; i++) {
1103 				if (ct->ct_clhash == NULL) {
1104 					/* nothing to do */
1105 					break;
1106 				}
1107 				if (cotwd->cot_clhash[i].ch_head == NULL) {
1108 					continue;
1109 				}
1110 				clptr = (callout_list_t *)
1111 				    cotwd->cot_clhash[i].ch_head;
1112 				coargs->bucket = i;
1113 				/* walk list with callback routine. */
1114 				if (mdb_pwalk("callout_list", callout_list_cb,
1115 				    coargs, (uintptr_t)clptr) == -1) {
1116 					mdb_warn("cannot walk callout_list"
1117 					    " at %p", clptr);
1118 					return (WALK_ERR);
1119 				}
1120 			}
1121 		}
1122 	} else {
1123 		/* walk the id hash table. */
1124 		if (coargs->flags & COF_FREE) {
1125 			coptr = ct->ct_free;
1126 			coargs->bucket = 0;
1127 			if (coptr == NULL) {
1128 				return (WALK_NEXT);
1129 			}
1130 			if (mdb_pwalk("callouts_byid", callouts_cb, coargs,
1131 			    (uintptr_t)coptr) == -1) {
1132 				mdb_warn("cannot walk callout id free list"
1133 				    " at %p", coptr);
1134 				return (WALK_ERR);
1135 			}
1136 		} else {
1137 			for (i = 0; i < CALLOUT_BUCKETS; i++) {
1138 				if (ct->ct_idhash == NULL) {
1139 					break;
1140 				}
1141 				coptr = (callout_t *)
1142 				    cotwd->cot_idhash[i].ch_head;
1143 				if (coptr == NULL) {
1144 					continue;
1145 				}
1146 				coargs->bucket = i;
1147 
1148 				/*
1149 				 * walk callouts directly by id. For id
1150 				 * chain, the callout list is just a header,
1151 				 * so there's no need to walk it.
1152 				 */
1153 				if (mdb_pwalk("callouts_byid", callouts_cb,
1154 				    coargs, (uintptr_t)coptr) == -1) {
1155 					mdb_warn("cannot walk callouts at %p",
1156 					    coptr);
1157 					return (WALK_ERR);
1158 				}
1159 			}
1160 		}
1161 	}
1162 	if (coargs->flags & COF_VERBOSE) {
1163 		mdb_dec_indent(4);
1164 	}
1165 	return (WALK_NEXT);
1166 }
1167 
1168 /*
1169  * initialize some common info for both callout dcmds.
1170  */
1171 int
1172 callout_common_init(callout_data_t *coargs)
1173 {
1174 	/* we need a couple of things */
1175 	if (mdb_readvar(&(coargs->co_table), "callout_table") == -1) {
1176 		mdb_warn("failed to read 'callout_table'");
1177 		return (DCMD_ERR);
1178 	}
1179 	/* need to get now in nsecs. Approximate with hrtime vars */
1180 	if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), "hrtime_last") !=
1181 	    sizeof (hrtime_t)) {
1182 		if (mdb_readsym(&(coargs->now), sizeof (hrtime_t),
1183 		    "hrtime_base") != sizeof (hrtime_t)) {
1184 			mdb_warn("Could not determine current system time");
1185 			return (DCMD_ERR);
1186 		}
1187 	}
1188 
1189 	if (mdb_readvar(&(coargs->ctbits), "callout_table_bits") == -1) {
1190 		mdb_warn("failed to read 'callout_table_bits'");
1191 		return (DCMD_ERR);
1192 	}
1193 	if (mdb_readvar(&(coargs->nsec_per_tick), "nsec_per_tick") == -1) {
1194 		mdb_warn("failed to read 'nsec_per_tick'");
1195 		return (DCMD_ERR);
1196 	}
1197 	return (DCMD_OK);
1198 }
1199 
1200 /*
1201  * dcmd to print callouts.  Optional addr limits to specific table.
1202  * Parses lots of options that get passed to callbacks for walkers.
1203  * Has it's own help function.
1204  */
1205 /*ARGSUSED*/
1206 int
1207 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1208 {
1209 	callout_data_t coargs;
1210 	/* getopts doesn't help much with stuff like this */
1211 	boolean_t Sflag, Cflag, tflag, aflag, bflag, dflag, kflag;
1212 	char *funcname = NULL;
1213 	char *paramstr = NULL;
1214 	uintptr_t Stmp, Ctmp;	/* for getopt. */
1215 	int retval;
1216 
1217 	coargs.flags = COF_DEFAULT;
1218 	Sflag = Cflag = tflag = bflag = aflag = dflag = kflag = FALSE;
1219 	coargs.seqid = -1;
1220 
1221 	if (mdb_getopts(argc, argv,
1222 	    'r', MDB_OPT_CLRBITS, COF_NORM, &coargs.flags,
1223 	    'n', MDB_OPT_CLRBITS, COF_REAL, &coargs.flags,
1224 	    'l', MDB_OPT_CLRBITS, COF_SHORT, &coargs.flags,
1225 	    's', MDB_OPT_CLRBITS, COF_LONG, &coargs.flags,
1226 	    'x', MDB_OPT_SETBITS, COF_EXEC, &coargs.flags,
1227 	    'h', MDB_OPT_SETBITS, COF_HIRES, &coargs.flags,
1228 	    'B', MDB_OPT_SETBITS, COF_ABS, &coargs.flags,
1229 	    'E', MDB_OPT_SETBITS, COF_EMPTY, &coargs.flags,
1230 	    'd', MDB_OPT_SETBITS, 1, &dflag,
1231 	    'C', MDB_OPT_UINTPTR_SET, &Cflag, &Ctmp,
1232 	    'S', MDB_OPT_UINTPTR_SET, &Sflag, &Stmp,
1233 	    't', MDB_OPT_UINTPTR_SET, &tflag, (uintptr_t *)&coargs.time,
1234 	    'a', MDB_OPT_UINTPTR_SET, &aflag, (uintptr_t *)&coargs.atime,
1235 	    'b', MDB_OPT_UINTPTR_SET, &bflag, (uintptr_t *)&coargs.btime,
1236 	    'k', MDB_OPT_SETBITS, 1, &kflag,
1237 	    'f', MDB_OPT_STR, &funcname,
1238 	    'p', MDB_OPT_STR, &paramstr,
1239 	    'T', MDB_OPT_SETBITS, COF_TABLE, &coargs.flags,
1240 	    'D', MDB_OPT_SETBITS, COF_EXPREL, &coargs.flags,
1241 	    'L', MDB_OPT_SETBITS, COF_LIST, &coargs.flags,
1242 	    'V', MDB_OPT_SETBITS, COF_VERBOSE, &coargs.flags,
1243 	    'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags,
1244 	    'i', MDB_OPT_SETBITS, COF_BYIDH, &coargs.flags,
1245 	    'F', MDB_OPT_SETBITS, COF_FREE, &coargs.flags,
1246 	    'A', MDB_OPT_SETBITS, COF_ADDR, &coargs.flags,
1247 	    NULL) != argc) {
1248 		return (DCMD_USAGE);
1249 	}
1250 
1251 	/* initialize from kernel variables */
1252 	if ((retval = callout_common_init(&coargs)) != DCMD_OK) {
1253 		return (retval);
1254 	}
1255 
1256 	/* do some option post-processing */
1257 	if (kflag) {
1258 		coargs.time *= coargs.nsec_per_tick;
1259 		coargs.atime *= coargs.nsec_per_tick;
1260 		coargs.btime *= coargs.nsec_per_tick;
1261 	}
1262 
1263 	if (dflag) {
1264 		coargs.time += coargs.now;
1265 		coargs.atime += coargs.now;
1266 		coargs.btime += coargs.now;
1267 	}
1268 	if (Sflag) {
1269 		if (flags & DCMD_ADDRSPEC) {
1270 			mdb_printf("-S option conflicts with explicit"
1271 			    " address\n");
1272 			return (DCMD_USAGE);
1273 		}
1274 		coargs.flags |= COF_SEQID;
1275 		coargs.seqid = (int)Stmp;
1276 	}
1277 	if (Cflag) {
1278 		if (flags & DCMD_ADDRSPEC) {
1279 			mdb_printf("-C option conflicts with explicit"
1280 			    " address\n");
1281 			return (DCMD_USAGE);
1282 		}
1283 		if (coargs.flags & COF_SEQID) {
1284 			mdb_printf("-C and -S are mutually exclusive\n");
1285 			return (DCMD_USAGE);
1286 		}
1287 		coargs.cpu = (cpu_t *)Ctmp;
1288 		if (mdb_vread(&coargs.seqid, sizeof (processorid_t),
1289 		    (uintptr_t)&(coargs.cpu->cpu_seqid)) == -1) {
1290 			mdb_warn("failed to read cpu_t at %p", Ctmp);
1291 			return (DCMD_ERR);
1292 		}
1293 		coargs.flags |= COF_SEQID;
1294 	}
1295 	/* avoid null outputs. */
1296 	if (!(coargs.flags & (COF_REAL | COF_NORM))) {
1297 		coargs.flags |= COF_REAL | COF_NORM;
1298 	}
1299 	if (!(coargs.flags & (COF_LONG | COF_SHORT))) {
1300 		coargs.flags |= COF_LONG | COF_SHORT;
1301 	}
1302 	if (tflag) {
1303 		if (aflag || bflag) {
1304 			mdb_printf("-t and -a|b are mutually exclusive\n");
1305 			return (DCMD_USAGE);
1306 		}
1307 		coargs.flags |= COF_TIME;
1308 	}
1309 	if (aflag) {
1310 		coargs.flags |= COF_AFTER;
1311 	}
1312 	if (bflag) {
1313 		coargs.flags |= COF_BEFORE;
1314 	}
1315 	if ((aflag && bflag) && (coargs.btime <= coargs.atime)) {
1316 		mdb_printf("value for -a must be earlier than the value"
1317 		    " for -b.\n");
1318 		return (DCMD_USAGE);
1319 	}
1320 
1321 	if (funcname != NULL) {
1322 		GElf_Sym sym;
1323 
1324 		if (mdb_lookup_by_name(funcname, &sym) != 0) {
1325 			coargs.funcaddr = mdb_strtoull(funcname);
1326 		} else {
1327 			coargs.funcaddr = sym.st_value;
1328 		}
1329 		coargs.flags |= COF_FUNC;
1330 	}
1331 
1332 	if (paramstr != NULL) {
1333 		GElf_Sym sym;
1334 
1335 		if (mdb_lookup_by_name(paramstr, &sym) != 0) {
1336 			coargs.param = mdb_strtoull(paramstr);
1337 		} else {
1338 			coargs.param = sym.st_value;
1339 		}
1340 		coargs.flags |= COF_PARAM;
1341 	}
1342 
1343 	if (!(flags & DCMD_ADDRSPEC)) {
1344 		/* don't pass "dot" if no addr. */
1345 		addr = NULL;
1346 	}
1347 	if (addr != NULL) {
1348 		/*
1349 		 * a callout table was specified. Ignore -r|n option
1350 		 * to avoid null output.
1351 		 */
1352 		coargs.flags |= (COF_REAL | COF_NORM);
1353 	}
1354 
1355 	if (DCMD_HDRSPEC(flags) || (coargs.flags & COF_VERBOSE)) {
1356 		coargs.flags |= COF_THDR | COF_LHDR | COF_CHDR;
1357 	}
1358 	if (coargs.flags & COF_FREE) {
1359 		coargs.flags |= COF_EMPTY;
1360 		/* -F = free callouts, -FL = free lists */
1361 		if (!(coargs.flags & COF_LIST)) {
1362 			coargs.flags |= COF_BYIDH;
1363 		}
1364 	}
1365 
1366 	/* walk table, using specialized callback routine. */
1367 	if (mdb_pwalk("callout_table", callout_t_cb, &coargs, addr) == -1) {
1368 		mdb_warn("cannot walk callout_table");
1369 		return (DCMD_ERR);
1370 	}
1371 	return (DCMD_OK);
1372 }
1373 
1374 
1375 /*
1376  * Given an extended callout id, dump its information.
1377  */
1378 /*ARGSUSED*/
1379 int
1380 calloutid(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1381 {
1382 	callout_data_t coargs;
1383 	callout_table_t *ctptr;
1384 	callout_table_t ct;
1385 	callout_id_t coid;
1386 	callout_t *coptr;
1387 	int tableid;
1388 	callout_id_t xid;
1389 	ulong_t idhash;
1390 	int i, retval;
1391 	const mdb_arg_t *arg;
1392 	size_t size;
1393 	callout_hash_t cot_idhash[CALLOUT_BUCKETS];
1394 
1395 	coargs.flags = COF_DEFAULT | COF_BYIDH;
1396 	i = mdb_getopts(argc, argv,
1397 	    'd', MDB_OPT_SETBITS, COF_DECODE, &coargs.flags,
1398 	    'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags,
1399 	    NULL);
1400 	argc -= i;
1401 	argv += i;
1402 
1403 	if (argc != 1) {
1404 		return (DCMD_USAGE);
1405 	}
1406 	arg = &argv[0];
1407 
1408 	if (arg->a_type == MDB_TYPE_IMMEDIATE) {
1409 		xid = arg->a_un.a_val;
1410 	} else {
1411 		xid = (callout_id_t)mdb_strtoull(arg->a_un.a_str);
1412 	}
1413 
1414 	if (DCMD_HDRSPEC(flags)) {
1415 		coargs.flags |= COF_CHDR;
1416 	}
1417 
1418 
1419 	/* initialize from kernel variables */
1420 	if ((retval = callout_common_init(&coargs)) != DCMD_OK) {
1421 		return (retval);
1422 	}
1423 
1424 	/* we must massage the environment so that the macros will play nice */
1425 #define	callout_table_mask	((1 << coargs.ctbits) - 1)
1426 #define	callout_table_bits	coargs.ctbits
1427 #define	nsec_per_tick		coargs.nsec_per_tick
1428 	tableid = CALLOUT_ID_TO_TABLE(xid);
1429 	idhash = CALLOUT_IDHASH(xid);
1430 #undef	callouts_table_bits
1431 #undef	callout_table_mask
1432 #undef	nsec_per_tick
1433 	coid = CO_PLAIN_ID(xid);
1434 
1435 	if (flags & DCMD_ADDRSPEC) {
1436 		mdb_printf("calloutid does not accept explicit address.\n");
1437 		return (DCMD_USAGE);
1438 	}
1439 
1440 	if (coargs.flags & COF_DECODE) {
1441 		if (DCMD_HDRSPEC(flags)) {
1442 			mdb_printf("%<u>%3s %1s %2s %-?s %-6s %</u>\n",
1443 			    "SEQ", "T", "XL", "XID", "IDHASH");
1444 		}
1445 		mdb_printf("%-3d %1s %1s%1s %-?llx %-6d\n",
1446 		    TABLE_TO_SEQID(tableid),
1447 		    co_typenames[tableid & CALLOUT_TYPE_MASK],
1448 		    (xid & CALLOUT_EXECUTING) ? "X" : " ",
1449 		    (xid & CALLOUT_LONGTERM) ? "L" : " ",
1450 		    (long long)coid, idhash);
1451 		return (DCMD_OK);
1452 	}
1453 
1454 	/* get our table. Note this relies on the types being correct */
1455 	ctptr = coargs.co_table + tableid;
1456 	if (mdb_vread(&ct, sizeof (callout_table_t), (uintptr_t)ctptr) == -1) {
1457 		mdb_warn("failed to read callout_table at %p", ctptr);
1458 		return (DCMD_ERR);
1459 	}
1460 	size = sizeof (callout_hash_t) * CALLOUT_BUCKETS;
1461 	if (ct.ct_idhash != NULL) {
1462 		if (mdb_vread(&(cot_idhash), size,
1463 		    (uintptr_t)ct.ct_idhash) == -1) {
1464 			mdb_warn("failed to read id_hash at %p",
1465 			    ct.ct_idhash);
1466 			return (WALK_ERR);
1467 		}
1468 	}
1469 
1470 	/* callout at beginning of hash chain */
1471 	if (ct.ct_idhash == NULL) {
1472 		mdb_printf("id hash chain for this xid is empty\n");
1473 		return (DCMD_ERR);
1474 	}
1475 	coptr = (callout_t *)cot_idhash[idhash].ch_head;
1476 	if (coptr == NULL) {
1477 		mdb_printf("id hash chain for this xid is empty\n");
1478 		return (DCMD_ERR);
1479 	}
1480 
1481 	coargs.ndx = tableid;
1482 	coargs.bucket = idhash;
1483 
1484 	/* use the walker, luke */
1485 	if (mdb_pwalk("callouts_byid", callouts_cb, &coargs,
1486 	    (uintptr_t)coptr) == -1) {
1487 		mdb_warn("cannot walk callouts at %p", coptr);
1488 		return (WALK_ERR);
1489 	}
1490 
1491 	return (DCMD_OK);
1492 }
1493 
1494 void
1495 callout_help(void)
1496 {
1497 	mdb_printf("callout: display callouts.\n"
1498 	    "Given a callout table address, display callouts from table.\n"
1499 	    "Without an address, display callouts from all tables.\n"
1500 	    "options:\n"
1501 	    " -r|n : limit display to (r)ealtime or (n)ormal type callouts\n"
1502 	    " -s|l : limit display to (s)hort-term ids or (l)ong-term ids\n"
1503 	    " -x : limit display to callouts which are executing\n"
1504 	    " -h : limit display to callouts based on hrestime\n"
1505 	    " -B : limit display to callouts based on absolute time\n"
1506 	    " -t|a|b nsec: limit display to callouts that expire a(t) time,"
1507 	    " (a)fter time,\n     or (b)efore time. Use -a and -b together "
1508 	    " to specify a range.\n     For \"now\", use -d[t|a|b] 0.\n"
1509 	    " -d : interpret time option to -t|a|b as delta from current time\n"
1510 	    " -k : use ticks instead of nanoseconds as arguments to"
1511 	    " -t|a|b. Note that\n     ticks are less accurate and may not"
1512 	    " match other tick times (ie: lbolt).\n"
1513 	    " -D : display exiration time as delta from current time\n"
1514 	    " -S seqid : limit display to callouts for this cpu sequence id\n"
1515 	    " -C addr :  limit display to callouts for this cpu pointer\n"
1516 	    " -f name|addr : limit display to callouts with this function\n"
1517 	    " -p name|addr : limit display to callouts functions with this"
1518 	    " parameter\n"
1519 	    " -T : display the callout table itself, instead of callouts\n"
1520 	    " -L : display callout lists instead of callouts\n"
1521 	    " -E : with -T or L, display empty data structures.\n"
1522 	    " -i : traverse callouts by id hash instead of list hash\n"
1523 	    " -F : walk free callout list (free list with -i) instead\n"
1524 	    " -v : display more info for each item\n"
1525 	    " -V : show details of each level of info as it is traversed\n"
1526 	    " -A : show only addresses. Useful for pipelines.\n");
1527 }
1528 
1529 void
1530 calloutid_help(void)
1531 {
1532 	mdb_printf("calloutid: display callout by id.\n"
1533 	    "Given an extended callout id, display the callout infomation.\n"
1534 	    "options:\n"
1535 	    " -d : do not dereference callout, just decode the id.\n"
1536 	    " -v : verbose display more info about the callout\n");
1537 }
1538 
1539 /*ARGSUSED*/
1540 int
1541 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1542 {
1543 	long num_classes, i;
1544 	sclass_t *class_tbl;
1545 	GElf_Sym g_sclass;
1546 	char class_name[PC_CLNMSZ];
1547 	size_t tbl_size;
1548 
1549 	if (mdb_lookup_by_name("sclass", &g_sclass) == -1) {
1550 		mdb_warn("failed to find symbol sclass\n");
1551 		return (DCMD_ERR);
1552 	}
1553 
1554 	tbl_size = (size_t)g_sclass.st_size;
1555 	num_classes = tbl_size / (sizeof (sclass_t));
1556 	class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC);
1557 
1558 	if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) {
1559 		mdb_warn("failed to read sclass");
1560 		return (DCMD_ERR);
1561 	}
1562 
1563 	mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME",
1564 	    "INIT FCN", "CLASS FCN");
1565 
1566 	for (i = 0; i < num_classes; i++) {
1567 		if (mdb_vread(class_name, sizeof (class_name),
1568 		    (uintptr_t)class_tbl[i].cl_name) == -1)
1569 			(void) strcpy(class_name, "???");
1570 
1571 		mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name,
1572 		    class_tbl[i].cl_init, class_tbl[i].cl_funcs);
1573 	}
1574 
1575 	return (DCMD_OK);
1576 }
1577 
1578 #define	FSNAMELEN	32	/* Max len of FS name we read from vnodeops */
1579 
1580 int
1581 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1582 {
1583 	uintptr_t rootdir;
1584 	vnode_t vn;
1585 	char buf[MAXPATHLEN];
1586 
1587 	uint_t opt_F = FALSE;
1588 
1589 	if (mdb_getopts(argc, argv,
1590 	    'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc)
1591 		return (DCMD_USAGE);
1592 
1593 	if (!(flags & DCMD_ADDRSPEC)) {
1594 		mdb_warn("expected explicit vnode_t address before ::\n");
1595 		return (DCMD_USAGE);
1596 	}
1597 
1598 	if (mdb_readvar(&rootdir, "rootdir") == -1) {
1599 		mdb_warn("failed to read rootdir");
1600 		return (DCMD_ERR);
1601 	}
1602 
1603 	if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1)
1604 		return (DCMD_ERR);
1605 
1606 	if (*buf == '\0') {
1607 		mdb_printf("??\n");
1608 		return (DCMD_OK);
1609 	}
1610 
1611 	mdb_printf("%s", buf);
1612 	if (opt_F && buf[strlen(buf)-1] != '/' &&
1613 	    mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn))
1614 		mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0));
1615 	mdb_printf("\n");
1616 
1617 	return (DCMD_OK);
1618 }
1619 
1620 int
1621 ld_walk_init(mdb_walk_state_t *wsp)
1622 {
1623 	wsp->walk_data = (void *)wsp->walk_addr;
1624 	return (WALK_NEXT);
1625 }
1626 
1627 int
1628 ld_walk_step(mdb_walk_state_t *wsp)
1629 {
1630 	int status;
1631 	lock_descriptor_t ld;
1632 
1633 	if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) {
1634 		mdb_warn("couldn't read lock_descriptor_t at %p\n",
1635 		    wsp->walk_addr);
1636 		return (WALK_ERR);
1637 	}
1638 
1639 	status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata);
1640 	if (status == WALK_ERR)
1641 		return (WALK_ERR);
1642 
1643 	wsp->walk_addr = (uintptr_t)ld.l_next;
1644 	if (wsp->walk_addr == (uintptr_t)wsp->walk_data)
1645 		return (WALK_DONE);
1646 
1647 	return (status);
1648 }
1649 
1650 int
1651 lg_walk_init(mdb_walk_state_t *wsp)
1652 {
1653 	GElf_Sym sym;
1654 
1655 	if (mdb_lookup_by_name("lock_graph", &sym) == -1) {
1656 		mdb_warn("failed to find symbol 'lock_graph'\n");
1657 		return (WALK_ERR);
1658 	}
1659 
1660 	wsp->walk_addr = (uintptr_t)sym.st_value;
1661 	wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size);
1662 
1663 	return (WALK_NEXT);
1664 }
1665 
1666 typedef struct lg_walk_data {
1667 	uintptr_t startaddr;
1668 	mdb_walk_cb_t callback;
1669 	void *data;
1670 } lg_walk_data_t;
1671 
1672 /*
1673  * We can't use ::walk lock_descriptor directly, because the head of each graph
1674  * is really a dummy lock.  Rather than trying to dynamically determine if this
1675  * is a dummy node or not, we just filter out the initial element of the
1676  * list.
