1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <mdb/mdb_param.h> 27 #include <mdb/mdb_modapi.h> 28 #include <mdb/mdb_ks.h> 29 #include <mdb/mdb_ctf.h> 30 31 #include <sys/types.h> 32 #include <sys/thread.h> 33 #include <sys/session.h> 34 #include <sys/user.h> 35 #include <sys/proc.h> 36 #include <sys/var.h> 37 #include <sys/t_lock.h> 38 #include <sys/systm.h> 39 #include <sys/callo.h> 40 #include <sys/priocntl.h> 41 #include <sys/class.h> 42 #include <sys/regset.h> 43 #include <sys/stack.h> 44 #include <sys/cpuvar.h> 45 #include <sys/vnode.h> 46 #include <sys/vfs.h> 47 #include <sys/flock_impl.h> 48 #include <sys/kmem_impl.h> 49 #include <sys/vmem_impl.h> 50 #include <sys/kstat.h> 51 #include <vm/seg_vn.h> 52 #include <vm/anon.h> 53 #include <vm/as.h> 54 #include <vm/seg_map.h> 55 #include <sys/dditypes.h> 56 #include <sys/ddi_impldefs.h> 57 #include <sys/sysmacros.h> 58 #include <sys/sysconf.h> 59 #include <sys/task.h> 60 #include <sys/project.h> 61 #include <sys/taskq.h> 62 #include <sys/taskq_impl.h> 63 #include <sys/errorq_impl.h> 64 #include <sys/cred_impl.h> 65 #include <sys/zone.h> 66 #include <sys/panic.h> 67 #include <regex.h> 68 #include <sys/port_impl.h> 69 70 #include "avl.h" 71 #include "combined.h" 72 #include "contract.h" 73 #include "cpupart_mdb.h" 74 #include "devinfo.h" 75 #include "irm.h" 76 #include "leaky.h" 77 #include "lgrp.h" 78 #include "pg.h" 79 #include "group.h" 80 #include "list.h" 81 #include "log.h" 82 #include "kgrep.h" 83 #include "kmem.h" 84 #include "bio.h" 85 #include "streams.h" 86 #include "cyclic.h" 87 #include "findstack.h" 88 #include "ndievents.h" 89 #include "mmd.h" 90 #include "net.h" 91 #include "netstack.h" 92 #include "nvpair.h" 93 #include "ctxop.h" 94 #include "tsd.h" 95 #include "thread.h" 96 #include "memory.h" 97 #include "sobj.h" 98 #include "sysevent.h" 99 #include "rctl.h" 100 #include "tsol.h" 101 #include "typegraph.h" 102 #include "ldi.h" 103 #include "vfs.h" 104 #include "zone.h" 105 #include "modhash.h" 106 #include "mdi.h" 107 #include "fm.h" 108 109 /* 110 * Surely this is defined somewhere... 111 */ 112 #define NINTR 16 113 114 #define KILOS 10 115 #define MEGS 20 116 #define GIGS 30 117 118 #ifndef STACK_BIAS 119 #define STACK_BIAS 0 120 #endif 121 122 static char 123 pstat2ch(uchar_t state) 124 { 125 switch (state) { 126 case SSLEEP: return ('S'); 127 case SRUN: return ('R'); 128 case SZOMB: return ('Z'); 129 case SIDL: return ('I'); 130 case SONPROC: return ('O'); 131 case SSTOP: return ('T'); 132 case SWAIT: return ('W'); 133 default: return ('?'); 134 } 135 } 136 137 #define PS_PRTTHREADS 0x1 138 #define PS_PRTLWPS 0x2 139 #define PS_PSARGS 0x4 140 #define PS_TASKS 0x8 141 #define PS_PROJECTS 0x10 142 #define PS_ZONES 0x20 143 144 static int 145 ps_threadprint(uintptr_t addr, const void *data, void *private) 146 { 147 const kthread_t *t = (const kthread_t *)data; 148 uint_t prt_flags = *((uint_t *)private); 149 150 static const mdb_bitmask_t t_state_bits[] = { 151 { "TS_FREE", UINT_MAX, TS_FREE }, 152 { "TS_SLEEP", TS_SLEEP, TS_SLEEP }, 153 { "TS_RUN", TS_RUN, TS_RUN }, 154 { "TS_ONPROC", TS_ONPROC, TS_ONPROC }, 155 { "TS_ZOMB", TS_ZOMB, TS_ZOMB }, 156 { "TS_STOPPED", TS_STOPPED, TS_STOPPED }, 157 { "TS_WAIT", TS_WAIT, TS_WAIT }, 158 { NULL, 0, 0 } 159 }; 160 161 if (prt_flags & PS_PRTTHREADS) 162 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits); 163 164 if (prt_flags & PS_PRTLWPS) 165 mdb_printf("\tL %?a ID: %u\n", t->t_lwp, t->t_tid); 166 167 return (WALK_NEXT); 168 } 169 170 int 171 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 172 { 173 uint_t prt_flags = 0; 174 proc_t pr; 175 struct pid pid, pgid, sid; 176 sess_t session; 177 cred_t cred; 178 task_t tk; 179 kproject_t pj; 180 zone_t zn; 181 182 if (!(flags & DCMD_ADDRSPEC)) { 183 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) { 184 mdb_warn("can't walk 'proc'"); 185 return (DCMD_ERR); 186 } 187 return (DCMD_OK); 188 } 189 190 if (mdb_getopts(argc, argv, 191 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags, 192 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags, 193 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags, 194 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags, 195 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags, 196 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc) 197 return (DCMD_USAGE); 198 199 if (DCMD_HDRSPEC(flags)) { 200 mdb_printf("%<u>%1s %6s %6s %6s %6s ", 201 "S", "PID", "PPID", "PGID", "SID"); 202 if (prt_flags & PS_TASKS) 203 mdb_printf("%5s ", "TASK"); 204 if (prt_flags & PS_PROJECTS) 205 mdb_printf("%5s ", "PROJ"); 206 if (prt_flags & PS_ZONES) 207 mdb_printf("%5s ", "ZONE"); 208 mdb_printf("%6s %10s %?s %s%</u>\n", 209 "UID", "FLAGS", "ADDR", "NAME"); 210 } 211 212 mdb_vread(&pr, sizeof (pr), addr); 213 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp); 214 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp); 215 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred); 216 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp); 217 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp); 218 if (prt_flags & (PS_TASKS | PS_PROJECTS)) 219 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task); 220 if (prt_flags & PS_PROJECTS) 221 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj); 222 if (prt_flags & PS_ZONES) 223 mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone); 224 225 mdb_printf("%c %6d %6d %6d %6d ", 226 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id, 227 sid.pid_id); 228 if (prt_flags & PS_TASKS) 229 mdb_printf("%5d ", tk.tk_tkid); 230 if (prt_flags & PS_PROJECTS) 231 mdb_printf("%5d ", pj.kpj_id); 232 if (prt_flags & PS_ZONES) 233 mdb_printf("%5d ", zn.zone_id); 234 mdb_printf("%6d 0x%08x %0?p %s\n", 235 cred.cr_uid, pr.p_flag, addr, 236 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm); 237 238 if (prt_flags & ~PS_PSARGS) 239 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr); 240 241 return (DCMD_OK); 242 } 243 244 #define PG_NEWEST 0x0001 245 #define PG_OLDEST 0x0002 246 #define PG_PIPE_OUT 0x0004 247 #define PG_EXACT_MATCH 0x0008 248 249 typedef struct pgrep_data { 250 uint_t pg_flags; 251 uint_t pg_psflags; 252 uintptr_t pg_xaddr; 253 hrtime_t pg_xstart; 254 const char *pg_pat; 255 #ifndef _KMDB 256 regex_t pg_reg; 257 #endif 258 } pgrep_data_t; 259 260 /*ARGSUSED*/ 261 static int 262 pgrep_cb(uintptr_t addr, const void *pdata, void *data) 263 { 264 const proc_t *prp = pdata; 265 pgrep_data_t *pgp = data; 266 #ifndef _KMDB 267 regmatch_t pmatch; 268 #endif 269 270 /* 271 * kmdb doesn't have access to the reg* functions, so we fall back 272 * to strstr/strcmp. 273 */ 274 #ifdef _KMDB 275 if ((pgp->pg_flags & PG_EXACT_MATCH) ? 276 (strcmp(prp->p_user.u_comm, pgp->pg_pat) != 0) : 277 (strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL)) 278 return (WALK_NEXT); 279 #else 280 if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0) 281 return (WALK_NEXT); 282 283 if ((pgp->pg_flags & PG_EXACT_MATCH) && 284 (pmatch.rm_so != 0 || prp->p_user.u_comm[pmatch.rm_eo] != '\0')) 285 return (WALK_NEXT); 286 #endif 287 288 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) { 289 hrtime_t start; 290 291 start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC + 292 prp->p_user.u_start.tv_nsec; 293 294 if (pgp->pg_flags & PG_NEWEST) { 295 if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) { 296 pgp->pg_xaddr = addr; 297 pgp->pg_xstart = start; 298 } 299 } else { 300 if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) { 301 pgp->pg_xaddr = addr; 302 pgp->pg_xstart = start; 303 } 304 } 305 306 } else if (pgp->pg_flags & PG_PIPE_OUT) { 307 mdb_printf("%p\n", addr); 308 309 } else { 310 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) { 311 mdb_warn("can't invoke 'ps'"); 312 return (WALK_DONE); 313 } 314 pgp->pg_psflags &= ~DCMD_LOOPFIRST; 315 } 316 317 return (WALK_NEXT); 318 } 319 320 /*ARGSUSED*/ 321 int 322 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 323 { 324 pgrep_data_t pg; 325 int i; 326 #ifndef _KMDB 327 int err; 328 #endif 329 330 if (flags & DCMD_ADDRSPEC) 331 return (DCMD_USAGE); 332 333 pg.pg_flags = 0; 334 pg.pg_xaddr = 0; 335 336 i = mdb_getopts(argc, argv, 337 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags, 338 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags, 339 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags, 340 NULL); 341 342 argc -= i; 343 argv += i; 344 345 if (argc != 1) 346 return (DCMD_USAGE); 347 348 /* 349 * -n and -o are mutually exclusive. 350 */ 351 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST)) 352 return (DCMD_USAGE); 353 354 if (argv->a_type != MDB_TYPE_STRING) 355 return (DCMD_USAGE); 356 357 if (flags & DCMD_PIPE_OUT) 358 pg.pg_flags |= PG_PIPE_OUT; 359 360 pg.pg_pat = argv->a_un.a_str; 361 if (DCMD_HDRSPEC(flags)) 362 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST; 363 else 364 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP; 365 366 #ifndef _KMDB 367 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) { 368 size_t nbytes; 369 char *buf; 370 371 nbytes = regerror(err, &pg.pg_reg, NULL, 0); 372 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC); 373 (void) regerror(err, &pg.pg_reg, buf, nbytes); 374 mdb_warn("%s\n", buf); 375 376 return (DCMD_ERR); 377 } 378 #endif 379 380 if (mdb_walk("proc", pgrep_cb, &pg) != 0) { 381 mdb_warn("can't walk 'proc'"); 382 return (DCMD_ERR); 383 } 384 385 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) { 386 if (pg.pg_flags & PG_PIPE_OUT) { 387 mdb_printf("%p\n", pg.pg_xaddr); 388 } else { 389 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags, 390 0, NULL) != 0) { 391 mdb_warn("can't invoke 'ps'"); 392 return (DCMD_ERR); 393 } 394 } 395 } 396 397 return (DCMD_OK); 398 } 399 400 int 401 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 402 { 403 task_t tk; 404 kproject_t pj; 405 406 if (!(flags & DCMD_ADDRSPEC)) { 407 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) { 408 mdb_warn("can't walk task_cache"); 409 return (DCMD_ERR); 410 } 411 return (DCMD_OK); 412 } 413 if (DCMD_HDRSPEC(flags)) { 414 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n", 415 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS"); 416 } 417 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) { 418 mdb_warn("can't read task_t structure at %p", addr); 419 return (DCMD_ERR); 420 } 421 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) { 422 mdb_warn("can't read project_t structure at %p", addr); 423 return (DCMD_ERR); 424 } 425 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n", 426 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count, 427 tk.tk_flags); 428 return (DCMD_OK); 429 } 430 431 int 432 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 433 { 434 kproject_t pj; 435 436 if (!(flags & DCMD_ADDRSPEC)) { 437 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) { 438 mdb_warn("can't walk projects"); 439 return (DCMD_ERR); 440 } 441 return (DCMD_OK); 442 } 443 if (DCMD_HDRSPEC(flags)) { 444 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n", 445 "ADDR", "PROJID", "ZONEID", "REFCNT"); 446 } 447 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 448 mdb_warn("can't read kproject_t structure at %p", addr); 449 return (DCMD_ERR); 450 } 451 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid, 452 pj.kpj_count); 453 return (DCMD_OK); 454 } 455 456 /* walk callouts themselves, either by list or id hash. */ 457 int 458 callout_walk_init(mdb_walk_state_t *wsp) 459 { 460 if (wsp->walk_addr == NULL) { 461 mdb_warn("callout doesn't support global walk"); 462 return (WALK_ERR); 463 } 464 wsp->walk_data = mdb_alloc(sizeof (callout_t), UM_SLEEP); 465 return (WALK_NEXT); 466 } 467 468 #define CALLOUT_WALK_BYLIST 0 469 #define CALLOUT_WALK_BYID 1 470 471 /* the walker arg switches between walking by list (0) and walking by id (1). */ 472 int 473 callout_walk_step(mdb_walk_state_t *wsp) 474 { 475 int retval; 476 477 if (wsp->walk_addr == NULL) { 478 return (WALK_DONE); 479 } 480 if (mdb_vread(wsp->walk_data, sizeof (callout_t), 481 wsp->walk_addr) == -1) { 482 mdb_warn("failed to read callout at %p", wsp->walk_addr); 483 return (WALK_DONE); 484 } 485 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, 486 wsp->walk_cbdata); 487 488 if ((ulong_t)wsp->walk_arg == CALLOUT_WALK_BYID) { 489 wsp->walk_addr = 490 (uintptr_t)(((callout_t *)wsp->walk_data)->c_idnext); 491 } else { 492 wsp->walk_addr = 493 (uintptr_t)(((callout_t *)wsp->walk_data)->c_clnext); 494 } 495 496 return (retval); 497 } 498 499 void 500 callout_walk_fini(mdb_walk_state_t *wsp) 501 { 502 mdb_free(wsp->walk_data, sizeof (callout_t)); 503 } 504 505 /* 506 * walker for callout lists. This is different from hashes and callouts. 507 * Thankfully, it's also simpler. 508 */ 509 int 510 callout_list_walk_init(mdb_walk_state_t *wsp) 511 { 512 if (wsp->walk_addr == NULL) { 513 mdb_warn("callout list doesn't support global walk"); 514 return (WALK_ERR); 515 } 516 wsp->walk_data = mdb_alloc(sizeof (callout_list_t), UM_SLEEP); 517 return (WALK_NEXT); 518 } 519 520 int 521 callout_list_walk_step(mdb_walk_state_t *wsp) 522 { 523 int retval; 524 525 if (wsp->walk_addr == NULL) { 526 return (WALK_DONE); 527 } 528 if (mdb_vread(wsp->walk_data, sizeof (callout_list_t), 529 wsp->walk_addr) != sizeof (callout_list_t)) { 530 mdb_warn("failed to read callout_list at %p", wsp->walk_addr); 531 return (WALK_ERR); 532 } 533 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, 534 wsp->walk_cbdata); 535 536 wsp->walk_addr = (uintptr_t) 537 (((callout_list_t *)wsp->walk_data)->cl_next); 538 539 return (retval); 540 } 541 542 void 543 callout_list_walk_fini(mdb_walk_state_t *wsp) 544 { 545 mdb_free(wsp->walk_data, sizeof (callout_list_t)); 546 } 547 548 /* routines/structs to walk callout table(s) */ 549 typedef struct cot_data { 550 callout_table_t *ct0; 551 callout_table_t ct; 552 callout_hash_t cot_idhash[CALLOUT_BUCKETS]; 553 callout_hash_t cot_clhash[CALLOUT_BUCKETS]; 554 kstat_named_t ct_kstat_data[CALLOUT_NUM_STATS]; 555 int cotndx; 556 int cotsize; 557 } cot_data_t; 558 559 int 560 callout_table_walk_init(mdb_walk_state_t *wsp) 561 { 562 int max_ncpus; 563 cot_data_t *cot_walk_data; 564 565 cot_walk_data = mdb_alloc(sizeof (cot_data_t), UM_SLEEP); 566 567 if (wsp->walk_addr == NULL) { 568 if (mdb_readvar(&cot_walk_data->ct0, "callout_table") == -1) { 569 mdb_warn("failed to read 'callout_table'"); 570 return (WALK_ERR); 571 } 572 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 573 mdb_warn("failed to get callout_table array size"); 574 return (WALK_ERR); 575 } 576 cot_walk_data->cotsize = CALLOUT_NTYPES * max_ncpus; 577 wsp->walk_addr = (uintptr_t)cot_walk_data->ct0; 578 } else { 579 /* not a global walk */ 580 cot_walk_data->cotsize = 1; 581 } 582 583 cot_walk_data->cotndx = 0; 584 wsp->walk_data = cot_walk_data; 585 586 return (WALK_NEXT); 587 } 588 589 int 590 callout_table_walk_step(mdb_walk_state_t *wsp) 591 { 592 int retval; 593 cot_data_t *cotwd = (cot_data_t *)wsp->walk_data; 594 size_t size; 595 596 if (cotwd->cotndx >= cotwd->cotsize) { 597 return (WALK_DONE); 598 } 599 if (mdb_vread(&(cotwd->ct), sizeof (callout_table_t), 600 wsp->walk_addr) != sizeof (callout_table_t)) { 601 mdb_warn("failed to read callout_table at %p", wsp->walk_addr); 602 return (WALK_ERR); 603 } 604 605 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS; 606 if (cotwd->ct.ct_idhash != NULL) { 607 if (mdb_vread(cotwd->cot_idhash, size, 608 (uintptr_t)(cotwd->ct.ct_idhash)) != size) { 609 mdb_warn("failed to read id_hash at %p", 610 cotwd->ct.ct_idhash); 611 return (WALK_ERR); 612 } 613 } 614 if (cotwd->ct.ct_clhash != NULL) { 615 if (mdb_vread(&(cotwd->cot_clhash), size, 616 (uintptr_t)cotwd->ct.ct_clhash) == -1) { 617 mdb_warn("failed to read cl_hash at %p", 618 cotwd->ct.ct_clhash); 619 return (WALK_ERR); 620 } 621 } 622 size = sizeof (kstat_named_t) * CALLOUT_NUM_STATS; 623 if (cotwd->ct.ct_kstat_data != NULL) { 624 if (mdb_vread(&(cotwd->ct_kstat_data), size, 625 (uintptr_t)cotwd->ct.ct_kstat_data) == -1) { 626 mdb_warn("failed to read kstats at %p", 627 cotwd->ct.ct_kstat_data); 628 return (WALK_ERR); 629 } 630 } 631 retval = wsp->walk_callback(wsp->walk_addr, (void *)cotwd, 632 wsp->walk_cbdata); 633 634 cotwd->cotndx++; 635 if (cotwd->cotndx >= cotwd->cotsize) { 636 return (WALK_DONE); 637 } 638 wsp->walk_addr = (uintptr_t)((char *)wsp->walk_addr + 639 sizeof (callout_table_t)); 640 641 return (retval); 642 } 643 644 void 645 callout_table_walk_fini(mdb_walk_state_t *wsp) 646 { 647 mdb_free(wsp->walk_data, sizeof (cot_data_t)); 648 } 649 650 static const char *co_typenames[] = { "R", "N" }; 651 652 #define CO_PLAIN_ID(xid) ((xid) & CALLOUT_ID_MASK) 653 654 #define TABLE_TO_SEQID(x) ((x) >> CALLOUT_TYPE_BITS) 655 656 /* callout flags, in no particular order */ 657 #define COF_REAL 0x0000001 658 #define COF_NORM 0x0000002 659 #define COF_LONG 0x0000004 660 #define COF_SHORT 0x0000008 661 #define COF_EMPTY 0x0000010 662 #define COF_TIME 0x0000020 663 #define COF_BEFORE 0x0000040 664 #define COF_AFTER 0x0000080 665 #define COF_SEQID 0x0000100 666 #define COF_FUNC 0x0000200 667 #define COF_ADDR 0x0000400 668 #define COF_EXEC 0x0000800 669 #define COF_HIRES 0x0001000 670 #define COF_ABS 0x0002000 671 #define COF_TABLE 0x0004000 672 #define COF_BYIDH 0x0008000 673 #define COF_FREE 0x0010000 674 #define COF_LIST 0x0020000 675 #define COF_EXPREL 0x0040000 676 #define COF_HDR 0x0080000 677 #define COF_VERBOSE 0x0100000 678 #define COF_LONGLIST 0x0200000 679 #define COF_THDR 0x0400000 680 #define COF_LHDR 0x0800000 681 #define COF_CHDR 0x1000000 682 #define COF_PARAM 0x2000000 683 #define COF_DECODE 0x4000000 684 685 /* show real and normal, short and long, expired and unexpired. */ 686 #define COF_DEFAULT (COF_REAL | COF_NORM | COF_LONG | COF_SHORT) 687 688 #define COF_LIST_FLAGS \ 689 (CALLOUT_LIST_FLAG_HRESTIME | CALLOUT_LIST_FLAG_ABSOLUTE) 690 691 /* private callout data for callback functions */ 692 typedef struct callout_data { 693 uint_t flags; /* COF_* */ 694 cpu_t *cpu; /* cpu pointer if given */ 695 int seqid; /* cpu seqid, or -1 */ 696 hrtime_t time; /* expiration time value */ 697 hrtime_t atime; /* expiration before value */ 698 hrtime_t btime; /* expiration after value */ 699 uintptr_t funcaddr; /* function address or NULL */ 700 uintptr_t param; /* parameter to function or NULL */ 701 hrtime_t now; /* current system time */ 702 int nsec_per_tick; /* for conversions */ 703 ulong_t ctbits; /* for decoding xid */ 704 callout_table_t *co_table; /* top of callout table array */ 705 int ndx; /* table index. */ 706 int bucket; /* which list/id bucket are we in */ 707 hrtime_t exp; /* expire time */ 708 int list_flags; /* copy of cl_flags */ 709 } callout_data_t; 710 711 /* this callback does the actual callback itself (finally). */ 712 /*ARGSUSED*/ 713 static int 714 callouts_cb(uintptr_t addr, const void *data, void *priv) 715 { 716 callout_data_t *coargs = (callout_data_t *)priv; 717 callout_t *co = (callout_t *)data; 718 int tableid, list_flags; 719 callout_id_t coid; 720 721 if ((coargs == NULL) || (co == NULL)) { 722 return (WALK_ERR); 723 } 724 725 if ((coargs->flags & COF_FREE) && !