xref: /titanic_50/usr/src/cmd/format/misc.c (revision 82743679557cf8b7a5dd51eaa0015e0ca498ac37)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*
26  * This file contains miscellaneous routines.
27  */
28 #include "global.h"
29 
30 #include <stdlib.h>
31 #include <signal.h>
32 #include <malloc.h>
33 #include <unistd.h>
34 #include <string.h>
35 #include <errno.h>
36 #include <fcntl.h>
37 #include <sys/ioctl.h>
38 #include <sys/fcntl.h>
39 #include <sys/time.h>
40 #include <ctype.h>
41 #include <termio.h>
42 #include "misc.h"
43 #include "analyze.h"
44 #include "label.h"
45 #include "startup.h"
46 
47 #ifdef __STDC__
48 
49 /* Function prototypes for ANSI C Compilers */
50 static void	cleanup(int sig);
51 
52 #else	/* __STDC__ */
53 
54 /* Function prototypes for non-ANSI C Compilers */
55 static void	cleanup();
56 
57 #endif	/* __STDC__ */
58 
59 struct	env *current_env = NULL;	/* ptr to current environment */
60 static int	stop_pending = 0;	/* ctrl-Z is pending */
61 struct	ttystate ttystate;		/* tty info */
62 static int	aborting = 0;		/* in process of aborting */
63 
64 /*
65  * For 4.x, limit the choices of valid disk names to this set.
66  */
67 static char		*disk_4x_identifiers[] = { "sd", "id"};
68 #define	N_DISK_4X_IDS	(sizeof (disk_4x_identifiers)/sizeof (char *))
69 
70 
71 /*
72  * This is the list of legal inputs for all yes/no questions.
73  */
74 char	*confirm_list[] = {
75 	"yes",
76 	"no",
77 	NULL,
78 };
79 
80 /*
81  * This routine is a wrapper for malloc.  It allocates pre-zeroed space,
82  * and checks the return value so the caller doesn't have to.
83  */
84 void *
85 zalloc(count)
86 	int	count;
87 {
88 	void	*ptr;
89 
90 	if ((ptr = (void *) calloc(1, (unsigned)count)) == NULL) {
91 		err_print("Error: unable to calloc more space.\n");
92 		fullabort();
93 	}
94 	return (ptr);
95 }
96 
97 /*
98  * This routine is a wrapper for realloc.  It reallocates the given
99  * space, and checks the return value so the caller doesn't have to.
100  * Note that the any space added by this call is NOT necessarily
101  * zeroed.
102  */
103 void *
104 rezalloc(ptr, count)
105 	void	*ptr;
106 	int	count;
107 {
108 	void	*new_ptr;
109 
110 
111 	if ((new_ptr = (void *) realloc((char *)ptr,
112 				(unsigned)count)) == NULL) {
113 		err_print("Error: unable to realloc more space.\n");
114 		fullabort();
115 	}
116 	return (new_ptr);
117 }
118 
119 /*
120  * This routine is a wrapper for free.
121  */
122 void
123 destroy_data(data)
124 	char	*data;
125 {
126 	free((char *)data);
127 }
128 
129 #ifdef	not
130 /*
131  * This routine takes the space number returned by an ioctl call and
132  * returns a mnemonic name for that space.
133  */
134 char *
135 space2str(space)
136 	uint_t	space;
137 {
138 	char	*name;
139 
140 	switch (space&SP_BUSMASK) {
141 	    case SP_VIRTUAL:
142 		name = "virtual";
143 		break;
144 	    case SP_OBMEM:
145 		name = "obmem";
146 		break;
147 	    case SP_OBIO:
148 		name = "obio";
149 		break;
150 	    case SP_MBMEM:
151 		name = "mbmem";
152 		break;
153 	    case SP_MBIO:
154 		name = "mbio";
155 		break;
156 	    default:
157 		err_print("Error: unknown address space type encountered.\n");
158 		fullabort();
159 	}
160 	return (name);
161 }
162 #endif	/* not */
163 
164 /*
165  * This routine asks the user the given yes/no question and returns
166  * the response.
167  */
168 int
169 check(question)
170 	char	*question;
171 {
172 	int		answer;
173 	u_ioparam_t	ioparam;
174 
175 	/*
176 	 * If we are running out of a command file, assume a yes answer.
177 	 */
178 	if (option_f)
179 		return (0);
180 	/*
181 	 * Ask the user.