1677  */
1678 static int
1679 lg_walk_cb(uintptr_t addr, const void *data, void *priv)
1680 {
1681 	lg_walk_data_t *lw = priv;
1682 
1683 	if (addr != lw->startaddr)
1684 		return (lw->callback(addr, data, lw->data));
1685 
1686 	return (WALK_NEXT);
1687 }
1688 
1689 int
1690 lg_walk_step(mdb_walk_state_t *wsp)
1691 {
1692 	graph_t *graph;
1693 	lg_walk_data_t lw;
1694 
1695 	if (wsp->walk_addr >= (uintptr_t)wsp->walk_data)
1696 		return (WALK_DONE);
1697 
1698 	if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) {
1699 		mdb_warn("failed to read graph_t at %p", wsp->walk_addr);
1700 		return (WALK_ERR);
1701 	}
1702 
1703 	wsp->walk_addr += sizeof (graph);
1704 
1705 	if (graph == NULL)
1706 		return (WALK_NEXT);
1707 
1708 	lw.callback = wsp->walk_callback;
1709 	lw.data = wsp->walk_cbdata;
1710 
1711 	lw.startaddr = (uintptr_t)&(graph->active_locks);
1712 	if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
1713 		mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
1714 		return (WALK_ERR);
1715 	}
1716 
1717 	lw.startaddr = (uintptr_t)&(graph->sleeping_locks);
1718 	if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
1719 		mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
1720 		return (WALK_ERR);
1721 	}
1722 
1723 	return (WALK_NEXT);
1724 }
1725 
1726 /*
1727  * The space available for the path corresponding to the locked vnode depends
1728  * on whether we are printing 32- or 64-bit addresses.
1729  */
1730 #ifdef _LP64
1731 #define	LM_VNPATHLEN	20
1732 #else
1733 #define	LM_VNPATHLEN	30
1734 #endif
1735 
1736 /*ARGSUSED*/
1737 static int
1738 lminfo_cb(uintptr_t addr, const void *data, void *priv)
1739 {
1740 	const lock_descriptor_t *ld = data;
1741 	char buf[LM_VNPATHLEN];
1742 	proc_t p;
1743 
1744 	mdb_printf("%-?p %2s %04x %6d %-16s %-?p ",
1745 	    addr, ld->l_type == F_RDLCK ? "RD" :
1746 	    ld->l_type == F_WRLCK ? "WR" : "??",
1747 	    ld->l_state, ld->l_flock.l_pid,
1748 	    ld->l_flock.l_pid == 0 ? "<kernel>" :
1749 	    mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ?
1750 	    "<defunct>" : p.p_user.u_comm,
1751 	    ld->l_vnode);
1752 
1753 	mdb_vnode2path((uintptr_t)ld->l_vnode, buf,
1754 	    sizeof (buf));
1755 	mdb_printf("%s\n", buf);
1756 
1757 	return (WALK_NEXT);
1758 }
1759 
1760 /*ARGSUSED*/
1761 int
1762 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1763 {
1764 	if (DCMD_HDRSPEC(flags))
1765 		mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n",
1766 		    "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH");
1767 
1768 	return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL));
1769 }
1770 
1771 /*ARGSUSED*/
1772 int
1773 seg(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1774 {
1775 	struct seg s;
1776 
1777 	if (argc != 0)
1778 		return (DCMD_USAGE);
1779 
1780 	if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) {
1781 		mdb_printf("%<u>%?s %?s %?s %?s %s%</u>\n",
1782 		    "SEG", "BASE", "SIZE", "DATA", "OPS");
1783 	}
1784 
1785 	if (mdb_vread(&s, sizeof (s), addr) == -1) {
1786 		mdb_warn("failed to read seg at %p", addr);
1787 		return (DCMD_ERR);
1788 	}
1789 
1790 	mdb_printf("%?p %?p %?lx %?p %a\n",
1791 	    addr, s.s_base, s.s_size, s.s_data, s.s_ops);
1792 
1793 	return (DCMD_OK);
1794 }
1795 
1796 /*ARGSUSED*/
1797 static int
1798 pmap_walk_anon(uintptr_t addr, const struct anon *anon, int *nres)
1799 {
1800 	uintptr_t pp =
1801 	    mdb_vnode2page((uintptr_t)anon->an_vp, (uintptr_t)anon->an_off);
1802 
1803 	if (pp != NULL)
1804 		(*nres)++;
1805 
1806 	return (WALK_NEXT);
1807 }
1808 
1809 static int
1810 pmap_walk_seg(uintptr_t addr, const struct seg *seg, uintptr_t segvn)
1811 {
1812 
1813 	mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024);
1814 
1815 	if (segvn == (uintptr_t)seg->s_ops) {
1816 		struct segvn_data svn;
1817 		int nres = 0;
1818 
1819 		(void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data);
1820 
1821 		if (svn.amp == NULL) {
1822 			mdb_printf(" %8s", "");
1823 			goto drive_on;
1824 		}
1825 
1826 		/*
1827 		 * We've got an amp for this segment; walk through
1828 		 * the amp, and determine mappings.
1829 		 */
1830 		if (mdb_pwalk("anon", (mdb_walk_cb_t)pmap_walk_anon,
1831 		    &nres, (uintptr_t)svn.amp) == -1)
1832 			mdb_warn("failed to walk anon (amp=%p)", svn.amp);
1833 
1834 		mdb_printf(" %7dk", (nres * PAGESIZE) / 1024);
1835 drive_on:
1836 
1837 		if (svn.vp != NULL) {
1838 			char buf[29];
1839 
1840 			mdb_vnode2path((uintptr_t)svn.vp, buf, sizeof (buf));
1841 			mdb_printf(" %s", buf);
1842 		} else
1843 			mdb_printf(" [ anon ]");
1844 	}
1845 
1846 	mdb_printf("\n");
1847 	return (WALK_NEXT);
1848 }
1849 
1850 static int
1851 pmap_walk_seg_quick(uintptr_t addr, const struct seg *seg, uintptr_t segvn)
1852 {
1853 	mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024);
1854 
1855 	if (segvn == (uintptr_t)seg->s_ops) {
1856 		struct segvn_data svn;
1857 
1858 		(void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data);
1859 
1860 		if (svn.vp != NULL) {
1861 			mdb_printf(" %0?p", svn.vp);
1862 		} else {
1863 			mdb_printf(" [ anon ]");
1864 		}
1865 	}
1866 
1867 	mdb_printf("\n");
1868 	return (WALK_NEXT);
1869 }
1870 
1871 /*ARGSUSED*/
1872 int
1873 pmap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1874 {
1875 	uintptr_t segvn;
1876 	proc_t proc;
1877 	uint_t quick = FALSE;
1878 	mdb_walk_cb_t cb = (mdb_walk_cb_t)pmap_walk_seg;
1879 
1880 	GElf_Sym sym;
1881 
1882 	if (!(flags & DCMD_ADDRSPEC))
1883 		return (DCMD_USAGE);
1884 
1885 	if (mdb_getopts(argc, argv,
1886 	    'q', MDB_OPT_SETBITS, TRUE, &quick, NULL) != argc)
1887 		return (DCMD_USAGE);
1888 
1889 	if (mdb_vread(&proc, sizeof (proc), addr) == -1) {
1890 		mdb_warn("failed to read proc at %p", addr);
1891 		return (DCMD_ERR);
1892 	}
1893 
1894 	if (mdb_lookup_by_name("segvn_ops", &sym) == 0)
1895 		segvn = (uintptr_t)sym.st_value;
1896 	else
1897 		segvn = NULL;
1898 
1899 	mdb_printf("%?s %?s %8s ", "SEG", "BASE", "SIZE");
1900 
1901 	if (quick) {
1902 		mdb_printf("VNODE\n");
1903 		cb = (mdb_walk_cb_t)pmap_walk_seg_quick;
1904 	} else {
1905 		mdb_printf("%8s %s\n", "RES", "PATH");
1906 	}
1907 
1908 	if (mdb_pwalk("seg", cb, (void *)segvn, (uintptr_t)proc.p_as) == -1) {
1909 		mdb_warn("failed to walk segments of as %p", proc.p_as);
1910 		return (DCMD_ERR);
1911 	}
1912 
1913 	return (DCMD_OK);
1914 }
1915 
1916 typedef struct anon_walk_data {
1917 	uintptr_t *aw_levone;
1918 	uintptr_t *aw_levtwo;
1919 	int aw_nlevone;
1920 	int aw_levone_ndx;
1921 	int aw_levtwo_ndx;
1922 	struct anon_map aw_amp;
1923 	struct anon_hdr aw_ahp;
1924 } anon_walk_data_t;
1925 
1926 int
1927 anon_walk_init(mdb_walk_state_t *wsp)
1928 {
1929 	anon_walk_data_t *aw;
1930 
1931 	if (wsp->walk_addr == NULL) {
1932 		mdb_warn("anon walk doesn't support global walks\n");
1933 		return (WALK_ERR);
1934 	}
1935 
1936 	aw = mdb_alloc(sizeof (anon_walk_data_t), UM_SLEEP);
1937 
1938 	if (mdb_vread(&aw->aw_amp, sizeof (aw->aw_amp), wsp->walk_addr) == -1) {
1939 		mdb_warn("failed to read anon map at %p", wsp->walk_addr);
1940 		mdb_free(aw, sizeof (anon_walk_data_t));
1941 		return (WALK_ERR);
1942 	}
1943 
1944 	if (mdb_vread(&aw->aw_ahp, sizeof (aw->aw_ahp),
1945 	    (uintptr_t)(aw->aw_amp.ahp)) == -1) {
1946 		mdb_warn("failed to read anon hdr ptr at %p", aw->aw_amp.ahp);
1947 		mdb_free(aw, sizeof (anon_walk_data_t));
1948 		return (WALK_ERR);
1949 	}
1950 
1951 	if (aw->aw_ahp.size <= ANON_CHUNK_SIZE ||
1952 	    (aw->aw_ahp.flags & ANON_ALLOC_FORCE)) {
1953 		aw->aw_nlevone = aw->aw_ahp.size;
1954 		aw->aw_levtwo = NULL;
1955 	} else {
1956 		aw->aw_nlevone =
1957 		    (aw->aw_ahp.size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT;
1958 		aw->aw_levtwo =
1959 		    mdb_zalloc(ANON_CHUNK_SIZE * sizeof (uintptr_t), UM_SLEEP);
1960 	}
1961 
1962 	aw->aw_levone =
1963 	    mdb_alloc(aw->aw_nlevone * sizeof (uintptr_t), UM_SLEEP);
1964 
1965 	aw->aw_levone_ndx = 0;
1966 	aw->aw_levtwo_ndx = 0;
1967 
1968 	mdb_vread(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t),
1969 	    (uintptr_t)aw->aw_ahp.array_chunk);
1970 
1971 	if (aw->aw_levtwo != NULL) {
1972 		while (aw->aw_levone[aw->aw_levone_ndx] == NULL) {
1973 			aw->aw_levone_ndx++;
1974 			if (aw->aw_levone_ndx == aw->aw_nlevone) {
1975 				mdb_warn("corrupt anon; couldn't"
1976 				    "find ptr to lev two map");
1977 				goto out;
1978 			}
1979 		}
1980 
1981 		mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t),
1982 		    aw->aw_levone[aw->aw_levone_ndx]);
1983 	}
1984 
1985 out:
1986 	wsp->walk_data = aw;
1987 	return (0);
1988 }
1989 
1990 int
1991 anon_walk_step(mdb_walk_state_t *wsp)
1992 {
1993 	int status;
1994 	anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data;
1995 	struct anon anon;
1996 	uintptr_t anonptr;
1997 
1998 again:
1999 	/*
2000 	 * Once we've walked through level one, we're done.