(co->c_xid & CALLOUT_FREE)) { 726 /* 727 * The callout must have been reallocated. No point in 728 * walking any more. 729 */ 730 return (WALK_DONE); 731 } 732 if (!(coargs->flags & COF_FREE) && (co->c_xid & CALLOUT_FREE)) { 733 /* 734 * The callout must have been freed. No point in 735 * walking any more. 736 */ 737 return (WALK_DONE); 738 } 739 if ((coargs->flags & COF_FUNC) && 740 (coargs->funcaddr != (uintptr_t)co->c_func)) { 741 return (WALK_NEXT); 742 } 743 if ((coargs->flags & COF_PARAM) && 744 (coargs->param != (uintptr_t)co->c_arg)) { 745 return (WALK_NEXT); 746 } 747 if (!(coargs->flags & COF_LONG) && (co->c_xid & CALLOUT_LONGTERM)) { 748 return (WALK_NEXT); 749 } 750 if (!(coargs->flags & COF_SHORT) && !(co->c_xid & CALLOUT_LONGTERM)) { 751 return (WALK_NEXT); 752 } 753 if ((coargs->flags & COF_EXEC) && !(co->c_xid & CALLOUT_EXECUTING)) { 754 return (WALK_NEXT); 755 } 756 /* it is possible we don't have the exp time or flags */ 757 if (coargs->flags & COF_BYIDH) { 758 if (!(coargs->flags & COF_FREE)) { 759 /* we have to fetch the expire time ourselves. */ 760 if (mdb_vread(&coargs->exp, sizeof (hrtime_t), 761 (uintptr_t)co->c_list + offsetof(callout_list_t, 762 cl_expiration)) == -1) { 763 mdb_warn("failed to read expiration " 764 "time from %p", co->c_list); 765 coargs->exp = 0; 766 } 767 /* and flags. */ 768 if (mdb_vread(&coargs->list_flags, sizeof (int), 769 (uintptr_t)co->c_list + offsetof(callout_list_t, 770 cl_flags)) == -1) { 771 mdb_warn("failed to read list flags" 772 "from %p", co->c_list); 773 coargs->list_flags = 0; 774 } 775 } else { 776 /* free callouts can't use list pointer. */ 777 coargs->exp = 0; 778 coargs->list_flags = 0; 779 } 780 if (coargs->exp != 0) { 781 if ((coargs->flags & COF_TIME) && 782 (coargs->exp != coargs->time)) { 783 return (WALK_NEXT); 784 } 785 if ((coargs->flags & COF_BEFORE) && 786 (coargs->exp > coargs->btime)) { 787 return (WALK_NEXT); 788 } 789 if ((coargs->flags & COF_AFTER) && 790 (coargs->exp < coargs->atime)) { 791 return (WALK_NEXT); 792 } 793 } 794 /* tricky part, since both HIRES and ABS can be set */ 795 list_flags = coargs->list_flags; 796 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) { 797 /* both flags are set, only skip "regular" ones */ 798 if (! (list_flags & COF_LIST_FLAGS)) { 799 return (WALK_NEXT); 800 } 801 } else { 802 /* individual flags, or no flags */ 803 if ((coargs->flags & COF_HIRES) && 804 !(list_flags & CALLOUT_LIST_FLAG_HRESTIME)) { 805 return (WALK_NEXT); 806 } 807 if ((coargs->flags & COF_ABS) && 808 !(list_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) { 809 return (WALK_NEXT); 810 } 811 } 812 } 813 814 #define callout_table_mask ((1 << coargs->ctbits) - 1) 815 tableid = CALLOUT_ID_TO_TABLE(co->c_xid); 816 #undef callout_table_mask 817 coid = CO_PLAIN_ID(co->c_xid); 818 819 if ((coargs->flags & COF_CHDR) && !(coargs->flags & COF_ADDR)) { 820 /* 821 * We need to print the headers. If walking by id, then 822 * the list header isn't printed, so we must include 823 * that info here. 824 */ 825 if (!(coargs->flags & COF_VERBOSE)) { 826 mdb_printf("%<u>%3s %-1s %-14s %</u>", 827 "SEQ", "T", "EXP"); 828 } else if (coargs->flags & COF_BYIDH) { 829 mdb_printf("%<u>%-14s %</u>", "EXP"); 830 } 831 mdb_printf("%<u>%-4s %-?s %-20s%</u>", 832 "XHAL", "XID", "FUNC(ARG)"); 833 if (coargs->flags & COF_LONGLIST) { 834 mdb_printf("%<u> %-?s %-?s %-?s %-?s%</u>", 835 "PREVID", "NEXTID", "PREVL", "NEXTL"); 836 mdb_printf("%<u> %-?s %-4s %-?s%</u>", 837 "DONE", "UTOS", "THREAD"); 838 } 839 mdb_printf("\n"); 840 coargs->flags &= ~COF_CHDR; 841 coargs->flags |= (COF_THDR | COF_LHDR); 842 } 843 844 if (!(coargs->flags & COF_ADDR)) { 845 if (!(coargs->flags & COF_VERBOSE)) { 846 mdb_printf("%-3d %1s %-14llx ", 847 TABLE_TO_SEQID(tableid), 848 co_typenames[tableid & CALLOUT_TYPE_MASK], 849 (coargs->flags & COF_EXPREL) ? 850 coargs->exp - coargs->now : coargs->exp); 851 } else if (coargs->flags & COF_BYIDH) { 852 mdb_printf("%-14x ", 853 (coargs->flags & COF_EXPREL) ? 854 coargs->exp - coargs->now : coargs->exp); 855 } 856 list_flags = coargs->list_flags; 857 mdb_printf("%1s%1s%1s%1s %-?llx %a(%p)", 858 (co->c_xid & CALLOUT_EXECUTING) ? "X" : " ", 859 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? "H" : " ", 860 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? "A" : " ", 861 (co->c_xid & CALLOUT_LONGTERM) ? "L" : " ", 862 (long long)coid, co->c_func, co->c_arg); 863 if (coargs->flags & COF_LONGLIST) { 864 mdb_printf(" %-?p %-?p %-?p %-?p", 865 co->c_idprev, co->c_idnext, co->c_clprev, 866 co->c_clnext); 867 mdb_printf(" %-?p %-4d %-0?p", 868 co->c_done, co->c_waiting, co->c_executor); 869 } 870 } else { 871 /* address only */ 872 mdb_printf("%-0p", addr); 873 } 874 mdb_printf("\n"); 875 return (WALK_NEXT); 876 } 877 878 /* this callback is for callout list handling. idhash is done by callout_t_cb */ 879 /*ARGSUSED*/ 880 static int 881 callout_list_cb(uintptr_t addr, const void *data, void *priv) 882 { 883 callout_data_t *coargs = (callout_data_t *)priv; 884 callout_list_t *cl = (callout_list_t *)data; 885 callout_t *coptr; 886 int list_flags; 887 888 if ((coargs == NULL) || (cl == NULL)) { 889 return (WALK_ERR); 890 } 891 892 coargs->exp = cl->cl_expiration; 893 coargs->list_flags = cl->cl_flags; 894 if ((coargs->flags & COF_FREE) && 895 !(cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) { 896 /* 897 * The callout list must have been reallocated. No point in 898 * walking any more. 899 */ 900 return (WALK_DONE); 901 } 902 if (!(coargs->flags & COF_FREE) && 903 (cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) { 904 /* 905 * The callout list must have been freed. No point in 906 * walking any more. 907 */ 908 return (WALK_DONE); 909 } 910 if ((coargs->flags & COF_TIME) && 911 (cl->cl_expiration != coargs->time)) { 912 return (WALK_NEXT); 913 } 914 if ((coargs->flags & COF_BEFORE) && 915 (cl->cl_expiration > coargs->btime)) { 916 return (WALK_NEXT); 917 } 918 if ((coargs->flags & COF_AFTER) && 919 (cl->cl_expiration < coargs->atime)) { 920 return (WALK_NEXT); 921 } 922 if (!(coargs->flags & COF_EMPTY) && 923 (cl->cl_callouts.ch_head == NULL)) { 924 return (WALK_NEXT); 925 } 926 /* FOUR cases, each different, !A!B, !AB, A!B, AB */ 927 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) { 928 /* both flags are set, only skip "regular" ones */ 929 if (! (cl->cl_flags & COF_LIST_FLAGS)) { 930 return (WALK_NEXT); 931 } 932 } else { 933 if ((coargs->flags & COF_HIRES) && 934 !(cl->cl_flags & CALLOUT_LIST_FLAG_HRESTIME)) { 935 return (WALK_NEXT); 936 } 937 if ((coargs->flags & COF_ABS) && 938 !(cl->cl_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) { 939 return (WALK_NEXT); 940 } 941 } 942 943 if ((coargs->flags & COF_LHDR) && !(coargs->flags & COF_ADDR) && 944 (coargs->flags & (COF_LIST | COF_VERBOSE))) { 945 if (!(coargs->flags & COF_VERBOSE)) { 946 /* don't be redundant again */ 947 mdb_printf("%<u>SEQ T %</u>"); 948 } 949 mdb_printf("%<u>EXP HA BUCKET " 950 "CALLOUTS %</u>"); 951 952 if (coargs->flags & COF_LONGLIST) { 953 mdb_printf("%<u> %-?s %-?s%</u>", 954 "PREV", "NEXT"); 955 } 956 mdb_printf("\n"); 957 coargs->flags &= ~COF_LHDR; 958 coargs->flags |= (COF_THDR | COF_CHDR); 959 } 960 if (coargs->flags & (COF_LIST | COF_VERBOSE)) { 961 if (!(coargs->flags & COF_ADDR)) { 962 if (!(coargs->flags & COF_VERBOSE)) { 963 mdb_printf("%3d %1s ", 964 TABLE_TO_SEQID(coargs->ndx), 965 co_typenames[coargs->ndx & 966 CALLOUT_TYPE_MASK]); 967 } 968 969 list_flags = coargs->list_flags; 970 mdb_printf("%-14llx %1s%1s %-6d %-0?p ", 971 (coargs->flags & COF_EXPREL) ? 972 coargs->exp - coargs->now : coargs->exp, 973 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? 974 "H" : " ", 975 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? 976 "A" : " ", 977 coargs->bucket, cl->cl_callouts.ch_head); 978 979 if (coargs->flags & COF_LONGLIST) { 980 mdb_printf(" %-?p %-?p", 981 cl->cl_prev, cl->cl_next); 982 } 983 } else { 984 /* address only */ 985 mdb_printf("%-0p", addr); 986 } 987 mdb_printf("\n"); 988 if (coargs->flags & COF_LIST) { 989 return (WALK_NEXT); 990 } 991 } 992 /* yet another layer as we walk the actual callouts via list. */ 993 if (cl->cl_callouts.ch_head == NULL) { 994 return (WALK_NEXT); 995 } 996 /* free list structures do not have valid callouts off of them. */ 997 if (coargs->flags & COF_FREE) { 998 return (WALK_NEXT); 999 } 1000 coptr = (callout_t *)cl->cl_callouts.ch_head; 1001 1002 if (coargs->flags & COF_VERBOSE) { 1003 mdb_inc_indent(4); 1004 } 1005 /* 1006 * walk callouts using yet another callback routine. 1007 * we use callouts_bytime because id hash is handled via 1008 * the callout_t_cb callback. 1009 */ 1010 if (mdb_pwalk("callouts_bytime", callouts_cb, coargs, 1011 (uintptr_t)coptr) == -1) { 1012 mdb_warn("cannot walk callouts at %p", coptr); 1013 return (WALK_ERR); 1014 } 1015 if (coargs->flags & COF_VERBOSE) { 1016 mdb_dec_indent(4); 1017 } 1018 1019 return (WALK_NEXT); 1020 } 1021 1022 /* this callback handles the details of callout table walking. */ 1023 static int 1024 callout_t_cb(uintptr_t addr, const void *data, void *priv) 1025 { 1026 callout_data_t *coargs = (callout_data_t *)priv; 1027 cot_data_t *cotwd = (cot_data_t *)data; 1028 callout_table_t *ct = &(cotwd->ct); 1029 int index, seqid, cotype; 1030 int i; 1031 callout_list_t *clptr; 1032 callout_t *coptr; 1033 1034 if ((coargs == NULL) || (ct == NULL) || (coargs->co_table == NULL)) { 1035 return (WALK_ERR); 1036 } 1037 1038 index = ((char *)addr - (char *)coargs->co_table) / 1039 sizeof (callout_table_t); 1040 cotype = index & CALLOUT_TYPE_MASK; 1041 seqid = TABLE_TO_SEQID(index); 1042 1043 if ((coargs->flags & COF_SEQID) && (coargs->seqid != seqid)) { 1044 return (WALK_NEXT); 1045 } 1046 1047 if (!(coargs->flags & COF_REAL) && (cotype == CALLOUT_REALTIME)) { 1048 return (WALK_NEXT); 1049 } 1050 1051 if (!(coargs->flags & COF_NORM) && (cotype == CALLOUT_NORMAL)) { 1052 return (WALK_NEXT); 1053 } 1054 1055 if (!(coargs->flags & COF_EMPTY) && ( 1056 (ct->ct_heap == NULL) || (ct->ct_cyclic == NULL))) { 1057 return (WALK_NEXT); 1058 } 1059 1060 if ((coargs->flags & COF_THDR) && !(coargs->flags & COF_ADDR) && 1061 (coargs->flags & (COF_TABLE | COF_VERBOSE))) { 1062 /* print table hdr */ 1063 mdb_printf("%<u>%-3s %-1s %-?s %-?s %-?s %-?s%</u>", 1064 "SEQ", "T", "FREE", "LFREE", "CYCLIC", "HEAP"); 1065 coargs->flags &= ~COF_THDR; 1066 coargs->flags |= (COF_LHDR | COF_CHDR); 1067 if (coargs->flags & COF_LONGLIST) { 1068 /* more info! */ 1069 mdb_printf("%<u> %-T%-7s %-7s %-?s %-?s" 1070 " %-?s %-?s %-?s%</u>", 1071 "HEAPNUM", "HEAPMAX", "TASKQ", "EXPQ", 1072 "PEND", "FREE", "LOCK"); 1073 } 1074 mdb_printf("\n"); 1075 } 1076 if (coargs->flags & (COF_TABLE | COF_VERBOSE)) { 1077 if (!(coargs->flags & COF_ADDR)) { 1078 mdb_printf("%-3d %-1s %-0?p %-0?p %-0?p %-?p", 1079 seqid, co_typenames[cotype], 1080 ct->ct_free, ct->ct_lfree, ct->ct_cyclic, 1081 ct->ct_heap); 1082 if (coargs->flags & COF_LONGLIST) { 1083 /* more info! */ 1084 mdb_printf(" %-7d %-7d %-?p %-?p" 1085 " %-?lld %-?lld %-?p", 1086 ct->ct_heap_num, ct->ct_heap_max, 1087 ct->ct_taskq, ct->ct_expired.ch_head, 1088 cotwd->ct_timeouts_pending, 1089 cotwd->ct_allocations - 1090 cotwd->ct_timeouts_pending, 1091 ct->ct_mutex); 1092 } 1093 } else { 1094 /* address only */ 1095 mdb_printf("%-0?p", addr); 1096 } 1097 mdb_printf("\n"); 1098 if (coargs->flags & COF_TABLE) { 1099 return (WALK_NEXT); 1100 } 1101 } 1102 1103 coargs->ndx = index; 1104 if (coargs->flags & COF_VERBOSE) { 1105 mdb_inc_indent(4); 1106 } 1107 /* keep digging. */ 1108 if (!(coargs->flags & COF_BYIDH)) { 1109 /* walk the list hash table */ 1110 if (coargs->flags & COF_FREE) { 1111 clptr = ct->ct_lfree; 1112 coargs->bucket = 0; 1113 if (clptr == NULL) { 1114 return (WALK_NEXT); 1115 } 1116 if (mdb_pwalk("callout_list", callout_list_cb, coargs, 1117 (uintptr_t)clptr) == -1) { 1118 mdb_warn("cannot walk callout free list at %p", 1119 clptr); 1120 return (WALK_ERR); 1121 } 1122 } else { 1123 /* first print the expired list. */ 1124 clptr = (callout_list_t *)ct->ct_expired.ch_head; 1125 if (clptr != NULL) { 1126 coargs->bucket = -1; 1127 if (mdb_pwalk("callout_list", callout_list_cb, 1128 coargs, (uintptr_t)clptr) == -1) { 1129 mdb_warn("cannot walk callout_list" 1130 " at %p", clptr); 1131 return (WALK_ERR); 1132 } 1133 } 1134 for (i = 0; i < CALLOUT_BUCKETS; i++) { 1135 if (ct->ct_clhash == NULL) { 1136 /* nothing to do */ 1137 break; 1138 } 1139 if (cotwd->cot_clhash[i].ch_head == NULL) { 1140 continue; 1141 } 1142 clptr = (callout_list_t *) 1143 cotwd->cot_clhash[i].ch_head; 1144 coargs->bucket = i; 1145 /* walk list with callback routine. */ 1146 if (mdb_pwalk("callout_list", callout_list_cb, 1147 coargs, (uintptr_t)clptr) == -1) { 1148 mdb_warn("cannot walk callout_list" 1149 " at %p", clptr); 1150 return (WALK_ERR); 1151 } 1152 } 1153 } 1154 } else { 1155 /* walk the id hash table. */ 1156 if (coargs->flags & COF_FREE) { 1157 coptr = ct->ct_free; 1158 coargs->bucket = 0; 1159 if (coptr == NULL) { 1160 return (WALK_NEXT); 1161 } 1162 if (mdb_pwalk("callouts_byid", callouts_cb, coargs, 1163 (uintptr_t)coptr) == -1) { 1164 mdb_warn("cannot walk callout id free list" 1165 " at %p", coptr); 1166 return (WALK_ERR); 1167 } 1168 } else { 1169 for (i = 0; i < CALLOUT_BUCKETS; i++) { 1170 if (ct->ct_idhash == NULL) { 1171 break; 1172 } 1173 coptr = (callout_t *) 1174 cotwd->cot_idhash[i].ch_head; 1175 if (coptr == NULL) { 1176 continue; 1177 } 1178 coargs->bucket = i; 1179 1180 /* 1181 * walk callouts directly by id. For id 1182 * chain, the callout list is just a header, 1183 * so there's no need to walk it. 1184 */ 1185 if (mdb_pwalk("callouts_byid", callouts_cb, 1186 coargs, (uintptr_t)coptr) == -1) { 1187 mdb_warn("cannot walk callouts at %p", 1188 coptr); 1189 return (WALK_ERR); 1190 } 1191 } 1192 } 1193 } 1194 if (coargs->flags & COF_VERBOSE) { 1195 mdb_dec_indent(4); 1196 } 1197 return (WALK_NEXT); 1198 } 1199 1200 /* 1201 * initialize some common info for both callout dcmds. 1202 */ 1203 int 1204 callout_common_init(callout_data_t *coargs) 1205 { 1206 /* we need a couple of things */ 1207 if (mdb_readvar(&(coargs->co_table), "callout_table") == -1) { 1208 mdb_warn("failed to read 'callout_table'"); 1209 return (DCMD_ERR); 1210 } 1211 /* need to get now in nsecs. Approximate with hrtime vars */ 1212 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), "hrtime_last") != 1213 sizeof (hrtime_t)) { 1214 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), 1215 "hrtime_base") != sizeof (hrtime_t)) { 1216 mdb_warn("Could not determine current system time"); 1217 return (DCMD_ERR); 1218 } 1219 } 1220 1221 if (mdb_readvar(&(coargs->ctbits), "callout_table_bits") == -1) { 1222 mdb_warn("failed to read 'callout_table_bits'"); 1223 return (DCMD_ERR); 1224 } 1225 if (mdb_readvar(&(coargs->nsec_per_tick), "nsec_per_tick") == -1) { 1226 mdb_warn("failed to read 'nsec_per_tick'"); 1227 return (DCMD_ERR); 1228 } 1229 return (DCMD_OK); 1230 } 1231 1232 /* 1233 * dcmd to print callouts. Optional addr limits to specific table. 1234 * Parses lots of options that get passed to callbacks for walkers. 1235 * Has it's own help function. 1236 */ 1237 /*ARGSUSED*/ 1238 int 1239 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1240 { 1241 callout_data_t coargs; 1242 /* getopts doesn't help much with stuff like this */ 1243 boolean_t Sflag, Cflag, tflag, aflag, bflag, dflag, kflag; 1244 char *funcname = NULL; 1245 char *paramstr = NULL; 1246 uintptr_t Stmp, Ctmp; /* for getopt. */ 1247 int retval; 1248 1249 coargs.flags = COF_DEFAULT; 1250 Sflag = Cflag = tflag = bflag = aflag = dflag = kflag = FALSE; 1251 coargs.seqid = -1; 1252 1253 if (mdb_getopts(argc, argv, 1254 'r', MDB_OPT_CLRBITS, COF_NORM, &coargs.flags, 1255 'n', MDB_OPT_CLRBITS, COF_REAL, &coargs.flags, 1256 'l', MDB_OPT_CLRBITS, COF_SHORT, &coargs.flags, 1257 's', MDB_OPT_CLRBITS, COF_LONG, &coargs.flags, 1258 'x', MDB_OPT_SETBITS, COF_EXEC, &coargs.flags, 1259 'h', MDB_OPT_SETBITS, COF_HIRES, &coargs.flags, 1260 'B', MDB_OPT_SETBITS, COF_ABS, &coargs.flags, 1261 'E', MDB_OPT_SETBITS, COF_EMPTY, &coargs.flags, 1262 'd', MDB_OPT_SETBITS, 1, &dflag, 1263 'C', MDB_OPT_UINTPTR_SET, &Cflag, &Ctmp, 1264 'S', MDB_OPT_UINTPTR_SET, &Sflag, &Stmp, 1265 't', MDB_OPT_UINTPTR_SET, &tflag, (uintptr_t *)&coargs.time, 1266 'a', MDB_OPT_UINTPTR_SET, &aflag, (uintptr_t *)&coargs.atime, 1267 'b', MDB_OPT_UINTPTR_SET, &bflag, (uintptr_t *)&coargs.btime, 1268 'k', MDB_OPT_SETBITS, 1, &kflag, 1269 'f', MDB_OPT_STR, &funcname, 1270 'p', MDB_OPT_STR, ¶mstr, 1271 'T', MDB_OPT_SETBITS, COF_TABLE, &coargs.flags, 1272 'D', MDB_OPT_SETBITS, COF_EXPREL, &coargs.flags, 1273 'L', MDB_OPT_SETBITS, COF_LIST, &coargs.flags, 1274 'V', MDB_OPT_SETBITS, COF_VERBOSE, &coargs.flags, 1275 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags, 1276 'i', MDB_OPT_SETBITS, COF_BYIDH, &coargs.flags, 1277 'F', MDB_OPT_SETBITS, COF_FREE, &coargs.flags, 1278 'A', MDB_OPT_SETBITS, COF_ADDR, &coargs.flags, 1279 NULL) != argc) { 1280 return (DCMD_USAGE); 1281 } 1282 1283 /* initialize from kernel variables */ 1284 if ((retval = callout_common_init(&coargs)) != DCMD_OK) { 1285 return (retval); 1286 } 1287 1288 /* do some option post-processing */ 1289 if (kflag) { 1290 coargs.time *= coargs.nsec_per_tick; 1291 coargs.atime *= coargs.nsec_per_tick; 1292 coargs.btime *= coargs.nsec_per_tick; 1293 } 1294 1295 if (dflag) { 1296 coargs.time += coargs.now; 1297 coargs.atime += coargs.now; 1298 coargs.btime += coargs.now; 1299 } 1300 if (Sflag) { 1301 if (flags & DCMD_ADDRSPEC) { 1302 mdb_printf("-S option conflicts with explicit" 1303 " address\n"); 1304 return (DCMD_USAGE); 1305 } 1306 coargs.flags |= COF_SEQID; 1307 coargs.seqid = (int)Stmp; 1308 } 1309 if (Cflag) { 1310 if (flags & DCMD_ADDRSPEC) { 1311 mdb_printf("-C option conflicts with explicit" 1312 " address\n"); 1313 return (DCMD_USAGE); 1314 } 1315 if (coargs.flags & COF_SEQID) { 1316 mdb_printf("-C and -S are mutually exclusive\n"); 1317 return (DCMD_USAGE); 1318 } 1319 coargs.cpu = (cpu_t *)Ctmp; 1320 if (mdb_vread(&coargs.seqid, sizeof (processorid_t), 1321 (uintptr_t)&(coargs.cpu->cpu_seqid)) == -1) { 1322 mdb_warn("failed to read cpu_t at %p", Ctmp); 1323 return (DCMD_ERR); 1324 } 1325 coargs.flags |= COF_SEQID; 1326 } 1327 /* avoid null outputs. */ 1328 if (!