xref: /titanic_50/usr/src/cmd/fs.d/ufs/newfs/newfs.c (revision 5b7f77ad52bf657ba49d64d16f527e958d0fb820)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 #pragma ident	"%Z%%M%	%I%	%E% SMI"
23 	/* from UCB 5.2 9/11/85 */
24 
25 /*
26  * newfs: friendly front end to mkfs
27  *
28  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
29  * Use is subject to license terms.
30  */
31 
32 #include <sys/param.h>
33 #include <sys/types.h>
34 #include <locale.h>
35 #include <sys/stat.h>
36 #include <sys/buf.h>
37 #include <sys/fs/ufs_fs.h>
38 #include <sys/vnode.h>
39 #include <sys/fs/ufs_inode.h>
40 #include <sys/sysmacros.h>
41 
42 #include <errno.h>
43 #include <stdio.h>
44 #include <string.h>
45 #include <stdlib.h>
46 #include <stdarg.h>
47 #include <stdio.h>
48 #include <fcntl.h>
49 #include <unistd.h>
50 #include <limits.h>
51 #include <libintl.h>
52 #include <sys/dkio.h>
53 #include <sys/vtoc.h>
54 #include <sys/mkdev.h>
55 #include <sys/efi_partition.h>
56 
57 #include <fslib.h>
58 
59 static unsigned int number(char *, char *, int, int);
60 static int64_t number64(char *, char *, int, int64_t);
61 static diskaddr_t getdiskbydev(char *);
62 static int  yes(void);
63 static int  notrand(char *);
64 static void usage();
65 static diskaddr_t get_device_size(int, char *);
66 static diskaddr_t brute_force_get_device_size(int);
67 static int validate_size(char *disk, diskaddr_t size);
68 static void exenv(void);
69 static struct fs *read_sb(char *);
70 /*PRINTFLIKE1*/
71 static void fatal(char *fmt, ...);
72 
73 #define	EPATH "PATH=/usr/sbin:/sbin:"
74 #define	CPATH "/sbin"					/* an EPATH element */
75 #define	MB (1024 * 1024)
76 #define	GBSEC ((1024 * 1024 * 1024) / DEV_BSIZE)	/* sectors in a GB */
77 #define	MINFREESEC ((64 * 1024 * 1024) / DEV_BSIZE)	/* sectors in 64 MB */
78 #define	MINCPG (16)	/* traditional */
79 #define	MAXDEFDENSITY (8 * 1024)	/* arbitrary */
80 #define	MINDENSITY (2 * 1024)	/* traditional */
81 #define	MIN_MTB_DENSITY (1024 * 1024)
82 #define	POWEROF2(num)	(((num) & ((num) - 1)) == 0)
83 #define	SECTORS_PER_TERABYTE	(1LL << 31)
84 /*
85  * The following constant specifies an upper limit for file system size
86  * that is actually a lot bigger than we expect to support with UFS. (Since
87  * it's specified in sectors, the file system size would be 2**44 * 512,
88  * which is 2**53, which is 8192 Terabytes.)  However, it's useful
89  * for checking the basic sanity of a size value that is input on the
90  * command line.
91  */
92 #define	FS_SIZE_UPPER_LIMIT	0x100000000000LL
93 
94 /* For use with number() */
95 #define	NR_NONE		0
96 #define	NR_PERCENT	0x01
97 
98 /*
99  * The following two constants set the default block and fragment sizes.
100  * Both constants must be a power of 2 and meet the following constraints:
101  *	MINBSIZE <= DESBLKSIZE <= MAXBSIZE
102  *	DEV_BSIZE <= DESFRAGSIZE <= DESBLKSIZE
103  *	DESBLKSIZE / DESFRAGSIZE <= 8
104  */
105 #define	DESBLKSIZE	8192
106 #define	DESFRAGSIZE	1024
107 
108 #ifdef DEBUG
109 #define	dprintf(x)	printf x
110 #else
111 #define	dprintf(x)
112 #endif
113 
114 static int	Nflag;		/* run mkfs without writing file system */
115 static int	Tflag;		/* set up file system for growth to over 1 TB */
116 static int	verbose;	/* show mkfs line before exec */
117 static int	fsize = 0;		/* fragment size */
118 static int	fsize_flag = 0;	/* fragment size was specified on cmd line */
119 static int	bsize;		/* block size */
120 static int	ntracks;	/* # tracks/cylinder */
121 static int	ntracks_set = 0; /* true if the user specified ntracks */
122 static int	optim = FS_OPTTIME;	/* optimization, t(ime) or s(pace) */
123 static int	nsectors;	/* # sectors/track */
124 static int	cpg;		/* cylinders/cylinder group */
125 static int	cpg_set = 0;	/* true if the user specified cpg */
126 static int	minfree = -1;	/* free space threshold */
127 static int	rpm;		/* revolutions/minute of drive */
128 static int	rpm_set = 0;	/* true if the user specified rpm */
129 static int	nrpos = 8;	/* # of distinguished rotational positions */
130 				/* 8 is the historical default */
131 static int	nrpos_set = 0;	/* true if the user specified nrpos */
132 static int	density = 0;	/* number of bytes per inode */
133 static int	apc;		/* alternates per cylinder */
134 static int	apc_set = 0;	/* true if the user specified apc */
135 static int 	rot = -1;	/* rotational delay (msecs) */
136 static int	rot_set = 0;	/* true if the user specified rot */
137 static int 	maxcontig = -1;	/* maximum number of contig blocks */
138 static int	text_sb = 0;	/* no disk changes; just final sb text dump */
139 static int	binary_sb = 0;	/* no disk changes; just final sb binary dump */
140 static int	label_type;	/* see types below */
141 
142 /*
143  * The variable use_efi_dflts is an indicator of whether to use EFI logic
144  * or the geometry logic in laying out the filesystem. This is decided
145  * based on the size/type of the disk and is used only for non-EFI labeled
146  * disks and removable media.