2001 	 */
2002 	if (aw->aw_levone_ndx == aw->aw_nlevone)
2003 		return (WALK_DONE);
2004 
2005 	if (aw->aw_levtwo == NULL) {
2006 		anonptr = aw->aw_levone[aw->aw_levone_ndx];
2007 		aw->aw_levone_ndx++;
2008 	} else {
2009 		anonptr = aw->aw_levtwo[aw->aw_levtwo_ndx];
2010 		aw->aw_levtwo_ndx++;
2011 
2012 		if (aw->aw_levtwo_ndx == ANON_CHUNK_SIZE) {
2013 			aw->aw_levtwo_ndx = 0;
2014 
2015 			do {
2016 				aw->aw_levone_ndx++;
2017 
2018 				if (aw->aw_levone_ndx == aw->aw_nlevone)
2019 					return (WALK_DONE);
2020 			} while (aw->aw_levone[aw->aw_levone_ndx] == NULL);
2021 
2022 			mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE *
2023 			    sizeof (uintptr_t),
2024 			    aw->aw_levone[aw->aw_levone_ndx]);
2025 		}
2026 	}
2027 
2028 	if (anonptr != NULL) {
2029 		mdb_vread(&anon, sizeof (anon), anonptr);
2030 		status = wsp->walk_callback(anonptr, &anon, wsp->walk_cbdata);
2031 	} else
2032 		goto again;
2033 
2034 	return (status);
2035 }
2036 
2037 void
2038 anon_walk_fini(mdb_walk_state_t *wsp)
2039 {
2040 	anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data;
2041 
2042 	if (aw->aw_levtwo != NULL)
2043 		mdb_free(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t));
2044 
2045 	mdb_free(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t));
2046 	mdb_free(aw, sizeof (anon_walk_data_t));
2047 }
2048 
2049 /*ARGSUSED*/
2050 int
2051 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target)
2052 {
2053 	if ((uintptr_t)f->f_vnode == *target) {
2054 		mdb_printf("file %p\n", addr);
2055 		*target = NULL;
2056 	}
2057 
2058 	return (WALK_NEXT);
2059 }
2060 
2061 /*ARGSUSED*/
2062 int
2063 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target)
2064 {
2065 	uintptr_t t = *target;
2066 
2067 	if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) {
2068 		mdb_warn("couldn't file walk proc %p", addr);
2069 		return (WALK_ERR);
2070 	}
2071 
2072 	if (t == NULL)
2073 		mdb_printf("%p\n", addr);
2074 
2075 	return (WALK_NEXT);
2076 }
2077 
2078 /*ARGSUSED*/
2079 int
2080 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2081 {
2082 	uintptr_t target = addr;
2083 
2084 	if (!(flags & DCMD_ADDRSPEC) || addr == NULL)
2085 		return (DCMD_USAGE);
2086 
2087 	if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) {
2088 		mdb_warn("can't proc walk");
2089 		return (DCMD_ERR);
2090 	}
2091 
2092 	return (DCMD_OK);
2093 }
2094 
2095 typedef struct datafmt {
2096 	char	*hdr1;
2097 	char	*hdr2;
2098 	char	*dashes;
2099 	char	*fmt;
2100 } datafmt_t;
2101 
2102 static datafmt_t kmemfmt[] = {
2103 	{ "cache                    ", "name                     ",
2104 	"-------------------------", "%-25s "				},
2105 	{ "   buf",	"  size",	"------",	"%6u "		},
2106 	{ "   buf",	"in use",	"------",	"%6u "		},
2107 	{ "   buf",	" total",	"------",	"%6u "		},
2108 	{ "   memory",	"   in use",	"----------",	"%9u%c "	},
2109 	{ "    alloc",	"  succeed",	"---------",	"%9u "		},
2110 	{ "alloc",	" fail",	"-----",	"%5u "		},
2111 	{ NULL,		NULL,		NULL,		NULL		}
2112 };
2113 
2114 static datafmt_t vmemfmt[] = {
2115 	{ "vmem                     ", "name                     ",
2116 	"-------------------------", "%-*s "				},
2117 	{ "   memory",	"   in use",	"----------",	"%9llu%c "	},
2118 	{ "    memory",	"     total",	"-----------",	"%10llu%c "	},
2119 	{ "   memory",	"   import",	"----------",	"%9llu%c "	},
2120 	{ "    alloc",	"  succeed",	"---------",	"%9llu "	},
2121 	{ "alloc",	" fail",	"-----",	"%5llu "	},
2122 	{ NULL,		NULL,		NULL,		NULL		}
2123 };
2124 
2125 /*ARGSUSED*/
2126 static int
2127 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail)
2128 {
2129 	if (ccp->cc_rounds > 0)
2130 		*avail += ccp->cc_rounds;
2131 	if (ccp->cc_prounds > 0)
2132 		*avail += ccp->cc_prounds;
2133 
2134 	return (WALK_NEXT);
2135 }
2136 
2137 /*ARGSUSED*/
2138 static int
2139 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc)
2140 {
2141 	*alloc += ccp->cc_alloc;
2142 
2143 	return (WALK_NEXT);
2144 }
2145 
2146 /*ARGSUSED*/
2147 static int
2148 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail)
2149 {
2150 	*avail += sp->slab_chunks - sp->slab_refcnt;
2151 
2152 	return (WALK_NEXT);
2153 }
2154 
2155 typedef struct kmastat_vmem {
2156 	uintptr_t kv_addr;
2157 	struct kmastat_vmem *kv_next;
2158 	int kv_meminuse;
2159 	int kv_alloc;
2160 	int kv_fail;
2161 } kmastat_vmem_t;
2162 
2163 typedef struct kmastat_args {
2164 	kmastat_vmem_t **ka_kvpp;
2165 	uint_t ka_shift;
2166 } kmastat_args_t;
2167 
2168 static int
2169 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap)
2170 {
2171 	kmastat_vmem_t **kvp = kap->ka_kvpp;
2172 	kmastat_vmem_t *kv;
2173 	datafmt_t *dfp = kmemfmt;
2174 	int magsize;
2175 
2176 	int avail, alloc, total;
2177 	size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) *
2178 	    cp->cache_slabsize;
2179 
2180 	mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail;
2181 	mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc;
2182 	mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail;
2183 
2184 	magsize = kmem_get_magsize(cp);
2185 
2186 	alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc;
2187 	avail = cp->cache_full.ml_total * magsize;
2188 	total = cp->cache_buftotal;
2189 
2190 	(void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr);
2191 	(void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr);
2192 	(void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr);
2193 
2194 	for (kv = *kvp; kv != NULL; kv = kv->kv_next) {
2195 		if (kv->kv_addr == (uintptr_t)cp->cache_arena)
2196 			goto out;
2197 	}
2198 
2199 	kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC);
2200 	kv->kv_next = *kvp;
2201 	kv->kv_addr = (uintptr_t)cp->cache_arena;
2202 	*kvp = kv;
2203 out:
2204 	kv->kv_meminuse += meminuse;
2205 	kv->kv_alloc += alloc;
2206 	kv->kv_fail += cp->cache_alloc_fail;
2207 
2208 	mdb_printf((dfp++)->fmt, cp->cache_name);
2209 	mdb_printf((dfp++)->fmt, cp->cache_bufsize);
2210 	mdb_printf((dfp++)->fmt, total - avail);
2211 	mdb_printf((dfp++)->fmt, total);
2212 	mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift,
2213 	    kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' :
2214 	    kap->ka_shift == KILOS ? 'K' : 'B');
2215 	mdb_printf((dfp++)->fmt, alloc);
2216 	mdb_printf((dfp++)->fmt, cp->cache_alloc_fail);
2217 	mdb_printf("\n");
2218 
2219 	return (WALK_NEXT);
2220 }
2221 
2222 static int
2223 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap)
2224 {
2225 	kmastat_vmem_t *kv = *kap->ka_kvpp;
2226 	size_t len;
2227 
2228 	while (kv != NULL && kv->kv_addr != addr)
2229 		kv = kv->kv_next;
2230 
2231 	if (kv == NULL || kv->kv_alloc == 0)
2232 		return (WALK_NEXT);
2233 
2234 	len = MIN(17, strlen(v->vm_name));
2235 
2236 	mdb_printf("Total [%s]%*s %6s %6s %6s %9u%c %9u %5u\n", v->vm_name,
2237 	    17 - len, "", "", "", "",
2238 	    kv->kv_meminuse >> kap->ka_shift,
2239 	    kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' :
2240 	    kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail);
2241 
2242 	return (WALK_NEXT);
2243 }
2244 
2245 /*ARGSUSED*/
2246 static int
2247 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp)
2248 {
2249 	datafmt_t *dfp = vmemfmt;
2250 	const vmem_kstat_t *vkp = &v->vm_kstat;
2251 	uintptr_t paddr;
2252 	vmem_t parent;
2253 	int ident = 0;
2254 
2255 	for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) {
2256 		if (mdb_vread(&parent, sizeof (parent), paddr) == -1) {
2257 			mdb_warn("couldn't trace %p's ancestry", addr);
2258 			ident = 0;
2259 			break;
2260 		}
2261 		paddr = (uintptr_t)parent.vm_source;
2262 	}
2263 
2264 	mdb_printf("%*s", ident, "");
2265 	mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name);
2266 	mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp,
2267 	    *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2268 	    *shiftp == KILOS ? 'K' : 'B');
2269 	mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp,
2270 	    *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2271 	    *shiftp == KILOS ? 'K' : 'B');
2272 	mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp,
2273 	    *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2274 	    *shiftp == KILOS ? 'K' : 'B');
2275 	mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64);
2276 	mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64);
2277 
2278 	mdb_printf("\n");
2279 
2280 	return (WALK_NEXT);
2281 }
2282 
2283 /*ARGSUSED*/
2284 int
2285 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2286 {
2287 	kmastat_vmem_t *kv = NULL;
2288 	datafmt_t *dfp;
2289 	kmastat_args_t ka;
2290 
2291 	ka.ka_shift = 0;
2292 	if (mdb_getopts(argc, argv,
2293 	    'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift,
2294 	    'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift,
2295 	    'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc)
2296 		return (DCMD_USAGE);
2297 
2298 	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2299 		mdb_printf("%s ", dfp->hdr1);
2300 	mdb_printf("\n");
2301 
2302 	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2303 		mdb_printf("%s ", dfp->hdr2);
2304 	mdb_printf("\n");
2305 
2306 	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2307 		mdb_printf("%s ", dfp->dashes);
2308 	mdb_printf("\n");
2309 
2310 	ka.ka_kvpp = &kv;
2311 	if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) {
2312 		mdb_warn("can't walk 'kmem_cache'");
2313 		return (DCMD_ERR);
2314 	}
2315 
2316 	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2317 		mdb_printf("%s ", dfp->dashes);
2318 	mdb_printf("\n");
2319 
2320 	if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) {
2321 		mdb_warn("can't walk 'vmem'");
2322 		return (DCMD_ERR);
2323 	}
2324 
2325 	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2326 		mdb_printf("%s ", dfp->dashes);
2327 	mdb_printf("\n");
2328 
2329 	mdb_printf("\n");
2330 
2331 	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2332 		mdb_printf("%s ", dfp->hdr1);
2333 	mdb_printf("\n");
2334 
2335 	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2336 		mdb_printf("%s ", dfp->hdr2);
2337 	mdb_printf("\n");
2338 
2339 	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2340 		mdb_printf("%s ", dfp->dashes);
2341 	mdb_printf("\n");
2342 
2343 	if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) {
2344 		mdb_warn("can't walk 'vmem'");
2345 		return (DCMD_ERR);
2346 	}
2347 
2348 	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2349 		mdb_printf("%s ", dfp->dashes);
2350 	mdb_printf("\n");
2351 	return (DCMD_OK);
2352 }
2353 
2354 /*
2355  * Our ::kgrep callback scans the entire kernel VA space (kas).  kas is made
2356  * up of a set of 'struct seg's.  We could just scan each seg en masse, but
2357  * unfortunately, a few of the segs are both large and sparse, so we could
2358  * spend quite a bit of time scanning VAs which have no backing pages.
2359  *
2360  * So for the few very sparse segs, we skip the segment itself, and scan
2361  * the allocated vmem_segs in the vmem arena which manages that part of kas.
2362  * Currently, we do this for:
2363  *
2364  *	SEG		VMEM ARENA
2365  *	kvseg		heap_arena
2366  *	kvseg32		heap32_arena
2367  *	kvseg_core	heap_core_arena
2368  *
2369  * In addition, we skip the segkpm segment in its entirety, since it is very
2370  * sparse, and contains no new kernel data.
2371  */
2372 typedef struct kgrep_walk_data {
2373 	kgrep_cb_func *kg_cb;
2374 	void *kg_cbdata;
2375 	uintptr_t kg_kvseg;
2376 	uintptr_t kg_kvseg32;
2377 	uintptr_t kg_kvseg_core;
2378 	uintptr_t kg_segkpm;
2379 	uintptr_t kg_heap_lp_base;
2380 	uintptr_t kg_heap_lp_end;
2381 } kgrep_walk_data_t;
2382 
2383 static int
2384 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg)
2385 {
2386 	uintptr_t base = (uintptr_t)seg->s_base;
2387 
2388 	if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 ||
2389 	    addr == kg->kg_kvseg_core)
2390 		return (WALK_NEXT);
2391 
2392 	if ((uintptr_t)seg->s_ops == kg->kg_segkpm)
2393 		return (WALK_NEXT);
2394 
2395 	return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata));
2396 }
2397 
2398 /*ARGSUSED*/
2399 static int
2400 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
2401 {
2402 	/*
2403 	 * skip large page heap address range - it is scanned by walking
2404 	 * allocated vmem_segs in the heap_lp_arena
2405 	 */
2406 	if (seg->vs_start == kg->kg_heap_lp_base &&
2407 	    seg->vs_end == kg->kg_heap_lp_end)
2408 		return (WALK_NEXT);
2409 
2410 	return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
2411 }
2412 
2413 /*ARGSUSED*/
2414 static int
2415 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
2416 {
2417 	return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
2418 }
2419 
2420 static int
2421 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg)
2422 {
2423 	mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg;
2424 
2425 	if (strcmp(vmem->vm_name, "heap") != 0 &&
2426 	    strcmp(vmem->vm_name, "heap32") != 0 &&
2427 	    strcmp(vmem->vm_name, "heap_core") != 0 &&
2428 	    strcmp(vmem->vm_name, "heap_lp") != 0)
2429 		return (WALK_NEXT);
2430 
2431 	if (strcmp(vmem->vm_name, "heap_lp") == 0)
2432 		walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg;
2433 
2434 	if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) {
2435 		mdb_warn("couldn't walk vmem_alloc for vmem %p", addr);
2436 		return (WALK_ERR);
2437 	}
2438 
2439 	return (WALK_NEXT);
2440 }
2441 
2442 int
2443 kgrep_subr(kgrep_cb_func *cb, void *cbdata)
2444 {
2445 	GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm;
2446 	kgrep_walk_data_t kg;
2447 
2448 	if (mdb_get_state() == MDB_STATE_RUNNING) {
2449 		mdb_warn("kgrep can only be run on a system "
2450 		    "dump or under kmdb; see dumpadm(1M)\n");
2451 		return (DCMD_ERR);
2452 	}
2453 
2454 	if (mdb_lookup_by_name("kas", &kas) == -1) {
2455 		mdb_warn("failed to locate 'kas' symbol\n");
2456 		return (DCMD_ERR);
2457 	}
2458 
2459 	if (mdb_lookup_by_name("kvseg", &kvseg) == -1) {
2460 		mdb_warn("failed to locate 'kvseg' symbol\n");
2461 		return (DCMD_ERR);
2462 	}
2463 
2464 	if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) {
2465 		mdb_warn("failed to locate 'kvseg32' symbol\n");
2466 		return (DCMD_ERR);
2467 	}
2468 
2469 	if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) {
2470 		mdb_warn("failed to locate 'kvseg_core' symbol\n");
2471 		return (DCMD_ERR);
2472 	}
2473 
2474 	if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) {
2475 		mdb_warn("failed to locate 'segkpm_ops' symbol\n");
2476 		return (DCMD_ERR);
2477 	}
2478 
2479 	if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) {
2480 		mdb_warn("failed to read 'heap_lp_base'\n");
2481 		return (DCMD_ERR);
2482 	}
2483 
2484 	if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) {
2485 		mdb_warn("failed to read 'heap_lp_end'\n");
2486 		return (DCMD_ERR);
2487 	}
2488 
2489 	kg.kg_cb = cb;
2490 	kg.kg_cbdata = cbdata;
2491 	kg.kg_kvseg = (uintptr_t)kvseg.st_value;
2492 	kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value;
2493 	kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value;
2494 	kg.kg_segkpm = (uintptr_t)segkpm.st_value;
2495 
2496 	if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg,
2497 	    &kg, kas.st_value) == -1) {
2498 		mdb_warn("failed to walk kas segments");
2499 		return (DCMD_ERR);
2500 	}
2501 
2502 	if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) {
2503 		mdb_warn("failed to walk heap/heap32 vmem arenas");
2504 		return (DCMD_ERR);
2505 	}
2506 
2507 	return (DCMD_OK);
2508 }
2509 
2510 size_t
2511 kgrep_subr_pagesize(void)
2512 {
2513 	return (PAGESIZE);
2514 }
2515 
2516 typedef struct file_walk_data {
2517 	struct uf_entry *fw_flist;
2518 	int fw_flistsz;
2519 	int fw_ndx;
2520 	int fw_nofiles;
2521 } file_walk_data_t;
2522 
2523 int
2524 file_walk_init(mdb_walk_state_t *wsp)
2525 {
2526 	file_walk_data_t *fw;
2527 	proc_t p;
2528 
2529 	if (wsp->walk_addr == NULL) {
2530 		mdb_warn("file walk doesn't support global walks\n");
2531 		return (WALK_ERR);
2532 	}
2533 
2534 	fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP);
2535 
2536 	if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) {
2537 		mdb_free(fw, sizeof (file_walk_data_t));
2538 		mdb_warn("failed to read proc structure at %p", wsp->walk_addr);
2539 		return (WALK_ERR);
2540 	}
2541 
2542 	if (p.p_user.u_finfo.fi_nfiles == 0) {
2543 		mdb_free(fw, sizeof (file_walk_data_t));
2544 		return (WALK_DONE);
2545 	}
2546 