(coargs.flags & (COF_REAL | COF_NORM))) { 1329 coargs.flags |= COF_REAL | COF_NORM; 1330 } 1331 if (!(coargs.flags & (COF_LONG | COF_SHORT))) { 1332 coargs.flags |= COF_LONG | COF_SHORT; 1333 } 1334 if (tflag) { 1335 if (aflag || bflag) { 1336 mdb_printf("-t and -a|b are mutually exclusive\n"); 1337 return (DCMD_USAGE); 1338 } 1339 coargs.flags |= COF_TIME; 1340 } 1341 if (aflag) { 1342 coargs.flags |= COF_AFTER; 1343 } 1344 if (bflag) { 1345 coargs.flags |= COF_BEFORE; 1346 } 1347 if ((aflag && bflag) && (coargs.btime <= coargs.atime)) { 1348 mdb_printf("value for -a must be earlier than the value" 1349 " for -b.\n"); 1350 return (DCMD_USAGE); 1351 } 1352 1353 if (funcname != NULL) { 1354 GElf_Sym sym; 1355 1356 if (mdb_lookup_by_name(funcname, &sym) != 0) { 1357 coargs.funcaddr = mdb_strtoull(funcname); 1358 } else { 1359 coargs.funcaddr = sym.st_value; 1360 } 1361 coargs.flags |= COF_FUNC; 1362 } 1363 1364 if (paramstr != NULL) { 1365 GElf_Sym sym; 1366 1367 if (mdb_lookup_by_name(paramstr, &sym) != 0) { 1368 coargs.param = mdb_strtoull(paramstr); 1369 } else { 1370 coargs.param = sym.st_value; 1371 } 1372 coargs.flags |= COF_PARAM; 1373 } 1374 1375 if (!(flags & DCMD_ADDRSPEC)) { 1376 /* don't pass "dot" if no addr. */ 1377 addr = NULL; 1378 } 1379 if (addr != NULL) { 1380 /* 1381 * a callout table was specified. Ignore -r|n option 1382 * to avoid null output. 1383 */ 1384 coargs.flags |= (COF_REAL | COF_NORM); 1385 } 1386 1387 if (DCMD_HDRSPEC(flags) || (coargs.flags & COF_VERBOSE)) { 1388 coargs.flags |= COF_THDR | COF_LHDR | COF_CHDR; 1389 } 1390 if (coargs.flags & COF_FREE) { 1391 coargs.flags |= COF_EMPTY; 1392 /* -F = free callouts, -FL = free lists */ 1393 if (!(coargs.flags & COF_LIST)) { 1394 coargs.flags |= COF_BYIDH; 1395 } 1396 } 1397 1398 /* walk table, using specialized callback routine. */ 1399 if (mdb_pwalk("callout_table", callout_t_cb, &coargs, addr) == -1) { 1400 mdb_warn("cannot walk callout_table"); 1401 return (DCMD_ERR); 1402 } 1403 return (DCMD_OK); 1404 } 1405 1406 1407 /* 1408 * Given an extended callout id, dump its information. 1409 */ 1410 /*ARGSUSED*/ 1411 int 1412 calloutid(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1413 { 1414 callout_data_t coargs; 1415 callout_table_t *ctptr; 1416 callout_table_t ct; 1417 callout_id_t coid; 1418 callout_t *coptr; 1419 int tableid; 1420 callout_id_t xid; 1421 ulong_t idhash; 1422 int i, retval; 1423 const mdb_arg_t *arg; 1424 size_t size; 1425 callout_hash_t cot_idhash[CALLOUT_BUCKETS]; 1426 1427 coargs.flags = COF_DEFAULT | COF_BYIDH; 1428 i = mdb_getopts(argc, argv, 1429 'd', MDB_OPT_SETBITS, COF_DECODE, &coargs.flags, 1430 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags, 1431 NULL); 1432 argc -= i; 1433 argv += i; 1434 1435 if (argc != 1) { 1436 return (DCMD_USAGE); 1437 } 1438 arg = &argv[0]; 1439 1440 if (arg->a_type == MDB_TYPE_IMMEDIATE) { 1441 xid = arg->a_un.a_val; 1442 } else { 1443 xid = (callout_id_t)mdb_strtoull(arg->a_un.a_str); 1444 } 1445 1446 if (DCMD_HDRSPEC(flags)) { 1447 coargs.flags |= COF_CHDR; 1448 } 1449 1450 1451 /* initialize from kernel variables */ 1452 if ((retval = callout_common_init(&coargs)) != DCMD_OK) { 1453 return (retval); 1454 } 1455 1456 /* we must massage the environment so that the macros will play nice */ 1457 #define callout_table_mask ((1 << coargs.ctbits) - 1) 1458 #define callout_table_bits coargs.ctbits 1459 #define nsec_per_tick coargs.nsec_per_tick 1460 tableid = CALLOUT_ID_TO_TABLE(xid); 1461 idhash = CALLOUT_IDHASH(xid); 1462 #undef callouts_table_bits 1463 #undef callout_table_mask 1464 #undef nsec_per_tick 1465 coid = CO_PLAIN_ID(xid); 1466 1467 if (flags & DCMD_ADDRSPEC) { 1468 mdb_printf("calloutid does not accept explicit address.\n"); 1469 return (DCMD_USAGE); 1470 } 1471 1472 if (coargs.flags & COF_DECODE) { 1473 if (DCMD_HDRSPEC(flags)) { 1474 mdb_printf("%<u>%3s %1s %2s %-?s %-6s %</u>\n", 1475 "SEQ", "T", "XL", "XID", "IDHASH"); 1476 } 1477 mdb_printf("%-3d %1s %1s%1s %-?llx %-6d\n", 1478 TABLE_TO_SEQID(tableid), 1479 co_typenames[tableid & CALLOUT_TYPE_MASK], 1480 (xid & CALLOUT_EXECUTING) ? "X" : " ", 1481 (xid & CALLOUT_LONGTERM) ? "L" : " ", 1482 (long long)coid, idhash); 1483 return (DCMD_OK); 1484 } 1485 1486 /* get our table. Note this relies on the types being correct */ 1487 ctptr = coargs.co_table + tableid; 1488 if (mdb_vread(&ct, sizeof (callout_table_t), (uintptr_t)ctptr) == -1) { 1489 mdb_warn("failed to read callout_table at %p", ctptr); 1490 return (DCMD_ERR); 1491 } 1492 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS; 1493 if (ct.ct_idhash != NULL) { 1494 if (mdb_vread(&(cot_idhash), size, 1495 (uintptr_t)ct.ct_idhash) == -1) { 1496 mdb_warn("failed to read id_hash at %p", 1497 ct.ct_idhash); 1498 return (WALK_ERR); 1499 } 1500 } 1501 1502 /* callout at beginning of hash chain */ 1503 if (ct.ct_idhash == NULL) { 1504 mdb_printf("id hash chain for this xid is empty\n"); 1505 return (DCMD_ERR); 1506 } 1507 coptr = (callout_t *)cot_idhash[idhash].ch_head; 1508 if (coptr == NULL) { 1509 mdb_printf("id hash chain for this xid is empty\n"); 1510 return (DCMD_ERR); 1511 } 1512 1513 coargs.ndx = tableid; 1514 coargs.bucket = idhash; 1515 1516 /* use the walker, luke */ 1517 if (mdb_pwalk("callouts_byid", callouts_cb, &coargs, 1518 (uintptr_t)coptr) == -1) { 1519 mdb_warn("cannot walk callouts at %p", coptr); 1520 return (WALK_ERR); 1521 } 1522 1523 return (DCMD_OK); 1524 } 1525 1526 void 1527 callout_help(void) 1528 { 1529 mdb_printf("callout: display callouts.\n" 1530 "Given a callout table address, display callouts from table.\n" 1531 "Without an address, display callouts from all tables.\n" 1532 "options:\n" 1533 " -r|n : limit display to (r)ealtime or (n)ormal type callouts\n" 1534 " -s|l : limit display to (s)hort-term ids or (l)ong-term ids\n" 1535 " -x : limit display to callouts which are executing\n" 1536 " -h : limit display to callouts based on hrestime\n" 1537 " -B : limit display to callouts based on absolute time\n" 1538 " -t|a|b nsec: limit display to callouts that expire a(t) time," 1539 " (a)fter time,\n or (b)efore time. Use -a and -b together " 1540 " to specify a range.\n For \"now\", use -d[t|a|b] 0.\n" 1541 " -d : interpret time option to -t|a|b as delta from current time\n" 1542 " -k : use ticks instead of nanoseconds as arguments to" 1543 " -t|a|b. Note that\n ticks are less accurate and may not" 1544 " match other tick times (ie: lbolt).\n" 1545 " -D : display exiration time as delta from current time\n" 1546 " -S seqid : limit display to callouts for this cpu sequence id\n" 1547 " -C addr : limit display to callouts for this cpu pointer\n" 1548 " -f name|addr : limit display to callouts with this function\n" 1549 " -p name|addr : limit display to callouts functions with this" 1550 " parameter\n" 1551 " -T : display the callout table itself, instead of callouts\n" 1552 " -L : display callout lists instead of callouts\n" 1553 " -E : with -T or L, display empty data structures.\n" 1554 " -i : traverse callouts by id hash instead of list hash\n" 1555 " -F : walk free callout list (free list with -i) instead\n" 1556 " -v : display more info for each item\n" 1557 " -V : show details of each level of info as it is traversed\n" 1558 " -A : show only addresses. Useful for pipelines.\n"); 1559 } 1560 1561 void 1562 calloutid_help(void) 1563 { 1564 mdb_printf("calloutid: display callout by id.\n" 1565 "Given an extended callout id, display the callout infomation.\n" 1566 "options:\n" 1567 " -d : do not dereference callout, just decode the id.\n" 1568 " -v : verbose display more info about the callout\n"); 1569 } 1570 1571 /*ARGSUSED*/ 1572 int 1573 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1574 { 1575 long num_classes, i; 1576 sclass_t *class_tbl; 1577 GElf_Sym g_sclass; 1578 char class_name[PC_CLNMSZ]; 1579 size_t tbl_size; 1580 1581 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) { 1582 mdb_warn("failed to find symbol sclass\n"); 1583 return (DCMD_ERR); 1584 } 1585 1586 tbl_size = (size_t)g_sclass.st_size; 1587 num_classes = tbl_size / (sizeof (sclass_t)); 1588 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC); 1589 1590 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) { 1591 mdb_warn("failed to read sclass"); 1592 return (DCMD_ERR); 1593 } 1594 1595 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME", 1596 "INIT FCN", "CLASS FCN"); 1597 1598 for (i = 0; i < num_classes; i++) { 1599 if (mdb_vread(class_name, sizeof (class_name), 1600 (uintptr_t)class_tbl[i].cl_name) == -1) 1601 (void) strcpy(class_name, "???"); 1602 1603 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name, 1604 class_tbl[i].cl_init, class_tbl[i].cl_funcs); 1605 } 1606 1607 return (DCMD_OK); 1608 } 1609 1610 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */ 1611 1612 int 1613 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1614 { 1615 uintptr_t rootdir; 1616 vnode_t vn; 1617 char buf[MAXPATHLEN]; 1618 1619 uint_t opt_F = FALSE; 1620 1621 if (mdb_getopts(argc, argv, 1622 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc) 1623 return (DCMD_USAGE); 1624 1625 if (!(flags & DCMD_ADDRSPEC)) { 1626 mdb_warn("expected explicit vnode_t address before ::\n"); 1627 return (DCMD_USAGE); 1628 } 1629 1630 if (mdb_readvar(&rootdir, "rootdir") == -1) { 1631 mdb_warn("failed to read rootdir"); 1632 return (DCMD_ERR); 1633 } 1634 1635 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1) 1636 return (DCMD_ERR); 1637 1638 if (*buf == '\0') { 1639 mdb_printf("??\n"); 1640 return (DCMD_OK); 1641 } 1642 1643 mdb_printf("%s", buf); 1644 if (opt_F && buf[strlen(buf)-1] != '/' && 1645 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn)) 1646 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0)); 1647 mdb_printf("\n"); 1648 1649 return (DCMD_OK); 1650 } 1651 1652 int 1653 ld_walk_init(mdb_walk_state_t *wsp) 1654 { 1655 wsp->walk_data = (void *)wsp->walk_addr; 1656 return (WALK_NEXT); 1657 } 1658 1659 int 1660 ld_walk_step(mdb_walk_state_t *wsp) 1661 { 1662 int status; 1663 lock_descriptor_t ld; 1664 1665 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) { 1666 mdb_warn("couldn't read lock_descriptor_t at %p\n", 1667 wsp->walk_addr); 1668 return (WALK_ERR); 1669 } 1670 1671 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata); 1672 if (status == WALK_ERR) 1673 return (WALK_ERR); 1674 1675 wsp->walk_addr = (uintptr_t)ld.l_next; 1676 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) 1677 return (WALK_DONE); 1678 1679 return (status); 1680 } 1681 1682 int 1683 lg_walk_init(mdb_walk_state_t *wsp) 1684 { 1685 GElf_Sym sym; 1686 1687 if (mdb_lookup_by_name("lock_graph", &sym) == -1) { 1688 mdb_warn("failed to find symbol 'lock_graph'\n"); 1689 return (WALK_ERR); 1690 } 1691 1692 wsp->walk_addr = (uintptr_t)sym.st_value; 1693 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size); 1694 1695 return (WALK_NEXT); 1696 } 1697 1698 typedef struct lg_walk_data { 1699 uintptr_t startaddr; 1700 mdb_walk_cb_t callback; 1701 void *data; 1702 } lg_walk_data_t; 1703 1704 /* 1705 * We can't use ::walk lock_descriptor directly, because the head of each graph 1706 * is really a dummy lock. Rather than trying to dynamically determine if this 1707 * is a dummy node or not, we just filter out the initial element of the 1708 * list. 1709 */ 1710 static int 1711 lg_walk_cb(uintptr_t addr, const void *data, void *priv) 1712 { 1713 lg_walk_data_t *lw = priv; 1714 1715 if (addr != lw->startaddr) 1716 return (lw->callback(addr, data, lw->data)); 1717 1718 return (WALK_NEXT); 1719 } 1720 1721 int 1722 lg_walk_step(mdb_walk_state_t *wsp) 1723 { 1724 graph_t *graph; 1725 lg_walk_data_t lw; 1726 1727 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data) 1728 return (WALK_DONE); 1729 1730 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) { 1731 mdb_warn("failed to read graph_t at %p", wsp->walk_addr); 1732 return (WALK_ERR); 1733 } 1734 1735 wsp->walk_addr += sizeof (graph); 1736 1737 if (graph == NULL) 1738 return (WALK_NEXT); 1739 1740 lw.callback = wsp->walk_callback; 1741 lw.data = wsp->walk_cbdata; 1742 1743 lw.startaddr = (uintptr_t)&(graph->active_locks); 1744 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 1745 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 1746 return (WALK_ERR); 1747 } 1748 1749 lw.startaddr = (uintptr_t)&(graph->sleeping_locks); 1750 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 1751 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 1752 return (WALK_ERR); 1753 } 1754 1755 return (WALK_NEXT); 1756 } 1757 1758 /* 1759 * The space available for the path corresponding to the locked vnode depends 1760 * on whether we are printing 32- or 64-bit addresses. 1761 */ 1762 #ifdef _LP64 1763 #define LM_VNPATHLEN 20 1764 #else 1765 #define LM_VNPATHLEN 30 1766 #endif 1767 1768 /*ARGSUSED*/ 1769 static int 1770 lminfo_cb(uintptr_t addr, const void *data, void *priv) 1771 { 1772 const lock_descriptor_t *ld = data; 1773 char buf[LM_VNPATHLEN]; 1774 proc_t p; 1775 1776 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ", 1777 addr, ld->l_type == F_RDLCK ? "RD" : 1778 ld->l_type == F_WRLCK ? "WR" : "??", 1779 ld->l_state, ld->l_flock.l_pid, 1780 ld->l_flock.l_pid == 0 ? "<kernel>" : 1781 mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ? 1782 "<defunct>" : p.p_user.u_comm, 1783 ld->l_vnode); 1784 1785 mdb_vnode2path((uintptr_t)ld->l_vnode, buf, 1786 sizeof (buf)); 1787 mdb_printf("%s\n", buf); 1788 1789 return (WALK_NEXT); 1790 } 1791 1792 /*ARGSUSED*/ 1793 int 1794 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1795 { 1796 if (DCMD_HDRSPEC(flags)) 1797 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n", 1798 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH"); 1799 1800 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL)); 1801 } 1802 1803 /*ARGSUSED*/ 1804 int 1805 seg(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1806 { 1807 struct seg s; 1808 1809 if (argc != 0) 1810 return (DCMD_USAGE); 1811 1812 if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) { 1813 mdb_printf("%<u>%?s %?s %?s %?s %s%</u>\n", 1814 "SEG", "BASE", "SIZE", "DATA", "OPS"); 1815 } 1816 1817 if (mdb_vread(&s, sizeof (s), addr) == -1) { 1818 mdb_warn("failed to read seg at %p", addr); 1819 return (DCMD_ERR); 1820 } 1821 1822 mdb_printf("%?p %?p %?lx %?p %a\n", 1823 addr, s.s_base, s.s_size, s.s_data, s.s_ops); 1824 1825 return (DCMD_OK); 1826 } 1827 1828 /*ARGSUSED*/ 1829 static int 1830 pmap_walk_anon(uintptr_t addr, const struct anon *anon, int *nres) 1831 { 1832 uintptr_t pp = 1833 mdb_vnode2page((uintptr_t)anon->an_vp, (uintptr_t)anon->an_off); 1834 1835 if (pp != NULL) 1836 (*nres)++; 1837 1838 return (WALK_NEXT); 1839 } 1840 1841 static int 1842 pmap_walk_seg(uintptr_t addr, const struct seg *seg, uintptr_t segvn) 1843 { 1844 1845 mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024); 1846 1847 if (segvn == (uintptr_t)seg->s_ops) { 1848 struct segvn_data svn; 1849 int nres = 0; 1850 1851 (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data); 1852 1853 if (svn.amp == NULL) { 1854 mdb_printf(" %8s", ""); 1855 goto drive_on; 1856 } 1857 1858 /* 1859 * We've got an amp for this segment; walk through 1860 * the amp, and determine mappings. 1861 */ 1862 if (mdb_pwalk("anon", (mdb_walk_cb_t)pmap_walk_anon, 1863 &nres, (uintptr_t)svn.amp) == -1) 1864 mdb_warn("failed to walk anon (amp=%p)", svn.amp); 1865 1866 mdb_printf(" %7dk", (nres * PAGESIZE) / 1024); 1867 drive_on: 1868 1869 if (svn.vp != NULL) { 1870 char buf[29]; 1871 1872 mdb_vnode2path((uintptr_t)svn.vp, buf, sizeof (buf)); 1873 mdb_printf(" %s", buf); 1874 } else 1875 mdb_printf(" [ anon ]"); 1876 } 1877 1878 mdb_printf("\n"); 1879 return (WALK_NEXT); 1880 } 1881 1882 static int 1883 pmap_walk_seg_quick(uintptr_t addr, const struct seg *seg, uintptr_t segvn) 1884 { 1885 mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024); 1886 1887 if (segvn == (uintptr_t)seg->s_ops) { 1888 struct segvn_data svn; 1889 1890 (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data); 1891 1892 if (svn.vp != NULL) { 1893 mdb_printf(" %0?p", svn.vp); 1894 } else { 1895 mdb_printf(" [ anon ]"); 1896 } 1897 } 1898 1899 mdb_printf("\n"); 1900 return (WALK_NEXT); 1901 } 1902 1903 /*ARGSUSED*/ 1904 int 1905 pmap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1906 { 1907 uintptr_t segvn; 1908 proc_t proc; 1909 uint_t quick = FALSE; 1910 mdb_walk_cb_t cb = (mdb_walk_cb_t)pmap_walk_seg; 1911 1912 GElf_Sym sym; 1913 1914 if (!