147  */
148 static int	use_efi_dflts = 0;
149 static int	isremovable = 0;
150 
151 static char	device[MAXPATHLEN];
152 static char	cmd[BUFSIZ];
153 
154 extern	char	*getfullrawname(); /* from libadm */
155 
156 int
157 main(int argc, char *argv[])
158 {
159 	char *special, *name;
160 	struct stat64 st;
161 	int status;
162 	int option;
163 	struct fs *sbp;	/* Pointer to superblock (if present) */
164 	diskaddr_t actual_fssize;
165 	diskaddr_t max_possible_fssize;
166 	diskaddr_t req_fssize = 0;
167 	diskaddr_t fssize = 0;
168 	char	*req_fssize_str = NULL; /* requested size argument */
169 
170 	(void) setlocale(LC_ALL, "");
171 
172 #if !defined(TEXT_DOMAIN)
173 #define	TEXT_DOMAIN	"SYS_TEST"
174 #endif
175 	(void) textdomain(TEXT_DOMAIN);
176 
177 	opterr = 0;	/* We print our own errors, disable getopt's message */
178 	while ((option = getopt(argc, argv,
179 	    "vNBSs:C:d:t:o:a:b:f:c:m:n:r:i:T")) != EOF) {
180 		switch (option) {
181 		case 'S':
182 			text_sb++;
183 			break;
184 		case 'B':
185 			binary_sb++;
186 			break;
187 		case 'v':
188 			verbose++;
189 			break;
190 
191 		case 'N':
192 			Nflag++;
193 			break;
194 
195 		case 's':
196 			/*
197 			 * The maximum file system size is a lot smaller
198 			 * than FS_SIZE_UPPER_LIMIT, but until we find out
199 			 * the device size and block size, we don't know
200 			 * what it is.  So save the requested size in a
201 			 * string so that we can print it out later if we
202 			 * determine it's too big.
203 			 */
204 			req_fssize = number64("fssize", optarg, NR_NONE,
205 			    FS_SIZE_UPPER_LIMIT);
206 			if (req_fssize < 1024)
207 				fatal(gettext(
208 				    "%s: fssize must be at least 1024"),
209 				    optarg);
210 			req_fssize_str = strdup(optarg);
211 			if (req_fssize_str == NULL)
212 				fatal(gettext(
213 				    "Insufficient memory for string copy."));
214 			break;
215 
216 		case 'C':
217 			maxcontig = number("maxcontig", optarg, NR_NONE, -1);
218 			if (maxcontig < 0)
219 				fatal(gettext("%s: bad maxcontig"), optarg);
220 			break;
221 
222 		case 'd':
223 			rot = number("rotdelay", optarg, NR_NONE, 0);
224 			rot_set = 1;
225 			if (rot < 0 || rot > 1000)
226 				fatal(gettext(
227 				    "%s: bad rotational delay"), optarg);
228 			break;
229 
230 		case 't':
231 			ntracks = number("ntrack", optarg, NR_NONE, 16);
232 			ntracks_set = 1;
233 			if ((ntracks < 0) ||
234 			    (ntracks > INT_MAX))
235 				fatal(gettext("%s: bad total tracks"), optarg);
236 			break;
237 
238 		case 'o':
239 			if (strcmp(optarg, "space") == 0)
240 				optim = FS_OPTSPACE;
241 			else if (strcmp(optarg, "time") == 0)
242 				optim = FS_OPTTIME;
243 			else
244 				fatal(gettext(
245 "%s: bad optimization preference (options are `space' or `time')"), optarg);
246 			break;
247 
248 		case 'a':
249 			apc = number("apc", optarg, NR_NONE, 0);
250 			apc_set = 1;
251 			if (apc < 0 || apc > 32768) /* see mkfs.c */
252 				fatal(gettext(
253 				    "%s: bad alternates per cyl"), optarg);
254 			break;
255 
256 		case 'b':
257 			bsize = number("bsize", optarg, NR_NONE, DESBLKSIZE);
258 			if (bsize < MINBSIZE || bsize > MAXBSIZE)
259 				fatal(gettext(
260 				    "%s: bad block size"), optarg);
261 			break;
262 
263 		case 'f':
264 			fsize = number("fragsize", optarg, NR_NONE,
265 			    DESFRAGSIZE);
266 			fsize_flag++;
267 			/* xxx ought to test against bsize for upper limit */
268 			if (fsize < DEV_BSIZE)
269 				fatal(gettext("%s: bad frag size"), optarg);
270 			break;
271 
272 		case 'c':
273 			cpg = number("cpg", optarg, NR_NONE, 16);
274 			cpg_set = 1;
275 			if (cpg < 1)
276 				fatal(gettext("%s: bad cylinders/group"),
277 				    optarg);
278 			break;
279 
280 		case 'm':
281 			minfree = number("minfree", optarg, NR_PERCENT, 10);
282 			if (minfree < 0 || minfree > 99)
283 				fatal(gettext("%s: bad free space %%"), optarg);
284 			break;
285 
286 		case 'n':
287 			nrpos = number("nrpos", optarg, NR_NONE, 8);
288 			nrpos_set = 1;
289 			if (nrpos <= 0)
290 				fatal(gettext(
291 				    "%s: bad number of rotational positions"),
292 				    optarg);
293 			break;
294 
295 		case 'r':
296 			rpm = number("rpm", optarg, NR_NONE, 3600);
297 			rpm_set = 1;
298 			if (rpm < 0)
299 				fatal(gettext("%s: bad revs/minute"), optarg);
300 			break;
301 
302 		case 'i':
303 			/* xxx ought to test against fsize */
304 			density = number("nbpi", optarg, NR_NONE, 2048);
305 			if (density < DEV_BSIZE)
306 				fatal(gettext("%s: bad bytes per inode"),
307 				    optarg);
308 			break;
309 
310 		case 'T':
311 			Tflag++;
312 			break;
313 
314 		default:
315 			usage();
316 			fatal(gettext("-%c: unknown flag"), optopt);
317 		}
318 	}
319 
320 	/* At this point, there should only be one argument left:	*/
321 	/* The raw-special-device itself. If not, print usage message.	*/
322 	if ((argc - optind) != 1) {
323 		usage();
324 		exit(1);
325 	}
326 
327 	name = argv[optind];
328 
329 	special = getfullrawname(name);
330 	if (special == NULL) {
331 		(void) fprintf(stderr, gettext("newfs: malloc failed\n"));
332 		exit(1);
333 	}
334 
335 	if (*special == '\0') {