182 	 */
183 	ioparam.io_charlist = confirm_list;
184 	answer = input(FIO_MSTR, question, '?', &ioparam,
185 	    (int *)NULL, DATA_INPUT);
186 	return (answer);
187 }
188 
189 /*
190  * This routine aborts the current command.  It is called by a ctrl-C
191  * interrupt and also under certain error conditions.
192  */
193 /*ARGSUSED*/
194 void
195 cmdabort(sig)
196 	int	sig;
197 {
198 
199 	/*
200 	 * If there is no usable saved environment, gracefully exit.  This
201 	 * allows the user to interrupt the program even when input is from
202 	 * a file, or if there is no current menu, like at the "Select disk:"
203 	 * prompt.
204 	 */
205 	if (current_env == NULL || !(current_env->flags & ENV_USE))
206 		fullabort();
207 
208 	/*
209 	 * If we are in a critical zone, note the attempt and return.
210 	 */
211 	if (current_env->flags & ENV_CRITICAL) {
212 		current_env->flags |= ENV_ABORT;
213 		return;
214 	}
215 	/*
216 	 * All interruptions when we are running out of a command file
217 	 * cause the program to gracefully exit.
218 	 */
219 	if (option_f)
220 		fullabort();
221 	fmt_print("\n");
222 	/*
223 	 * Clean up any state left by the interrupted command.
224 	 */
225 	cleanup(sig);
226 	/*
227 	 * Jump to the saved environment.
228 	 */
229 	longjmp(current_env->env, 0);
230 }
231 
232 /*
233  * This routine implements the ctrl-Z suspend mechanism.  It is called
234  * when a suspend signal is received.
235  */
236 /*ARGSUSED*/
237 void
238 onsusp(sig)
239 	int	sig;
240 {
241 	int		fix_term;
242 #ifdef	NOT_DEF
243 	sigset_t	sigmask;
244 #endif	/* NOT_DEF */
245 
246 	/*
247 	 * If we are in a critical zone, note the attempt and return.
248 	 */
249 	if (current_env != NULL && current_env->flags & ENV_CRITICAL) {
250 		stop_pending = 1;
251 		return;
252 	}
253 	/*
254 	 * If the terminal is mucked up, note that we will need to
255 	 * re-muck it when we start up again.
256 	 */
257 	fix_term = ttystate.ttyflags;
258 	fmt_print("\n");
259 	/*
260 	 * Clean up any state left by the interrupted command.
261 	 */
262 	cleanup(sig);
263 #ifdef	NOT_DEF
264 	/* Investigate whether all this is necessary */
265 	/*
266 	 * Stop intercepting the suspend signal, then send ourselves one
267 	 * to cause us to stop.
268 	 */
269 	sigmask.sigbits[0] = (ulong_t)0xffffffff;
270 	if (sigprocmask(SIG_SETMASK, &sigmask, (sigset_t *)NULL) == -1)
271 		err_print("sigprocmask failed %d\n", errno);
272 #endif	/* NOT_DEF */
273 	(void) signal(SIGTSTP, SIG_DFL);
274 	(void) kill(0, SIGTSTP);
275 	/*
276 	 * PC stops here
277 	 */
278 	/*
279 	 * We are started again.  Set us up to intercept the suspend
280 	 * signal once again.
281 	 */
282 	(void) signal(SIGTSTP, onsusp);
283 	/*
284 	 * Re-muck the terminal if necessary.
285 	 */
286 	if (fix_term & TTY_ECHO_OFF)
287 		echo_off();
288 	if (fix_term & TTY_CBREAK_ON)
289 		charmode_on();
290 }
291 
292 /*
293  * This routine implements the timing function used during long-term
294  * disk operations (e.g. formatting).  It is called when an alarm signal
295  * is received.
296  */
297 /*ARGSUSED*/
298 void
299 onalarm(sig)
300 	int	sig;
301 {
302 }
303 
304 
305 /*
306  * This routine gracefully exits the program.
307  */
308 void
309 fullabort()
310 {
311 
312 	fmt_print("\n");
313 	/*
314 	 * Clean up any state left by an interrupted command.
315 	 * Avoid infinite loops caused by a clean-up
316 	 * routine failing again...
317 	 */
318 	if (!aborting) {
319 		aborting = 1;
320 		cleanup(SIGKILL);
321 	}
322 	exit(1);
323 	/*NOTREACHED*/
324 }
325 
326 /*
327  * This routine cleans up the state of the world.  It is a hodge-podge
328  * of kludges to allow us to interrupt commands whenever possible.