(flags & DCMD_ADDRSPEC)) 1915 return (DCMD_USAGE); 1916 1917 if (mdb_getopts(argc, argv, 1918 'q', MDB_OPT_SETBITS, TRUE, &quick, NULL) != argc) 1919 return (DCMD_USAGE); 1920 1921 if (mdb_vread(&proc, sizeof (proc), addr) == -1) { 1922 mdb_warn("failed to read proc at %p", addr); 1923 return (DCMD_ERR); 1924 } 1925 1926 if (mdb_lookup_by_name("segvn_ops", &sym) == 0) 1927 segvn = (uintptr_t)sym.st_value; 1928 else 1929 segvn = NULL; 1930 1931 mdb_printf("%?s %?s %8s ", "SEG", "BASE", "SIZE"); 1932 1933 if (quick) { 1934 mdb_printf("VNODE\n"); 1935 cb = (mdb_walk_cb_t)pmap_walk_seg_quick; 1936 } else { 1937 mdb_printf("%8s %s\n", "RES", "PATH"); 1938 } 1939 1940 if (mdb_pwalk("seg", cb, (void *)segvn, (uintptr_t)proc.p_as) == -1) { 1941 mdb_warn("failed to walk segments of as %p", proc.p_as); 1942 return (DCMD_ERR); 1943 } 1944 1945 return (DCMD_OK); 1946 } 1947 1948 typedef struct anon_walk_data { 1949 uintptr_t *aw_levone; 1950 uintptr_t *aw_levtwo; 1951 int aw_nlevone; 1952 int aw_levone_ndx; 1953 int aw_levtwo_ndx; 1954 struct anon_map aw_amp; 1955 struct anon_hdr aw_ahp; 1956 } anon_walk_data_t; 1957 1958 int 1959 anon_walk_init(mdb_walk_state_t *wsp) 1960 { 1961 anon_walk_data_t *aw; 1962 1963 if (wsp->walk_addr == NULL) { 1964 mdb_warn("anon walk doesn't support global walks\n"); 1965 return (WALK_ERR); 1966 } 1967 1968 aw = mdb_alloc(sizeof (anon_walk_data_t), UM_SLEEP); 1969 1970 if (mdb_vread(&aw->aw_amp, sizeof (aw->aw_amp), wsp->walk_addr) == -1) { 1971 mdb_warn("failed to read anon map at %p", wsp->walk_addr); 1972 mdb_free(aw, sizeof (anon_walk_data_t)); 1973 return (WALK_ERR); 1974 } 1975 1976 if (mdb_vread(&aw->aw_ahp, sizeof (aw->aw_ahp), 1977 (uintptr_t)(aw->aw_amp.ahp)) == -1) { 1978 mdb_warn("failed to read anon hdr ptr at %p", aw->aw_amp.ahp); 1979 mdb_free(aw, sizeof (anon_walk_data_t)); 1980 return (WALK_ERR); 1981 } 1982 1983 if (aw->aw_ahp.size <= ANON_CHUNK_SIZE || 1984 (aw->aw_ahp.flags & ANON_ALLOC_FORCE)) { 1985 aw->aw_nlevone = aw->aw_ahp.size; 1986 aw->aw_levtwo = NULL; 1987 } else { 1988 aw->aw_nlevone = 1989 (aw->aw_ahp.size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT; 1990 aw->aw_levtwo = 1991 mdb_zalloc(ANON_CHUNK_SIZE * sizeof (uintptr_t), UM_SLEEP); 1992 } 1993 1994 aw->aw_levone = 1995 mdb_alloc(aw->aw_nlevone * sizeof (uintptr_t), UM_SLEEP); 1996 1997 aw->aw_levone_ndx = 0; 1998 aw->aw_levtwo_ndx = 0; 1999 2000 mdb_vread(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t), 2001 (uintptr_t)aw->aw_ahp.array_chunk); 2002 2003 if (aw->aw_levtwo != NULL) { 2004 while (aw->aw_levone[aw->aw_levone_ndx] == NULL) { 2005 aw->aw_levone_ndx++; 2006 if (aw->aw_levone_ndx == aw->aw_nlevone) { 2007 mdb_warn("corrupt anon; couldn't" 2008 "find ptr to lev two map"); 2009 goto out; 2010 } 2011 } 2012 2013 mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t), 2014 aw->aw_levone[aw->aw_levone_ndx]); 2015 } 2016 2017 out: 2018 wsp->walk_data = aw; 2019 return (0); 2020 } 2021 2022 int 2023 anon_walk_step(mdb_walk_state_t *wsp) 2024 { 2025 int status; 2026 anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data; 2027 struct anon anon; 2028 uintptr_t anonptr; 2029 2030 again: 2031 /* 2032 * Once we've walked through level one, we're done. 2033 */ 2034 if (aw->aw_levone_ndx == aw->aw_nlevone) 2035 return (WALK_DONE); 2036 2037 if (aw->aw_levtwo == NULL) { 2038 anonptr = aw->aw_levone[aw->aw_levone_ndx]; 2039 aw->aw_levone_ndx++; 2040 } else { 2041 anonptr = aw->aw_levtwo[aw->aw_levtwo_ndx]; 2042 aw->aw_levtwo_ndx++; 2043 2044 if (aw->aw_levtwo_ndx == ANON_CHUNK_SIZE) { 2045 aw->aw_levtwo_ndx = 0; 2046 2047 do { 2048 aw->aw_levone_ndx++; 2049 2050 if (aw->aw_levone_ndx == aw->aw_nlevone) 2051 return (WALK_DONE); 2052 } while (aw->aw_levone[aw->aw_levone_ndx] == NULL); 2053 2054 mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * 2055 sizeof (uintptr_t), 2056 aw->aw_levone[aw->aw_levone_ndx]); 2057 } 2058 } 2059 2060 if (anonptr != NULL) { 2061 mdb_vread(&anon, sizeof (anon), anonptr); 2062 status = wsp->walk_callback(anonptr, &anon, wsp->walk_cbdata); 2063 } else 2064 goto again; 2065 2066 return (status); 2067 } 2068 2069 void 2070 anon_walk_fini(mdb_walk_state_t *wsp) 2071 { 2072 anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data; 2073 2074 if (aw->aw_levtwo != NULL) 2075 mdb_free(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t)); 2076 2077 mdb_free(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t)); 2078 mdb_free(aw, sizeof (anon_walk_data_t)); 2079 } 2080 2081 /*ARGSUSED*/ 2082 int 2083 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target) 2084 { 2085 if ((uintptr_t)f->f_vnode == *target) { 2086 mdb_printf("file %p\n", addr); 2087 *target = NULL; 2088 } 2089 2090 return (WALK_NEXT); 2091 } 2092 2093 /*ARGSUSED*/ 2094 int 2095 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target) 2096 { 2097 uintptr_t t = *target; 2098 2099 if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) { 2100 mdb_warn("couldn't file walk proc %p", addr); 2101 return (WALK_ERR); 2102 } 2103 2104 if (t == NULL) 2105 mdb_printf("%p\n", addr); 2106 2107 return (WALK_NEXT); 2108 } 2109 2110 /*ARGSUSED*/ 2111 int 2112 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2113 { 2114 uintptr_t target = addr; 2115 2116 if (!(flags & DCMD_ADDRSPEC) || addr == NULL) 2117 return (DCMD_USAGE); 2118 2119 if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) { 2120 mdb_warn("can't proc walk"); 2121 return (DCMD_ERR); 2122 } 2123 2124 return (DCMD_OK); 2125 } 2126 2127 typedef struct datafmt { 2128 char *hdr1; 2129 char *hdr2; 2130 char *dashes; 2131 char *fmt; 2132 } datafmt_t; 2133 2134 static datafmt_t kmemfmt[] = { 2135 { "cache ", "name ", 2136 "-------------------------", "%-25s " }, 2137 { " buf", " size", "------", "%6u " }, 2138 { " buf", "in use", "------", "%6u " }, 2139 { " buf", " total", "------", "%6u " }, 2140 { " memory", " in use", "----------", "%9u%c " }, 2141 { " alloc", " succeed", "---------", "%9u " }, 2142 { "alloc", " fail", "-----", "%5u " }, 2143 { NULL, NULL, NULL, NULL } 2144 }; 2145 2146 static datafmt_t vmemfmt[] = { 2147 { "vmem ", "name ", 2148 "-------------------------", "%-*s " }, 2149 { " memory", " in use", "----------", "%9llu%c " }, 2150 { " memory", " total", "-----------", "%10llu%c " }, 2151 { " memory", " import", "----------", "%9llu%c " }, 2152 { " alloc", " succeed", "---------", "%9llu " }, 2153 { "alloc", " fail", "-----", "%5llu " }, 2154 { NULL, NULL, NULL, NULL } 2155 }; 2156 2157 /*ARGSUSED*/ 2158 static int 2159 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail) 2160 { 2161 if (ccp->cc_rounds > 0) 2162 *avail += ccp->cc_rounds; 2163 if (ccp->cc_prounds > 0) 2164 *avail += ccp->cc_prounds; 2165 2166 return (WALK_NEXT); 2167 } 2168 2169 /*ARGSUSED*/ 2170 static int 2171 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc) 2172 { 2173 *alloc += ccp->cc_alloc; 2174 2175 return (WALK_NEXT); 2176 } 2177 2178 /*ARGSUSED*/ 2179 static int 2180 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail) 2181 { 2182 *avail += sp->slab_chunks - sp->slab_refcnt; 2183 2184 return (WALK_NEXT); 2185 } 2186 2187 typedef struct kmastat_vmem { 2188 uintptr_t kv_addr; 2189 struct kmastat_vmem *kv_next; 2190 int kv_meminuse; 2191 int kv_alloc; 2192 int kv_fail; 2193 } kmastat_vmem_t; 2194 2195 typedef struct kmastat_args { 2196 kmastat_vmem_t **ka_kvpp; 2197 uint_t ka_shift; 2198 } kmastat_args_t; 2199 2200 static int 2201 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap) 2202 { 2203 kmastat_vmem_t **kvp = kap->ka_kvpp; 2204 kmastat_vmem_t *kv; 2205 datafmt_t *dfp = kmemfmt; 2206 int magsize; 2207 2208 int avail, alloc, total; 2209 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) * 2210 cp->cache_slabsize; 2211 2212 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail; 2213 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc; 2214 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail; 2215 2216 magsize = kmem_get_magsize(cp); 2217 2218 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc; 2219 avail = cp->cache_full.ml_total * magsize; 2220 total = cp->cache_buftotal; 2221 2222 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr); 2223 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr); 2224 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr); 2225 2226 for (kv = *kvp; kv != NULL; kv = kv->kv_next) { 2227 if (kv->kv_addr == (uintptr_t)cp->cache_arena) 2228 goto out; 2229 } 2230 2231 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC); 2232 kv->kv_next = *kvp; 2233 kv->kv_addr = (uintptr_t)cp->cache_arena; 2234 *kvp = kv; 2235 out: 2236 kv->kv_meminuse += meminuse; 2237 kv->kv_alloc += alloc; 2238 kv->kv_fail += cp->cache_alloc_fail; 2239 2240 mdb_printf((dfp++)->fmt, cp->cache_name); 2241 mdb_printf((dfp++)->fmt, cp->cache_bufsize); 2242 mdb_printf((dfp++)->fmt, total - avail); 2243 mdb_printf((dfp++)->fmt, total); 2244 mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift, 2245 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 2246 kap->ka_shift == KILOS ? 'K' : 'B'); 2247 mdb_printf((dfp++)->fmt, alloc); 2248 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail); 2249 mdb_printf("\n"); 2250 2251 return (WALK_NEXT); 2252 } 2253 2254 static int 2255 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap) 2256 { 2257 kmastat_vmem_t *kv = *kap->ka_kvpp; 2258 size_t len; 2259 2260 while (kv != NULL && kv->kv_addr != addr) 2261 kv = kv->kv_next; 2262 2263 if (kv == NULL || kv->kv_alloc == 0) 2264 return (WALK_NEXT); 2265 2266 len = MIN(17, strlen(v->vm_name)); 2267 2268 mdb_printf("Total [%s]%*s %6s %6s %6s %9u%c %9u %5u\n", v->vm_name, 2269 17 - len, "", "", "", "", 2270 kv->kv_meminuse >> kap->ka_shift, 2271 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 2272 kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail); 2273 2274 return (WALK_NEXT); 2275 } 2276 2277 /*ARGSUSED*/ 2278 static int 2279 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp) 2280 { 2281 datafmt_t *dfp = vmemfmt; 2282 const vmem_kstat_t *vkp = &v->vm_kstat; 2283 uintptr_t paddr; 2284 vmem_t parent; 2285 int ident = 0; 2286 2287 for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) { 2288 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) { 2289 mdb_warn("couldn't trace %p's ancestry", addr); 2290 ident = 0; 2291 break; 2292 } 2293 paddr = (uintptr_t)parent.vm_source; 2294 } 2295 2296 mdb_printf("%*s", ident, ""); 2297 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name); 2298 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp, 2299 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2300 *shiftp == KILOS ? 'K' : 'B'); 2301 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp, 2302 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2303 *shiftp == KILOS ? 'K' : 'B'); 2304 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp, 2305 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2306 *shiftp == KILOS ? 'K' : 'B'); 2307 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64); 2308 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64); 2309 2310 mdb_printf("\n"); 2311 2312 return (WALK_NEXT); 2313 } 2314 2315 /*ARGSUSED*/ 2316 int 2317 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2318 { 2319 kmastat_vmem_t *kv = NULL; 2320 datafmt_t *dfp; 2321 kmastat_args_t ka; 2322 2323 ka.ka_shift = 0; 2324 if (mdb_getopts(argc, argv, 2325 'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift, 2326 'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift, 2327 'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc) 2328 return (DCMD_USAGE); 2329 2330 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2331 mdb_printf("%s ", dfp->hdr1); 2332 mdb_printf("\n"); 2333 2334 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2335 mdb_printf("%s ", dfp->hdr2); 2336 mdb_printf("\n"); 2337 2338 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2339 mdb_printf("%s ", dfp->dashes); 2340 mdb_printf("\n"); 2341 2342 ka.ka_kvpp = &kv; 2343 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) { 2344 mdb_warn("can't walk 'kmem_cache'"); 2345 return (DCMD_ERR); 2346 } 2347 2348 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2349 mdb_printf("%s ", dfp->dashes); 2350 mdb_printf("\n"); 2351 2352 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) { 2353 mdb_warn("can't walk 'vmem'"); 2354 return (DCMD_ERR); 2355 } 2356 2357 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2358 mdb_printf("%s ", dfp->dashes); 2359 mdb_printf("\n"); 2360 2361 mdb_printf("\n"); 2362 2363 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2364 mdb_printf("%s ", dfp->hdr1); 2365 mdb_printf("\n"); 2366 2367 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2368 mdb_printf("%s ", dfp->hdr2); 2369 mdb_printf("\n"); 2370 2371 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2372 mdb_printf("%s ", dfp->dashes); 2373 mdb_printf("\n"); 2374 2375 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) { 2376 mdb_warn("can't walk 'vmem'"); 2377 return (DCMD_ERR); 2378 } 2379 2380 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2381 mdb_printf("%s ", dfp->dashes); 2382 mdb_printf("\n"); 2383 return (DCMD_OK); 2384 } 2385 2386 /* 2387 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made 2388 * up of a set of 'struct seg's. We could just scan each seg en masse, but 2389 * unfortunately, a few of the segs are both large and sparse, so we could 2390 * spend quite a bit of time scanning VAs which have no backing pages. 2391 * 2392 * So for the few very sparse segs, we skip the segment itself, and scan 2393 * the allocated vmem_segs in the vmem arena which manages that part of kas. 2394 * Currently, we do this for: 2395 * 2396 * SEG VMEM ARENA 2397 * kvseg heap_arena 2398 * kvseg32 heap32_arena 2399 * kvseg_core heap_core_arena 2400 * 2401 * In addition, we skip the segkpm segment in its entirety, since it is very 2402 * sparse, and contains no new kernel data. 2403 */ 2404 typedef struct kgrep_walk_data { 2405 kgrep_cb_func *kg_cb; 2406 void *kg_cbdata; 2407 uintptr_t kg_kvseg; 2408 uintptr_t kg_kvseg32; 2409 uintptr_t kg_kvseg_core; 2410 uintptr_t kg_segkpm; 2411 uintptr_t kg_heap_lp_base; 2412 uintptr_t kg_heap_lp_end; 2413 } kgrep_walk_data_t; 2414 2415 static int 2416 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg) 2417 { 2418 uintptr_t base = (uintptr_t)seg->s_base; 2419 2420 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 || 2421 addr == kg->kg_kvseg_core) 2422 return (WALK_NEXT); 2423 2424 if ((uintptr_t)seg->s_ops == kg->kg_segkpm) 2425 return (WALK_NEXT); 2426 2427 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata)); 2428 } 2429 2430 /*ARGSUSED*/ 2431 static int 2432 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 2433 { 2434 /* 2435 * skip large page heap address range - it is scanned by walking 2436 * allocated vmem_segs in the heap_lp_arena 2437 */ 2438 if (seg->vs_start == kg->kg_heap_lp_base && 2439 seg->vs_end == kg->kg_heap_lp_end) 2440 return (WALK_NEXT); 2441 2442 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 2443 } 2444 2445 /*ARGSUSED*/ 2446 static int 2447 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 2448 { 2449 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 2450 } 2451 2452 static int 2453 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg) 2454 { 2455 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg; 2456 2457 if (strcmp(vmem->vm_name, "heap") != 0 && 2458 strcmp(vmem->vm_name, "heap32") != 0 && 2459 strcmp(vmem->vm_name, "heap_core") != 0 && 2460 strcmp(vmem->vm_name, "heap_lp") != 0) 2461 return (WALK_NEXT); 2462 2463 if (strcmp(vmem->vm_name, "heap_lp") == 0) 2464 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg; 2465 2466 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) { 2467 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr); 2468 return (WALK_ERR); 2469 } 2470 2471 return (WALK_NEXT); 2472 } 2473 2474 int 2475 kgrep_subr(kgrep_cb_func *cb, void *cbdata) 2476 { 2477 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm; 2478 kgrep_walk_data_t kg; 2479 2480 if (mdb_get_state() == MDB_STATE_RUNNING) { 2481 mdb_warn("kgrep can only be run on a system " 2482 "dump or under kmdb; see dumpadm(1M)\n"); 2483 return (DCMD_ERR); 2484 } 2485 2486 if (mdb_lookup_by_name("kas", &kas) == -1) { 2487 mdb_warn("failed to locate 'kas' symbol\n"); 2488 return (DCMD_ERR); 2489 } 2490 2491 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) { 2492 mdb_warn("failed to locate 'kvseg' symbol\n"); 2493 return (DCMD_ERR); 2494 } 2495 2496 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) { 2497 mdb_warn("failed to locate 'kvseg32' symbol\n"); 2498 return (DCMD_ERR); 2499 } 2500 2501 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) { 2502 mdb_warn("failed to locate 'kvseg_core' symbol\n"); 2503 return (DCMD_ERR); 2504 } 2505 2506 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) { 2507 mdb_warn("failed to locate 'segkpm_ops' symbol\n"); 2508 return (DCMD_ERR); 2509 } 2510 2511 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) { 2512 mdb_warn("failed to read 'heap_lp_base'\n"); 2513 return (DCMD_ERR); 2514 } 2515 2516 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) { 2517 mdb_warn("failed to read 'heap_lp_end'\n"); 2518 return (DCMD_ERR); 2519 } 2520 2521 kg.kg_cb = cb; 2522 kg.kg_cbdata = cbdata; 2523 kg.kg_kvseg = (uintptr_t)kvseg.st_value; 2524 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value; 2525 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value; 2526 kg.kg_segkpm = (uintptr_t)segkpm.st_value; 2527 2528 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg, 2529 &kg, kas.st_value) == -1) { 2530 mdb_warn("failed to walk kas segments"); 2531 return (DCMD_ERR); 2532 } 2533 2534 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) { 2535 mdb_warn("failed to walk heap/heap32 vmem arenas"); 2536 return (DCMD_ERR); 2537 } 2538 2539 return (DCMD_OK); 2540 } 2541 2542 size_t 2543 kgrep_subr_pagesize(void) 2544 { 2545 return (PAGESIZE); 2546 } 2547 2548 typedef struct file_walk_data { 2549 struct uf_entry *fw_flist; 2550 int fw_flistsz; 2551 int fw_ndx; 2552 int fw_nofiles; 2553 } file_walk_data_t; 2554 2555 int 2556 file_walk_init(mdb_walk_state_t *wsp) 2557 { 2558 file_walk_data_t *fw; 2559 proc_t p; 2560 2561 if (wsp->walk_addr == NULL) { 2562 mdb_warn("file walk doesn't support global walks\n"); 2563 return (WALK_ERR); 2564 } 2565 2566 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP); 2567 2568 if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) { 2569 mdb_free(fw, sizeof (file_walk_data_t)); 2570 mdb_warn("failed to read proc structure at %p", wsp->walk_addr); 2571 return (WALK_ERR); 2572 } 2573 2574 if (p.p_user.u_finfo.fi_nfiles == 0) { 2575 mdb_free(fw, sizeof (file_walk_data_t)); 2576 return (WALK_DONE); 2577 } 2578 2579 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles; 2580 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles; 2581 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP); 2582 2583 if (mdb_vread(fw->fw_flist, fw->fw_flistsz, 2584 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) { 2585 mdb_warn("failed to read file array at %p", 2586 p.p_user.u_finfo.fi_list); 2587 mdb_free(fw->fw_flist, fw->fw_flistsz); 2588 mdb_free(fw, sizeof (file_walk_data_t)); 2589 return (WALK_ERR); 2590 } 2591 2592 fw->fw_ndx = 0; 2593 wsp->walk_data = fw; 2594 2595 return (WALK_NEXT); 2596 } 2597 2598 int 2599 file_walk_step(mdb_walk_state_t *wsp) 2600 { 2601 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2602 struct file file; 2603 uintptr_t fp; 2604 2605 again: 2606 if (fw->fw_ndx == fw->fw_nofiles) 2607 return (WALK_DONE); 2608 2609 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL) 2610 goto again; 2611 2612 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 2613 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 2614 } 2615 2616 int 2617 allfile_walk_step(mdb_walk_state_t *wsp) 2618 { 2619 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2620 struct file file; 2621 uintptr_t fp; 2622 2623 if (fw->fw_ndx == fw->fw_nofiles) 2624 return (WALK_DONE); 2625 2626 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL) 2627 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 2628 else 2629 bzero(&file, sizeof (file)); 2630 2631 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 2632 } 2633 2634 void 2635 file_walk_fini(mdb_walk_state_t *wsp) 2636 { 2637 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2638 2639 mdb_free(fw->fw_flist, fw->fw_flistsz); 2640 mdb_free(fw, sizeof (file_walk_data_t)); 2641 } 2642 2643 int 2644 port_walk_init(mdb_walk_state_t *wsp) 2645 { 2646 if (wsp->walk_addr == NULL) { 2647 mdb_warn("port walk doesn't support global walks\n"); 2648 return (WALK_ERR); 2649 } 2650 2651 if (mdb_layered_walk("file", wsp) == -1) { 2652 mdb_warn("couldn't walk 'file'"); 2653 return (WALK_ERR); 2654 } 2655 return (WALK_NEXT); 2656 } 