336 		if (strchr(name, '/') != NULL) {
337 			if (stat64(name, &st) < 0) {
338 				(void) fprintf(stderr,
339 				    gettext("newfs: %s: %s\n"),
340 				    name, strerror(errno));
341 				exit(2);
342 			}
343 			fatal(gettext("%s: not a raw disk device"), name);
344 		}
345 		(void) sprintf(device, "/dev/rdsk/%s", name);
346 		if ((special = getfullrawname(device)) == NULL) {
347 			(void) fprintf(stderr,
348 			    gettext("newfs: malloc failed\n"));
349 			exit(1);
350 		}
351 
352 		if (*special == '\0') {
353 			(void) sprintf(device, "/dev/%s", name);
354 			if ((special = getfullrawname(device)) == NULL) {
355 				(void) fprintf(stderr,
356 				    gettext("newfs: malloc failed\n"));
357 				exit(1);
358 			}
359 			if (*special == '\0')
360 				fatal(gettext(
361 				    "%s: not a raw disk device"), name);
362 		}
363 	}
364 
365 	/*
366 	 * getdiskbydev() determines the characteristics of the special
367 	 * device on which the file system will be built.  In the case
368 	 * of devices with SMI labels (that is, non-EFI labels), the
369 	 * following characteristics are set (if they were not already
370 	 * set on the command line, since the command line settings
371 	 * take precedence):
372 	 *
373 	 *	nsectors - sectors per track
374 	 *	ntracks - tracks per cylinder
375 	 *	rpm - disk revolutions per minute
376 	 *
377 	 *	apc is NOT set
378 	 *
379 	 * getdiskbydev() also sets the following quantities for all
380 	 * devices, if not already set:
381 	 *
382 	 *	bsize - file system block size
383 	 *	maxcontig
384 	 *	label_type (efi, vtoc, or other)
385 	 *
386 	 * getdiskbydev() returns the actual size of the device, in
387 	 * sectors.
388 	 */
389 
390 	actual_fssize = getdiskbydev(special);
391 
392 	if (req_fssize == 0) {
393 		fssize = actual_fssize;
394 	} else {
395 		/*
396 		 * If the user specified a size larger than what we've
397 		 * determined as the actual size of the device, see if the
398 		 * size specified by the user can be read.  If so, use it,
399 		 * since some devices and volume managers may not support
400 		 * the vtoc and EFI interfaces we use to determine device
401 		 * size.
402 		 */
403 		if (req_fssize > actual_fssize &&
404 		    validate_size(special, req_fssize)) {
405 			(void) fprintf(stderr, gettext(
406 "Warning: the requested size of this file system\n"
407 "(%lld sectors) is greater than the size of the\n"
408 "device reported by the driver (%lld sectors).\n"
409 "However, a read of the device at the requested size\n"
410 "does succeed, so the requested size will be used.\n"),
411 			    req_fssize, actual_fssize);
412 			fssize = req_fssize;
413 		} else {
414 			fssize = MIN(req_fssize, actual_fssize);
415 		}
416 	}
417 
418 	if (label_type == LABEL_TYPE_VTOC) {
419 		if (nsectors < 0)
420 			fatal(gettext("%s: no default #sectors/track"),
421 			    special);
422 		if (!use_efi_dflts) {
423 			if (ntracks < 0)
424 				fatal(gettext("%s: no default #tracks"),
425 				    special);
426 		}
427 		if (rpm < 0)
428 			fatal(gettext(
429 			    "%s: no default revolutions/minute value"),
430 			    special);
431 		if (rpm < 60) {
432 			(void) fprintf(stderr,
433 			    gettext("Warning: setting rpm to 60\n"));
434 			rpm = 60;
435 		}
436 	}
437 	if (label_type == LABEL_TYPE_EFI || label_type == LABEL_TYPE_OTHER) {
438 		if (ntracks_set)
439 			(void) fprintf(stderr, gettext(
440 "Warning: ntracks is obsolete for this device and will be ignored.\n"));
441 		if (cpg_set)
442 			(void) fprintf(stderr, gettext(
443 "Warning: cylinders/group is obsolete for this device and will be ignored.\n"));
444 		if (rpm_set)
445 			(void) fprintf(stderr, gettext(
446 "Warning: rpm is obsolete for this device and will be ignored.\n"));
447 		if (rot_set)
448 			(void) fprintf(stderr, gettext(
449 "Warning: rotational delay is obsolete for this device and"
450 " will be ignored.\n"));
451 		if (nrpos_set)
452 			(void) fprintf(stderr, gettext(
453 "Warning: number of rotational positions is obsolete for this device and\n"
454 "will be ignored.\n"));
455 		if (apc_set)
456 			(void) fprintf(stderr, gettext(
457 "Warning: number of alternate sectors per cylinder is obsolete for this\n"
458 "device and will be ignored.\n"));
459 
460 		/*
461 		 * We need these for the call to mkfs, even though they are
462 		 * meaningless.
463 		 */
464 		rpm = 60;
465 		nrpos = 1;
466 		apc = 0;
467 		rot = -1;
468 
469 		/*
470 		 * These values are set to produce a file system with
471 		 * a cylinder group size of 48MB.   For disks with
472 		 * non-EFI labels, most geometries result in cylinder
473 		 * groups of around 40 - 50 MB, so we arbitrarily choose
474 		 * 48MB for disks with EFI labels.  mkfs will reduce
475 		 * cylinders per group even further if necessary.
476 		 */
477 
478 		cpg = 16;
479 		nsectors = 128;
480 		ntracks = 48;
481 
482 		/*
483 		 * mkfs produces peculiar results for file systems
484 		 * that are smaller than one cylinder so don't allow
485 		 * them to be created (this check is only made for
486 		 * disks with EFI labels.  Eventually, it should probably
487 		 * be enforced for all disks.)