2547 	fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles;
2548 	fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles;
2549 	fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP);
2550 
2551 	if (mdb_vread(fw->fw_flist, fw->fw_flistsz,
2552 	    (uintptr_t)p.p_user.u_finfo.fi_list) == -1) {
2553 		mdb_warn("failed to read file array at %p",
2554 		    p.p_user.u_finfo.fi_list);
2555 		mdb_free(fw->fw_flist, fw->fw_flistsz);
2556 		mdb_free(fw, sizeof (file_walk_data_t));
2557 		return (WALK_ERR);
2558 	}
2559 
2560 	fw->fw_ndx = 0;
2561 	wsp->walk_data = fw;
2562 
2563 	return (WALK_NEXT);
2564 }
2565 
2566 int
2567 file_walk_step(mdb_walk_state_t *wsp)
2568 {
2569 	file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2570 	struct file file;
2571 	uintptr_t fp;
2572 
2573 again:
2574 	if (fw->fw_ndx == fw->fw_nofiles)
2575 		return (WALK_DONE);
2576 
2577 	if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL)
2578 		goto again;
2579 
2580 	(void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
2581 	return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
2582 }
2583 
2584 int
2585 allfile_walk_step(mdb_walk_state_t *wsp)
2586 {
2587 	file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2588 	struct file file;
2589 	uintptr_t fp;
2590 
2591 	if (fw->fw_ndx == fw->fw_nofiles)
2592 		return (WALK_DONE);
2593 
2594 	if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL)
2595 		(void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
2596 	else
2597 		bzero(&file, sizeof (file));
2598 
2599 	return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
2600 }
2601 
2602 void
2603 file_walk_fini(mdb_walk_state_t *wsp)
2604 {
2605 	file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2606 
2607 	mdb_free(fw->fw_flist, fw->fw_flistsz);
2608 	mdb_free(fw, sizeof (file_walk_data_t));
2609 }
2610 
2611 int
2612 port_walk_init(mdb_walk_state_t *wsp)
2613 {
2614 	if (wsp->walk_addr == NULL) {
2615 		mdb_warn("port walk doesn't support global walks\n");
2616 		return (WALK_ERR);
2617 	}
2618 
2619 	if (mdb_layered_walk("file", wsp) == -1) {
2620 		mdb_warn("couldn't walk 'file'");
2621 		return (WALK_ERR);
2622 	}
2623 	return (WALK_NEXT);
2624 }
2625 
2626 int
2627 port_walk_step(mdb_walk_state_t *wsp)
2628 {
2629 	struct vnode	vn;
2630 	uintptr_t	vp;
2631 	uintptr_t	pp;
2632 	struct port	port;
2633 
2634 	vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode;
2635 	if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
2636 		mdb_warn("failed to read vnode_t at %p", vp);
2637 		return (WALK_ERR);
2638 	}
2639 	if (vn.v_type != VPORT)
2640 		return (WALK_NEXT);
2641 
2642 	pp = (uintptr_t)vn.v_data;
2643 	if (mdb_vread(&port, sizeof (port), pp) == -1) {
2644 		mdb_warn("failed to read port_t at %p", pp);
2645 		return (WALK_ERR);
2646 	}
2647 	return (wsp->walk_callback(pp, &port, wsp->walk_cbdata));
2648 }
2649 
2650 typedef struct portev_walk_data {
2651 	list_node_t	*pev_node;
2652 	list_node_t	*pev_last;
2653 	size_t		pev_offset;
2654 } portev_walk_data_t;
2655 
2656 int
2657 portev_walk_init(mdb_walk_state_t *wsp)
2658 {
2659 	portev_walk_data_t *pevd;
2660 	struct port	port;
2661 	struct vnode	vn;
2662 	struct list	*list;
2663 	uintptr_t	vp;
2664 
2665 	if (wsp->walk_addr == NULL) {
2666 		mdb_warn("portev walk doesn't support global walks\n");
2667 		return (WALK_ERR);
2668 	}
2669 
2670 	pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP);
2671 
2672 	if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) {
2673 		mdb_free(pevd, sizeof (portev_walk_data_t));
2674 		mdb_warn("failed to read port structure at %p", wsp->walk_addr);
2675 		return (WALK_ERR);
2676 	}
2677 
2678 	vp = (uintptr_t)port.port_vnode;
2679 	if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
2680 		mdb_free(pevd, sizeof (portev_walk_data_t));
2681 		mdb_warn("failed to read vnode_t at %p", vp);
2682 		return (WALK_ERR);
2683 	}
2684 
2685 	if (vn.v_type != VPORT) {
2686 		mdb_free(pevd, sizeof (portev_walk_data_t));
2687 		mdb_warn("input address (%p) does not point to an event port",
2688 		    wsp->walk_addr);
2689 		return (WALK_ERR);
2690 	}
2691 
2692 	if (port.port_queue.portq_nent == 0) {
2693 		mdb_free(pevd, sizeof (portev_walk_data_t));
2694 		return (WALK_DONE);
2695 	}
2696 	list = &port.port_queue.portq_list;
2697 	pevd->pev_offset = list->list_offset;
2698 	pevd->pev_last = list->list_head.list_prev;
2699 	pevd->pev_node = list->list_head.list_next;
2700 	wsp->walk_data = pevd;
2701 	return (WALK_NEXT);
2702 }
2703 
2704 int
2705 portev_walk_step(mdb_walk_state_t *wsp)
2706 {
2707 	portev_walk_data_t	*pevd;
2708 	struct port_kevent	ev;
2709 	uintptr_t		evp;
2710 
2711 	pevd = (portev_walk_data_t *)wsp->walk_data;
2712 
2713 	if (pevd->pev_last == NULL)
2714 		return (WALK_DONE);
2715 	if (pevd->pev_node == pevd->pev_last)
2716 		pevd->pev_last = NULL;		/* last round */
2717 
2718 	evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset));
2719 	if (mdb_vread(&ev, sizeof (ev), evp) == -1) {
2720 		mdb_warn("failed to read port_kevent at %p", evp);
2721 		return (WALK_DONE);
2722 	}
2723 	pevd->pev_node = ev.portkev_node.list_next;
2724 	return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata));
2725 }
2726 
2727 void
2728 portev_walk_fini(mdb_walk_state_t *wsp)
2729 {
2730 	portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data;
2731 
2732 	if (pevd != NULL)
2733 		mdb_free(pevd, sizeof (portev_walk_data_t));
2734 }
2735 
2736 typedef struct proc_walk_data {
2737 	uintptr_t *pw_stack;
2738 	int pw_depth;
2739 	int pw_max;
2740 } proc_walk_data_t;
2741 
2742 int
2743 proc_walk_init(mdb_walk_state_t *wsp)
2744 {
2745 	GElf_Sym sym;
2746 	proc_walk_data_t *pw;
2747 
2748 	if (wsp->walk_addr == NULL) {
2749 		if (mdb_lookup_by_name("p0", &sym) == -1) {
2750 			mdb_warn("failed to read 'practive'");
2751 			return (WALK_ERR);
2752 		}
2753 		wsp->walk_addr = (uintptr_t)sym.st_value;
2754 	}
2755 
2756 	pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP);
2757 
2758 	if (mdb_readvar(&pw->pw_max, "nproc") == -1) {
2759 		mdb_warn("failed to read 'nproc'");
2760 		mdb_free(pw, sizeof (pw));
2761 		return (WALK_ERR);
2762 	}
2763 
2764 	pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP);
2765 	wsp->walk_data = pw;
2766 
2767 	return (WALK_NEXT);
2768 }
2769 
2770 int
2771 proc_walk_step(mdb_walk_state_t *wsp)
2772 {
2773 	proc_walk_data_t *pw = wsp->walk_data;
2774 	uintptr_t addr = wsp->walk_addr;
2775 	uintptr_t cld, sib;
2776 
2777 	int status;
2778 	proc_t pr;
2779 
2780 	if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) {
2781 		mdb_warn("failed to read proc at %p", addr);
2782 		return (WALK_DONE);
2783 	}
2784 
2785 	cld = (uintptr_t)pr.p_child;
2786 	sib = (uintptr_t)pr.p_sibling;
2787 
2788 	if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) {
2789 		pw->pw_depth--;
2790 		goto sib;
2791 	}
2792 
2793 	status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata);
2794 
2795 	if (status != WALK_NEXT)
2796 		return (status);
2797 
2798 	if ((wsp->walk_addr = cld) != NULL) {
2799 		if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) {
2800 			mdb_warn("proc %p has invalid p_child %p; skipping\n",
2801 			    addr, cld);
2802 			goto sib;
2803 		}
2804 
2805 		pw->pw_stack[pw->pw_depth++] = addr;
2806 
2807 		if (pw->pw_depth == pw->pw_max) {
2808 			mdb_warn("depth %d exceeds max depth; try again\n",
2809 			    pw->pw_depth);
2810 			return (WALK_DONE);
2811 		}
2812 		return (WALK_NEXT);
2813 	}
2814 
2815 sib:
2816 	/*
2817 	 * We know that p0 has no siblings, and if another starting proc
2818 	 * was given, we don't want to walk its siblings anyway.
2819 	 */
2820 	if (pw->pw_depth == 0)
2821 		return (WALK_DONE);
2822 
2823 	if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) {
2824 		mdb_warn("proc %p has invalid p_sibling %p; skipping\n",
2825 		    addr, sib);
2826 		sib = NULL;
2827 	}
2828 
2829 	if ((wsp->walk_addr = sib) == NULL) {
2830 		if (pw->pw_depth > 0) {
2831 			wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1];
2832 			return (WALK_NEXT);
2833 		}
2834 		return (WALK_DONE);
2835 	}
2836 
2837 	return (WALK_NEXT);
2838 }
2839 
2840 void
2841 proc_walk_fini(mdb_walk_state_t *wsp)
2842 {
2843 	proc_walk_data_t *pw = wsp->walk_data;
2844 
2845 	mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t));
2846 	mdb_free(pw, sizeof (proc_walk_data_t));
2847 }
2848 
2849 int
2850 task_walk_init(mdb_walk_state_t *wsp)
2851 {
2852 	task_t task;
2853 
2854 	if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) {
2855 		mdb_warn("failed to read task at %p", wsp->walk_addr);
2856 		return (WALK_ERR);
2857 	}
2858 	wsp->walk_addr = (uintptr_t)task.tk_memb_list;
2859 	wsp->walk_data = task.tk_memb_list;
2860 	return (WALK_NEXT);
2861 }
2862 
2863 int
2864 task_walk_step(mdb_walk_state_t *wsp)
2865 {
2866 	proc_t proc;
2867 	int status;
2868 
2869 	if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) {
2870 		mdb_warn("failed to read proc at %p", wsp->walk_addr);
2871 		return (WALK_DONE);
2872 	}
2873 
2874 	status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata);
2875 
2876 	if (proc.p_tasknext == wsp->walk_data)
2877 		return (WALK_DONE);
2878 
2879 	wsp->walk_addr = (uintptr_t)proc.p_tasknext;
2880 	return (status);
2881 }
2882 
2883 int
2884 project_walk_init(mdb_walk_state_t *wsp)
2885 {
2886 	if (wsp->walk_addr == NULL) {
2887 		if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) {
2888 			mdb_warn("failed to read 'proj0p'");
2889 			return (WALK_ERR);
2890 		}
2891 	}
2892 	wsp->walk_data = (void *)wsp->walk_addr;
2893 	return (WALK_NEXT);
2894 }
2895 
2896 int
2897 project_walk_step(mdb_walk_state_t *wsp)
2898 {
2899 	uintptr_t addr = wsp->walk_addr;
2900 	kproject_t pj;
2901 	int status;
2902 
2903 	if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
2904 		mdb_warn("failed to read project at %p", addr);
2905 		return (WALK_DONE);
2906 	}
2907 	status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata);
2908 	if (status != WALK_NEXT)
2909 		return (status);
2910 	wsp->walk_addr = (uintptr_t)pj.kpj_next;
2911 	if ((void *)wsp->walk_addr == wsp->walk_data)
2912 		return (WALK_DONE);
2913 	return (WALK_NEXT);
2914 }
2915 
2916 static int
2917 generic_walk_step(mdb_walk_state_t *wsp)
2918 {
2919 	return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer,
2920 	    wsp->walk_cbdata));
2921 }
2922 
2923 int
2924 seg_walk_init(mdb_walk_state_t *wsp)
2925 {
2926 	if (wsp->walk_addr == NULL) {
2927 		mdb_warn("seg walk must begin at struct as *\n");
2928 		return (WALK_ERR);
2929 	}
2930 
2931 	/*
2932 	 * this is really just a wrapper to AVL tree walk
2933 	 */
2934 	wsp->walk_addr = (uintptr_t)&((struct as *)wsp->walk_addr)->a_segtree;
2935 	return (avl_walk_init(wsp));
2936 }
2937 
2938 static int
2939 cpu_walk_cmp(const void *l, const void *r)
2940 {
2941 	uintptr_t lhs = *((uintptr_t *)l);
2942 	uintptr_t rhs = *((uintptr_t *)r);
2943 	cpu_t lcpu, rcpu;
2944 
2945 	(void) mdb_vread(&lcpu, sizeof (lcpu), lhs);
2946 	(void) mdb_vread(&rcpu, sizeof (rcpu), rhs);
2947 
2948 	if (lcpu.cpu_id < rcpu.cpu_id)
2949 		return (-1);
2950 
2951 	if (lcpu.cpu_id > rcpu.cpu_id)
2952 		return (1);
2953 
2954 	return (0);
2955 }
2956 
2957 typedef struct cpu_walk {
2958 	uintptr_t *cw_array;
2959 	int cw_ndx;
2960 } cpu_walk_t;
2961 
2962 int
2963 cpu_walk_init(mdb_walk_state_t *wsp)
2964 {
2965 	cpu_walk_t *cw;
2966 	int max_ncpus, i = 0;
2967 	uintptr_t current, first;
2968 	cpu_t cpu, panic_cpu;
2969 	uintptr_t panicstr, addr;
2970 	GElf_Sym sym;
2971 
2972 	cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC);
2973 
2974 	if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
2975 		mdb_warn("failed to read 'max_ncpus'");
2976 		return (WALK_ERR);
2977 	}
2978 
2979 	if (mdb_readvar(&panicstr, "panicstr") == -1) {
2980 		mdb_warn("failed to read 'panicstr'");
2981 		return (WALK_ERR);
2982 	}
2983 
2984 	if (panicstr != NULL) {
2985 		if (mdb_lookup_by_name("panic_cpu", &sym) == -1) {
2986 			mdb_warn("failed to find 'panic_cpu'");
2987 			return (WALK_ERR);
2988 		}
2989 
2990 		addr = (uintptr_t)sym.st_value;
2991 
2992 		if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) {
2993 			mdb_warn("failed to read 'panic_cpu'");
2994 			return (WALK_ERR);
2995 		}
2996 	}
2997 
2998 	/*
2999 	 * Unfortunately, there is no platform-independent way to walk
3000 	 * CPUs in ID order.  We therefore loop through in cpu_next order,
3001 	 * building an array of CPU pointers which will subsequently be
3002 	 * sorted.
3003 	 */
3004 	cw->cw_array =
3005 	    mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC);
3006 
3007 	if (mdb_readvar(&first, "cpu_list") == -1) {
3008 		mdb_warn("failed to read 'cpu_list'");
3009 		return (WALK_ERR);
3010 	}
3011 
3012 	current = first;
3013 	do {
3014 		if (mdb_vread(&cpu, sizeof (cpu), current) == -1) {
3015 			mdb_warn("failed to read cpu at %p", current);
3016 			return (WALK_ERR);
3017 		}
3018 
3019 		if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) {
3020 			cw->cw_array[i++] = addr;
3021 		} else {
3022 			cw->cw_array[i++] = current;
3023 		}
3024 	} while ((current = (uintptr_t)cpu.cpu_next) != first);
3025 
3026 	qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp);
3027 	wsp->walk_data = cw;
3028 
3029 	return (WALK_NEXT);
3030 }
3031 
3032 int
3033 cpu_walk_step(mdb_walk_state_t *wsp)
3034 {
3035 	cpu_walk_t *cw = wsp->walk_data;
3036 	cpu_t cpu;
3037 	uintptr_t addr = cw->cw_array[cw->cw_ndx++];
3038 
3039 	if (addr == NULL)
3040 		return (WALK_DONE);
3041 
3042 	if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) {
3043 		mdb_warn("failed to read cpu at %p", addr);
3044 		return (WALK_DONE);
3045 	}
3046 
3047 	return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata));
3048 }
3049 
3050 typedef struct cpuinfo_data {
3051 	intptr_t cid_cpu;
3052 	uintptr_t cid_lbolt;
3053 	uintptr_t **cid_ithr;
3054 	char	cid_print_head;
3055 	char	cid_print_thr;
3056 	char	cid_print_ithr;
3057 	char	cid_print_flags;
3058 } cpuinfo_data_t;
3059 
3060 int
3061 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid)
3062 {
3063 	cpu_t c;
3064 	int id;
3065 	uint8_t pil;
3066 
3067 	if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE)
3068 		return (WALK_NEXT);
3069 
3070 	if (thr->t_bound_cpu == NULL) {
3071 		mdb_warn("thr %p is intr thread w/out a CPU\n", addr);
3072 		return (WALK_NEXT);
3073 	}
3074 
3075 	(void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu);
3076 
3077 	if ((id = c.cpu_id) >= NCPU) {
3078 		mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n",
3079 		    thr->t_bound_cpu, id, NCPU);
3080 		return (WALK_NEXT);
3081 	}
3082 
3083 	if ((pil = thr->t_pil) >= NINTR) {
3084 		mdb_warn("thread %p has pil (%d) greater than %d\n",
3085 		    addr, pil, NINTR);
3086 		return (WALK_NEXT);
3087 	}
3088 
3089 	if (cid->cid_ithr[id][pil] != NULL) {
3090 		mdb_warn("CPU %d has multiple threads at pil %d (at least "
3091 		    "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]);
3092 		return (WALK_NEXT);
3093 	}
3094 
3095 	cid->cid_ithr[id][pil] = addr;
3096 
3097 	return (WALK_NEXT);
3098 }
3099 
3100 #define	CPUINFO_IDWIDTH		3
3101 #define	CPUINFO_FLAGWIDTH	9
3102 
3103 #ifdef _LP64
3104 #if defined(__amd64)
3105 #define	CPUINFO_TWIDTH		16
3106 #define	CPUINFO_CPUWIDTH	16
3107 #else
3108 #define	CPUINFO_CPUWIDTH	11
3109 #define	CPUINFO_TWIDTH		11
3110 #endif
3111 #else
3112 #define	CPUINFO_CPUWIDTH	8
3113 #define	CPUINFO_TWIDTH		8
3114 #endif
3115 
3116 #define	CPUINFO_THRDELT		(CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9)
3117 #define	CPUINFO_FLAGDELT	(CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4)
3118 #define	CPUINFO_ITHRDELT	4
3119 
3120 #define	CPUINFO_INDENT	mdb_printf("%*s", CPUINFO_THRDELT, \
3121     flagline < nflaglines ? flagbuf[flagline++] : "")
3122 
3123 int
3124 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid)
3125 {
3126 	kthread_t t;
3127 	disp_t disp;
3128 	proc_t p;
3129 	uintptr_t pinned;
3130 	char **flagbuf;
3131 	int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT;
3132 
3133 	const char *flags[] = {
3134 	    "RUNNING", "READY", "QUIESCED", "EXISTS",
3135 	    "ENABLE", "OFFLINE", "POWEROFF", "FROZEN",
3136 	    "SPARE", "FAULTED", NULL
3137 	};
3138 
3139 	if (cid->cid_cpu != -1) {
3140 		if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu)
3141 			return (WALK_NEXT);
3142 
3143 		/*
3144 		 * Set cid_cpu to -1 to indicate that we found a matching CPU.