2657 2658 int 2659 port_walk_step(mdb_walk_state_t *wsp) 2660 { 2661 struct vnode vn; 2662 uintptr_t vp; 2663 uintptr_t pp; 2664 struct port port; 2665 2666 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode; 2667 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 2668 mdb_warn("failed to read vnode_t at %p", vp); 2669 return (WALK_ERR); 2670 } 2671 if (vn.v_type != VPORT) 2672 return (WALK_NEXT); 2673 2674 pp = (uintptr_t)vn.v_data; 2675 if (mdb_vread(&port, sizeof (port), pp) == -1) { 2676 mdb_warn("failed to read port_t at %p", pp); 2677 return (WALK_ERR); 2678 } 2679 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata)); 2680 } 2681 2682 typedef struct portev_walk_data { 2683 list_node_t *pev_node; 2684 list_node_t *pev_last; 2685 size_t pev_offset; 2686 } portev_walk_data_t; 2687 2688 int 2689 portev_walk_init(mdb_walk_state_t *wsp) 2690 { 2691 portev_walk_data_t *pevd; 2692 struct port port; 2693 struct vnode vn; 2694 struct list *list; 2695 uintptr_t vp; 2696 2697 if (wsp->walk_addr == NULL) { 2698 mdb_warn("portev walk doesn't support global walks\n"); 2699 return (WALK_ERR); 2700 } 2701 2702 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP); 2703 2704 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) { 2705 mdb_free(pevd, sizeof (portev_walk_data_t)); 2706 mdb_warn("failed to read port structure at %p", wsp->walk_addr); 2707 return (WALK_ERR); 2708 } 2709 2710 vp = (uintptr_t)port.port_vnode; 2711 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 2712 mdb_free(pevd, sizeof (portev_walk_data_t)); 2713 mdb_warn("failed to read vnode_t at %p", vp); 2714 return (WALK_ERR); 2715 } 2716 2717 if (vn.v_type != VPORT) { 2718 mdb_free(pevd, sizeof (portev_walk_data_t)); 2719 mdb_warn("input address (%p) does not point to an event port", 2720 wsp->walk_addr); 2721 return (WALK_ERR); 2722 } 2723 2724 if (port.port_queue.portq_nent == 0) { 2725 mdb_free(pevd, sizeof (portev_walk_data_t)); 2726 return (WALK_DONE); 2727 } 2728 list = &port.port_queue.portq_list; 2729 pevd->pev_offset = list->list_offset; 2730 pevd->pev_last = list->list_head.list_prev; 2731 pevd->pev_node = list->list_head.list_next; 2732 wsp->walk_data = pevd; 2733 return (WALK_NEXT); 2734 } 2735 2736 int 2737 portev_walk_step(mdb_walk_state_t *wsp) 2738 { 2739 portev_walk_data_t *pevd; 2740 struct port_kevent ev; 2741 uintptr_t evp; 2742 2743 pevd = (portev_walk_data_t *)wsp->walk_data; 2744 2745 if (pevd->pev_last == NULL) 2746 return (WALK_DONE); 2747 if (pevd->pev_node == pevd->pev_last) 2748 pevd->pev_last = NULL; /* last round */ 2749 2750 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset)); 2751 if (mdb_vread(&ev, sizeof (ev), evp) == -1) { 2752 mdb_warn("failed to read port_kevent at %p", evp); 2753 return (WALK_DONE); 2754 } 2755 pevd->pev_node = ev.portkev_node.list_next; 2756 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata)); 2757 } 2758 2759 void 2760 portev_walk_fini(mdb_walk_state_t *wsp) 2761 { 2762 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data; 2763 2764 if (pevd != NULL) 2765 mdb_free(pevd, sizeof (portev_walk_data_t)); 2766 } 2767 2768 typedef struct proc_walk_data { 2769 uintptr_t *pw_stack; 2770 int pw_depth; 2771 int pw_max; 2772 } proc_walk_data_t; 2773 2774 int 2775 proc_walk_init(mdb_walk_state_t *wsp) 2776 { 2777 GElf_Sym sym; 2778 proc_walk_data_t *pw; 2779 2780 if (wsp->walk_addr == NULL) { 2781 if (mdb_lookup_by_name("p0", &sym) == -1) { 2782 mdb_warn("failed to read 'practive'"); 2783 return (WALK_ERR); 2784 } 2785 wsp->walk_addr = (uintptr_t)sym.st_value; 2786 } 2787 2788 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP); 2789 2790 if (mdb_readvar(&pw->pw_max, "nproc") == -1) { 2791 mdb_warn("failed to read 'nproc'"); 2792 mdb_free(pw, sizeof (pw)); 2793 return (WALK_ERR); 2794 } 2795 2796 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP); 2797 wsp->walk_data = pw; 2798 2799 return (WALK_NEXT); 2800 } 2801 2802 int 2803 proc_walk_step(mdb_walk_state_t *wsp) 2804 { 2805 proc_walk_data_t *pw = wsp->walk_data; 2806 uintptr_t addr = wsp->walk_addr; 2807 uintptr_t cld, sib; 2808 2809 int status; 2810 proc_t pr; 2811 2812 if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) { 2813 mdb_warn("failed to read proc at %p", addr); 2814 return (WALK_DONE); 2815 } 2816 2817 cld = (uintptr_t)pr.p_child; 2818 sib = (uintptr_t)pr.p_sibling; 2819 2820 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) { 2821 pw->pw_depth--; 2822 goto sib; 2823 } 2824 2825 status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata); 2826 2827 if (status != WALK_NEXT) 2828 return (status); 2829 2830 if ((wsp->walk_addr = cld) != NULL) { 2831 if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) { 2832 mdb_warn("proc %p has invalid p_child %p; skipping\n", 2833 addr, cld); 2834 goto sib; 2835 } 2836 2837 pw->pw_stack[pw->pw_depth++] = addr; 2838 2839 if (pw->pw_depth == pw->pw_max) { 2840 mdb_warn("depth %d exceeds max depth; try again\n", 2841 pw->pw_depth); 2842 return (WALK_DONE); 2843 } 2844 return (WALK_NEXT); 2845 } 2846 2847 sib: 2848 /* 2849 * We know that p0 has no siblings, and if another starting proc 2850 * was given, we don't want to walk its siblings anyway. 2851 */ 2852 if (pw->pw_depth == 0) 2853 return (WALK_DONE); 2854 2855 if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) { 2856 mdb_warn("proc %p has invalid p_sibling %p; skipping\n", 2857 addr, sib); 2858 sib = NULL; 2859 } 2860 2861 if ((wsp->walk_addr = sib) == NULL) { 2862 if (pw->pw_depth > 0) { 2863 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1]; 2864 return (WALK_NEXT); 2865 } 2866 return (WALK_DONE); 2867 } 2868 2869 return (WALK_NEXT); 2870 } 2871 2872 void 2873 proc_walk_fini(mdb_walk_state_t *wsp) 2874 { 2875 proc_walk_data_t *pw = wsp->walk_data; 2876 2877 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t)); 2878 mdb_free(pw, sizeof (proc_walk_data_t)); 2879 } 2880 2881 int 2882 task_walk_init(mdb_walk_state_t *wsp) 2883 { 2884 task_t task; 2885 2886 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) { 2887 mdb_warn("failed to read task at %p", wsp->walk_addr); 2888 return (WALK_ERR); 2889 } 2890 wsp->walk_addr = (uintptr_t)task.tk_memb_list; 2891 wsp->walk_data = task.tk_memb_list; 2892 return (WALK_NEXT); 2893 } 2894 2895 int 2896 task_walk_step(mdb_walk_state_t *wsp) 2897 { 2898 proc_t proc; 2899 int status; 2900 2901 if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) { 2902 mdb_warn("failed to read proc at %p", wsp->walk_addr); 2903 return (WALK_DONE); 2904 } 2905 2906 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata); 2907 2908 if (proc.p_tasknext == wsp->walk_data) 2909 return (WALK_DONE); 2910 2911 wsp->walk_addr = (uintptr_t)proc.p_tasknext; 2912 return (status); 2913 } 2914 2915 int 2916 project_walk_init(mdb_walk_state_t *wsp) 2917 { 2918 if (wsp->walk_addr == NULL) { 2919 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) { 2920 mdb_warn("failed to read 'proj0p'"); 2921 return (WALK_ERR); 2922 } 2923 } 2924 wsp->walk_data = (void *)wsp->walk_addr; 2925 return (WALK_NEXT); 2926 } 2927 2928 int 2929 project_walk_step(mdb_walk_state_t *wsp) 2930 { 2931 uintptr_t addr = wsp->walk_addr; 2932 kproject_t pj; 2933 int status; 2934 2935 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 2936 mdb_warn("failed to read project at %p", addr); 2937 return (WALK_DONE); 2938 } 2939 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata); 2940 if (status != WALK_NEXT) 2941 return (status); 2942 wsp->walk_addr = (uintptr_t)pj.kpj_next; 2943 if ((void *)wsp->walk_addr == wsp->walk_data) 2944 return (WALK_DONE); 2945 return (WALK_NEXT); 2946 } 2947 2948 static int 2949 generic_walk_step(mdb_walk_state_t *wsp) 2950 { 2951 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer, 2952 wsp->walk_cbdata)); 2953 } 2954 2955 int 2956 seg_walk_init(mdb_walk_state_t *wsp) 2957 { 2958 if (wsp->walk_addr == NULL) { 2959 mdb_warn("seg walk must begin at struct as *\n"); 2960 return (WALK_ERR); 2961 } 2962 2963 /* 2964 * this is really just a wrapper to AVL tree walk 2965 */ 2966 wsp->walk_addr = (uintptr_t)&((struct as *)wsp->walk_addr)->a_segtree; 2967 return (avl_walk_init(wsp)); 2968 } 2969 2970 static int 2971 cpu_walk_cmp(const void *l, const void *r) 2972 { 2973 uintptr_t lhs = *((uintptr_t *)l); 2974 uintptr_t rhs = *((uintptr_t *)r); 2975 cpu_t lcpu, rcpu; 2976 2977 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs); 2978 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs); 2979 2980 if (lcpu.cpu_id < rcpu.cpu_id) 2981 return (-1); 2982 2983 if (lcpu.cpu_id > rcpu.cpu_id) 2984 return (1); 2985 2986 return (0); 2987 } 2988 2989 typedef struct cpu_walk { 2990 uintptr_t *cw_array; 2991 int cw_ndx; 2992 } cpu_walk_t; 2993 2994 int 2995 cpu_walk_init(mdb_walk_state_t *wsp) 2996 { 2997 cpu_walk_t *cw; 2998 int max_ncpus, i = 0; 2999 uintptr_t current, first; 3000 cpu_t cpu, panic_cpu; 3001 uintptr_t panicstr, addr; 3002 GElf_Sym sym; 3003 3004 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC); 3005 3006 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 3007 mdb_warn("failed to read 'max_ncpus'"); 3008 return (WALK_ERR); 3009 } 3010 3011 if (mdb_readvar(&panicstr, "panicstr") == -1) { 3012 mdb_warn("failed to read 'panicstr'"); 3013 return (WALK_ERR); 3014 } 3015 3016 if (panicstr != NULL) { 3017 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) { 3018 mdb_warn("failed to find 'panic_cpu'"); 3019 return (WALK_ERR); 3020 } 3021 3022 addr = (uintptr_t)sym.st_value; 3023 3024 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) { 3025 mdb_warn("failed to read 'panic_cpu'"); 3026 return (WALK_ERR); 3027 } 3028 } 3029 3030 /* 3031 * Unfortunately, there is no platform-independent way to walk 3032 * CPUs in ID order. We therefore loop through in cpu_next order, 3033 * building an array of CPU pointers which will subsequently be 3034 * sorted. 3035 */ 3036 cw->cw_array = 3037 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC); 3038 3039 if (mdb_readvar(&first, "cpu_list") == -1) { 3040 mdb_warn("failed to read 'cpu_list'"); 3041 return (WALK_ERR); 3042 } 3043 3044 current = first; 3045 do { 3046 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) { 3047 mdb_warn("failed to read cpu at %p", current); 3048 return (WALK_ERR); 3049 } 3050 3051 if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) { 3052 cw->cw_array[i++] = addr; 3053 } else { 3054 cw->cw_array[i++] = current; 3055 } 3056 } while ((current = (uintptr_t)cpu.cpu_next) != first); 3057 3058 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp); 3059 wsp->walk_data = cw; 3060 3061 return (WALK_NEXT); 3062 } 3063 3064 int 3065 cpu_walk_step(mdb_walk_state_t *wsp) 3066 { 3067 cpu_walk_t *cw = wsp->walk_data; 3068 cpu_t cpu; 3069 uintptr_t addr = cw->cw_array[cw->cw_ndx++]; 3070 3071 if (addr == NULL) 3072 return (WALK_DONE); 3073 3074 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) { 3075 mdb_warn("failed to read cpu at %p", addr); 3076 return (WALK_DONE); 3077 } 3078 3079 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata)); 3080 } 3081 3082 typedef struct cpuinfo_data { 3083 intptr_t cid_cpu; 3084 uintptr_t cid_lbolt; 3085 uintptr_t **cid_ithr; 3086 char cid_print_head; 3087 char cid_print_thr; 3088 char cid_print_ithr; 3089 char cid_print_flags; 3090 } cpuinfo_data_t; 3091 3092 int 3093 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid) 3094 { 3095 cpu_t c; 3096 int id; 3097 uint8_t pil; 3098 3099 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE) 3100 return (WALK_NEXT); 3101 3102 if (thr->t_bound_cpu == NULL) { 3103 mdb_warn("thr %p is intr thread w/out a CPU\n", addr); 3104 return (WALK_NEXT); 3105 } 3106 3107 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu); 3108 3109 if ((id = c.cpu_id) >= NCPU) { 3110 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n", 3111 thr->t_bound_cpu, id, NCPU); 3112 return (WALK_NEXT); 3113 } 3114 3115 if ((pil = thr->t_pil) >= NINTR) { 3116 mdb_warn("thread %p has pil (%d) greater than %d\n", 3117 addr, pil, NINTR); 3118 return (WALK_NEXT); 3119 } 3120 3121 if (cid->cid_ithr[id][pil] != NULL) { 3122 mdb_warn("CPU %d has multiple threads at pil %d (at least " 3123 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]); 3124 return (WALK_NEXT); 3125 } 3126 3127 cid->cid_ithr[id][pil] = addr; 3128 3129 return (WALK_NEXT); 3130 } 3131 3132 #define CPUINFO_IDWIDTH 3 3133 #define CPUINFO_FLAGWIDTH 9 3134 3135 #ifdef _LP64 3136 #if defined(__amd64) 3137 #define CPUINFO_TWIDTH 16 3138 #define CPUINFO_CPUWIDTH 16 3139 #else 3140 #define CPUINFO_CPUWIDTH 11 3141 #define CPUINFO_TWIDTH 11 3142 #endif 3143 #else 3144 #define CPUINFO_CPUWIDTH 8 3145 #define CPUINFO_TWIDTH 8 3146 #endif 3147 3148 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9) 3149 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4) 3150 #define CPUINFO_ITHRDELT 4 3151 3152 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \ 3153 flagline < nflaglines ? flagbuf[flagline++] : "") 3154 3155 int 3156 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid) 3157 { 3158 kthread_t t; 3159 disp_t disp; 3160 proc_t p; 3161 uintptr_t pinned; 3162 char **flagbuf; 3163 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT; 3164 3165 const char *flags[] = { 3166 "RUNNING", "READY", "QUIESCED", "EXISTS", 3167 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN", 3168 "SPARE", "FAULTED", NULL 3169 }; 3170 3171 if (cid->cid_cpu != -1) { 3172 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu) 3173 return (WALK_NEXT); 3174 3175 /* 3176 * Set cid_cpu to -1 to indicate that we found a matching CPU. 3177 */ 3178 cid->cid_cpu = -1; 3179 rval = WALK_DONE; 3180 } 3181 3182 if (cid->cid_print_head) { 3183 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n", 3184 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL", 3185 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD", 3186 "PROC"); 3187 cid->cid_print_head = FALSE; 3188 } 3189 3190 bspl = cpu->cpu_base_spl; 3191 3192 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) { 3193 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp); 3194 return (WALK_ERR); 3195 } 3196 3197 mdb_printf("%3d %0*p %3x %4d %4d ", 3198 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags, 3199 disp.disp_nrunnable, bspl); 3200 3201 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) { 3202 mdb_printf("%3d ", t.t_pri); 3203 } else { 3204 mdb_printf("%3s ", "-"); 3205 } 3206 3207 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no", 3208 cpu->cpu_kprunrun ? "yes" : "no"); 3209 3210 if (cpu->cpu_last_swtch) { 3211 clock_t lbolt; 3212 3213 if (mdb_vread(&lbolt, sizeof (lbolt), cid->cid_lbolt) == -1) { 3214 mdb_warn("failed to read lbolt at %p", cid->cid_lbolt); 3215 return (WALK_ERR); 3216 } 3217 mdb_printf("t-%-4d ", lbolt - cpu->cpu_last_swtch); 3218 } else { 3219 mdb_printf("%-6s ", "-"); 3220 } 3221 3222 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread); 3223 3224 if (cpu->cpu_thread == cpu->cpu_idle_thread) 3225 mdb_printf(" (idle)\n"); 3226 else if (cpu->cpu_thread == NULL) 3227 mdb_printf(" -\n"); 3228 else { 3229 if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) { 3230 mdb_printf(" %s\n", p.p_user.u_comm); 3231 } else { 3232 mdb_printf(" ?\n"); 3233 } 3234 } 3235 3236 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC); 3237 3238 if (cid->cid_print_flags) { 3239 int first = 1, i, j, k; 3240 char *s; 3241 3242 cid->cid_print_head = TRUE; 3243 3244 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) { 3245 if (!(cpu->cpu_flags & i)) 3246 continue; 3247 3248 if (first) { 3249 s = mdb_alloc(CPUINFO_THRDELT + 1, 3250 UM_GC | UM_SLEEP); 3251 3252 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, 3253 "%*s|%*s", CPUINFO_FLAGDELT, "", 3254 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, ""); 3255 flagbuf[nflaglines++] = s; 3256 } 3257 3258 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP); 3259 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s", 3260 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH - 3261 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j], 3262 first ? "<--+" : ""); 3263 3264 for (k = strlen(s); k < CPUINFO_THRDELT; k++) 3265 s[k] = ' '; 3266 s[k] = '\0'; 3267 3268 flagbuf[nflaglines++] = s; 3269 first = 0; 3270 } 3271 } 3272 3273 if (cid->cid_print_ithr) { 3274 int i, found_one = FALSE; 3275 int print_thr = disp.disp_nrunnable && cid->cid_print_thr; 3276 3277 for (i = NINTR - 1; i >= 0; i--) { 3278 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i]; 3279 3280 if (iaddr == NULL) 3281 continue; 3282 3283 if (!found_one) { 3284 found_one = TRUE; 3285 3286 CPUINFO_INDENT; 3287 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ', 3288 CPUINFO_ITHRDELT, ""); 3289 3290 CPUINFO_INDENT; 3291 mdb_printf("%c%*s+--> %3s %s\n", 3292 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, 3293 "", "PIL", "THREAD"); 3294 } 3295 3296 if (mdb_vread(&t, sizeof (t), iaddr) == -1) { 3297 mdb_warn("failed to read kthread_t at %p", 3298 iaddr); 3299 return (WALK_ERR); 3300 } 3301 3302 CPUINFO_INDENT; 3303 mdb_printf("%c%*s %3d %0*p\n", 3304 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", 3305 t.t_pil, CPUINFO_TWIDTH, iaddr); 3306 3307 pinned = (uintptr_t)t.t_intr; 3308 } 3309 3310 if (found_one && pinned != NULL) { 3311 cid->cid_print_head = TRUE; 3312 (void) strcpy(p.p_user.u_comm, "?"); 3313 3314 if (mdb_vread(&t, sizeof (t), 3315 (uintptr_t)pinned) == -1) { 3316 mdb_warn("failed to read kthread_t at %p", 3317 pinned); 3318 return (WALK_ERR); 3319 } 3320 if (mdb_vread(&p, sizeof (p), 3321 (uintptr_t)t.t_procp) == -1) { 3322 mdb_warn("failed to read proc_t at %p", 3323 t.t_procp); 3324 return (WALK_ERR); 3325 } 3326 3327 CPUINFO_INDENT; 3328 mdb_printf("%c%*s %3s %0*p %s\n", 3329 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-", 3330 CPUINFO_TWIDTH, pinned, 3331 pinned == (uintptr_t)cpu->cpu_idle_thread ? 