488 		 */
489 
490 		if (fssize < nsectors * ntracks) {
491 			fatal(gettext(
492 			    "file system size must be at least %d sectors"),
493 			    nsectors * ntracks);
494 		}
495 	}
496 
497 	if (fssize > INT_MAX)
498 		Tflag = 1;
499 
500 	/*
501 	 * If the user requested that the file system be set up for
502 	 * eventual growth to over a terabyte, or if it's already greater
503 	 * than a terabyte, set the inode density (nbpi) to MIN_MTB_DENSITY
504 	 * (unless the user has specified a larger nbpi), set the frag size
505 	 * equal to the block size, and set the cylinders-per-group value
506 	 * passed to mkfs to -1, which tells mkfs to make cylinder groups
507 	 * as large as possible.
508 	 */
509 	if (Tflag) {
510 		if (density < MIN_MTB_DENSITY)
511 			density = MIN_MTB_DENSITY;
512 		fsize = bsize;
513 		cpg = -1; 	/* says make cyl groups as big as possible */
514 	} else {
515 		if (fsize == 0)
516 			fsize = DESFRAGSIZE;
517 	}
518 
519 	if (!POWEROF2(fsize)) {
520 		(void) fprintf(stderr, gettext(
521 		    "newfs: fragment size must a power of 2, not %d\n"), fsize);
522 		fsize = bsize/8;
523 		(void) fprintf(stderr, gettext(
524 		    "newfs: fragsize reset to %ld\n"), fsize);
525 	}
526 
527 	/*
528 	 * The file system is limited in size by the fragment size.
529 	 * The number of fragments in the file system must fit into
530 	 * a signed 32-bit quantity, so the number of sectors in the
531 	 * file system is INT_MAX * the number of sectors in a frag.
532 	 */
533 
534 	max_possible_fssize = ((uint64_t)fsize)/DEV_BSIZE * INT_MAX;
535 	if (fssize > max_possible_fssize)
536 		fssize = max_possible_fssize;
537 
538 	/*
539 	 * Now fssize is the final size of the file system (in sectors).
540 	 * If it's less than what the user requested, print a message.
541 	 */
542 	if (fssize < req_fssize) {
543 		(void) fprintf(stderr, gettext(
544 		    "newfs: requested size of %s disk blocks is too large.\n"),
545 		    req_fssize_str);
546 		(void) fprintf(stderr, gettext(
547 		    "newfs: Resetting size to %lld\n"), fssize);
548 	}
549 
550 	/*
551 	 * fssize now equals the size (in sectors) of the file system
552 	 * that will be created.
553 	 */
554 
555 	/* XXX - following defaults are both here and in mkfs */
556 	if (density <= 0) {
557 		if (fssize < GBSEC)
558 			density = MINDENSITY;
559 		else
560 			density = (int)((((longlong_t)fssize + (GBSEC - 1)) /
561 			    GBSEC) * MINDENSITY);
562 		if (density <= 0)
563 			density = MINDENSITY;
564 		if (density > MAXDEFDENSITY)
565 			density = MAXDEFDENSITY;
566 	}
567 	if (cpg == 0) {
568 		/*
569 		 * maxcpg calculation adapted from mkfs
570 		 * In the case of disks with EFI labels, cpg has
571 		 * already been set, so we won't enter this code.
572 		 */
573 		long maxcpg, maxipg;
574 
575 		maxipg = roundup(bsize * NBBY / 3,
576 		    bsize / sizeof (struct inode));
577 		maxcpg = (bsize - sizeof (struct cg) - howmany(maxipg, NBBY)) /
578 		    (sizeof (long) + nrpos * sizeof (short) +
579 		    nsectors / (MAXFRAG * NBBY));
580 		cpg = (fssize / GBSEC) * 32;
581 		if (cpg > maxcpg)
582 			cpg = maxcpg;
583 		if (cpg <= 0)
584 			cpg = MINCPG;
585 	}
586 	if (minfree < 0) {
587 		minfree = ((float)MINFREESEC / fssize) * 100;
588 		if (minfree > 10)
589 			minfree = 10;
590 		if (minfree <= 0)
591 			minfree = 1;
592 	}
593 #ifdef i386	/* Bug 1170182 */
594 	if (ntracks > 32 && (ntracks % 16) != 0) {
595 		ntracks -= (ntracks % 16);
596 	}
597 #endif
598 	/*
599 	 * Confirmation
600 	 */
601 	if (isatty(fileno(stdin)) && !Nflag) {
602 		/*
603 		 * If we can read a valid superblock, report the mount
604 		 * point on which this filesystem was last mounted.
605 		 */
606 		if (((sbp = read_sb(special)) != 0) &&
607 		    (*sbp->fs_fsmnt != '\0')) {
608 			(void) printf(gettext(
609 			    "newfs: %s last mounted as %s\n"),
610 			    special, sbp->fs_fsmnt);
611 		}
612 		(void) printf(gettext(
613 		    "newfs: construct a new file system %s: (y/n)? "),
614 		    special);
615 		(void) fflush(stdout);
616 		if (!yes())
617 			exit(0);
618 	}
619 
620 	dprintf(("DeBuG newfs : nsect=%d ntrak=%d cpg=%d\n",
621 	    nsectors, ntracks, cpg));
622 	/*
623 	 * If alternates-per-cylinder is ever implemented:
624 	 * need to get apc from dp->d_apc if no -a switch???