3145 		 */
3146 		cid->cid_cpu = -1;
3147 		rval = WALK_DONE;
3148 	}
3149 
3150 	if (cid->cid_print_head) {
3151 		mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n",
3152 		    "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL",
3153 		    "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD",
3154 		    "PROC");
3155 		cid->cid_print_head = FALSE;
3156 	}
3157 
3158 	bspl = cpu->cpu_base_spl;
3159 
3160 	if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) {
3161 		mdb_warn("failed to read disp_t at %p", cpu->cpu_disp);
3162 		return (WALK_ERR);
3163 	}
3164 
3165 	mdb_printf("%3d %0*p %3x %4d %4d ",
3166 	    cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags,
3167 	    disp.disp_nrunnable, bspl);
3168 
3169 	if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) {
3170 		mdb_printf("%3d ", t.t_pri);
3171 	} else {
3172 		mdb_printf("%3s ", "-");
3173 	}
3174 
3175 	mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no",
3176 	    cpu->cpu_kprunrun ? "yes" : "no");
3177 
3178 	if (cpu->cpu_last_swtch) {
3179 		clock_t lbolt;
3180 
3181 		if (mdb_vread(&lbolt, sizeof (lbolt), cid->cid_lbolt) == -1) {
3182 			mdb_warn("failed to read lbolt at %p", cid->cid_lbolt);
3183 			return (WALK_ERR);
3184 		}
3185 		mdb_printf("t-%-4d ", lbolt - cpu->cpu_last_swtch);
3186 	} else {
3187 		mdb_printf("%-6s ", "-");
3188 	}
3189 
3190 	mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread);
3191 
3192 	if (cpu->cpu_thread == cpu->cpu_idle_thread)
3193 		mdb_printf(" (idle)\n");
3194 	else if (cpu->cpu_thread == NULL)
3195 		mdb_printf(" -\n");
3196 	else {
3197 		if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) {
3198 			mdb_printf(" %s\n", p.p_user.u_comm);
3199 		} else {
3200 			mdb_printf(" ?\n");
3201 		}
3202 	}
3203 
3204 	flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC);
3205 
3206 	if (cid->cid_print_flags) {
3207 		int first = 1, i, j, k;
3208 		char *s;
3209 
3210 		cid->cid_print_head = TRUE;
3211 
3212 		for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) {
3213 			if (!(cpu->cpu_flags & i))
3214 				continue;
3215 
3216 			if (first) {
3217 				s = mdb_alloc(CPUINFO_THRDELT + 1,
3218 				    UM_GC | UM_SLEEP);
3219 
3220 				(void) mdb_snprintf(s, CPUINFO_THRDELT + 1,
3221 				    "%*s|%*s", CPUINFO_FLAGDELT, "",
3222 				    CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, "");
3223 				flagbuf[nflaglines++] = s;
3224 			}
3225 
3226 			s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP);
3227 			(void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s",
3228 			    CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH -
3229 			    CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j],
3230 			    first ? "<--+" : "");
3231 
3232 			for (k = strlen(s); k < CPUINFO_THRDELT; k++)
3233 				s[k] = ' ';
3234 			s[k] = '\0';
3235 
3236 			flagbuf[nflaglines++] = s;
3237 			first = 0;
3238 		}
3239 	}
3240 
3241 	if (cid->cid_print_ithr) {
3242 		int i, found_one = FALSE;
3243 		int print_thr = disp.disp_nrunnable && cid->cid_print_thr;
3244 
3245 		for (i = NINTR - 1; i >= 0; i--) {
3246 			uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i];
3247 
3248 			if (iaddr == NULL)
3249 				continue;
3250 
3251 			if (!found_one) {
3252 				found_one = TRUE;
3253 
3254 				CPUINFO_INDENT;
3255 				mdb_printf("%c%*s|\n", print_thr ? '|' : ' ',
3256 				    CPUINFO_ITHRDELT, "");
3257 
3258 				CPUINFO_INDENT;
3259 				mdb_printf("%c%*s+--> %3s %s\n",
3260 				    print_thr ? '|' : ' ', CPUINFO_ITHRDELT,
3261 				    "", "PIL", "THREAD");
3262 			}
3263 
3264 			if (mdb_vread(&t, sizeof (t), iaddr) == -1) {
3265 				mdb_warn("failed to read kthread_t at %p",
3266 				    iaddr);
3267 				return (WALK_ERR);
3268 			}
3269 
3270 			CPUINFO_INDENT;
3271 			mdb_printf("%c%*s     %3d %0*p\n",
3272 			    print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "",
3273 			    t.t_pil, CPUINFO_TWIDTH, iaddr);
3274 
3275 			pinned = (uintptr_t)t.t_intr;
3276 		}
3277 
3278 		if (found_one && pinned != NULL) {
3279 			cid->cid_print_head = TRUE;
3280 			(void) strcpy(p.p_user.u_comm, "?");
3281 
3282 			if (mdb_vread(&t, sizeof (t),
3283 			    (uintptr_t)pinned) == -1) {
3284 				mdb_warn("failed to read kthread_t at %p",
3285 				    pinned);
3286 				return (WALK_ERR);
3287 			}
3288 			if (mdb_vread(&p, sizeof (p),
3289 			    (uintptr_t)t.t_procp) == -1) {
3290 				mdb_warn("failed to read proc_t at %p",
3291 				    t.t_procp);
3292 				return (WALK_ERR);
3293 			}
3294 
3295 			CPUINFO_INDENT;
3296 			mdb_printf("%c%*s     %3s %0*p %s\n",
3297 			    print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-",
3298 			    CPUINFO_TWIDTH, pinned,
3299 			    pinned == (uintptr_t)cpu->cpu_idle_thread ?
3300 			    "(idle)" : p.p_user.u_comm);
3301 		}
3302 	}
3303 
3304 	if (disp.disp_nrunnable && cid->cid_print_thr) {
3305 		dispq_t *dq;
3306 
3307 		int i, npri = disp.disp_npri;
3308 
3309 		dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC);
3310 
3311 		if (mdb_vread(dq, sizeof (dispq_t) * npri,
3312 		    (uintptr_t)disp.disp_q) == -1) {
3313 			mdb_warn("failed to read dispq_t at %p", disp.disp_q);
3314 			return (WALK_ERR);
3315 		}
3316 
3317 		CPUINFO_INDENT;
3318 		mdb_printf("|\n");
3319 
3320 		CPUINFO_INDENT;
3321 		mdb_printf("+-->  %3s %-*s %s\n", "PRI",
3322 		    CPUINFO_TWIDTH, "THREAD", "PROC");
3323 
3324 		for (i = npri - 1; i >= 0; i--) {
3325 			uintptr_t taddr = (uintptr_t)dq[i].dq_first;
3326 
3327 			while (taddr != NULL) {
3328 				if (mdb_vread(&t, sizeof (t), taddr) == -1) {
3329 					mdb_warn("failed to read kthread_t "
3330 					    "at %p", taddr);
3331 					return (WALK_ERR);
3332 				}
3333 				if (mdb_vread(&p, sizeof (p),
3334 				    (uintptr_t)t.t_procp) == -1) {
3335 					mdb_warn("failed to read proc_t at %p",
3336 					    t.t_procp);
3337 					return (WALK_ERR);
3338 				}
3339 
3340 				CPUINFO_INDENT;
3341 				mdb_printf("      %3d %0*p %s\n", t.t_pri,
3342 				    CPUINFO_TWIDTH, taddr, p.p_user.u_comm);
3343 
3344 				taddr = (uintptr_t)t.t_link;
3345 			}
3346 		}
3347 		cid->cid_print_head = TRUE;
3348 	}
3349 
3350 	while (flagline < nflaglines)
3351 		mdb_printf("%s\n", flagbuf[flagline++]);
3352 
3353 	if (cid->cid_print_head)
3354 		mdb_printf("\n");
3355 
3356 	return (rval);
3357 }
3358 
3359 int
3360 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3361 {
3362 	uint_t verbose = FALSE;
3363 	cpuinfo_data_t cid;
3364 	GElf_Sym sym;
3365 	clock_t lbolt;
3366 
3367 	cid.cid_print_ithr = FALSE;
3368 	cid.cid_print_thr = FALSE;
3369 	cid.cid_print_flags = FALSE;
3370 	cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE;
3371 	cid.cid_cpu = -1;
3372 
3373 	if (flags & DCMD_ADDRSPEC)
3374 		cid.cid_cpu = addr;
3375 
3376 	if (mdb_getopts(argc, argv,
3377 	    'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc)
3378 		return (DCMD_USAGE);
3379 
3380 	if (verbose) {
3381 		cid.cid_print_ithr = TRUE;
3382 		cid.cid_print_thr = TRUE;
3383 		cid.cid_print_flags = TRUE;
3384 		cid.cid_print_head = TRUE;
3385 	}
3386 
3387 	if (cid.cid_print_ithr) {
3388 		int i;
3389 
3390 		cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **)
3391 		    * NCPU, UM_SLEEP | UM_GC);
3392 
3393 		for (i = 0; i < NCPU; i++)
3394 			cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) *
3395 			    NINTR, UM_SLEEP | UM_GC);
3396 
3397 		if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread,
3398 		    &cid) == -1) {
3399 			mdb_warn("couldn't walk thread");
3400 			return (DCMD_ERR);
3401 		}
3402 	}
3403 
3404 	if (mdb_lookup_by_name("panic_lbolt", &sym) == -1) {
3405 		mdb_warn("failed to find panic_lbolt");
3406 		return (DCMD_ERR);
3407 	}
3408 
3409 	cid.cid_lbolt = (uintptr_t)sym.st_value;
3410 
3411 	if (mdb_vread(&lbolt, sizeof (lbolt), cid.cid_lbolt) == -1) {
3412 		mdb_warn("failed to read panic_lbolt");
3413 		return (DCMD_ERR);
3414 	}
3415 
3416 	if (lbolt == 0) {
3417 		if (mdb_lookup_by_name("lbolt", &sym) == -1) {
3418 			mdb_warn("failed to find lbolt");
3419 			return (DCMD_ERR);
3420 		}
3421 		cid.cid_lbolt = (uintptr_t)sym.st_value;
3422 	}
3423 
3424 	if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) {
3425 		mdb_warn("can't walk cpus");
3426 		return (DCMD_ERR);
3427 	}
3428 
3429 	if (cid.cid_cpu != -1) {
3430 		/*
3431 		 * We didn't find this CPU when we walked through the CPUs
3432 		 * (i.e. the address specified doesn't show up in the "cpu"
3433 		 * walk).  However, the specified address may still correspond
3434 		 * to a valid cpu_t (for example, if the specified address is
3435 		 * the actual panicking cpu_t and not the cached panic_cpu).
3436 		 * Point is:  even if we didn't find it, we still want to try
3437 		 * to print the specified address as a cpu_t.
3438 		 */
3439 		cpu_t cpu;
3440 
3441 		if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) {
3442 			mdb_warn("%p is neither a valid CPU ID nor a "
3443 			    "valid cpu_t address\n", cid.cid_cpu);
3444 			return (DCMD_ERR);
3445 		}
3446 
3447 		(void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid);
3448 	}
3449 
3450 	return (DCMD_OK);
3451 }
3452 
3453 /*ARGSUSED*/
3454 int
3455 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3456 {
3457 	int i;
3458 
3459 	if (!(flags & DCMD_ADDRSPEC))
3460 		return (DCMD_USAGE);
3461 
3462 	for (i = 0; i < sizeof (addr) * NBBY; i++)
3463 		mdb_printf("%p\n", addr ^ (1UL << i));
3464 
3465 	return (DCMD_OK);
3466 }
3467 
3468 /*
3469  * Grumble, grumble.
3470  */
3471 #define	SMAP_HASHFUNC(vp, off)	\
3472 	((((uintptr_t)(vp) >> 6) + ((uintptr_t)(vp) >> 3) + \
3473 	((off) >> MAXBSHIFT)) & smd_hashmsk)
3474 
3475 int
3476 vnode2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3477 {
3478 	long smd_hashmsk;
3479 	int hash;
3480 	uintptr_t offset = 0;
3481 	struct smap smp;
3482 	uintptr_t saddr, kaddr;
3483 	uintptr_t smd_hash, smd_smap;
3484 	struct seg seg;
3485 
3486 	if (!(flags & DCMD_ADDRSPEC))
3487 		return (DCMD_USAGE);
3488 
3489 	if (mdb_readvar(&smd_hashmsk, "smd_hashmsk") == -1) {
3490 		mdb_warn("failed to read smd_hashmsk");
3491 		return (DCMD_ERR);
3492 	}
3493 
3494 	if (mdb_readvar(&smd_hash, "smd_hash") == -1) {
3495 		mdb_warn("failed to read smd_hash");
3496 		return (DCMD_ERR);
3497 	}
3498 
3499 	if (mdb_readvar(&smd_smap, "smd_smap") == -1) {
3500 		mdb_warn("failed to read smd_hash");
3501 		return (DCMD_ERR);
3502 	}
3503 
3504 	if (mdb_readvar(&kaddr, "segkmap") == -1) {
3505 		mdb_warn("failed to read segkmap");
3506 		return (DCMD_ERR);
3507 	}
3508 
3509 	if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) {
3510 		mdb_warn("failed to read segkmap at %p", kaddr);
3511 		return (DCMD_ERR);
3512 	}
3513 
3514 	if (argc != 0) {
3515 		const mdb_arg_t *arg = &argv[0];
3516 
3517 		if (arg->a_type == MDB_TYPE_IMMEDIATE)
3518 			offset = arg->a_un.a_val;
3519 		else
3520 			offset = (uintptr_t)mdb_strtoull(arg->a_un.a_str);
3521 	}
3522 
3523 	hash = SMAP_HASHFUNC(addr, offset);
3524 
3525 	if (mdb_vread(&saddr, sizeof (saddr),
3526 	    smd_hash + hash * sizeof (uintptr_t)) == -1) {
3527 		mdb_warn("couldn't read smap at %p",
3528 		    smd_hash + hash * sizeof (uintptr_t));
3529 		return (DCMD_ERR);
3530 	}
3531 
3532 	do {
3533 		if (mdb_vread(&smp, sizeof (smp), saddr) == -1) {
3534 			mdb_warn("couldn't read smap at %p", saddr);
3535 			return (DCMD_ERR);
3536 		}
3537 
3538 		if ((uintptr_t)smp.sm_vp == addr && smp.sm_off == offset) {
3539 			mdb_printf("vnode %p, offs %p is smap %p, vaddr %p\n",
3540 			    addr, offset, saddr, ((saddr - smd_smap) /
3541 			    sizeof (smp)) * MAXBSIZE + seg.s_base);
3542 			return (DCMD_OK);
3543 		}
3544 
3545 		saddr = (uintptr_t)smp.sm_hash;
3546 	} while (saddr != NULL);
3547 
3548 	mdb_printf("no smap for vnode %p, offs %p\n", addr, offset);
3549 	return (DCMD_OK);
3550 }
3551 
3552 /*ARGSUSED*/
3553 int
3554 addr2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3555 {
3556 	uintptr_t kaddr;
3557 	struct seg seg;
3558 	struct segmap_data sd;
3559 
3560 	if (!(flags & DCMD_ADDRSPEC))
3561 		return (DCMD_USAGE);
3562 
3563 	if (mdb_readvar(&kaddr, "segkmap") == -1) {
3564 		mdb_warn("failed to read segkmap");
3565 		return (DCMD_ERR);
3566 	}
3567 
3568 	if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) {
3569 		mdb_warn("failed to read segkmap at %p", kaddr);
3570 		return (DCMD_ERR);
3571 	}
3572 
3573 	if (mdb_vread(&sd, sizeof (sd), (uintptr_t)seg.s_data) == -1) {
3574 		mdb_warn("failed to read segmap_data at %p", seg.s_data);
3575 		return (DCMD_ERR);
3576 	}
3577 
3578 	mdb_printf("%p is smap %p\n", addr,
3579 	    ((addr - (uintptr_t)seg.s_base) >> MAXBSHIFT) *
3580 	    sizeof (struct smap) + (uintptr_t)sd.smd_sm);
3581 
3582 	return (DCMD_OK);
3583 }
3584 
3585 int
3586 as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp)
3587 {
3588 	if (p->p_as == *asp)
3589 		mdb_printf("%p\n", addr);
3590 	return (WALK_NEXT);
3591 }
3592 
3593 /*ARGSUSED*/
3594 int
3595 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3596 {
3597 	if (!(flags & DCMD_ADDRSPEC) || argc != 0)
3598 		return (DCMD_USAGE);
3599 
3600 	if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) {
3601 		mdb_warn("failed to walk proc");
3602 		return (DCMD_ERR);
3603 	}
3604 
3605 	return (DCMD_OK);
3606 }
3607 
3608 /*ARGSUSED*/
3609 int
3610 ptree_walk(uintptr_t addr, const proc_t *p, void *ignored)
3611 {
3612 	proc_t parent;
3613 	int ident = 0;
3614 	uintptr_t paddr;
3615 
3616 	for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) {
3617 		mdb_vread(&parent, sizeof (parent), paddr);
3618 		paddr = (uintptr_t)parent.p_parent;
3619 	}
3620 
3621 	mdb_inc_indent(ident);
3622 	mdb_printf("%0?p  %s\n", addr, p->p_user.u_comm);
3623 	mdb_dec_indent(ident);
3624 
3625 	return (WALK_NEXT);
3626 }
3627 
3628 void
3629 ptree_ancestors(uintptr_t addr, uintptr_t start)
3630 {
3631 	proc_t p;
3632 
3633 	if (mdb_vread(&p, sizeof (p), addr) == -1) {
3634 		mdb_warn("couldn't read ancestor at %p", addr);
3635 		return;
3636 	}
3637 
3638 	if (p.p_parent != NULL)
3639 		ptree_ancestors((uintptr_t)p.p_parent, start);
3640 
3641 	if (addr != start)
3642 		(void) ptree_walk(addr, &p, NULL);
3643 }
3644 
3645 /*ARGSUSED*/
3646 int
3647 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3648 {
3649 	if (!(flags & DCMD_ADDRSPEC))
3650 		addr = NULL;
3651 	else
3652 		ptree_ancestors(addr, addr);
3653 
3654 	if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) {
3655 		mdb_warn("couldn't walk 'proc'");
3656 		return (DCMD_ERR);
3657 	}
3658 
3659 	return (DCMD_OK);
3660 }
3661 
3662 /*ARGSUSED*/
3663 static int
3664 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3665 {
3666 	int fdnum;
3667 	const mdb_arg_t *argp = &argv[0];
3668 	proc_t p;
3669 	uf_entry_t uf;
3670 
3671 	if ((flags & DCMD_ADDRSPEC) == 0) {
3672 		mdb_warn("fd doesn't give global information\n");
3673 		return (DCMD_ERR);
3674 	}
3675 	if (argc != 1)
3676 		return (DCMD_USAGE);
3677 
3678 	if (argp->a_type == MDB_TYPE_IMMEDIATE)
3679 		fdnum = argp->a_un.a_val;
3680 	else
3681 		fdnum = mdb_strtoull(argp->a_un.a_str);
3682 
3683 	if (mdb_vread(&p, sizeof (struct proc), addr) == -1) {
3684 		mdb_warn("couldn't read proc_t at %p", addr);
3685 		return (DCMD_ERR);
3686 	}
3687 	if (fdnum > p.p_user.u_finfo.fi_nfiles) {
3688 		mdb_warn("process %p only has %d files open.\n",
3689 		    addr, p.p_user.u_finfo.fi_nfiles);
3690 		return (DCMD_ERR);
3691 	}
3692 	if (mdb_vread(&uf, sizeof (uf_entry_t),
3693 	    (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) {
3694 		mdb_warn("couldn't read uf_entry_t at %p",
3695 		    &p.p_user.u_finfo.fi_list[fdnum]);
3696 		return (DCMD_ERR);
3697 	}
3698 
3699 	mdb_printf("%p\n", uf.uf_file);
3700 	return (DCMD_OK);
3701 }
3702 
3703 /*ARGSUSED*/
3704 static int
3705 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3706 {
3707 	pid_t pid = (pid_t)addr;
3708 
3709 	if (argc != 0)
3710 		return (DCMD_USAGE);
3711 
3712 	if ((addr = mdb_pid2proc(pid, NULL)) == NULL) {
3713 		mdb_warn("PID 0t%d not found\n", pid);
3714 		return (DCMD_ERR);
3715 	}
3716 
3717 	mdb_printf("%p\n", addr);
3718 	return (DCMD_OK);
3719 }
3720 
3721 static char *sysfile_cmd[] = {
3722 	"exclude:",
3723 	"include:",
3724 	"forceload:",
3725 	"rootdev:",
3726 	"rootfs:",
3727 	"swapdev:",
3728 	"swapfs:",
3729 	"moddir:",
3730 	"set",
3731 	"unknown",
3732 };
3733 
3734 static char *sysfile_ops[] = { "", "=", "&", "|" };
3735 
3736 /*ARGSUSED*/
3737 static int
3738 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target)
3739 {
3740 	if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) {
3741 		*target = NULL;
3742 		return (WALK_DONE);
3743 	}
3744 	return (WALK_NEXT);
3745 }
3746 
3747 /*ARGSUSED*/
3748 static int
3749 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3750 {
3751 	struct sysparam *sysp, sys;
3752 	char var[256];
3753 	char modname[256];
3754 	char val[256];
3755 	char strval[256];
3756 	vmem_t *mod_sysfile_arena;
3757 	void *straddr;
3758 
3759 	if (mdb_readvar(&sysp, "sysparam_hd") == -1) {
3760 		mdb_warn("failed to read sysparam_hd");
3761 		return (DCMD_ERR);
3762 	}
3763 
3764 	if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) {
3765 		mdb_warn("failed to read mod_sysfile_arena");
3766 		return (DCMD_ERR);
3767 	}
3768 
3769 	while (sysp != NULL) {
3770 		var[0] = '\0';
3771 		val[0] = '\0';
3772 		modname[0] = '\0';
3773 		if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) {
3774 			mdb_warn("couldn't read sysparam %p", sysp);
3775 			return (DCMD_ERR);
3776 		}
3777 		if (sys.sys_modnam != NULL &&
3778 		    mdb_readstr(modname, 256,
3779 		    (uintptr_t)sys.sys_modnam) == -1) {
3780 			mdb_warn("couldn't read modname in %p", sysp);
3781 			return (DCMD_ERR);
3782 		}
3783 		if (sys.sys_ptr != NULL &&
3784 		    mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) {
3785 			mdb_warn("couldn't read ptr in %p", sysp);
3786 			return (DCMD_ERR);
3787 		}
3788 		if (sys.sys_op != SETOP_NONE) {
3789 			/*
3790 			 * Is this an int or a string?  We determine this
3791 			 * by checking whether straddr is contained in
3792 			 * mod_sysfile_arena.  If so, the walker will set
3793 			 * straddr to NULL.