3332 "(idle)" : p.p_user.u_comm); 3333 } 3334 } 3335 3336 if (disp.disp_nrunnable && cid->cid_print_thr) { 3337 dispq_t *dq; 3338 3339 int i, npri = disp.disp_npri; 3340 3341 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC); 3342 3343 if (mdb_vread(dq, sizeof (dispq_t) * npri, 3344 (uintptr_t)disp.disp_q) == -1) { 3345 mdb_warn("failed to read dispq_t at %p", disp.disp_q); 3346 return (WALK_ERR); 3347 } 3348 3349 CPUINFO_INDENT; 3350 mdb_printf("|\n"); 3351 3352 CPUINFO_INDENT; 3353 mdb_printf("+--> %3s %-*s %s\n", "PRI", 3354 CPUINFO_TWIDTH, "THREAD", "PROC"); 3355 3356 for (i = npri - 1; i >= 0; i--) { 3357 uintptr_t taddr = (uintptr_t)dq[i].dq_first; 3358 3359 while (taddr != NULL) { 3360 if (mdb_vread(&t, sizeof (t), taddr) == -1) { 3361 mdb_warn("failed to read kthread_t " 3362 "at %p", taddr); 3363 return (WALK_ERR); 3364 } 3365 if (mdb_vread(&p, sizeof (p), 3366 (uintptr_t)t.t_procp) == -1) { 3367 mdb_warn("failed to read proc_t at %p", 3368 t.t_procp); 3369 return (WALK_ERR); 3370 } 3371 3372 CPUINFO_INDENT; 3373 mdb_printf(" %3d %0*p %s\n", t.t_pri, 3374 CPUINFO_TWIDTH, taddr, p.p_user.u_comm); 3375 3376 taddr = (uintptr_t)t.t_link; 3377 } 3378 } 3379 cid->cid_print_head = TRUE; 3380 } 3381 3382 while (flagline < nflaglines) 3383 mdb_printf("%s\n", flagbuf[flagline++]); 3384 3385 if (cid->cid_print_head) 3386 mdb_printf("\n"); 3387 3388 return (rval); 3389 } 3390 3391 int 3392 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3393 { 3394 uint_t verbose = FALSE; 3395 cpuinfo_data_t cid; 3396 GElf_Sym sym; 3397 clock_t lbolt; 3398 3399 cid.cid_print_ithr = FALSE; 3400 cid.cid_print_thr = FALSE; 3401 cid.cid_print_flags = FALSE; 3402 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE; 3403 cid.cid_cpu = -1; 3404 3405 if (flags & DCMD_ADDRSPEC) 3406 cid.cid_cpu = addr; 3407 3408 if (mdb_getopts(argc, argv, 3409 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc) 3410 return (DCMD_USAGE); 3411 3412 if (verbose) { 3413 cid.cid_print_ithr = TRUE; 3414 cid.cid_print_thr = TRUE; 3415 cid.cid_print_flags = TRUE; 3416 cid.cid_print_head = TRUE; 3417 } 3418 3419 if (cid.cid_print_ithr) { 3420 int i; 3421 3422 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **) 3423 * NCPU, UM_SLEEP | UM_GC); 3424 3425 for (i = 0; i < NCPU; i++) 3426 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) * 3427 NINTR, UM_SLEEP | UM_GC); 3428 3429 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread, 3430 &cid) == -1) { 3431 mdb_warn("couldn't walk thread"); 3432 return (DCMD_ERR); 3433 } 3434 } 3435 3436 if (mdb_lookup_by_name("panic_lbolt", &sym) == -1) { 3437 mdb_warn("failed to find panic_lbolt"); 3438 return (DCMD_ERR); 3439 } 3440 3441 cid.cid_lbolt = (uintptr_t)sym.st_value; 3442 3443 if (mdb_vread(&lbolt, sizeof (lbolt), cid.cid_lbolt) == -1) { 3444 mdb_warn("failed to read panic_lbolt"); 3445 return (DCMD_ERR); 3446 } 3447 3448 if (lbolt == 0) { 3449 if (mdb_lookup_by_name("lbolt", &sym) == -1) { 3450 mdb_warn("failed to find lbolt"); 3451 return (DCMD_ERR); 3452 } 3453 cid.cid_lbolt = (uintptr_t)sym.st_value; 3454 } 3455 3456 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) { 3457 mdb_warn("can't walk cpus"); 3458 return (DCMD_ERR); 3459 } 3460 3461 if (cid.cid_cpu != -1) { 3462 /* 3463 * We didn't find this CPU when we walked through the CPUs 3464 * (i.e. the address specified doesn't show up in the "cpu" 3465 * walk). However, the specified address may still correspond 3466 * to a valid cpu_t (for example, if the specified address is 3467 * the actual panicking cpu_t and not the cached panic_cpu). 3468 * Point is: even if we didn't find it, we still want to try 3469 * to print the specified address as a cpu_t. 3470 */ 3471 cpu_t cpu; 3472 3473 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) { 3474 mdb_warn("%p is neither a valid CPU ID nor a " 3475 "valid cpu_t address\n", cid.cid_cpu); 3476 return (DCMD_ERR); 3477 } 3478 3479 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid); 3480 } 3481 3482 return (DCMD_OK); 3483 } 3484 3485 /*ARGSUSED*/ 3486 int 3487 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3488 { 3489 int i; 3490 3491 if (!(flags & DCMD_ADDRSPEC)) 3492 return (DCMD_USAGE); 3493 3494 for (i = 0; i < sizeof (addr) * NBBY; i++) 3495 mdb_printf("%p\n", addr ^ (1UL << i)); 3496 3497 return (DCMD_OK); 3498 } 3499 3500 /* 3501 * Grumble, grumble. 3502 */ 3503 #define SMAP_HASHFUNC(vp, off) \ 3504 ((((uintptr_t)(vp) >> 6) + ((uintptr_t)(vp) >> 3) + \ 3505 ((off) >> MAXBSHIFT)) & smd_hashmsk) 3506 3507 int 3508 vnode2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3509 { 3510 long smd_hashmsk; 3511 int hash; 3512 uintptr_t offset = 0; 3513 struct smap smp; 3514 uintptr_t saddr, kaddr; 3515 uintptr_t smd_hash, smd_smap; 3516 struct seg seg; 3517 3518 if (!(flags & DCMD_ADDRSPEC)) 3519 return (DCMD_USAGE); 3520 3521 if (mdb_readvar(&smd_hashmsk, "smd_hashmsk") == -1) { 3522 mdb_warn("failed to read smd_hashmsk"); 3523 return (DCMD_ERR); 3524 } 3525 3526 if (mdb_readvar(&smd_hash, "smd_hash") == -1) { 3527 mdb_warn("failed to read smd_hash"); 3528 return (DCMD_ERR); 3529 } 3530 3531 if (mdb_readvar(&smd_smap, "smd_smap") == -1) { 3532 mdb_warn("failed to read smd_hash"); 3533 return (DCMD_ERR); 3534 } 3535 3536 if (mdb_readvar(&kaddr, "segkmap") == -1) { 3537 mdb_warn("failed to read segkmap"); 3538 return (DCMD_ERR); 3539 } 3540 3541 if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) { 3542 mdb_warn("failed to read segkmap at %p", kaddr); 3543 return (DCMD_ERR); 3544 } 3545 3546 if (argc != 0) { 3547 const mdb_arg_t *arg = &argv[0]; 3548 3549 if (arg->a_type == MDB_TYPE_IMMEDIATE) 3550 offset = arg->a_un.a_val; 3551 else 3552 offset = (uintptr_t)mdb_strtoull(arg->a_un.a_str); 3553 } 3554 3555 hash = SMAP_HASHFUNC(addr, offset); 3556 3557 if (mdb_vread(&saddr, sizeof (saddr), 3558 smd_hash + hash * sizeof (uintptr_t)) == -1) { 3559 mdb_warn("couldn't read smap at %p", 3560 smd_hash + hash * sizeof (uintptr_t)); 3561 return (DCMD_ERR); 3562 } 3563 3564 do { 3565 if (mdb_vread(&smp, sizeof (smp), saddr) == -1) { 3566 mdb_warn("couldn't read smap at %p", saddr); 3567 return (DCMD_ERR); 3568 } 3569 3570 if ((uintptr_t)smp.sm_vp == addr && smp.sm_off == offset) { 3571 mdb_printf("vnode %p, offs %p is smap %p, vaddr %p\n", 3572 addr, offset, saddr, ((saddr - smd_smap) / 3573 sizeof (smp)) * MAXBSIZE + seg.s_base); 3574 return (DCMD_OK); 3575 } 3576 3577 saddr = (uintptr_t)smp.sm_hash; 3578 } while (saddr != NULL); 3579 3580 mdb_printf("no smap for vnode %p, offs %p\n", addr, offset); 3581 return (DCMD_OK); 3582 } 3583 3584 /*ARGSUSED*/ 3585 int 3586 addr2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3587 { 3588 uintptr_t kaddr; 3589 struct seg seg; 3590 struct segmap_data sd; 3591 3592 if (!(flags & DCMD_ADDRSPEC)) 3593 return (DCMD_USAGE); 3594 3595 if (mdb_readvar(&kaddr, "segkmap") == -1) { 3596 mdb_warn("failed to read segkmap"); 3597 return (DCMD_ERR); 3598 } 3599 3600 if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) { 3601 mdb_warn("failed to read segkmap at %p", kaddr); 3602 return (DCMD_ERR); 3603 } 3604 3605 if (mdb_vread(&sd, sizeof (sd), (uintptr_t)seg.s_data) == -1) { 3606 mdb_warn("failed to read segmap_data at %p", seg.s_data); 3607 return (DCMD_ERR); 3608 } 3609 3610 mdb_printf("%p is smap %p\n", addr, 3611 ((addr - (uintptr_t)seg.s_base) >> MAXBSHIFT) * 3612 sizeof (struct smap) + (uintptr_t)sd.smd_sm); 3613 3614 return (DCMD_OK); 3615 } 3616 3617 int 3618 as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp) 3619 { 3620 if (p->p_as == *asp) 3621 mdb_printf("%p\n", addr); 3622 return (WALK_NEXT); 3623 } 3624 3625 /*ARGSUSED*/ 3626 int 3627 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3628 { 3629 if (!(flags & DCMD_ADDRSPEC) || argc != 0) 3630 return (DCMD_USAGE); 3631 3632 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) { 3633 mdb_warn("failed to walk proc"); 3634 return (DCMD_ERR); 3635 } 3636 3637 return (DCMD_OK); 3638 } 3639 3640 /*ARGSUSED*/ 3641 int 3642 ptree_walk(uintptr_t addr, const proc_t *p, void *ignored) 3643 { 3644 proc_t parent; 3645 int ident = 0; 3646 uintptr_t paddr; 3647 3648 for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) { 3649 mdb_vread(&parent, sizeof (parent), paddr); 3650 paddr = (uintptr_t)parent.p_parent; 3651 } 3652 3653 mdb_inc_indent(ident); 3654 mdb_printf("%0?p %s\n", addr, p->p_user.u_comm); 3655 mdb_dec_indent(ident); 3656 3657 return (WALK_NEXT); 3658 } 3659 3660 void 3661 ptree_ancestors(uintptr_t addr, uintptr_t start) 3662 { 3663 proc_t p; 3664 3665 if (mdb_vread(&p, sizeof (p), addr) == -1) { 3666 mdb_warn("couldn't read ancestor at %p", addr); 3667 return; 3668 } 3669 3670 if (p.p_parent != NULL) 3671 ptree_ancestors((uintptr_t)p.p_parent, start); 3672 3673 if (addr != start) 3674 (void) ptree_walk(addr, &p, NULL); 3675 } 3676 3677 /*ARGSUSED*/ 3678 int 3679 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3680 { 3681 if (!(flags & DCMD_ADDRSPEC)) 3682 addr = NULL; 3683 else 3684 ptree_ancestors(addr, addr); 3685 3686 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) { 3687 mdb_warn("couldn't walk 'proc'"); 3688 return (DCMD_ERR); 3689 } 3690 3691 return (DCMD_OK); 3692 } 3693 3694 /*ARGSUSED*/ 3695 static int 3696 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3697 { 3698 int fdnum; 3699 const mdb_arg_t *argp = &argv[0]; 3700 proc_t p; 3701 uf_entry_t uf; 3702 3703 if ((flags & DCMD_ADDRSPEC) == 0) { 3704 mdb_warn("fd doesn't give global information\n"); 3705 return (DCMD_ERR); 3706 } 3707 if (argc != 1) 3708 return (DCMD_USAGE); 3709 3710 if (argp->a_type == MDB_TYPE_IMMEDIATE) 3711 fdnum = argp->a_un.a_val; 3712 else 3713 fdnum = mdb_strtoull(argp->a_un.a_str); 3714 3715 if (mdb_vread(&p, sizeof (struct proc), addr) == -1) { 3716 mdb_warn("couldn't read proc_t at %p", addr); 3717 return (DCMD_ERR); 3718 } 3719 if (fdnum > p.p_user.u_finfo.fi_nfiles) { 3720 mdb_warn("process %p only has %d files open.\n", 3721 addr, p.p_user.u_finfo.fi_nfiles); 3722 return (DCMD_ERR); 3723 } 3724 if (mdb_vread(&uf, sizeof (uf_entry_t), 3725 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) { 3726 mdb_warn("couldn't read uf_entry_t at %p", 3727 &p.p_user.u_finfo.fi_list[fdnum]); 3728 return (DCMD_ERR); 3729 } 3730 3731 mdb_printf("%p\n", uf.uf_file); 3732 return (DCMD_OK); 3733 } 3734 3735 /*ARGSUSED*/ 3736 static int 3737 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3738 { 3739 pid_t pid = (pid_t)addr; 3740 3741 if (argc != 0) 3742 return (DCMD_USAGE); 3743 3744 if ((addr = mdb_pid2proc(pid, NULL)) == NULL) { 3745 mdb_warn("PID 0t%d not found\n", pid); 3746 return (DCMD_ERR); 3747 } 3748 3749 mdb_printf("%p\n", addr); 3750 return (DCMD_OK); 3751 } 3752 3753 static char *sysfile_cmd[] = { 3754 "exclude:", 3755 "include:", 3756 "forceload:", 3757 "rootdev:", 3758 "rootfs:", 3759 "swapdev:", 3760 "swapfs:", 3761 "moddir:", 3762 "set", 3763 "unknown", 3764 }; 3765 3766 static char *sysfile_ops[] = { "", "=", "&", "|" }; 3767 3768 /*ARGSUSED*/ 3769 static int 3770 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target) 3771 { 3772 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) { 3773 *target = NULL; 3774 return (WALK_DONE); 3775 } 3776 return (WALK_NEXT); 3777 } 3778 3779 /*ARGSUSED*/ 3780 static int 3781 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3782 { 3783 struct sysparam *sysp, sys; 3784 char var[256]; 3785 char modname[256]; 3786 char val[256]; 3787 char strval[256]; 3788 vmem_t *mod_sysfile_arena; 3789 void *straddr; 3790 3791 if (mdb_readvar(&sysp, "sysparam_hd") == -1) { 3792 mdb_warn("failed to read sysparam_hd"); 3793 return (DCMD_ERR); 3794 } 3795 3796 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) { 3797 mdb_warn("failed to read mod_sysfile_arena"); 3798 return (DCMD_ERR); 3799 } 3800 3801 while (sysp != NULL) { 3802 var[0] = '\0'; 3803 val[0] = '\0'; 3804 modname[0] = '\0'; 3805 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) { 3806 mdb_warn("couldn't read sysparam %p", sysp); 3807 return (DCMD_ERR); 3808 } 3809 if (sys.sys_modnam != NULL && 3810 mdb_readstr(modname, 256, 3811 (uintptr_t)sys.sys_modnam) == -1) { 3812 mdb_warn("couldn't read modname in %p", sysp); 3813 return (DCMD_ERR); 3814 } 3815 if (sys.sys_ptr != NULL && 3816 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) { 3817 mdb_warn("couldn't read ptr in %p", sysp); 3818 return (DCMD_ERR); 3819 } 3820 if (sys.sys_op != SETOP_NONE) { 3821 /* 3822 * Is this an int or a string? We determine this 3823 * by checking whether straddr is contained in 3824 * mod_sysfile_arena. If so, the walker will set 3825 * straddr to NULL. 3826 */ 3827 straddr = (void *)(uintptr_t)sys.sys_info; 3828 if (sys.sys_op == SETOP_ASSIGN && 3829 sys.sys_info != 0 && 3830 mdb_pwalk("vmem_seg", 3831 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr, 3832 (uintptr_t)mod_sysfile_arena) == 0 && 3833 straddr == NULL && 3834 mdb_readstr(strval, 256, 3835 (uintptr_t)sys.sys_info) != -1) { 3836 (void) mdb_snprintf(val, sizeof (val), "\"%s\"", 3837 strval); 3838 } else { 3839 (void) mdb_snprintf(val, sizeof (val), 3840 "0x%llx [0t%llu]", sys.sys_info, 3841 sys.sys_info); 3842 } 3843 } 3844 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type], 3845 modname, modname[0] == '\0' ? "" : ":", 3846 var, sysfile_ops[sys.sys_op], val); 3847 3848 sysp = sys.sys_next; 3849 } 3850 3851 return (DCMD_OK); 3852 } 3853 3854 /* 3855 * Dump a taskq_ent_t given its address. 3856 */ 3857 /*ARGSUSED*/ 3858 int 3859 taskq_ent(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3860 { 3861 taskq_ent_t taskq_ent; 3862 GElf_Sym sym; 3863 char buf[MDB_SYM_NAMLEN+1]; 3864 3865 3866 if (!(flags & DCMD_ADDRSPEC)) { 3867 mdb_warn("expected explicit taskq_ent_t address before ::\n"); 3868 return (DCMD_USAGE); 3869 } 3870 3871 if (mdb_vread(&taskq_ent, sizeof (taskq_ent_t), addr) == -1) { 3872 mdb_warn("failed to read taskq_ent_t at %p", addr); 3873 return (DCMD_ERR); 3874 } 3875 3876 if (DCMD_HDRSPEC(flags)) { 3877 mdb_printf("%<u>%-?s %-?s %-s%</u>\n", 3878 "ENTRY", "ARG", "FUNCTION"); 3879 } 3880 3881 if (mdb_lookup_by_addr((uintptr_t)taskq_ent.tqent_func, MDB_SYM_EXACT, 3882 buf, sizeof (buf), &sym) == -1) { 3883 (void) strcpy(buf, "????"); 3884 } 3885 3886 mdb_printf("%-?p %-?p %s\n", addr, taskq_ent.tqent_arg, buf); 3887 3888 return (DCMD_OK); 3889 } 3890 3891 /* 3892 * Given the address of the (taskq_t) task queue head, walk the queue listing 3893 * the address of every taskq_ent_t. 3894 */ 3895 int 3896 taskq_walk_init(mdb_walk_state_t *wsp) 3897 { 3898 taskq_t tq_head; 3899 3900 3901 if (wsp->walk_addr == NULL) { 3902 mdb_warn("start address required\n"); 3903 return (WALK_ERR); 3904 } 3905 3906 3907 /* 3908 * Save the address of the list head entry. This terminates the list. 3909 */ 3910 wsp->walk_data = (void *) 3911 ((size_t)wsp->walk_addr + offsetof(taskq_t, tq_task)); 3912 3913 3914 /* 3915 * Read in taskq head, set walk_addr to point to first taskq_ent_t. 3916 */ 3917 if (mdb_vread((void *)&tq_head, sizeof (taskq_t), wsp->walk_addr) == 3918 -1) { 3919 mdb_warn("failed to read taskq list head at %p", 3920 wsp->walk_addr); 3921 } 3922 wsp->walk_addr = (uintptr_t)tq_head.tq_task.tqent_next; 3923 3924 3925 /* 3926 * Check for null list (next=head) 3927 */ 3928 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) { 3929 return (WALK_DONE); 3930 } 3931 3932 return (WALK_NEXT); 3933 } 3934 3935 3936 int 3937 taskq_walk_step(mdb_walk_state_t *wsp) 3938 { 3939 taskq_ent_t tq_ent; 3940 int status; 3941 3942 3943 if (mdb_vread((void *)&tq_ent, sizeof (taskq_ent_t), wsp->walk_addr) == 3944 -1) { 3945 mdb_warn("failed to read taskq_ent_t at %p", wsp->walk_addr); 3946 return (DCMD_ERR); 3947 } 3948 3949 status = wsp->walk_callback(wsp->walk_addr, (void *)&tq_ent, 3950 wsp->walk_cbdata); 3951 3952 wsp->walk_addr = (uintptr_t)tq_ent.tqent_next; 3953 3954 3955 /* Check if we're at the last element (next=head) */ 3956 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) { 3957 return (WALK_DONE); 3958 } 3959 3960 return (status); 3961 } 3962 3963 int 3964 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp) 3965 { 3966 3967 if (*didp == thr->t_did) { 3968 mdb_printf("%p\n", addr); 3969 return (WALK_DONE); 3970 } else 3971 return (WALK_NEXT); 3972 } 3973 3974 /*ARGSUSED*/ 3975 int 3976 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3977 { 3978 const mdb_arg_t *argp = &argv[0]; 3979 kt_did_t did; 3980 3981 if (argc != 1) 3982 return (DCMD_USAGE); 3983 3984 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str); 3985 3986 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) { 3987 mdb_warn("failed to walk thread"); 3988 return (DCMD_ERR); 3989 3990 } 3991 return (DCMD_OK); 3992 3993 } 3994 3995 static int 3996 errorq_walk_init(mdb_walk_state_t *wsp) 3997 { 3998 if (wsp->walk_addr == NULL && 3999 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) { 4000 mdb_warn("failed to read errorq_list"); 4001 return (WALK_ERR); 4002 } 4003 4004 return (WALK_NEXT); 4005 } 4006 4007 static int 4008 errorq_walk_step(mdb_walk_state_t *wsp) 4009 { 4010 uintptr_t addr = wsp->walk_addr; 4011 errorq_t eq; 4012 4013 if (addr == NULL) 4014 return (WALK_DONE); 4015 4016 if (mdb_vread(&eq, sizeof (eq), addr) == -1) { 4017 mdb_warn("failed to read errorq at %p", addr); 4018 return (WALK_ERR); 4019 } 4020 4021 wsp->walk_addr = (uintptr_t)eq.eq_next; 4022 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata)); 4023 } 4024 4025 typedef struct eqd_walk_data { 4026 uintptr_t *eqd_stack; 4027 void *eqd_buf; 4028 ulong_t eqd_qpos; 4029 ulong_t eqd_qlen; 4030 size_t eqd_size; 4031 } eqd_walk_data_t; 4032 4033 /* 4034 * In order to walk the list of pending error queue elements, we push the 4035 * addresses of the corresponding data buffers in to the eqd_stack array. 4036 * The error lists are in reverse chronological order when iterating using 4037 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the 4038 * walker client gets addresses in order from oldest error to newest error. 4039 */ 4040 static void 4041 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr) 4042 { 4043 errorq_elem_t eqe; 4044 4045 while (addr != NULL) { 4046 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) { 4047 mdb_warn("failed to read errorq element at %p", addr); 4048 break; 4049 } 4050 4051 if (eqdp->eqd_qpos == eqdp->eqd_qlen) { 4052 mdb_warn("errorq is overfull -- more than %lu " 4053 "elems found\n", eqdp->eqd_qlen); 4054 break; 4055 } 4056 4057 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data; 4058 addr = (uintptr_t)eqe.eqe_prev; 4059 } 4060 } 4061 4062 static int 4063 eqd_walk_init(mdb_walk_state_t *wsp) 4064 { 4065 eqd_walk_data_t *eqdp; 4066 errorq_elem_t eqe, *addr; 4067 errorq_t eq; 4068 ulong_t i; 4069 4070 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) { 4071 mdb_warn("failed to read errorq at %p", wsp->walk_addr); 4072 return (WALK_ERR); 4073 } 4074 4075 if (eq.eq_ptail != NULL && 4076 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) { 4077 mdb_warn("failed to read errorq element at %p", eq.eq_ptail); 4078 return (WALK_ERR); 4079 } 4080 4081 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP); 4082 wsp->walk_data = eqdp; 4083 4084 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP); 4085 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP); 4086 eqdp->eqd_qlen = eq.eq_qlen; 4087 eqdp->eqd_qpos = 0; 4088 eqdp->eqd_size = eq.eq_size; 4089 4090 /* 4091 * The newest elements in the queue are on the pending list, so we 4092 * push those on to our stack first. 