625 	 */
626 	(void) sprintf(cmd,
627 	"mkfs -F ufs %s%s%s%s %lld %d %d %d %d %d %d %d %d %s %d %d %d %d %s",
628 	    Nflag ? "-o N " : "", binary_sb ? "-o calcbinsb " : "",
629 	    text_sb ? "-o calcsb " : "", special,
630 	    fssize, nsectors, ntracks, bsize, fsize, cpg, minfree, rpm/60,
631 	    density, optim == FS_OPTSPACE ? "s" : "t", apc, rot, nrpos,
632 	    maxcontig, Tflag ? "y" : "n");
633 	if (verbose) {
634 		(void) printf("%s\n", cmd);
635 		(void) fflush(stdout);
636 	}
637 	exenv();
638 	if (status = system(cmd))
639 		exit(status >> 8);
640 	if (Nflag)
641 		exit(0);
642 	(void) sprintf(cmd, "/usr/sbin/fsirand %s", special);
643 	if (notrand(special) && (status = system(cmd)) != 0)
644 		(void) fprintf(stderr,
645 		    gettext("%s: failed, status = %d\n"),
646 		    cmd, status);
647 	return (0);
648 }
649 
650 static void
651 exenv(void)
652 {
653 	char *epath;				/* executable file path */
654 	char *cpath;				/* current path */
655 
656 	if ((cpath = getenv("PATH")) == NULL) {
657 		(void) fprintf(stderr, gettext("newfs: no PATH in env\n"));
658 		/*
659 		 * Background: the Bourne shell interpolates "." into
660 		 * the path where said path starts with a colon, ends
661 		 * with a colon, or has two adjacent colons.  Thus,
662 		 * the path ":/sbin::/usr/sbin:" is equivalent to
663 		 * ".:/sbin:.:/usr/sbin:.".  Now, we have no cpath,
664 		 * and epath ends in a colon (to make for easy
665 		 * catenation in the normal case).  By the above, if
666 		 * we use "", then "." becomes part of path.  That's
667 		 * bad, so use CPATH (which is just a duplicate of some
668 		 * element in EPATH).  No point in opening ourselves
669 		 * up to a Trojan horse attack when we don't have to....
670 		 */
671 		cpath = CPATH;
672 	}
673 	if ((epath = malloc(strlen(EPATH) + strlen(cpath) + 1)) == NULL) {
674 		(void) fprintf(stderr, gettext("newfs: malloc failed\n"));
675 		exit(1);
676 	}
677 	(void) strcpy(epath, EPATH);
678 	(void) strcat(epath, cpath);
679 	if (putenv(epath) < 0) {
680 		(void) fprintf(stderr, gettext("newfs: putenv failed\n"));
681 		exit(1);
682 	}
683 }
684 
685 static int
686 yes(void)
687 {
688 	int	i, b;
689 
690 	i = b = getchar();
691 	while (b != '\n' && b != '\0' && b != EOF)
692 		b = getchar();
693 	return (i == 'y');
694 }
695 
696 /*
697  * xxx Caller must run fmt through gettext(3) for us, if we ever
698  * xxx go the i18n route....
699  */
700 static void
701 fatal(char *fmt, ...)
702 {
703 	va_list pvar;
704 
705 	(void) fprintf(stderr, "newfs: ");
706 	va_start(pvar, fmt);
707 	(void) vfprintf(stderr, fmt, pvar);
708 	va_end(pvar);
709 	(void) putc('\n', stderr);
710 	exit(10);
711 }
712 
713 static diskaddr_t
714 getdiskbydev(char *disk)
715 {
716 	struct dk_geom g;
717 	struct dk_cinfo ci;
718 	diskaddr_t actual_size;
719 	int fd;
720 
721 	if ((fd = open64(disk, 0)) < 0) {
722 		perror(disk);
723 		exit(1);
724 	}
725 
726 	/*
727 	 * get_device_size() determines the actual size of the
728 	 * device, and also the disk's attributes, such as geometry.
729 	 */
730 	actual_size = get_device_size(fd, disk);
731 
732 	if (label_type == LABEL_TYPE_VTOC) {
733 		/*
734 		 * Geometry information does not make sense for removable media
735 		 * anyway, so indicate mkfs to use EFI default parameters.
736 		 */
737 		if (ioctl(fd, DKIOCREMOVABLE, &isremovable)) {
738 			dprintf(("DeBuG newfs : Unable to determine if %s is"
739 			    " Removable Media. Proceeding with system"
740 			    " determined parameters.\n", disk));
741 			isremovable = 0;
742 		} else if (isremovable && !Tflag)
743 			use_efi_dflts = 1;
744 
745 		if (ioctl(fd, DKIOCGGEOM, &g))
746 			fatal(gettext(
747 			    "%s: Unable to read Disk geometry"), disk);
748 		if (((g.dkg_ncyl * g.dkg_nhead * g.dkg_nsect) > CHSLIMIT) &&
749 		    !Tflag) {
750 			use_efi_dflts = 1;
751 		}
752 		dprintf(("DeBuG newfs : geom=%ld, CHSLIMIT=%d "
753 		    "isremovable = %d use_efi_dflts = %d\n",
754 		    g.dkg_ncyl * g.dkg_nhead * g.dkg_nsect, CHSLIMIT,
755 		    isremovable, use_efi_dflts));
756 		/*
757 		 * The ntracks that is passed to mkfs is decided here based
758 		 * on 'use_efi_dflts' and whether ntracks was specified as a
759 		 * command line parameter to newfs.
760 		 * If ntracks of -1 is passed to mkfs, mkfs uses DEF_TRACKS_EFI
761 		 * and DEF_SECTORS_EFI for ntracks and nsectors respectively.
762 		 */
763 		if (nsectors == 0)
764 			nsectors = g.dkg_nsect;
765 		if (ntracks == 0)
766 			ntracks = use_efi_dflts ? -1 : g.dkg_nhead;
767 		if (rpm == 0)
768 			rpm = ((int)g.dkg_rpm <= 0) ? 3600: g.dkg_rpm;
769 	}
770 
771 	if (bsize == 0)
772 		bsize = DESBLKSIZE;
773 	/*
774 	 * Adjust maxcontig by the device's maxtransfer. If maxtransfer
775 	 * information is not available, default to the min of a MB and
776 	 * maxphys.
777 	 */
778 	if (maxcontig == -1 && ioctl(fd, DKIOCINFO, &ci) == 0) {
779 		maxcontig = ci.dki_maxtransfer * DEV_BSIZE;
780 		if (maxcontig < 0) {
781 			int	error, gotit, maxphys;
782 			gotit = fsgetmaxphys(&maxphys, &error);
783 
784 			/*
785 			 * If we cannot get the maxphys value, default
786 			 * to ufs_maxmaxphys (MB).