3794 			 */
3795 			straddr = (void *)(uintptr_t)sys.sys_info;
3796 			if (sys.sys_op == SETOP_ASSIGN &&
3797 			    sys.sys_info != 0 &&
3798 			    mdb_pwalk("vmem_seg",
3799 			    (mdb_walk_cb_t)sysfile_vmem_seg, &straddr,
3800 			    (uintptr_t)mod_sysfile_arena) == 0 &&
3801 			    straddr == NULL &&
3802 			    mdb_readstr(strval, 256,
3803 			    (uintptr_t)sys.sys_info) != -1) {
3804 				(void) mdb_snprintf(val, sizeof (val), "\"%s\"",
3805 				    strval);
3806 			} else {
3807 				(void) mdb_snprintf(val, sizeof (val),
3808 				    "0x%llx [0t%llu]", sys.sys_info,
3809 				    sys.sys_info);
3810 			}
3811 		}
3812 		mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type],
3813 		    modname, modname[0] == '\0' ? "" : ":",
3814 		    var, sysfile_ops[sys.sys_op], val);
3815 
3816 		sysp = sys.sys_next;
3817 	}
3818 
3819 	return (DCMD_OK);
3820 }
3821 
3822 /*
3823  * Dump a taskq_ent_t given its address.
3824  */
3825 /*ARGSUSED*/
3826 int
3827 taskq_ent(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3828 {
3829 	taskq_ent_t	taskq_ent;
3830 	GElf_Sym	sym;
3831 	char		buf[MDB_SYM_NAMLEN+1];
3832 
3833 
3834 	if (!(flags & DCMD_ADDRSPEC)) {
3835 		mdb_warn("expected explicit taskq_ent_t address before ::\n");
3836 		return (DCMD_USAGE);
3837 	}
3838 
3839 	if (mdb_vread(&taskq_ent, sizeof (taskq_ent_t), addr) == -1) {
3840 		mdb_warn("failed to read taskq_ent_t at %p", addr);
3841 		return (DCMD_ERR);
3842 	}
3843 
3844 	if (DCMD_HDRSPEC(flags)) {
3845 		mdb_printf("%<u>%-?s    %-?s    %-s%</u>\n",
3846 		"ENTRY", "ARG", "FUNCTION");
3847 	}
3848 
3849 	if (mdb_lookup_by_addr((uintptr_t)taskq_ent.tqent_func, MDB_SYM_EXACT,
3850 	    buf, sizeof (buf), &sym) == -1) {
3851 		(void) strcpy(buf, "????");
3852 	}
3853 
3854 	mdb_printf("%-?p    %-?p    %s\n", addr, taskq_ent.tqent_arg, buf);
3855 
3856 	return (DCMD_OK);
3857 }
3858 
3859 /*
3860  * Given the address of the (taskq_t) task queue head, walk the queue listing
3861  * the address of every taskq_ent_t.
3862  */
3863 int
3864 taskq_walk_init(mdb_walk_state_t *wsp)
3865 {
3866 	taskq_t	tq_head;
3867 
3868 
3869 	if (wsp->walk_addr == NULL) {
3870 		mdb_warn("start address required\n");
3871 		return (WALK_ERR);
3872 	}
3873 
3874 
3875 	/*
3876 	 * Save the address of the list head entry.  This terminates the list.
3877 	 */
3878 	wsp->walk_data = (void *)
3879 	    ((size_t)wsp->walk_addr + offsetof(taskq_t, tq_task));
3880 
3881 
3882 	/*
3883 	 * Read in taskq head, set walk_addr to point to first taskq_ent_t.
3884 	 */
3885 	if (mdb_vread((void *)&tq_head, sizeof (taskq_t), wsp->walk_addr) ==
3886 	    -1) {
3887 		mdb_warn("failed to read taskq list head at %p",
3888 		    wsp->walk_addr);
3889 	}
3890 	wsp->walk_addr = (uintptr_t)tq_head.tq_task.tqent_next;
3891 
3892 
3893 	/*
3894 	 * Check for null list (next=head)
3895 	 */
3896 	if (wsp->walk_addr == (uintptr_t)wsp->walk_data) {
3897 		return (WALK_DONE);
3898 	}
3899 
3900 	return (WALK_NEXT);
3901 }
3902 
3903 
3904 int
3905 taskq_walk_step(mdb_walk_state_t *wsp)
3906 {
3907 	taskq_ent_t	tq_ent;
3908 	int		status;
3909 
3910 
3911 	if (mdb_vread((void *)&tq_ent, sizeof (taskq_ent_t), wsp->walk_addr) ==
3912 	    -1) {
3913 		mdb_warn("failed to read taskq_ent_t at %p", wsp->walk_addr);
3914 		return (DCMD_ERR);
3915 	}
3916 
3917 	status = wsp->walk_callback(wsp->walk_addr, (void *)&tq_ent,
3918 	    wsp->walk_cbdata);
3919 
3920 	wsp->walk_addr = (uintptr_t)tq_ent.tqent_next;
3921 
3922 
3923 	/* Check if we're at the last element (next=head) */
3924 	if (wsp->walk_addr == (uintptr_t)wsp->walk_data) {
3925 		return (WALK_DONE);
3926 	}
3927 
3928 	return (status);
3929 }
3930 
3931 int
3932 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp)
3933 {
3934 
3935 	if (*didp == thr->t_did) {
3936 		mdb_printf("%p\n", addr);
3937 		return (WALK_DONE);
3938 	} else
3939 		return (WALK_NEXT);
3940 }
3941 
3942 /*ARGSUSED*/
3943 int
3944 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3945 {
3946 	const mdb_arg_t *argp = &argv[0];
3947 	kt_did_t	did;
3948 
3949 	if (argc != 1)
3950 		return (DCMD_USAGE);
3951 
3952 	did = (kt_did_t)mdb_strtoull(argp->a_un.a_str);
3953 
3954 	if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) {
3955 		mdb_warn("failed to walk thread");
3956 		return (DCMD_ERR);
3957 
3958 	}
3959 	return (DCMD_OK);
3960 
3961 }
3962 
3963 static int
3964 errorq_walk_init(mdb_walk_state_t *wsp)
3965 {
3966 	if (wsp->walk_addr == NULL &&
3967 	    mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) {
3968 		mdb_warn("failed to read errorq_list");
3969 		return (WALK_ERR);
3970 	}
3971 
3972 	return (WALK_NEXT);
3973 }
3974 
3975 static int
3976 errorq_walk_step(mdb_walk_state_t *wsp)
3977 {
3978 	uintptr_t addr = wsp->walk_addr;
3979 	errorq_t eq;
3980 
3981 	if (addr == NULL)
3982 		return (WALK_DONE);
3983 
3984 	if (mdb_vread(&eq, sizeof (eq), addr) == -1) {
3985 		mdb_warn("failed to read errorq at %p", addr);
3986 		return (WALK_ERR);
3987 	}
3988 
3989 	wsp->walk_addr = (uintptr_t)eq.eq_next;
3990 	return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata));
3991 }
3992 
3993 typedef struct eqd_walk_data {
3994 	uintptr_t *eqd_stack;
3995 	void *eqd_buf;
3996 	ulong_t eqd_qpos;
3997 	ulong_t eqd_qlen;
3998 	size_t eqd_size;
3999 } eqd_walk_data_t;
4000 
4001 /*
4002  * In order to walk the list of pending error queue elements, we push the
4003  * addresses of the corresponding data buffers in to the eqd_stack array.
4004  * The error lists are in reverse chronological order when iterating using
4005  * eqe_prev, so we then pop things off the top in eqd_walk_step so that the
4006  * walker client gets addresses in order from oldest error to newest error.
4007  */
4008 static void
4009 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr)
4010 {
4011 	errorq_elem_t eqe;
4012 
4013 	while (addr != NULL) {
4014 		if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) {
4015 			mdb_warn("failed to read errorq element at %p", addr);
4016 			break;
4017 		}
4018 
4019 		if (eqdp->eqd_qpos == eqdp->eqd_qlen) {
4020 			mdb_warn("errorq is overfull -- more than %lu "
4021 			    "elems found\n", eqdp->eqd_qlen);
4022 			break;
4023 		}
4024 
4025 		eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data;
4026 		addr = (uintptr_t)eqe.eqe_prev;
4027 	}
4028 }
4029 
4030 static int
4031 eqd_walk_init(mdb_walk_state_t *wsp)
4032 {
4033 	eqd_walk_data_t *eqdp;
4034 	errorq_elem_t eqe, *addr;
4035 	errorq_t eq;
4036 	ulong_t i;
4037 
4038 	if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) {
4039 		mdb_warn("failed to read errorq at %p", wsp->walk_addr);
4040 		return (WALK_ERR);
4041 	}
4042 
4043 	if (eq.eq_ptail != NULL &&
4044 	    mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) {
4045 		mdb_warn("failed to read errorq element at %p", eq.eq_ptail);
4046 		return (WALK_ERR);
4047 	}
4048 
4049 	eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP);
4050 	wsp->walk_data = eqdp;
4051 
4052 	eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP);
4053 	eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP);
4054 	eqdp->eqd_qlen = eq.eq_qlen;
4055 	eqdp->eqd_qpos = 0;
4056 	eqdp->eqd_size = eq.eq_size;
4057 
4058 	/*
4059 	 * The newest elements in the queue are on the pending list, so we
4060 	 * push those on to our stack first.
4061 	 */
4062 	eqd_push_list(eqdp, (uintptr_t)eq.eq_pend);
4063 
4064 	/*
4065 	 * If eq_ptail is set, it may point to a subset of the errors on the
4066 	 * pending list in the event a casptr() failed; if ptail's data is
4067 	 * already in our stack, NULL out eq_ptail and ignore it.
4068 	 */
4069 	if (eq.eq_ptail != NULL) {
4070 		for (i = 0; i < eqdp->eqd_qpos; i++) {
4071 			if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) {
4072 				eq.eq_ptail = NULL;
4073 				break;
4074 			}
4075 		}
4076 	}
4077 
4078 	/*
4079 	 * If eq_phead is set, it has the processing list in order from oldest
4080 	 * to newest.  Use this to recompute eq_ptail as best we can and then
4081 	 * we nicely fall into eqd_push_list() of eq_ptail below.
4082 	 */
4083 	for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe),
4084 	    (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next)
4085 		eq.eq_ptail = addr;
4086 
4087 	/*
4088 	 * The oldest elements in the queue are on the processing list, subject
4089 	 * to machinations in the if-clauses above.  Push any such elements.