329  *
330  * Some cleanup actions may depend on the type of signal.
331  */
332 static void
333 cleanup(int sig)
334 {
335 
336 	/*
337 	 * Lock out interrupts to avoid recursion.
338 	 */
339 	enter_critical();
340 	/*
341 	 * Fix up the tty if necessary.
342 	 */
343 	if (ttystate.ttyflags & TTY_CBREAK_ON) {
344 		charmode_off();
345 	}
346 	if (ttystate.ttyflags & TTY_ECHO_OFF) {
347 		echo_on();
348 	}
349 
350 	/*
351 	 * If the defect list is dirty, write it out.
352 	 */
353 	if (cur_list.flags & LIST_DIRTY) {
354 		cur_list.flags = 0;
355 		if (!EMBEDDED_SCSI)
356 			write_deflist(&cur_list);
357 	}
358 	/*
359 	 * If the label is dirty, write it out.
360 	 */
361 	if (cur_flags & LABEL_DIRTY) {
362 		cur_flags &= ~LABEL_DIRTY;
363 		(void) write_label();
364 	}
365 	/*
366 	 * If we are logging and just interrupted a scan, print out
367 	 * some summary info to the log file.
368 	 */
369 	if (log_file && scan_cur_block >= 0) {
370 		pr_dblock(log_print, scan_cur_block);
371 		log_print("\n");
372 	}
373 	if (scan_blocks_fixed >= 0)
374 		fmt_print("Total of %lld defective blocks repaired.\n",
375 		    scan_blocks_fixed);
376 	if (sig != SIGSTOP) { /* Don't reset on suspend (converted to stop) */
377 		scan_cur_block = scan_blocks_fixed = -1;
378 	}
379 	exit_critical();
380 }
381 
382 /*
383  * This routine causes the program to enter a critical zone.  Within the
384  * critical zone, no interrupts are allowed.  Note that calls to this
385  * routine for the same environment do NOT nest, so there is not
386  * necessarily pairing between calls to enter_critical() and exit_critical().
387  */
388 void
389 enter_critical()
390 {
391 
392 	/*
393 	 * If there is no saved environment, interrupts will be ignored.
394 	 */
395 	if (current_env == NULL)
396 		return;
397 	/*
398 	 * Mark the environment to be in a critical zone.
399 	 */
400 	current_env->flags |= ENV_CRITICAL;
401 }
402 
403 /*
404  * This routine causes the program to exit a critical zone.  Note that
405  * calls to enter_critical() for the same environment do NOT nest, so
406  * one call to exit_critical() will erase any number of such calls.
407  */
408 void
409 exit_critical()
410 {
411 
412 	/*
413 	 * If there is a saved environment, mark it to be non-critical.
414 	 */
415 	if (current_env != NULL)
416 		current_env->flags &= ~ENV_CRITICAL;
417 	/*
418 	 * If there is a stop pending, execute the stop.
419 	 */
420 	if (stop_pending) {
421 		stop_pending = 0;
422 		onsusp(SIGSTOP);
423 	}
424 	/*
425 	 * If there is an abort pending, execute the abort.
426 	 */
427 	if (current_env == NULL)
428 		return;
429 	if (current_env->flags & ENV_ABORT) {
430 		current_env->flags &= ~ENV_ABORT;
431 		cmdabort(SIGINT);
432 	}
433 }
434 
435 /*
436  * This routine turns off echoing on the controlling tty for the program.
437  */
438 void
439 echo_off()
440 {
441 	/*
442 	 * Open the tty and store the file pointer for later.
443 	 */
444 	if (ttystate.ttyflags == 0) {
445 		if ((ttystate.ttyfile = open("/dev/tty",
446 		    O_RDWR | O_NDELAY)) < 0) {
447 			err_print("Unable to open /dev/tty.\n");
448 			fullabort();
449 		}
450 	}
451 	/*
452 	 * Get the parameters for the tty, turn off echoing and set them.
453 	 */
454 	if (tcgetattr(ttystate.ttyfile, &ttystate.ttystate) < 0) {
455 		err_print("Unable to get tty parameters.\n");
456 		fullabort();
457 	}
458 	ttystate.ttystate.c_lflag &= ~ECHO;
459 	if (tcsetattr(ttystate.ttyfile, TCSANOW, &ttystate.ttystate) < 0) {
460 		err_print("Unable to set tty to echo off state.\n");
461 		fullabort();
462 	}
463 
464 	/*
465 	 * Remember that we've successfully turned
466 	 * ECHO mode off, so we know to fix it later.