787 			 */
788 			if (gotit) {
789 				maxcontig = MIN(maxphys, MB);
790 			} else {
791 				(void) fprintf(stderr, gettext(
792 "Warning: Could not get system value for maxphys. The value for maxcontig\n"
793 "will default to 1MB.\n"));
794 			maxcontig = MB;
795 			}
796 		}
797 		maxcontig /= bsize;
798 	}
799 	(void) close(fd);
800 	return (actual_size);
801 }
802 
803 /*
804  * Figure out how big the partition we're dealing with is.
805  */
806 static diskaddr_t
807 get_device_size(int fd, char *name)
808 {
809 	struct vtoc vtoc;
810 	dk_gpt_t *efi_vtoc;
811 	diskaddr_t	slicesize;
812 
813 	int index = read_vtoc(fd, &vtoc);
814 
815 	if (index >= 0) {
816 		label_type = LABEL_TYPE_VTOC;
817 	} else {
818 		if (index == VT_ENOTSUP || index == VT_ERROR) {
819 			/* it might be an EFI label */
820 			index = efi_alloc_and_read(fd, &efi_vtoc);
821 			if (index >= 0)
822 				label_type = LABEL_TYPE_EFI;
823 		}
824 	}
825 
826 	if (index < 0) {
827 		/*
828 		 * Since both attempts to read the label failed, we're
829 		 * going to fall back to a brute force approach to
830 		 * determining the device's size:  see how far out we can
831 		 * perform reads on the device.
832 		 */
833 
834 		slicesize = brute_force_get_device_size(fd);
835 		if (slicesize == 0) {
836 			switch (index) {
837 			case VT_ERROR:
838 				(void) fprintf(stderr, gettext(
839 				    "newfs: %s: %s\n"), name, strerror(errno));
840 				exit(10);
841 				/*NOTREACHED*/
842 			case VT_EIO:
843 				fatal(gettext(
844 				    "%s: I/O error accessing VTOC"), name);
845 				/*NOTREACHED*/
846 			case VT_EINVAL:
847 				fatal(gettext(
848 				    "%s: Invalid field in VTOC"), name);
849 				/*NOTREACHED*/
850 			default:
851 				fatal(gettext(
852 				    "%s: unknown error accessing VTOC"),
853 				    name);
854 				/*NOTREACHED*/
855 			}
856 		} else {
857 			label_type = LABEL_TYPE_OTHER;
858 		}
859 	}
860 
861 	if (label_type == LABEL_TYPE_EFI) {
862 		slicesize = efi_vtoc->efi_parts[index].p_size;
863 		efi_free(efi_vtoc);
864 	} else if (label_type == LABEL_TYPE_VTOC) {
865 		/*
866 		 * In the vtoc struct, p_size is a 32-bit signed quantity.
867 		 * In the dk_gpt struct (efi's version of the vtoc), p_size
868 		 * is an unsigned 64-bit quantity.  By casting the vtoc's
869 		 * psize to an unsigned 32-bit quantity, it will be copied
870 		 * to 'slicesize' (an unsigned 64-bit diskaddr_t) without
871 		 * sign extension.
872 		 */
873 
874 		slicesize = (uint32_t)vtoc.v_part[index].p_size;
875 	}
876 
877 	return (slicesize);
878 }
879 
880 /*
881  * brute_force_get_device_size
882  *
883  * Determine the size of the device by seeing how far we can
884  * read.  Doing an llseek( , , SEEK_END) would probably work
885  * in most cases, but we've seen at least one third-party driver
886  * which doesn't correctly support the SEEK_END option when the
887  * the device is greater than a terabyte.
888  */
889 
890 static diskaddr_t
891 brute_force_get_device_size(int fd)
892 {
893 	diskaddr_t	min_fail = 0;
894 	diskaddr_t	max_succeed = 0;
895 	diskaddr_t	cur_db_off;
896 	char 		buf[DEV_BSIZE];
897 
898 	/*
899 	 * First, see if we can read the device at all, just to
900 	 * eliminate errors that have nothing to do with the
901 	 * device's size.
902 	 */
903 
904 	if (((llseek(fd, (offset_t)0, SEEK_SET)) == -1) ||
905 	    ((read(fd, buf, DEV_BSIZE)) == -1))
906 		return (0);  /* can't determine size */
907 
908 	/*
909 	 * Now, go sequentially through the multiples of 4TB
910 	 * to find the first read that fails (this isn't strictly
911 	 * the most efficient way to find the actual size if the
912 	 * size really could be anything between 0 and 2**64 bytes.
913 	 * We expect the sizes to be less than 16 TB for some time,
914 	 * so why do a bunch of reads that are larger than that?
915 	 * However, this algorithm *will* work for sizes of greater
916 	 * than 16 TB.  We're just not optimizing for those sizes.)
917 	 */
918 
919 	for (cur_db_off = SECTORS_PER_TERABYTE * 4;
920 	    min_fail == 0 && cur_db_off < FS_SIZE_UPPER_LIMIT;
921 	    cur_db_off += 4 * SECTORS_PER_TERABYTE) {
922 		if (((llseek(fd, (offset_t)(cur_db_off * DEV_BSIZE),
923 		    SEEK_SET)) == -1) ||
924 		    ((read(fd, buf, DEV_BSIZE)) != DEV_BSIZE))
925 			min_fail = cur_db_off;
926 		else
927 			max_succeed = cur_db_off;
928 	}
929 
930 	if (min_fail == 0)
931 		return (0);
932 
933 	/*
934 	 * We now know that the size of the device is less than
935 	 * min_fail and greater than or equal to max_succeed.  Now
936 	 * keep splitting the difference until the actual size in
937 	 * sectors in known.  We also know that the difference
938 	 * between max_succeed and min_fail at this time is
939 	 * 4 * SECTORS_PER_TERABYTE, which is a power of two, which
940 	 * simplifies the math below.