4090 	 */
4091 	eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail);
4092 	return (WALK_NEXT);
4093 }
4094 
4095 static int
4096 eqd_walk_step(mdb_walk_state_t *wsp)
4097 {
4098 	eqd_walk_data_t *eqdp = wsp->walk_data;
4099 	uintptr_t addr;
4100 
4101 	if (eqdp->eqd_qpos == 0)
4102 		return (WALK_DONE);
4103 
4104 	addr = eqdp->eqd_stack[--eqdp->eqd_qpos];
4105 
4106 	if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) {
4107 		mdb_warn("failed to read errorq data at %p", addr);
4108 		return (WALK_ERR);
4109 	}
4110 
4111 	return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata));
4112 }
4113 
4114 static void
4115 eqd_walk_fini(mdb_walk_state_t *wsp)
4116 {
4117 	eqd_walk_data_t *eqdp = wsp->walk_data;
4118 
4119 	mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen);
4120 	mdb_free(eqdp->eqd_buf, eqdp->eqd_size);
4121 	mdb_free(eqdp, sizeof (eqd_walk_data_t));
4122 }
4123 
4124 #define	EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64)
4125 
4126 static int
4127 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
4128 {
4129 	int i;
4130 	errorq_t eq;
4131 	uint_t opt_v = FALSE;
4132 
4133 	if (!(flags & DCMD_ADDRSPEC)) {
4134 		if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) {
4135 			mdb_warn("can't walk 'errorq'");
4136 			return (DCMD_ERR);
4137 		}
4138 		return (DCMD_OK);
4139 	}
4140 
4141 	i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL);
4142 	argc -= i;
4143 	argv += i;
4144 
4145 	if (argc != 0)
4146 		return (DCMD_USAGE);
4147 
4148 	if (opt_v || DCMD_HDRSPEC(flags)) {
4149 		mdb_printf("%<u>%-11s %-16s %1s %1s %1s ",
4150 		    "ADDR", "NAME", "S", "V", "N");
4151 		if (!opt_v) {
4152 			mdb_printf("%7s %7s %7s%</u>\n",
4153 			    "ACCEPT", "DROP", "LOG");
4154 		} else {
4155 			mdb_printf("%5s %6s %6s %3s %16s%</u>\n",
4156 			    "KSTAT", "QLEN", "SIZE", "IPL", "FUNC");
4157 		}
4158 	}
4159 
4160 	if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) {
4161 		mdb_warn("failed to read errorq at %p", addr);
4162 		return (DCMD_ERR);
4163 	}
4164 
4165 	mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name,
4166 	    (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-',
4167 	    (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ',
4168 	    (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' ');
4169 
4170 	if (!opt_v) {
4171 		mdb_printf("%7llu %7llu %7llu\n",
4172 		    EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed),
4173 		    EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) +
4174 		    EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged));
4175 	} else {
4176 		mdb_printf("%5s %6lu %6lu %3u %a\n",
4177 		    "  |  ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func);
4178 		mdb_printf("%38s\n%41s"
4179 		    "%12s %llu\n"
4180 		    "%53s %llu\n"
4181 		    "%53s %llu\n"
4182 		    "%53s %llu\n"
4183 		    "%53s %llu\n"
4184 		    "%53s %llu\n"
4185 		    "%53s %llu\n"
4186 		    "%53s %llu\n\n",
4187 		    "|", "+-> ",
4188 		    "DISPATCHED",	EQKSVAL(eq, eqk_dispatched),
4189 		    "DROPPED",		EQKSVAL(eq, eqk_dropped),
4190 		    "LOGGED",		EQKSVAL(eq, eqk_logged),
4191 		    "RESERVED",		EQKSVAL(eq, eqk_reserved),
4192 		    "RESERVE FAIL",	EQKSVAL(eq, eqk_reserve_fail),
4193 		    "COMMITTED",	EQKSVAL(eq, eqk_committed),
4194 		    "COMMIT FAIL",	EQKSVAL(eq, eqk_commit_fail),
4195 		    "CANCELLED",	EQKSVAL(eq, eqk_cancelled));
4196 	}
4197 
4198 	return (DCMD_OK);
4199 }
4200 
4201 /*ARGSUSED*/
4202 static int
4203 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
4204 {
4205 	cpu_t panic_cpu;
4206 	kthread_t *panic_thread;
4207 	void *buf;
4208 	panic_data_t *pd;
4209 	int i, n;
4210 
4211 	if (!mdb_prop_postmortem) {
4212 		mdb_warn("panicinfo can only be run on a system "
4213 		    "dump; see dumpadm(1M)\n");
4214 		return (DCMD_ERR);
4215 	}
4216 
4217 	if (flags & DCMD_ADDRSPEC || argc != 0)
4218 		return (DCMD_USAGE);
4219 
4220 	if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1)
4221 		mdb_warn("failed to read 'panic_cpu'");
4222 	else
4223 		mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id);
4224 
4225 	if (mdb_readvar(&panic_thread, "panic_thread") == -1)
4226 		mdb_warn("failed to read 'panic_thread'");
4227 	else
4228 		mdb_printf("%16s %?p\n", "thread", panic_thread);
4229 
4230 	buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP);
4231 	pd = (panic_data_t *)buf;
4232 
4233 	if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 ||
4234 	    pd->pd_version != PANICBUFVERS) {
4235 		mdb_warn("failed to read 'panicbuf'");
4236 		mdb_free(buf, PANICBUFSIZE);
4237 		return (DCMD_ERR);
4238 	}
4239 
4240 	mdb_printf("%16s %s\n", "message",  (char *)buf + pd->pd_msgoff);
4241 
4242 	n = (pd->pd_msgoff - (sizeof (panic_data_t) -
4243 	    sizeof (panic_nv_t))) / sizeof (panic_nv_t);
4244 
4245 	for (i = 0; i < n; i++)
4246 		mdb_printf("%16s %?llx\n",
4247 		    pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value);
4248 
4249 	mdb_free(buf, PANICBUFSIZE);
4250 	return (DCMD_OK);
4251 }
4252 
4253 static const mdb_dcmd_t dcmds[] = {
4254 
4255 	/* from genunix.c */
4256 	{ "addr2smap", ":[offset]", "translate address to smap", addr2smap },
4257 	{ "as2proc", ":", "convert as to proc_t address", as2proc },
4258 	{ "binding_hash_entry", ":", "print driver names hash table entry",
4259 		binding_hash_entry },
4260 	{ "callout", "?[-r|n] [-s|l] [-xhB] [-t | -ab nsec [-dkD]]"
4261 	    " [-C addr | -S seqid] [-f name|addr] [-p name| addr] [-T|L [-E]]"
4262 	    " [-FivVA]",
4263 	    "display callouts", callout, callout_help },
4264 	{ "calloutid", "[-d|v] xid", "print callout by extended id",
4265 	    calloutid, calloutid_help },
4266 	{ "class", NULL, "print process scheduler classes", class },
4267 	{ "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo },
4268 	{ "did2thread", "? kt_did", "find kernel thread for this id",
4269 		did2thread },
4270 	{ "errorq", "?[-v]", "display kernel error queues", errorq },
4271 	{ "fd", ":[fd num]", "get a file pointer from an fd", fd },
4272 	{ "flipone", ":", "the vik_rev_level 2 special", flipone },
4273 	{ "lminfo", NULL, "print lock manager information", lminfo },
4274 	{ "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl },
4275 	{ "panicinfo", NULL, "print panic information", panicinfo },
4276 	{ "pid2proc", "?", "convert PID to proc_t address", pid2proc },
4277 	{ "pmap", ":[-q]", "print process memory map", pmap },
4278 	{ "project", NULL, "display kernel project(s)", project },
4279 	{ "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps },
4280 	{ "pgrep", "[-x] [-n | -o] pattern",
4281 		"pattern match against all processes", pgrep },
4282 	{ "ptree", NULL, "print process tree", ptree },
4283 	{ "seg", ":", "print address space segment", seg },
4284 	{ "sysevent", "?[-sv]", "print sysevent pending or sent queue",
4285 		sysevent},
4286 	{ "sysevent_channel", "?", "print sysevent channel database",
4287 		sysevent_channel},
4288 	{ "sysevent_class_list", ":", "print sysevent class list",
4289 		sysevent_class_list},
4290 	{ "sysevent_subclass_list", ":",
4291 		"print sysevent subclass list", sysevent_subclass_list},
4292 	{ "system", NULL, "print contents of /etc/system file", sysfile },
4293 	{ "task", NULL, "display kernel task(s)", task },
4294 	{ "taskq_entry", ":", "display a taskq_ent_t", taskq_ent },
4295 	{ "vnode2path", ":[-F]", "vnode address to pathname", vnode2path },
4296 	{ "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap },
4297 	{ "whereopen", ":", "given a vnode, dumps procs which have it open",
4298 	    whereopen },
4299 
4300 	/* from zone.c */
4301 	{ "zone", "?", "display kernel zone(s)", zoneprt },
4302 	{ "zsd", ":[-v] [zsd_key]", "display zone-specific-data entries for "
4303 	    "selected zones", zsd },
4304 
4305 	/* from bio.c */
4306 	{ "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind },
4307 
4308 	/* from contract.c */
4309 	{ "contract", "?", "display a contract", cmd_contract },
4310 	{ "ctevent", ":", "display a contract event", cmd_ctevent },
4311 	{ "ctid", ":", "convert id to a contract pointer", cmd_ctid },
4312 
4313 	/* from cpupart.c */
4314 	{ "cpupart", "?[-v]", "print cpu partition info", cpupart },
4315 
4316 	/* from cyclic.c */
4317 	{ "cyccover", NULL, "dump cyclic coverage information", cyccover },
4318 	{ "cycid", "?", "dump a cyclic id", cycid },
4319 	{ "cycinfo", "?", "dump cyc_cpu info", cycinfo },
4320 	{ "cyclic", ":", "developer information", cyclic },
4321 	{ "cyctrace", "?", "dump cyclic trace buffer", cyctrace },
4322 
4323 	/* from devinfo.c */
4324 	{ "devbindings", "?[-qs] [device-name | major-num]",
4325 	    "print devinfo nodes bound to device-name or major-num",
4326 	    devbindings, devinfo_help },
4327 	{ "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo,
4328 	    devinfo_help },
4329 	{ "devinfo_audit", ":[-v]", "devinfo configuration audit record",
4330 	    devinfo_audit },
4331 	{ "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log",
4332 	    devinfo_audit_log },
4333 	{ "devinfo_audit_node", ":[-v]", "devinfo node configuration history",
4334 	    devinfo_audit_node },
4335 	{ "devinfo2driver", ":", "find driver name for this devinfo node",
4336 	    devinfo2driver },
4337 	{ "devnames", "?[-vm] [num]", "print devnames array", devnames },
4338 	{ "dev2major", "?<dev_t>", "convert dev_t to a major number",
4339 	    dev2major },
4340 	{ "dev2minor", "?<dev_t>", "convert dev_t to a minor number",
4341 	    dev2minor },
4342 	{ "devt", "?<dev_t>", "display a dev_t's major and minor numbers",
4343 	    devt },
4344 	{ "major2name", "?<major-num>", "convert major number to dev name",
4345 	    major2name },
4346 	{ "minornodes", ":", "given a devinfo node, print its minor nodes",
4347 	    minornodes },
4348 	{ "modctl2devinfo", ":", "given a modctl, list its devinfos",
4349 	    modctl2devinfo },
4350 	{ "name2major", "<dev-name>", "convert dev name to major number",
4351 	    name2major },
4352 	{ "prtconf", "?[-vpc]", "print devinfo tree", prtconf, prtconf_help },
4353 	{ "softstate", ":<instance>", "retrieve soft-state pointer",
4354 	    softstate },
4355 	{ "devinfo_fm", ":", "devinfo fault managment configuration",
4356 	    devinfo_fm },
4357 	{ "devinfo_fmce", ":", "devinfo fault managment cache entry",
4358 	    devinfo_fmce},
4359 
4360 	/* from fm.c */
4361 	{ "ereport", "[-v]", "print ereports logged in dump",
4362 	    ereport },
4363 
4364 	/* from findstack.c */
4365 	{ "findstack", ":[-v]", "find kernel thread stack", findstack },
4366 	{ "findstack_debug", NULL, "toggle findstack debugging",
4367 		findstack_debug },
4368 	{ "stacks", "?[-afiv] [-c func] [-C func] [-m module] [-M module] "
4369 		"[-s sobj | -S sobj] [-t tstate | -T tstate]",
4370 		"print unique kernel thread stacks",
4371 		stacks, stacks_help },
4372 
4373 	/* from irm.c */
4374 	{ "irmpools", NULL, "display interrupt pools", irmpools_dcmd },
4375 	{ "irmreqs", NULL, "display interrupt requests in an interrupt pool",
4376 	    irmreqs_dcmd },
4377 	{ "irmreq", NULL, "display an interrupt request", irmreq_dcmd },
4378 
4379 	/* from kgrep.c + genunix.c */
4380 	{ "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep,
4381 		kgrep_help },
4382 
4383 	/* from kmem.c */
4384 	{ "allocdby", ":", "given a thread, print its allocated buffers",
4385 		allocdby },
4386 	{ "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] "
4387 		"[-t thd]", "print or filter a bufctl", bufctl, bufctl_help },
4388 	{ "freedby", ":", "given a thread, print its freed buffers", freedby },
4389 	{ "kmalog", "?[ fail | slab ]",
4390 	    "display kmem transaction log and stack traces", kmalog },
4391 	{ "kmastat", "[-kmg]", "kernel memory allocator stats",
4392 	    kmastat },
4393 	{ "kmausers", "?[-ef] [cache ...]", "current medium and large users "
4394 		"of the kmem allocator", kmausers, kmausers_help },
4395 	{ "kmem_cache", "?[-n name]",
4396 		"print kernel memory caches", kmem_cache, kmem_cache_help},
4397 	{ "kmem_slabs", "?[-v] [-n cache] [-N cache] [-b maxbins] "
4398 		"[-B minbinsize]", "display slab usage per kmem cache",
4399 		kmem_slabs, kmem_slabs_help },
4400 	{ "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug },
4401 	{ "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log },
4402 	{ "kmem_verify", "?", "check integrity of kmem-managed memory",
4403 		kmem_verify },
4404 	{ "vmem", "?", "print a vmem_t", vmem },
4405 	{ "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] "
4406 		"[-m minsize] [-M maxsize] [-t thread] [-T type]",
4407 		"print or filter a vmem_seg", vmem_seg, vmem_seg_help },
4408 	{ "whatis", ":[-abiv]", "given an address, return information", whatis,
4409 		whatis_help },
4410 	{ "whatthread", ":[-v]", "print threads whose stack contains the "
4411 		"given address", whatthread },
4412 
4413 	/* from ldi.c */
4414 	{ "ldi_handle", "?[-i]", "display a layered driver handle",
4415 	    ldi_handle, ldi_handle_help },
4416 	{ "ldi_ident", NULL, "display a layered driver identifier",
4417 	    ldi_ident, ldi_ident_help },
4418 
4419 	/* from leaky.c + leaky_subr.c */
4420 	{ "findleaks", FINDLEAKS_USAGE,
4421 	    "search for potential kernel memory leaks", findleaks,
4422 	    findleaks_help },
4423 
4424 	/* from lgrp.c */
4425 	{ "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp},
4426 	{ "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set},
4427 
4428 	/* from log.c */
4429 	{ "msgbuf", "?[-v]", "print most recent console messages", msgbuf },
4430 
4431 	/* from memory.c */
4432 	{ "page", "?", "display a summarized page_t", page },
4433 	{ "memstat", NULL, "display memory usage summary", memstat },
4434 	{ "memlist", "?[-iav]", "display a struct memlist", memlist },
4435 	{ "swapinfo", "?", "display a struct swapinfo", swapinfof },
4436 
4437 	/* from mmd.c */
4438 	{ "multidata", ":[-sv]", "display a summarized multidata_t",
4439 		multidata },
4440 	{ "pattbl", ":", "display a summarized multidata attribute table",
4441 		pattbl },
4442 	{ "pattr2multidata", ":", "print multidata pointer from pattr_t",
4443 		pattr2multidata },
4444 	{ "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t",
4445 		pdesc2slab },
4446 	{ "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify },
4447 	{ "slab2multidata", ":", "print multidata pointer from pdesc_slab_t",
4448 		slab2multidata },
4449 
4450 	/* from modhash.c */
4451 	{ "modhash", "?[-ceht] [-k key] [-v val] [-i index]",
4452 		"display information about one or all mod_hash structures",
4453 		modhash, modhash_help },
4454 	{ "modent", ":[-k | -v | -t type]",
4455 		"display information about a mod_hash_entry", modent,
4456 		modent_help },
4457 
4458 	/* from net.c */
4459 	{ "mi", ":[-p] [-d | -m]", "filter and display MI object or payload",
4460 		mi },
4461 	{ "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp | icmp]",
4462 		"show network statistics", netstat },
4463 	{ "sonode", "?[-f inet | inet6 | unix | #] "
4464 		"[-t stream | dgram | raw | #] [-p #]",
4465 		"filter and display sonode", sonode },
4466 
4467 	/* from netstack.c */
4468 	{ "netstack", "", "show stack instances", netstack },
4469 
4470 	/* from nvpair.c */
4471 	{ NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR,
4472 		nvpair_print },
4473 	{ NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR,
4474 		print_nvlist },
4475 
4476 	/* from pg.c */
4477 	{ "pg", "?[-q]", "display a pg", pg},
4478 	/* from group.c */
4479 	{ "group", "?[-q]", "display a group", group},
4480 
4481 	/* from log.c */
4482 	/* from rctl.c */
4483 	{ "rctl_dict", "?", "print systemwide default rctl definitions",
4484 		rctl_dict },
4485 	{ "rctl_list", ":[handle]", "print rctls for the given proc",
4486 		rctl_list },
4487 	{ "rctl", ":[handle]", "print a rctl_t, only if it matches the handle",
4488 		rctl },
4489 	{ "rctl_validate", ":[-v] [-n #]", "test resource control value "
4490 		"sequence", rctl_validate },
4491 
4492 	/* from sobj.c */
4493 	{ "rwlock", ":", "dump out a readers/writer lock", rwlock },
4494 	{ "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex,
4495 		mutex_help },
4496 	{ "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts },
4497 	{ "wchaninfo", "?[-v]", "dump condition variable", wchaninfo },
4498 	{ "turnstile", "?", "display a turnstile", turnstile },
4499 
4500 	/* from stream.c */
4501 	{ "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]",
4502 		"print an mblk", mblk_prt, mblk_help },
4503 	{ "mblk_verify", "?", "verify integrity of an mblk", mblk_verify },
4504 	{ "mblk2dblk", ":", "convert mblk_t address to dblk_t address",
4505 		mblk2dblk },
4506 	{ "q2otherq", ":", "print peer queue for a given queue", q2otherq },
4507 	{ "q2rdq", ":", "print read queue for a given queue", q2rdq },
4508 	{ "q2syncq", ":", "print syncq for a given queue", q2syncq },
4509 	{ "q2stream", ":", "print stream pointer for a given queue", q2stream },
4510 	{ "q2wrq", ":", "print write queue for a given queue", q2wrq },
4511 	{ "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]",
4512 		"filter and display STREAM queue", queue, queue_help },
4513 	{ "stdata", ":[-q|v] [-f flag] [-F flag]",
4514 		"filter and display STREAM head", stdata, stdata_help },
4515 	{ "str2mate", ":", "print mate of this stream", str2mate },
4516 	{ "str2wrq", ":", "print write queue of this stream", str2wrq },
4517 	{ "stream", ":", "display STREAM", stream },
4518 	{ "strftevent", ":", "print STREAMS flow trace event", strftevent },
4519 	{ "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]",
4520 		"filter and display STREAM sync queue", syncq, syncq_help },
4521 	{ "syncq2q", ":", "print queue for a given syncq", syncq2q },
4522 
4523 	/* from thread.c */
4524 	{ "thread", "?[-bdfimps]", "display a summarized kthread_t", thread,
4525 		thread_help },
4526 	{ "threadlist", "?[-t] [-v [count]]",
4527 		"display threads and associated C stack traces", threadlist,
4528 		threadlist_help },
4529 	{ "stackinfo", "?[-h|-a]", "display kthread_t stack usage", stackinfo,
4530 		stackinfo_help },
4531 
4532 	/* from tsd.c */
4533 	{ "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd },
4534 	{ "tsdtot", ":", "find thread with this tsd", tsdtot },
4535 
4536 	/*
4537 	 * typegraph does not work under kmdb, as it requires too much memory
4538 	 * for its internal data structures.