4093 */ 4094 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend); 4095 4096 /* 4097 * If eq_ptail is set, it may point to a subset of the errors on the 4098 * pending list in the event a casptr() failed; if ptail's data is 4099 * already in our stack, NULL out eq_ptail and ignore it. 4100 */ 4101 if (eq.eq_ptail != NULL) { 4102 for (i = 0; i < eqdp->eqd_qpos; i++) { 4103 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) { 4104 eq.eq_ptail = NULL; 4105 break; 4106 } 4107 } 4108 } 4109 4110 /* 4111 * If eq_phead is set, it has the processing list in order from oldest 4112 * to newest. Use this to recompute eq_ptail as best we can and then 4113 * we nicely fall into eqd_push_list() of eq_ptail below. 4114 */ 4115 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe), 4116 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next) 4117 eq.eq_ptail = addr; 4118 4119 /* 4120 * The oldest elements in the queue are on the processing list, subject 4121 * to machinations in the if-clauses above. Push any such elements. 4122 */ 4123 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail); 4124 return (WALK_NEXT); 4125 } 4126 4127 static int 4128 eqd_walk_step(mdb_walk_state_t *wsp) 4129 { 4130 eqd_walk_data_t *eqdp = wsp->walk_data; 4131 uintptr_t addr; 4132 4133 if (eqdp->eqd_qpos == 0) 4134 return (WALK_DONE); 4135 4136 addr = eqdp->eqd_stack[--eqdp->eqd_qpos]; 4137 4138 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) { 4139 mdb_warn("failed to read errorq data at %p", addr); 4140 return (WALK_ERR); 4141 } 4142 4143 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata)); 4144 } 4145 4146 static void 4147 eqd_walk_fini(mdb_walk_state_t *wsp) 4148 { 4149 eqd_walk_data_t *eqdp = wsp->walk_data; 4150 4151 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen); 4152 mdb_free(eqdp->eqd_buf, eqdp->eqd_size); 4153 mdb_free(eqdp, sizeof (eqd_walk_data_t)); 4154 } 4155 4156 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64) 4157 4158 static int 4159 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 4160 { 4161 int i; 4162 errorq_t eq; 4163 uint_t opt_v = FALSE; 4164 4165 if (!(flags & DCMD_ADDRSPEC)) { 4166 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) { 4167 mdb_warn("can't walk 'errorq'"); 4168 return (DCMD_ERR); 4169 } 4170 return (DCMD_OK); 4171 } 4172 4173 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL); 4174 argc -= i; 4175 argv += i; 4176 4177 if (argc != 0) 4178 return (DCMD_USAGE); 4179 4180 if (opt_v || DCMD_HDRSPEC(flags)) { 4181 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ", 4182 "ADDR", "NAME", "S", "V", "N"); 4183 if (!opt_v) { 4184 mdb_printf("%7s %7s %7s%</u>\n", 4185 "ACCEPT", "DROP", "LOG"); 4186 } else { 4187 mdb_printf("%5s %6s %6s %3s %16s%</u>\n", 4188 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC"); 4189 } 4190 } 4191 4192 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) { 4193 mdb_warn("failed to read errorq at %p", addr); 4194 return (DCMD_ERR); 4195 } 4196 4197 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name, 4198 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-', 4199 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ', 4200 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' '); 4201 4202 if (!opt_v) { 4203 mdb_printf("%7llu %7llu %7llu\n", 4204 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed), 4205 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) + 4206 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged)); 4207 } else { 4208 mdb_printf("%5s %6lu %6lu %3u %a\n", 4209 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func); 4210 mdb_printf("%38s\n%41s" 4211 "%12s %llu\n" 4212 "%53s %llu\n" 4213 "%53s %llu\n" 4214 "%53s %llu\n" 4215 "%53s %llu\n" 4216 "%53s %llu\n" 4217 "%53s %llu\n" 4218 "%53s %llu\n\n", 4219 "|", "+-> ", 4220 "DISPATCHED", EQKSVAL(eq, eqk_dispatched), 4221 "DROPPED", EQKSVAL(eq, eqk_dropped), 4222 "LOGGED", EQKSVAL(eq, eqk_logged), 4223 "RESERVED", EQKSVAL(eq, eqk_reserved), 4224 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail), 4225 "COMMITTED", EQKSVAL(eq, eqk_committed), 4226 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail), 4227 "CANCELLED", EQKSVAL(eq, eqk_cancelled)); 4228 } 4229 4230 return (DCMD_OK); 4231 } 4232 4233 /*ARGSUSED*/ 4234 static int 4235 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 4236 { 4237 cpu_t panic_cpu; 4238 kthread_t *panic_thread; 4239 void *buf; 4240 panic_data_t *pd; 4241 int i, n; 4242 4243 if (!mdb_prop_postmortem) { 4244 mdb_warn("panicinfo can only be run on a system " 4245 "dump; see dumpadm(1M)\n"); 4246 return (DCMD_ERR); 4247 } 4248 4249 if (flags & DCMD_ADDRSPEC || argc != 0) 4250 return (DCMD_USAGE); 4251 4252 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1) 4253 mdb_warn("failed to read 'panic_cpu'"); 4254 else 4255 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id); 4256 4257 if (mdb_readvar(&panic_thread, "panic_thread") == -1) 4258 mdb_warn("failed to read 'panic_thread'"); 4259 else 4260 mdb_printf("%16s %?p\n", "thread", panic_thread); 4261 4262 buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP); 4263 pd = (panic_data_t *)buf; 4264 4265 if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 || 4266 pd->pd_version != PANICBUFVERS) { 4267 mdb_warn("failed to read 'panicbuf'"); 4268 mdb_free(buf, PANICBUFSIZE); 4269 return (DCMD_ERR); 4270 } 4271 4272 mdb_printf("%16s %s\n", "message", (char *)buf + pd->pd_msgoff); 4273 4274 n = (pd->pd_msgoff - (sizeof (panic_data_t) - 4275 sizeof (panic_nv_t))) / sizeof (panic_nv_t); 4276 4277 for (i = 0; i < n; i++) 4278 mdb_printf("%16s %?llx\n", 4279 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value); 4280 4281 mdb_free(buf, PANICBUFSIZE); 4282 return (DCMD_OK); 4283 } 4284 4285 static const mdb_dcmd_t dcmds[] = { 4286 4287 /* from genunix.c */ 4288 { "addr2smap", ":[offset]", "translate address to smap", addr2smap }, 4289 { "as2proc", ":", "convert as to proc_t address", as2proc }, 4290 { "binding_hash_entry", ":", "print driver names hash table entry", 4291 binding_hash_entry }, 4292 { "callout", "?[-r|n] [-s|l] [-xhB] [-t | -ab nsec [-dkD]]" 4293 " [-C addr | -S seqid] [-f name|addr] [-p name| addr] [-T|L [-E]]" 4294 " [-FivVA]", 4295 "display callouts", callout, callout_help }, 4296 { "calloutid", "[-d|v] xid", "print callout by extended id", 4297 calloutid, calloutid_help }, 4298 { "class", NULL, "print process scheduler classes", class }, 4299 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo }, 4300 { "did2thread", "? kt_did", "find kernel thread for this id", 4301 did2thread }, 4302 { "errorq", "?[-v]", "display kernel error queues", errorq }, 4303 { "fd", ":[fd num]", "get a file pointer from an fd", fd }, 4304 { "flipone", ":", "the vik_rev_level 2 special", flipone }, 4305 { "lminfo", NULL, "print lock manager information", lminfo }, 4306 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl }, 4307 { "panicinfo", NULL, "print panic information", panicinfo }, 4308 { "pid2proc", "?", "convert PID to proc_t address", pid2proc }, 4309 { "pmap", ":[-q]", "print process memory map", pmap }, 4310 { "project", NULL, "display kernel project(s)", project }, 4311 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps }, 4312 { "pgrep", "[-x] [-n | -o] pattern", 4313 "pattern match against all processes", pgrep }, 4314 { "ptree", NULL, "print process tree", ptree }, 4315 { "seg", ":", "print address space segment", seg }, 4316 { "sysevent", "?[-sv]", "print sysevent pending or sent queue", 4317 sysevent}, 4318 { "sysevent_channel", "?", "print sysevent channel database", 4319 sysevent_channel}, 4320 { "sysevent_class_list", ":", "print sysevent class list", 4321 sysevent_class_list}, 4322 { "sysevent_subclass_list", ":", 4323 "print sysevent subclass list", sysevent_subclass_list}, 4324 { "system", NULL, "print contents of /etc/system file", sysfile }, 4325 { "task", NULL, "display kernel task(s)", task }, 4326 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent }, 4327 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path }, 4328 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap }, 4329 { "whereopen", ":", "given a vnode, dumps procs which have it open", 4330 whereopen }, 4331 4332 /* from zone.c */ 4333 { "zone", "?", "display kernel zone(s)", zoneprt }, 4334 { "zsd", ":[-v] [zsd_key]", "display zone-specific-data entries for " 4335 "selected zones", zsd }, 4336 4337 /* from bio.c */ 4338 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind }, 4339 4340 /* from contract.c */ 4341 { "contract", "?", "display a contract", cmd_contract }, 4342 { "ctevent", ":", "display a contract event", cmd_ctevent }, 4343 { "ctid", ":", "convert id to a contract pointer", cmd_ctid }, 4344 4345 /* from cpupart.c */ 4346 { "cpupart", "?[-v]", "print cpu partition info", cpupart }, 4347 4348 /* from cyclic.c */ 4349 { "cyccover", NULL, "dump cyclic coverage information", cyccover }, 4350 { "cycid", "?", "dump a cyclic id", cycid }, 4351 { "cycinfo", "?", "dump cyc_cpu info", cycinfo }, 4352 { "cyclic", ":", "developer information", cyclic }, 4353 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace }, 4354 4355 /* from devinfo.c */ 4356 { "devbindings", "?[-qs] [device-name | major-num]", 4357 "print devinfo nodes bound to device-name or major-num", 4358 devbindings, devinfo_help }, 4359 { "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo, 4360 devinfo_help }, 4361 { "devinfo_audit", ":[-v]", "devinfo configuration audit record", 4362 devinfo_audit }, 4363 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log", 4364 devinfo_audit_log }, 4365 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history", 4366 devinfo_audit_node }, 4367 { "devinfo2driver", ":", "find driver name for this devinfo node", 4368 devinfo2driver }, 4369 { "devnames", "?[-vm] [num]", "print devnames array", devnames }, 4370 { "dev2major", "?<dev_t>", "convert dev_t to a major number", 4371 dev2major }, 4372 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number", 4373 dev2minor }, 4374 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers", 4375 devt }, 4376 { "major2name", "?<major-num>", "convert major number to dev name", 4377 major2name }, 4378 { "minornodes", ":", "given a devinfo node, print its minor nodes", 4379 minornodes }, 4380 { "modctl2devinfo", ":", "given a modctl, list its devinfos", 4381 modctl2devinfo }, 4382 { "name2major", "<dev-name>", "convert dev name to major number", 4383 name2major }, 4384 { "prtconf", "?[-vpc]", "print devinfo tree", prtconf, prtconf_help }, 4385 { "softstate", ":<instance>", "retrieve soft-state pointer", 4386 softstate }, 4387 { "devinfo_fm", ":", "devinfo fault managment configuration", 4388 devinfo_fm }, 4389 { "devinfo_fmce", ":", "devinfo fault managment cache entry", 4390 devinfo_fmce}, 4391 4392 /* from fm.c */ 4393 { "ereport", "[-v]", "print ereports logged in dump", 4394 ereport }, 4395 4396 /* from findstack.c */ 4397 { "findstack", ":[-v]", "find kernel thread stack", findstack }, 4398 { "findstack_debug", NULL, "toggle findstack debugging", 4399 findstack_debug }, 4400 { "stacks", "?[-afiv] [-c func] [-C func] [-m module] [-M module] " 4401 "[-s sobj | -S sobj] [-t tstate | -T tstate]", 4402 "print unique kernel thread stacks", 4403 stacks, stacks_help }, 4404 4405 /* from irm.c */ 4406 { "irmpools", NULL, "display interrupt pools", irmpools_dcmd }, 4407 { "irmreqs", NULL, "display interrupt requests in an interrupt pool", 4408 irmreqs_dcmd }, 4409 { "irmreq", NULL, "display an interrupt request", irmreq_dcmd }, 4410 4411 /* from kgrep.c + genunix.c */ 4412 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep, 4413 kgrep_help }, 4414 4415 /* from kmem.c */ 4416 { "allocdby", ":", "given a thread, print its allocated buffers", 4417 allocdby }, 4418 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] " 4419 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help }, 4420 { "freedby", ":", "given a thread, print its freed buffers", freedby }, 4421 { "kmalog", "?[ fail | slab ]", 4422 "display kmem transaction log and stack traces", kmalog }, 4423 { "kmastat", "[-kmg]", "kernel memory allocator stats", 4424 kmastat }, 4425 { "kmausers", "?[-ef] [cache ...]", "current medium and large users " 4426 "of the kmem allocator", kmausers, kmausers_help }, 4427 { "kmem_cache", "?[-n name]", 4428 "print kernel memory caches", kmem_cache, kmem_cache_help}, 4429 { "kmem_slabs", "?[-v] [-n cache] [-N cache] [-b maxbins] " 4430 "[-B minbinsize]", "display slab usage per kmem cache", 4431 kmem_slabs, kmem_slabs_help }, 4432 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug }, 4433 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log }, 4434 { "kmem_verify", "?", "check integrity of kmem-managed memory", 4435 kmem_verify }, 4436 { "vmem", "?", "print a vmem_t", vmem }, 4437 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] " 4438 "[-m minsize] [-M maxsize] [-t thread] [-T type]", 4439 "print or filter a vmem_seg", vmem_seg, vmem_seg_help }, 4440 { "whatis", ":[-abiqv]", "given an address, return information", whatis, 4441 whatis_help }, 4442 { "whatthread", ":[-v]", "print threads whose stack contains the " 4443 "given address", whatthread }, 4444 4445 /* from ldi.c */ 4446 { "ldi_handle", "?[-i]", "display a layered driver handle", 4447 ldi_handle, ldi_handle_help }, 4448 { "ldi_ident", NULL, "display a layered driver identifier", 4449 ldi_ident, ldi_ident_help }, 4450 4451 /* from leaky.c + leaky_subr.c */ 4452 { "findleaks", FINDLEAKS_USAGE, 4453 "search for potential kernel memory leaks", findleaks, 4454 findleaks_help }, 4455 4456 /* from lgrp.c */ 4457 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp}, 4458 { "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set}, 4459 4460 /* from log.c */ 4461 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf }, 4462 4463 /* from memory.c */ 4464 { "page", "?", "display a summarized page_t", page }, 4465 { "memstat", NULL, "display memory usage summary", memstat }, 4466 { "memlist", "?[-iav]", "display a struct memlist", memlist }, 4467 { "swapinfo", "?", "display a struct swapinfo", swapinfof }, 4468 4469 /* from mmd.c */ 4470 { "multidata", ":[-sv]", "display a summarized multidata_t", 4471 multidata }, 4472 { "pattbl", ":", "display a summarized multidata attribute table", 4473 pattbl }, 4474 { "pattr2multidata", ":", "print multidata pointer from pattr_t", 4475 pattr2multidata }, 4476 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t", 4477 pdesc2slab }, 4478 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify }, 4479 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t", 4480 slab2multidata }, 4481 4482 /* from modhash.c */ 4483 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]", 4484 "display information about one or all mod_hash structures", 4485 modhash, modhash_help }, 4486 { "modent", ":[-k | -v | -t type]", 4487 "display information about a mod_hash_entry", modent, 4488 modent_help }, 4489 4490 /* from net.c */ 4491 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload", 4492 mi }, 4493 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp | icmp]", 4494 "show network statistics", netstat }, 4495 { "sonode", "?[-f inet | inet6 | unix | #] " 4496 "[-t stream | dgram | raw | #] [-p #]", 4497 "filter and display sonode", sonode }, 4498 4499 /* from netstack.c */ 4500 { "netstack", "", "show stack instances", netstack }, 4501 4502 /* from nvpair.c */ 4503 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR, 4504 nvpair_print }, 4505 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR, 4506 print_nvlist }, 4507 4508 /* from pg.c */ 4509 { "pg", "?[-q]", "display a pg", pg}, 4510 /* from group.c */ 4511 { "group", "?[-q]", "display a group", group}, 4512 4513 /* from log.c */ 4514 /* from rctl.c */ 4515 { "rctl_dict", "?", "print systemwide default rctl definitions", 4516 rctl_dict }, 4517 { "rctl_list", ":[handle]", "print rctls for the given proc", 4518 rctl_list }, 4519 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle", 4520 rctl }, 4521 { "rctl_validate", ":[-v] [-n #]", "test resource control value " 4522 "sequence", rctl_validate }, 4523 4524 /* from sobj.c */ 4525 { "rwlock", ":", "dump out a readers/writer lock", rwlock }, 4526 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex, 4527 mutex_help }, 4528 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts }, 4529 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo }, 4530 { "turnstile", "?", "display a turnstile", turnstile }, 4531 4532 /* from stream.c */ 4533 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]", 4534 "print an mblk", mblk_prt, mblk_help }, 4535 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify }, 4536 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address", 4537 mblk2dblk }, 4538 { "q2otherq", ":", "print peer queue for a given queue", q2otherq }, 4539 { "q2rdq", ":", "print read queue for a given queue", q2rdq }, 4540 { "q2syncq", ":", "print syncq for a given queue", q2syncq }, 4541 { "q2stream", ":", "print stream pointer for a given queue", q2stream }, 4542 { "q2wrq", ":", "print write queue for a given queue", q2wrq }, 4543 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]", 4544 "filter and display STREAM queue", queue, queue_help }, 4545 { "stdata", ":[-q|v] [-f flag] [-F flag]", 4546 "filter and display STREAM head", stdata, stdata_help }, 4547 { "str2mate", ":", "print mate of this stream", str2mate }, 4548 { "str2wrq", ":", "print write queue of this stream", str2wrq }, 4549 { "stream", ":", "display STREAM", stream }, 4550 { "strftevent", ":", "print STREAMS flow trace event", strftevent }, 4551 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]", 4552 "filter and display STREAM sync queue", syncq, syncq_help }, 4553 { "syncq2q", ":", "print queue for a given syncq", syncq2q }, 4554 4555 /* from thread.c */ 4556 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread, 4557 thread_help }, 4558 { "threadlist", "?[-t] [-v [count]]", 4559 "display threads and associated C stack traces", threadlist, 4560 threadlist_help }, 4561 { "stackinfo", "?[-h|-a]", "display kthread_t stack usage", stackinfo, 4562 stackinfo_help }, 4563 4564 /* from tsd.c */ 4565 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd }, 4566 { "tsdtot", ":", "find thread with this tsd", tsdtot }, 4567 4568 /* 4569 * typegraph does not work under kmdb, as it requires too much memory 4570 * for its internal data structures. 4571 */ 4572 #ifndef _KMDB 4573 /* from typegraph.c */ 4574 { "findlocks", ":", "find locks held by specified thread", findlocks }, 4575 { "findfalse", "?