941 	 */
942 
943 	while (min_fail - max_succeed > 1) {
944 		cur_db_off = max_succeed + (min_fail - max_succeed)/2;
945 		if (((llseek(fd, (offset_t)(cur_db_off * DEV_BSIZE),
946 		    SEEK_SET)) == -1) ||
947 		    ((read(fd, buf, DEV_BSIZE)) != DEV_BSIZE))
948 			min_fail = cur_db_off;
949 		else
950 			max_succeed = cur_db_off;
951 	}
952 
953 	/* the size is the last successfully read sector offset plus one */
954 	return (max_succeed + 1);
955 }
956 
957 /*
958  * validate_size
959  *
960  * Return 1 if the device appears to be at least "size" sectors long.
961  * Return 0 if it's shorter or we can't read it.
962  */
963 
964 static int
965 validate_size(char *disk, diskaddr_t size)
966 {
967 	char 		buf[DEV_BSIZE];
968 	int fd, rc;
969 
970 	if ((fd = open64(disk, O_RDONLY)) < 0) {
971 		perror(disk);
972 		exit(1);
973 	}
974 
975 	if ((llseek(fd, (offset_t)((size - 1) * DEV_BSIZE), SEEK_SET) == -1) ||
976 	    (read(fd, buf, DEV_BSIZE)) != DEV_BSIZE)
977 		rc = 0;
978 	else
979 		rc = 1;
980 	(void) close(fd);
981 	return (rc);
982 }
983 
984 /*
985  * read_sb(char * rawdev) - Attempt to read the superblock from a raw device
986  *
987  * Returns:
988  *	0 :
989  *		Could not read a valid superblock for a variety of reasons.
990  *		Since 'newfs' handles any fatal conditions, we're not going
991  *		to make any guesses as to why this is failing or what should
992  *		be done about it.
993  *
994  *	struct fs *:
995  *		A pointer to (what we think is) a valid superblock. The
996  *		space for the superblock is static (inside the function)
997  *		since we will only be reading the values from it.
998  */
999 
1000 struct fs *
1001 read_sb(char *fsdev)
1002 {
1003 	static struct fs	sblock;
1004 	struct stat64		statb;
1005 	int			dskfd;
1006 	char			*bufp = NULL;
1007 	int			bufsz = 0;
1008 
1009 	if (stat64(fsdev, &statb) < 0)
1010 		return (0);
1011 
1012 	if ((dskfd = open64(fsdev, O_RDONLY)) < 0)
1013 		return (0);
1014 
1015 	/*
1016 	 * We need a buffer whose size is a multiple of DEV_BSIZE in order
1017 	 * to read from a raw device (which we were probably passed).
1018 	 */
1019 	bufsz = ((sizeof (sblock) / DEV_BSIZE) + 1) * DEV_BSIZE;
1020 	if ((bufp = malloc(bufsz)) == NULL) {
1021 		(void) close(dskfd);
1022 		return (0);
1023 	}
1024 
1025 	if (llseek(dskfd, (offset_t)SBOFF, SEEK_SET) < 0 ||
1026 	    read(dskfd, bufp, bufsz) < 0) {
1027 		(void) close(dskfd);
1028 		free(bufp);
1029 		return (0);
1030 	}
1031 	(void) close(dskfd);	/* Done with the file */
1032 
1033 	(void) memcpy(&sblock, bufp, sizeof (sblock));
1034 	free(bufp);	/* Don't need this anymore */
1035 
1036 	if (((sblock.fs_magic != FS_MAGIC) &&
1037 	    (sblock.fs_magic != MTB_UFS_MAGIC)) ||
1038 	    sblock.fs_ncg < 1 || sblock.fs_cpg < 1)
1039 		return (0);
1040 
1041 	if (sblock.fs_ncg * sblock.fs_cpg < sblock.fs_ncyl ||
1042 	    (sblock.fs_ncg - 1) * sblock.fs_cpg >= sblock.fs_ncyl)
1043 		return (0);
1044 
1045 	if (sblock.fs_sbsize < 0 || sblock.fs_sbsize > SBSIZE)
1046 		return (0);
1047 
1048 	return (&sblock);
1049 }
1050 
1051 /*
1052  * Read the UFS file system on the raw device SPECIAL.  If it does not
1053  * appear to be a UFS file system, return non-zero, indicating that
1054  * fsirand should be called (and it will spit out an error message).
1055  * If it is a UFS file system, take a look at the inodes in the first
1056  * cylinder group.  If they appear to be randomized (non-zero), return
1057  * zero, which will cause fsirand to not be called.  If the inode generation
1058  * counts are all zero, then we must call fsirand, so return non-zero.