4539 	 */
4540 #ifndef _KMDB
4541 	/* from typegraph.c */
4542 	{ "findlocks", ":", "find locks held by specified thread", findlocks },
4543 	{ "findfalse", "?[-v]", "find potentially falsely shared structures",
4544 		findfalse },
4545 	{ "typegraph", NULL, "build type graph", typegraph },
4546 	{ "istype", ":type", "manually set object type", istype },
4547 	{ "notype", ":", "manually clear object type", notype },
4548 	{ "whattype", ":", "determine object type", whattype },
4549 #endif
4550 
4551 	/* from vfs.c */
4552 	{ "fsinfo", "?[-v]", "print mounted filesystems", fsinfo },
4553 	{ "pfiles", ":[-fp]", "print process file information", pfiles,
4554 		pfiles_help },
4555 
4556 	/* from mdi.c */
4557 	{ "mdipi", NULL, "given a path, dump mdi_pathinfo "
4558 		"and detailed pi_prop list", mdipi },
4559 	{ "mdiprops", NULL, "given a pi_prop, dump the pi_prop list",
4560 		mdiprops },
4561 	{ "mdiphci", NULL, "given a phci, dump mdi_phci and "
4562 		"list all paths", mdiphci },
4563 	{ "mdivhci", NULL, "given a vhci, dump mdi_vhci and list "
4564 		"all phcis", mdivhci },
4565 	{ "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo "
4566 		"client links", mdiclient_paths },
4567 	{ "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo "
4568 		"phci links", mdiphci_paths },
4569 	{ "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links",
4570 		mdiphcis },
4571 
4572 	{ NULL }
4573 };
4574 
4575 static const mdb_walker_t walkers[] = {
4576 
4577 	/* from genunix.c */
4578 	{ "anon", "given an amp, list of anon structures",
4579 		anon_walk_init, anon_walk_step, anon_walk_fini },
4580 	{ "callouts_bytime", "walk callouts by list chain (expiration time)",
4581 		callout_walk_init, callout_walk_step, callout_walk_fini,
4582 		(void *)CALLOUT_WALK_BYLIST },
4583 	{ "callouts_byid", "walk callouts by id hash chain",
4584 		callout_walk_init, callout_walk_step, callout_walk_fini,
4585 		(void *)CALLOUT_WALK_BYID },
4586 	{ "callout_list", "walk a callout list", callout_list_walk_init,
4587 		callout_list_walk_step, callout_list_walk_fini },
4588 	{ "callout_table", "walk callout table array", callout_table_walk_init,
4589 		callout_table_walk_step, callout_table_walk_fini },
4590 	{ "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step },
4591 	{ "ereportq_dump", "walk list of ereports in dump error queue",
4592 		ereportq_dump_walk_init, ereportq_dump_walk_step, NULL },
4593 	{ "ereportq_pend", "walk list of ereports in pending error queue",
4594 		ereportq_pend_walk_init, ereportq_pend_walk_step, NULL },
4595 	{ "errorq", "walk list of system error queues",
4596 		errorq_walk_init, errorq_walk_step, NULL },
4597 	{ "errorq_data", "walk pending error queue data buffers",
4598 		eqd_walk_init, eqd_walk_step, eqd_walk_fini },
4599 	{ "allfile", "given a proc pointer, list all file pointers",
4600 		file_walk_init, allfile_walk_step, file_walk_fini },
4601 	{ "file", "given a proc pointer, list of open file pointers",
4602 		file_walk_init, file_walk_step, file_walk_fini },
4603 	{ "lock_descriptor", "walk lock_descriptor_t structures",
4604 		ld_walk_init, ld_walk_step, NULL },
4605 	{ "lock_graph", "walk lock graph",
4606 		lg_walk_init, lg_walk_step, NULL },
4607 	{ "port", "given a proc pointer, list of created event ports",
4608 		port_walk_init, port_walk_step, NULL },
4609 	{ "portev", "given a port pointer, list of events in the queue",
4610 		portev_walk_init, portev_walk_step, portev_walk_fini },
4611 	{ "proc", "list of active proc_t structures",
4612 		proc_walk_init, proc_walk_step, proc_walk_fini },
4613 	{ "projects", "walk a list of kernel projects",
4614 		project_walk_init, project_walk_step, NULL },
4615 	{ "seg", "given an as, list of segments",
4616 		seg_walk_init, avl_walk_step, avl_walk_fini },
4617 	{ "sysevent_pend", "walk sysevent pending queue",
4618 		sysevent_pend_walk_init, sysevent_walk_step,
4619 		sysevent_walk_fini},
4620 	{ "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init,
4621 		sysevent_walk_step, sysevent_walk_fini},
4622 	{ "sysevent_channel", "walk sysevent channel subscriptions",
4623 		sysevent_channel_walk_init, sysevent_channel_walk_step,
4624 		sysevent_channel_walk_fini},
4625 	{ "sysevent_class_list", "walk sysevent subscription's class list",
4626 		sysevent_class_list_walk_init, sysevent_class_list_walk_step,
4627 		sysevent_class_list_walk_fini},
4628 	{ "sysevent_subclass_list",
4629 		"walk sysevent subscription's subclass list",
4630 		sysevent_subclass_list_walk_init,
4631 		sysevent_subclass_list_walk_step,
4632 		sysevent_subclass_list_walk_fini},
4633 	{ "task", "given a task pointer, walk its processes",
4634 		task_walk_init, task_walk_step, NULL },
4635 	{ "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list",
4636 		taskq_walk_init, taskq_walk_step, NULL, NULL },
4637 
4638 	/* from avl.c */
4639 	{ AVL_WALK_NAME, AVL_WALK_DESC,
4640 		avl_walk_init, avl_walk_step, avl_walk_fini },
4641 
4642 	/* from zone.c */
4643 	{ "zone", "walk a list of kernel zones",
4644 		zone_walk_init, zone_walk_step, NULL },
4645 	{ "zsd", "walk list of zsd entries for a zone",
4646 		zsd_walk_init, zsd_walk_step, NULL },
4647 
4648 	/* from bio.c */
4649 	{ "buf", "walk the bio buf hash",
4650 		buf_walk_init, buf_walk_step, buf_walk_fini },
4651 
4652 	/* from contract.c */
4653 	{ "contract", "walk all contracts, or those of the specified type",
4654 		ct_walk_init, generic_walk_step, NULL },
4655 	{ "ct_event", "walk events on a contract event queue",
4656 		ct_event_walk_init, generic_walk_step, NULL },
4657 	{ "ct_listener", "walk contract event queue listeners",
4658 		ct_listener_walk_init, generic_walk_step, NULL },
4659 
4660 	/* from cpupart.c */
4661 	{ "cpupart_cpulist", "given an cpupart_t, walk cpus in partition",
4662 		cpupart_cpulist_walk_init, cpupart_cpulist_walk_step,
4663 		NULL },
4664 	{ "cpupart_walk", "walk the set of cpu partitions",
4665 		cpupart_walk_init, cpupart_walk_step, NULL },
4666 
4667 	/* from ctxop.c */
4668 	{ "ctxop", "walk list of context ops on a thread",
4669 		ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini },
4670 
4671 	/* from cyclic.c */
4672 	{ "cyccpu", "walk per-CPU cyc_cpu structures",
4673 		cyccpu_walk_init, cyccpu_walk_step, NULL },
4674 	{ "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list",
4675 		cycomni_walk_init, cycomni_walk_step, NULL },
4676 	{ "cyctrace", "walk cyclic trace buffer",
4677 		cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini },
4678 
4679 	/* from devinfo.c */
4680 	{ "binding_hash", "walk all entries in binding hash table",
4681 		binding_hash_walk_init, binding_hash_walk_step, NULL },
4682 	{ "devinfo", "walk devinfo tree or subtree",
4683 		devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini },
4684 	{ "devinfo_audit_log", "walk devinfo audit system-wide log",
4685 		devinfo_audit_log_walk_init, devinfo_audit_log_walk_step,
4686 		devinfo_audit_log_walk_fini},
4687 	{ "devinfo_audit_node", "walk per-devinfo audit history",
4688 		devinfo_audit_node_walk_init, devinfo_audit_node_walk_step,
4689 		devinfo_audit_node_walk_fini},
4690 	{ "devinfo_children", "walk children of devinfo node",
4691 		devinfo_children_walk_init, devinfo_children_walk_step,
4692 		devinfo_children_walk_fini },
4693 	{ "devinfo_parents", "walk ancestors of devinfo node",
4694 		devinfo_parents_walk_init, devinfo_parents_walk_step,
4695 		devinfo_parents_walk_fini },
4696 	{ "devinfo_siblings", "walk siblings of devinfo node",
4697 		devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL },
4698 	{ "devi_next", "walk devinfo list",
4699 		NULL, devi_next_walk_step, NULL },
4700 	{ "devnames", "walk devnames array",
4701 		devnames_walk_init, devnames_walk_step, devnames_walk_fini },
4702 	{ "minornode", "given a devinfo node, walk minor nodes",
4703 		minornode_walk_init, minornode_walk_step, NULL },
4704 	{ "softstate",
4705 		"given an i_ddi_soft_state*, list all in-use driver stateps",
4706 		soft_state_walk_init, soft_state_walk_step,
4707 		NULL, NULL },
4708 	{ "softstate_all",
4709 		"given an i_ddi_soft_state*, list all driver stateps",
4710 		soft_state_walk_init, soft_state_all_walk_step,
4711 		NULL, NULL },
4712 	{ "devinfo_fmc",
4713 		"walk a fault management handle cache active list",
4714 		devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL },
4715 
4716 	/* from irm.c */
4717 	{ "irmpools", "walk global list of interrupt pools",
4718 	    irmpools_walk_init, list_walk_step, list_walk_fini },
4719 	{ "irmreqs", "walk list of interrupt requests in an interrupt pool",
4720 	    irmreqs_walk_init, list_walk_step, list_walk_fini },
4721 
4722 	/* from kmem.c */
4723 	{ "allocdby", "given a thread, walk its allocated bufctls",
4724 		allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini },
4725 	{ "bufctl", "walk a kmem cache's bufctls",
4726 		bufctl_walk_init, kmem_walk_step, kmem_walk_fini },
4727 	{ "bufctl_history", "walk the available history of a bufctl",
4728 		bufctl_history_walk_init, bufctl_history_walk_step,
4729 		bufctl_history_walk_fini },
4730 	{ "freedby", "given a thread, walk its freed bufctls",
4731 		freedby_walk_init, allocdby_walk_step, allocdby_walk_fini },
4732 	{ "freectl", "walk a kmem cache's free bufctls",
4733 		freectl_walk_init, kmem_walk_step, kmem_walk_fini },
4734 	{ "freectl_constructed", "walk a kmem cache's constructed free bufctls",
4735 		freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
4736 	{ "freemem", "walk a kmem cache's free memory",
4737 		freemem_walk_init, kmem_walk_step, kmem_walk_fini },
4738 	{ "freemem_constructed", "walk a kmem cache's constructed free memory",
4739 		freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
4740 	{ "kmem", "walk a kmem cache",
4741 		kmem_walk_init, kmem_walk_step, kmem_walk_fini },
4742 	{ "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches",
4743 		kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL },
4744 	{ "kmem_hash", "given a kmem cache, walk its allocated hash table",
4745 		kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini },
4746 	{ "kmem_log", "walk the kmem transaction log",
4747 		kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini },
4748 	{ "kmem_slab", "given a kmem cache, walk its slabs",
4749 		kmem_slab_walk_init, combined_walk_step, combined_walk_fini },
4750 	{ "kmem_slab_partial",
4751 	    "given a kmem cache, walk its partially allocated slabs (min 1)",
4752 		kmem_slab_walk_partial_init, combined_walk_step,
4753 		combined_walk_fini },
4754 	{ "vmem", "walk vmem structures in pre-fix, depth-first order",
4755 		vmem_walk_init, vmem_walk_step, vmem_walk_fini },
4756 	{ "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs",
4757 		vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4758 	{ "vmem_free", "given a vmem_t, walk its free vmem_segs",
4759 		vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4760 	{ "vmem_postfix", "walk vmem structures in post-fix, depth-first order",
4761 		vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini },
4762 	{ "vmem_seg", "given a vmem_t, walk all of its vmem_segs",
4763 		vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4764 	{ "vmem_span", "given a vmem_t, walk its spanning vmem_segs",
4765 		vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4766 
4767 	/* from ldi.c */
4768 	{ "ldi_handle", "walk the layered driver handle hash",
4769 		ldi_handle_walk_init, ldi_handle_walk_step, NULL },
4770 	{ "ldi_ident", "walk the layered driver identifier hash",
4771 		ldi_ident_walk_init, ldi_ident_walk_step, NULL },
4772 
4773 	/* from leaky.c + leaky_subr.c */
4774 	{ "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same "
4775 	    "stack trace",
4776 		leaky_walk_init, leaky_walk_step, leaky_walk_fini },
4777 	{ "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for "
4778 	    "leaks w/ same stack trace",
4779 		leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini },
4780 
4781 	/* from lgrp.c */
4782 	{ "lgrp_cpulist", "walk CPUs in a given lgroup",
4783 		lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL },
4784 	{ "lgrptbl", "walk lgroup table",
4785 		lgrp_walk_init, lgrp_walk_step, NULL },
4786 	{ "lgrp_parents", "walk up lgroup lineage from given lgroup",
4787 		lgrp_parents_walk_init, lgrp_parents_walk_step, NULL },
4788 	{ "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup",
4789 		lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL },
4790 	{ "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup",
4791 		lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL },
4792 
4793 	/* from group.c */
4794 	{ "group", "walk all elements of a group",
4795 		group_walk_init, group_walk_step, NULL },
4796 
4797 	/* from list.c */
4798 	{ LIST_WALK_NAME, LIST_WALK_DESC,
4799 		list_walk_init, list_walk_step, list_walk_fini },
4800 
4801 	/* from memory.c */
4802 	{ "page", "walk all pages, or those from the specified vnode",
4803 		page_walk_init, page_walk_step, page_walk_fini },
4804 	{ "memlist", "walk specified memlist",
4805 		NULL, memlist_walk_step, NULL },
4806 	{ "swapinfo", "walk swapinfo structures",
4807 		swap_walk_init, swap_walk_step, NULL },
4808 
4809 	/* from mmd.c */
4810 	{ "pattr", "walk pattr_t structures", pattr_walk_init,
4811 		mmdq_walk_step, mmdq_walk_fini },
4812 	{ "pdesc", "walk pdesc_t structures",
4813 		pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini },
4814 	{ "pdesc_slab", "walk pdesc_slab_t structures",
4815 		pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini },
4816 
4817 	/* from modhash.c */
4818 	{ "modhash", "walk list of mod_hash structures", modhash_walk_init,
4819 		modhash_walk_step, NULL },
4820 	{ "modent", "walk list of entries in a given mod_hash",
4821 		modent_walk_init, modent_walk_step, modent_walk_fini },
4822 	{ "modchain", "walk list of entries in a given mod_hash_entry",
4823 		NULL, modchain_walk_step, NULL },
4824 
4825 	/* from net.c */
4826 	{ "ar", "walk ar_t structures using MI for all stacks",
4827 		mi_payload_walk_init, mi_payload_walk_step, NULL, &mi_ar_arg },
4828 	{ "icmp", "walk ICMP control structures using MI for all stacks",
4829 		mi_payload_walk_init, mi_payload_walk_step, NULL,
4830 		&mi_icmp_arg },
4831 	{ "mi", "given a MI_O, walk the MI",
4832 		mi_walk_init, mi_walk_step, mi_walk_fini, NULL },
4833 	{ "sonode", "given a sonode, walk its children",
4834 		sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL },
4835 	{ "ar_stacks", "walk all the ar_stack_t",
4836 		ar_stacks_walk_init, ar_stacks_walk_step, NULL },
4837 	{ "icmp_stacks", "walk all the icmp_stack_t",
4838 		icmp_stacks_walk_init, icmp_stacks_walk_step, NULL },
4839 	{ "tcp_stacks", "walk all the tcp_stack_t",
4840 		tcp_stacks_walk_init, tcp_stacks_walk_step, NULL },
4841 	{ "udp_stacks", "walk all the udp_stack_t",
4842 		udp_stacks_walk_init, udp_stacks_walk_step, NULL },
4843 
4844 	/* from nvpair.c */
4845 	{ NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR,
4846 		nvpair_walk_init, nvpair_walk_step, NULL },
4847 
4848 	/* from rctl.c */
4849 	{ "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists",
4850 		rctl_dict_walk_init, rctl_dict_walk_step, NULL },
4851 	{ "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init,
4852 		rctl_set_walk_step, NULL },
4853 	{ "rctl_val", "given a rctl_t, walk all rctl_val entries associated",
4854 		rctl_val_walk_init, rctl_val_walk_step },
4855 
4856 	/* from sobj.c */
4857 	{ "blocked", "walk threads blocked on a given sobj",
4858 		blocked_walk_init, blocked_walk_step, NULL },
4859 	{ "wchan", "given a wchan, list of blocked threads",
4860 		wchan_walk_init, wchan_walk_step, wchan_walk_fini },
4861 
4862 	/* from stream.c */
4863 	{ "b_cont", "walk mblk_t list using b_cont",
4864 		mblk_walk_init, b_cont_step, mblk_walk_fini },
4865 	{ "b_next", "walk mblk_t list using b_next",
4866 		mblk_walk_init, b_next_step, mblk_walk_fini },
4867 	{ "qlink", "walk queue_t list using q_link",
4868 		queue_walk_init, queue_link_step, queue_walk_fini },
4869 	{ "qnext", "walk queue_t list using q_next",
4870 		queue_walk_init, queue_next_step, queue_walk_fini },
4871 	{ "strftblk", "given a dblk_t, walk STREAMS flow trace event list",
4872 		strftblk_walk_init, strftblk_step, strftblk_walk_fini },
4873 	{ "readq", "walk read queue side of stdata",
4874 		str_walk_init, strr_walk_step, str_walk_fini },
4875 	{ "writeq", "walk write queue side of stdata",
4876 		str_walk_init, strw_walk_step, str_walk_fini },
4877 
4878 	/* from thread.c */
4879 	{ "deathrow", "walk threads on both lwp_ and thread_deathrow",
4880 		deathrow_walk_init, deathrow_walk_step, NULL },
4881 	{ "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues",
4882 		cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
4883 	{ "cpupart_dispq",
4884 		"given a cpupart_t, walk threads in dispatcher queues",
4885 		cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
4886 	{ "lwp_deathrow", "walk lwp_deathrow",
4887 		lwp_deathrow_walk_init, deathrow_walk_step, NULL },
4888 	{ "thread", "global or per-process kthread_t structures",
4889 		thread_walk_init, thread_walk_step, thread_walk_fini },
4890 	{ "thread_deathrow", "walk threads on thread_deathrow",
4891 		thread_deathrow_walk_init, deathrow_walk_step, NULL },
4892 
4893 	/* from tsd.c */
4894 	{ "tsd", "walk list of thread-specific data",
4895 		tsd_walk_init, tsd_walk_step, tsd_walk_fini },
4896 
4897 	/* from tsol.c */
4898 	{ "tnrh", "walk remote host cache structures",
4899 	    tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini },
4900 	{ "tnrhtp", "walk remote host template structures",
4901 	    tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini },
4902 
4903 	/*
4904 	 * typegraph does not work under kmdb, as it requires too much memory
4905 	 * for its internal data structures.
4906 	 */
4907 #ifndef _KMDB
4908 	/* from typegraph.c */
4909 	{ "typeconflict", "walk buffers with conflicting type inferences",
4910 		typegraph_walk_init, typeconflict_walk_step },
4911 	{ "typeunknown", "walk buffers with unknown types",
4912 		typegraph_walk_init, typeunknown_walk_step },
4913 #endif
4914 
4915 	/* from vfs.c */
4916 	{ "vfs", "walk file system list",
4917 		vfs_walk_init, vfs_walk_step },
4918 
4919 	/* from mdi.c */
4920 	{ "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link",
4921 		mdi_pi_client_link_walk_init,
4922 		mdi_pi_client_link_walk_step,
4923 		mdi_pi_client_link_walk_fini },
4924 
4925 	{ "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link",
4926 		mdi_pi_phci_link_walk_init,
4927 		mdi_pi_phci_link_walk_step,
4928 		mdi_pi_phci_link_walk_fini },
4929 
4930 	{ "mdiphci_list", "Walker for mdi_phci ph_next link",
4931 		mdi_phci_ph_next_walk_init,
4932 		mdi_phci_ph_next_walk_step,
4933 		mdi_phci_ph_next_walk_fini },
4934 
4935 	/* from netstack.c */
4936 	{ "netstack", "walk a list of kernel netstacks",
4937 		netstack_walk_init, netstack_walk_step, NULL },
4938 
4939 	{ NULL }
4940 };
4941 
4942 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers };
4943 
4944 /*ARGSUSED*/
4945 static void
4946 genunix_statechange_cb(void *ignored)
4947 {
4948 	/*
4949 	 * Force ::findleaks and ::stacks to let go any cached state.
4950 	 */
4951 	leaky_cleanup(1);
4952 	stacks_cleanup(1);
4953 
4954 	kmem_statechange();	/* notify kmem */
4955 }
4956 
4957 const mdb_modinfo_t *
4958 _mdb_init(void)
4959 {
4960 	kmem_init();
4961 
4962 	(void) mdb_callback_add(MDB_CALLBACK_STCHG,
4963 	    genunix_statechange_cb, NULL);
4964 
4965 	return (&modinfo);
4966 }
4967 
4968 void
4969 _mdb_fini(void)
4970 {
4971 	leaky_cleanup(1);
4972 	stacks_cleanup(1);
4973 }
4974