[-v]", "find potentially falsely shared structures", 4576 findfalse }, 4577 { "typegraph", NULL, "build type graph", typegraph }, 4578 { "istype", ":type", "manually set object type", istype }, 4579 { "notype", ":", "manually clear object type", notype }, 4580 { "whattype", ":", "determine object type", whattype }, 4581 #endif 4582 4583 /* from vfs.c */ 4584 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo }, 4585 { "pfiles", ":[-fp]", "print process file information", pfiles, 4586 pfiles_help }, 4587 4588 /* from mdi.c */ 4589 { "mdipi", NULL, "given a path, dump mdi_pathinfo " 4590 "and detailed pi_prop list", mdipi }, 4591 { "mdiprops", NULL, "given a pi_prop, dump the pi_prop list", 4592 mdiprops }, 4593 { "mdiphci", NULL, "given a phci, dump mdi_phci and " 4594 "list all paths", mdiphci }, 4595 { "mdivhci", NULL, "given a vhci, dump mdi_vhci and list " 4596 "all phcis", mdivhci }, 4597 { "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo " 4598 "client links", mdiclient_paths }, 4599 { "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo " 4600 "phci links", mdiphci_paths }, 4601 { "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links", 4602 mdiphcis }, 4603 4604 { NULL } 4605 }; 4606 4607 static const mdb_walker_t walkers[] = { 4608 4609 /* from genunix.c */ 4610 { "anon", "given an amp, list of anon structures", 4611 anon_walk_init, anon_walk_step, anon_walk_fini }, 4612 { "callouts_bytime", "walk callouts by list chain (expiration time)", 4613 callout_walk_init, callout_walk_step, callout_walk_fini, 4614 (void *)CALLOUT_WALK_BYLIST }, 4615 { "callouts_byid", "walk callouts by id hash chain", 4616 callout_walk_init, callout_walk_step, callout_walk_fini, 4617 (void *)CALLOUT_WALK_BYID }, 4618 { "callout_list", "walk a callout list", callout_list_walk_init, 4619 callout_list_walk_step, callout_list_walk_fini }, 4620 { "callout_table", "walk callout table array", callout_table_walk_init, 4621 callout_table_walk_step, callout_table_walk_fini }, 4622 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step }, 4623 { "ereportq_dump", "walk list of ereports in dump error queue", 4624 ereportq_dump_walk_init, ereportq_dump_walk_step, NULL }, 4625 { "ereportq_pend", "walk list of ereports in pending error queue", 4626 ereportq_pend_walk_init, ereportq_pend_walk_step, NULL }, 4627 { "errorq", "walk list of system error queues", 4628 errorq_walk_init, errorq_walk_step, NULL }, 4629 { "errorq_data", "walk pending error queue data buffers", 4630 eqd_walk_init, eqd_walk_step, eqd_walk_fini }, 4631 { "allfile", "given a proc pointer, list all file pointers", 4632 file_walk_init, allfile_walk_step, file_walk_fini }, 4633 { "file", "given a proc pointer, list of open file pointers", 4634 file_walk_init, file_walk_step, file_walk_fini }, 4635 { "lock_descriptor", "walk lock_descriptor_t structures", 4636 ld_walk_init, ld_walk_step, NULL }, 4637 { "lock_graph", "walk lock graph", 4638 lg_walk_init, lg_walk_step, NULL }, 4639 { "port", "given a proc pointer, list of created event ports", 4640 port_walk_init, port_walk_step, NULL }, 4641 { "portev", "given a port pointer, list of events in the queue", 4642 portev_walk_init, portev_walk_step, portev_walk_fini }, 4643 { "proc", "list of active proc_t structures", 4644 proc_walk_init, proc_walk_step, proc_walk_fini }, 4645 { "projects", "walk a list of kernel projects", 4646 project_walk_init, project_walk_step, NULL }, 4647 { "seg", "given an as, list of segments", 4648 seg_walk_init, avl_walk_step, avl_walk_fini }, 4649 { "sysevent_pend", "walk sysevent pending queue", 4650 sysevent_pend_walk_init, sysevent_walk_step, 4651 sysevent_walk_fini}, 4652 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init, 4653 sysevent_walk_step, sysevent_walk_fini}, 4654 { "sysevent_channel", "walk sysevent channel subscriptions", 4655 sysevent_channel_walk_init, sysevent_channel_walk_step, 4656 sysevent_channel_walk_fini}, 4657 { "sysevent_class_list", "walk sysevent subscription's class list", 4658 sysevent_class_list_walk_init, sysevent_class_list_walk_step, 4659 sysevent_class_list_walk_fini}, 4660 { "sysevent_subclass_list", 4661 "walk sysevent subscription's subclass list", 4662 sysevent_subclass_list_walk_init, 4663 sysevent_subclass_list_walk_step, 4664 sysevent_subclass_list_walk_fini}, 4665 { "task", "given a task pointer, walk its processes", 4666 task_walk_init, task_walk_step, NULL }, 4667 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list", 4668 taskq_walk_init, taskq_walk_step, NULL, NULL }, 4669 4670 /* from avl.c */ 4671 { AVL_WALK_NAME, AVL_WALK_DESC, 4672 avl_walk_init, avl_walk_step, avl_walk_fini }, 4673 4674 /* from zone.c */ 4675 { "zone", "walk a list of kernel zones", 4676 zone_walk_init, zone_walk_step, NULL }, 4677 { "zsd", "walk list of zsd entries for a zone", 4678 zsd_walk_init, zsd_walk_step, NULL }, 4679 4680 /* from bio.c */ 4681 { "buf", "walk the bio buf hash", 4682 buf_walk_init, buf_walk_step, buf_walk_fini }, 4683 4684 /* from contract.c */ 4685 { "contract", "walk all contracts, or those of the specified type", 4686 ct_walk_init, generic_walk_step, NULL }, 4687 { "ct_event", "walk events on a contract event queue", 4688 ct_event_walk_init, generic_walk_step, NULL }, 4689 { "ct_listener", "walk contract event queue listeners", 4690 ct_listener_walk_init, generic_walk_step, NULL }, 4691 4692 /* from cpupart.c */ 4693 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition", 4694 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step, 4695 NULL }, 4696 { "cpupart_walk", "walk the set of cpu partitions", 4697 cpupart_walk_init, cpupart_walk_step, NULL }, 4698 4699 /* from ctxop.c */ 4700 { "ctxop", "walk list of context ops on a thread", 4701 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini }, 4702 4703 /* from cyclic.c */ 4704 { "cyccpu", "walk per-CPU cyc_cpu structures", 4705 cyccpu_walk_init, cyccpu_walk_step, NULL }, 4706 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list", 4707 cycomni_walk_init, cycomni_walk_step, NULL }, 4708 { "cyctrace", "walk cyclic trace buffer", 4709 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini }, 4710 4711 /* from devinfo.c */ 4712 { "binding_hash", "walk all entries in binding hash table", 4713 binding_hash_walk_init, binding_hash_walk_step, NULL }, 4714 { "devinfo", "walk devinfo tree or subtree", 4715 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini }, 4716 { "devinfo_audit_log", "walk devinfo audit system-wide log", 4717 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step, 4718 devinfo_audit_log_walk_fini}, 4719 { "devinfo_audit_node", "walk per-devinfo audit history", 4720 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step, 4721 devinfo_audit_node_walk_fini}, 4722 { "devinfo_children", "walk children of devinfo node", 4723 devinfo_children_walk_init, devinfo_children_walk_step, 4724 devinfo_children_walk_fini }, 4725 { "devinfo_parents", "walk ancestors of devinfo node", 4726 devinfo_parents_walk_init, devinfo_parents_walk_step, 4727 devinfo_parents_walk_fini }, 4728 { "devinfo_siblings", "walk siblings of devinfo node", 4729 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL }, 4730 { "devi_next", "walk devinfo list", 4731 NULL, devi_next_walk_step, NULL }, 4732 { "devnames", "walk devnames array", 4733 devnames_walk_init, devnames_walk_step, devnames_walk_fini }, 4734 { "minornode", "given a devinfo node, walk minor nodes", 4735 minornode_walk_init, minornode_walk_step, NULL }, 4736 { "softstate", 4737 "given an i_ddi_soft_state*, list all in-use driver stateps", 4738 soft_state_walk_init, soft_state_walk_step, 4739 NULL, NULL }, 4740 { "softstate_all", 4741 "given an i_ddi_soft_state*, list all driver stateps", 4742 soft_state_walk_init, soft_state_all_walk_step, 4743 NULL, NULL }, 4744 { "devinfo_fmc", 4745 "walk a fault management handle cache active list", 4746 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL }, 4747 4748 /* from irm.c */ 4749 { "irmpools", "walk global list of interrupt pools", 4750 irmpools_walk_init, list_walk_step, list_walk_fini }, 4751 { "irmreqs", "walk list of interrupt requests in an interrupt pool", 4752 irmreqs_walk_init, list_walk_step, list_walk_fini }, 4753 4754 /* from kmem.c */ 4755 { "allocdby", "given a thread, walk its allocated bufctls", 4756 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 4757 { "bufctl", "walk a kmem cache's bufctls", 4758 bufctl_walk_init, kmem_walk_step, kmem_walk_fini }, 4759 { "bufctl_history", "walk the available history of a bufctl", 4760 bufctl_history_walk_init, bufctl_history_walk_step, 4761 bufctl_history_walk_fini }, 4762 { "freedby", "given a thread, walk its freed bufctls", 4763 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 4764 { "freectl", "walk a kmem cache's free bufctls", 4765 freectl_walk_init, kmem_walk_step, kmem_walk_fini }, 4766 { "freectl_constructed", "walk a kmem cache's constructed free bufctls", 4767 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 4768 { "freemem", "walk a kmem cache's free memory", 4769 freemem_walk_init, kmem_walk_step, kmem_walk_fini }, 4770 { "freemem_constructed", "walk a kmem cache's constructed free memory", 4771 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 4772 { "kmem", "walk a kmem cache", 4773 kmem_walk_init, kmem_walk_step, kmem_walk_fini }, 4774 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches", 4775 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL }, 4776 { "kmem_hash", "given a kmem cache, walk its allocated hash table", 4777 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini }, 4778 { "kmem_log", "walk the kmem transaction log", 4779 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini }, 4780 { "kmem_slab", "given a kmem cache, walk its slabs", 4781 kmem_slab_walk_init, combined_walk_step, combined_walk_fini }, 4782 { "kmem_slab_partial", 4783 "given a kmem cache, walk its partially allocated slabs (min 1)", 4784 kmem_slab_walk_partial_init, combined_walk_step, 4785 combined_walk_fini }, 4786 { "vmem", "walk vmem structures in pre-fix, depth-first order", 4787 vmem_walk_init, vmem_walk_step, vmem_walk_fini }, 4788 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs", 4789 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4790 { "vmem_free", "given a vmem_t, walk its free vmem_segs", 4791 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4792 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order", 4793 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini }, 4794 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs", 4795 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4796 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs", 4797 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4798 4799 /* from ldi.c */ 4800 { "ldi_handle", "walk the layered driver handle hash", 4801 ldi_handle_walk_init, ldi_handle_walk_step, NULL }, 4802 { "ldi_ident", "walk the layered driver identifier hash", 4803 ldi_ident_walk_init, ldi_ident_walk_step, NULL }, 4804 4805 /* from leaky.c + leaky_subr.c */ 4806 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same " 4807 "stack trace", 4808 leaky_walk_init, leaky_walk_step, leaky_walk_fini }, 4809 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for " 4810 "leaks w/ same stack trace", 4811 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini }, 4812 4813 /* from lgrp.c */ 4814 { "lgrp_cpulist", "walk CPUs in a given lgroup", 4815 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL }, 4816 { "lgrptbl", "walk lgroup table", 4817 lgrp_walk_init, lgrp_walk_step, NULL }, 4818 { "lgrp_parents", "walk up lgroup lineage from given lgroup", 4819 lgrp_parents_walk_init, lgrp_parents_walk_step, NULL }, 4820 { "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup", 4821 lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL }, 4822 { "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup", 4823 lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL }, 4824 4825 /* from group.c */ 4826 { "group", "walk all elements of a group", 4827 group_walk_init, group_walk_step, NULL }, 4828 4829 /* from list.c */ 4830 { LIST_WALK_NAME, LIST_WALK_DESC, 4831 list_walk_init, list_walk_step, list_walk_fini }, 4832 4833 /* from memory.c */ 4834 { "page", "walk all pages, or those from the specified vnode", 4835 page_walk_init, page_walk_step, page_walk_fini }, 4836 { "allpages", "walk all pages, including free pages", 4837 allpages_walk_init, allpages_walk_step, allpages_walk_fini }, 4838 { "memlist", "walk specified memlist", 4839 NULL, memlist_walk_step, NULL }, 4840 { "swapinfo", "walk swapinfo structures", 4841 swap_walk_init, swap_walk_step, NULL }, 4842 4843 /* from mmd.c */ 4844 { "pattr", "walk pattr_t structures", pattr_walk_init, 4845 mmdq_walk_step, mmdq_walk_fini }, 4846 { "pdesc", "walk pdesc_t structures", 4847 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini }, 4848 { "pdesc_slab", "walk pdesc_slab_t structures", 4849 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini }, 4850 4851 /* from modhash.c */ 4852 { "modhash", "walk list of mod_hash structures", modhash_walk_init, 4853 modhash_walk_step, NULL }, 4854 { "modent", "walk list of entries in a given mod_hash", 4855 modent_walk_init, modent_walk_step, modent_walk_fini }, 4856 { "modchain", "walk list of entries in a given mod_hash_entry", 4857 NULL, modchain_walk_step, NULL }, 4858 4859 /* from net.c */ 4860 { "ar", "walk ar_t structures using MI for all stacks", 4861 mi_payload_walk_init, mi_payload_walk_step, NULL, &mi_ar_arg }, 4862 { "icmp", "walk ICMP control structures using MI for all stacks", 4863 mi_payload_walk_init, mi_payload_walk_step, NULL, 4864 &mi_icmp_arg }, 4865 { "mi", "given a MI_O, walk the MI", 4866 mi_walk_init, mi_walk_step, mi_walk_fini, NULL }, 4867 { "sonode", "given a sonode, walk its children", 4868 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL }, 4869 { "ar_stacks", "walk all the ar_stack_t", 4870 ar_stacks_walk_init, ar_stacks_walk_step, NULL }, 4871 { "icmp_stacks", "walk all the icmp_stack_t", 4872 icmp_stacks_walk_init, icmp_stacks_walk_step, NULL }, 4873 { "tcp_stacks", "walk all the tcp_stack_t", 4874 tcp_stacks_walk_init, tcp_stacks_walk_step, NULL }, 4875 { "udp_stacks", "walk all the udp_stack_t", 4876 udp_stacks_walk_init, udp_stacks_walk_step, NULL }, 4877 4878 /* from nvpair.c */ 4879 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR, 4880 nvpair_walk_init, nvpair_walk_step, NULL }, 4881 4882 /* from rctl.c */ 4883 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists", 4884 rctl_dict_walk_init, rctl_dict_walk_step, NULL }, 4885 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init, 4886 rctl_set_walk_step, NULL }, 4887 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated", 4888 rctl_val_walk_init, rctl_val_walk_step }, 4889 4890 /* from sobj.c */ 4891 { "blocked", "walk threads blocked on a given sobj", 4892 blocked_walk_init, blocked_walk_step, NULL }, 4893 { "wchan", "given a wchan, list of blocked threads", 4894 wchan_walk_init, wchan_walk_step, wchan_walk_fini }, 4895 4896 /* from stream.c */ 4897 { "b_cont", "walk mblk_t list using b_cont", 4898 mblk_walk_init, b_cont_step, mblk_walk_fini }, 4899 { "b_next", "walk mblk_t list using b_next", 4900 mblk_walk_init, b_next_step, mblk_walk_fini }, 4901 { "qlink", "walk queue_t list using q_link", 4902 queue_walk_init, queue_link_step, queue_walk_fini }, 4903 { "qnext", "walk queue_t list using q_next", 4904 queue_walk_init, queue_next_step, queue_walk_fini }, 4905 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list", 4906 strftblk_walk_init, strftblk_step, strftblk_walk_fini }, 4907 { "readq", "walk read queue side of stdata", 4908 str_walk_init, strr_walk_step, str_walk_fini }, 4909 { "writeq", "walk write queue side of stdata", 4910 str_walk_init, strw_walk_step, str_walk_fini }, 4911 4912 /* from thread.c */ 4913 { "deathrow", "walk threads on both lwp_ and thread_deathrow", 4914 deathrow_walk_init, deathrow_walk_step, NULL }, 4915 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues", 4916 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 4917 { "cpupart_dispq", 4918 "given a cpupart_t, walk threads in dispatcher queues", 4919 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 4920 { "lwp_deathrow", "walk lwp_deathrow", 4921 lwp_deathrow_walk_init, deathrow_walk_step, NULL }, 4922 { "thread", "global or per-process kthread_t structures", 4923 thread_walk_init, thread_walk_step, thread_walk_fini }, 4924 { "thread_deathrow", "walk threads on thread_deathrow", 4925 thread_deathrow_walk_init, deathrow_walk_step, NULL }, 4926 4927 /* from tsd.c */ 4928 { "tsd", "walk list of thread-specific data", 4929 tsd_walk_init, tsd_walk_step, tsd_walk_fini }, 4930 4931 /* from tsol.c */ 4932 { "tnrh", "walk remote host cache structures", 4933 tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini }, 4934 { "tnrhtp", "walk remote host template structures", 4935 tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini }, 4936 4937 /* 4938 * typegraph does not work under kmdb, as it requires too much memory 4939 * for its internal data structures. 4940 */ 4941 #ifndef _KMDB 4942 /* from typegraph.c */ 4943 { "typeconflict", "walk buffers with conflicting type inferences", 4944 typegraph_walk_init, typeconflict_walk_step }, 4945 { "typeunknown", "walk buffers with unknown types", 4946 typegraph_walk_init, typeunknown_walk_step }, 4947 #endif 4948 4949 /* from vfs.c */ 4950 { "vfs", "walk file system list", 4951 vfs_walk_init, vfs_walk_step }, 4952 4953 /* from mdi.c */ 4954 { "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link", 4955 mdi_pi_client_link_walk_init, 4956 mdi_pi_client_link_walk_step, 4957 mdi_pi_client_link_walk_fini }, 4958 4959 { "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link", 4960 mdi_pi_phci_link_walk_init, 4961 mdi_pi_phci_link_walk_step, 4962 mdi_pi_phci_link_walk_fini }, 4963 4964 { "mdiphci_list", "Walker for mdi_phci ph_next link", 4965 mdi_phci_ph_next_walk_init, 4966 mdi_phci_ph_next_walk_step, 4967 mdi_phci_ph_next_walk_fini }, 4968 4969 /* from netstack.c */ 4970 { "netstack", "walk a list of kernel netstacks", 4971 netstack_walk_init, netstack_walk_step, NULL }, 4972 4973 { NULL } 4974 }; 4975 4976 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers }; 4977 4978 /*ARGSUSED*/ 4979 static void 4980 genunix_statechange_cb(void *ignored) 4981 { 4982 /* 4983 * Force ::findleaks and ::stacks to let go any cached state. 4984 */ 4985 leaky_cleanup(1); 4986 stacks_cleanup(1); 4987 4988 kmem_statechange(); /* notify kmem */ 4989 } 4990 4991 const mdb_modinfo_t * 4992 _mdb_init(void) 4993 { 4994 kmem_init(); 4995 4996 (void) mdb_callback_add(MDB_CALLBACK_STCHG, 4997 genunix_statechange_cb, NULL); 4998 4999 return (&modinfo); 5000 } 5001 5002 void 5003 _mdb_fini(void) 5004 { 5005 leaky_cleanup(1); 5006 stacks_cleanup(1); 5007 } 5008