1059  */
1060 
1061 #define	RANDOMIZED	0
1062 #define	NOT_RANDOMIZED	1
1063 
1064 static int
1065 notrand(char *special)
1066 {
1067 	long fsbuf[SBSIZE / sizeof (long)];
1068 	struct dinode dibuf[MAXBSIZE/sizeof (struct dinode)];
1069 	struct fs *fs;
1070 	struct dinode *dip;
1071 	offset_t seekaddr;
1072 	int bno, inum;
1073 	int fd;
1074 
1075 	fs = (struct fs *)fsbuf;
1076 	if ((fd = open64(special, 0)) == -1)
1077 		return (NOT_RANDOMIZED);
1078 	if (llseek(fd, (offset_t)SBLOCK * DEV_BSIZE, 0) == -1 ||
1079 	    read(fd, (char *)fs, SBSIZE) != SBSIZE ||
1080 	    ((fs->fs_magic != FS_MAGIC) && (fs->fs_magic != MTB_UFS_MAGIC))) {
1081 		(void) close(fd);
1082 		return (NOT_RANDOMIZED);
1083 	}
1084 
1085 	/* looks like a UFS file system; read the first cylinder group */
1086 	bsize = INOPB(fs) * sizeof (struct dinode);
1087 	inum = 0;
1088 	while (inum < fs->fs_ipg) {
1089 		bno = itod(fs, inum);
1090 		seekaddr = (offset_t)fsbtodb(fs, bno) * DEV_BSIZE;
1091 		if (llseek(fd, seekaddr, 0) == -1 ||
1092 		    read(fd, (char *)dibuf, bsize) != bsize) {
1093 			(void) close(fd);
1094 			return (NOT_RANDOMIZED);
1095 		}
1096 		for (dip = dibuf; dip < &dibuf[INOPB(fs)]; dip++) {
1097 			if (dip->di_gen != 0) {
1098 				(void) close(fd);
1099 				return (RANDOMIZED);
1100 			}
1101 			inum++;
1102 		}
1103 	}
1104 	(void) close(fd);
1105 	return (NOT_RANDOMIZED);
1106 }
1107 
1108 static void
1109 usage(void)
1110 {
1111 	(void) fprintf(stderr, gettext(
1112 	    "usage: newfs [ -v ] [ mkfs-options ] raw-special-device\n"));
1113 	(void) fprintf(stderr, gettext("where mkfs-options are:\n"));
1114 	(void) fprintf(stderr, gettext(
1115 	    "\t-N do not create file system, just print out parameters\n"));
1116 	(void) fprintf(stderr, gettext(
1117 "\t-T configure file system for eventual growth to over a terabyte\n"));
1118 	(void) fprintf(stderr, gettext("\t-s file system size (sectors)\n"));
1119 	(void) fprintf(stderr, gettext("\t-b block size\n"));
1120 	(void) fprintf(stderr, gettext("\t-f frag size\n"));
1121 	(void) fprintf(stderr, gettext("\t-t tracks/cylinder\n"));
1122 	(void) fprintf(stderr, gettext("\t-c cylinders/group\n"));
1123 	(void) fprintf(stderr, gettext("\t-m minimum free space %%\n"));
1124 	(void) fprintf(stderr, gettext(
1125 	    "\t-o optimization preference (`space' or `time')\n"));
1126 	(void) fprintf(stderr, gettext("\t-r revolutions/minute\n"));
1127 	(void) fprintf(stderr, gettext("\t-i number of bytes per inode\n"));
1128 	(void) fprintf(stderr, gettext(
1129 	    "\t-a number of alternates per cylinder\n"));
1130 	(void) fprintf(stderr, gettext("\t-C maxcontig\n"));
1131 	(void) fprintf(stderr, gettext("\t-d rotational delay\n"));
1132 	(void) fprintf(stderr, gettext(
1133 	    "\t-n number of rotational positions\n"));
1134 	(void) fprintf(stderr, gettext(
1135 "\t-S print a textual version of the calculated superblock to stdout\n"));
1136 	(void) fprintf(stderr, gettext(
1137 "\t-B dump a binary version of the calculated superblock to stdout\n"));
1138 }
1139 
1140 /*
1141  * Error-detecting version of atoi(3).  Adapted from mkfs' number().
1142  */
1143 static unsigned int
1144 number(char *param, char *value, int flags, int def_value)
1145 {
1146 	char *cs;
1147 	int n;
1148 	int cut = INT_MAX / 10;    /* limit to avoid overflow */
1149 	int minus = 0;
1150 
1151 	cs = value;
1152 	if (*cs == '-') {
1153 		minus = 1;
1154 		cs += 1;
1155 	}
1156 	if ((*cs < '0') || (*cs > '9')) {
1157 		goto bail_out;
1158 	}
1159 	n = 0;
1160 	while ((*cs >= '0') && (*cs <= '9') && (n <= cut)) {
1161 		n = n*10 + *cs++ - '0';
1162 	}
1163 	if (minus)
1164 		n = -n;
1165 	for (;;) {
1166 		switch (*cs++) {
1167 		case '\0':
1168 			return (n);
1169 
1170 		case '0': case '1': case '2': case '3': case '4':
1171 		case '5': case '6': case '7': case '8': case '9':
1172 			(void) fprintf(stderr, gettext(
1173 			    "newfs: value for %s overflowed, using %d\n"),
1174 			    param, def_value);
1175 			return (def_value);
1176 
1177 		case '%':
1178 			if (flags & NR_PERCENT)
1179 				break;
1180 			/* FALLTHROUGH */
1181 
1182 		default:
1183 bail_out:
1184 			fatal(gettext("bad numeric arg for %s: \"%s\""),
1185 			    param, value);
1186 
1187 		}
1188 	}
1189 	/* NOTREACHED */
1190 }
1191 
1192 /*
1193  * Error-detecting version of atoi(3).  Adapted from mkfs' number().
1194  */
1195 static int64_t
1196 number64(char *param, char *value, int flags, int64_t def_value)
1197 {
1198 	char *cs;
1199 	int64_t n;
1200 	int64_t cut = FS_SIZE_UPPER_LIMIT/ 10;    /* limit to avoid overflow */
1201 	int minus = 0;
1202 
1203 	cs = value;
1204 	if (*cs == '-') {
1205 		minus = 1;
1206 		cs += 1;
1207 	}
1208 	if ((*cs < '0') || (*cs > '9')) {
1209 		goto bail_out;
1210 	}
1211 	n = 0;
1212 	while ((*cs >= '0') && (*cs <= '9') && (n <= cut)) {
1213 		n = n*10 + *cs++ - '0';
1214 	}
1215 	if (minus)
1216 		n = -n;
1217 	for (;;) {
1218 		switch (*cs++) {
1219 		case '\0':
1220 			return (n);
1221 
1222 		case '0': case '1': case '2': case '3': case '4':
1223 		case '5': case '6': case '7': case '8': case '9':
1224 			(void) fprintf(stderr, gettext(
1225 			    "newfs: value for %s overflowed, using %d\n"),
1226 			    param, def_value);
1227 			return (def_value);
1228 
1229 		case '%':
1230 			if (flags & NR_PERCENT)
1231 				break;
1232 			/* FALLTHROUGH */
1233 
1234 		default:
1235 bail_out:
1236 			fatal(gettext("bad numeric arg for %s: \"%s\""),
1237 			    param, value);
1238 
1239 		}
1240 	}
1241 	/* NOTREACHED */
1242 }
1243