467 	 */
468 	ttystate.ttyflags |= TTY_ECHO_OFF;
469 }
470 
471 /*
472  * This routine turns on echoing on the controlling tty for the program.
473  */
474 void
475 echo_on()
476 {
477 
478 	/*
479 	 * Using the saved parameters, turn echoing on and set them.
480 	 */
481 	ttystate.ttystate.c_lflag |= ECHO;
482 	if (tcsetattr(ttystate.ttyfile, TCSANOW, &ttystate.ttystate) < 0) {
483 		err_print("Unable to set tty to echo on state.\n");
484 		fullabort();
485 	}
486 	/*
487 	 * Close the tty and mark it ok again.
488 	 */
489 	ttystate.ttyflags &= ~TTY_ECHO_OFF;
490 	if (ttystate.ttyflags == 0) {
491 		(void) close(ttystate.ttyfile);
492 	}
493 }
494 
495 /*
496  * This routine turns off single character entry mode for tty.
497  */
498 void
499 charmode_on()
500 {
501 
502 	/*
503 	 * If tty unopened, open the tty and store the file pointer for later.
504 	 */
505 	if (ttystate.ttyflags == 0) {
506 		if ((ttystate.ttyfile = open("/dev/tty",
507 		    O_RDWR | O_NDELAY)) < 0) {
508 			err_print("Unable to open /dev/tty.\n");
509 			fullabort();
510 		}
511 	}
512 	/*
513 	 * Get the parameters for the tty, turn on char mode.
514 	 */
515 	if (tcgetattr(ttystate.ttyfile, &ttystate.ttystate) < 0) {
516 		err_print("Unable to get tty parameters.\n");
517 		fullabort();
518 	}
519 	ttystate.vmin = ttystate.ttystate.c_cc[VMIN];
520 	ttystate.vtime = ttystate.ttystate.c_cc[VTIME];
521 
522 	ttystate.ttystate.c_lflag &= ~ICANON;
523 	ttystate.ttystate.c_cc[VMIN] = 1;
524 	ttystate.ttystate.c_cc[VTIME] = 0;
525 
526 	if (tcsetattr(ttystate.ttyfile, TCSANOW, &ttystate.ttystate) < 0) {
527 		err_print("Unable to set tty to cbreak on state.\n");
528 		fullabort();
529 	}
530 
531 	/*
532 	 * Remember that we've successfully turned
533 	 * CBREAK mode on, so we know to fix it later.
534 	 */
535 	ttystate.ttyflags |= TTY_CBREAK_ON;
536 }
537 
538 /*
539  * This routine turns on single character entry mode for tty.
540  * Note, this routine must be called before echo_on.
541  */
542 void
543 charmode_off()
544 {
545 
546 	/*
547 	 * Using the saved parameters, turn char mode on.
548 	 */
549 	ttystate.ttystate.c_lflag |= ICANON;
550 	ttystate.ttystate.c_cc[VMIN] = ttystate.vmin;
551 	ttystate.ttystate.c_cc[VTIME] = ttystate.vtime;
552 	if (tcsetattr(ttystate.ttyfile, TCSANOW, &ttystate.ttystate) < 0) {
553 		err_print("Unable to set tty to cbreak off state.\n");
554 		fullabort();
555 	}
556 	/*
557 	 * Close the tty and mark it ok again.
558 	 */
559 	ttystate.ttyflags &= ~TTY_CBREAK_ON;
560 	if (ttystate.ttyflags == 0) {
561 		(void) close(ttystate.ttyfile);
562 	}
563 }
564 
565 
566 /*
567  * Allocate space for and return a pointer to a string
568  * on the stack.  If the string is null, create
569  * an empty string.
570  * Use destroy_data() to free when no longer used.
571  */
572 char *
573 alloc_string(s)
574 	char	*s;
575 {
576 	char	*ns;
577 
578 	if (s == (char *)NULL) {
579 		ns = (char *)zalloc(1);
580 	} else {
581 		ns = (char *)zalloc(strlen(s) + 1);
582 		(void) strcpy(ns, s);
583 	}
584 	return (ns);
585 }
586 
587 
588 
589 /*
590  * This function can be used to build up an array of strings
591  * dynamically, with a trailing NULL to terminate the list.
592  *
593  * Parameters:
594  *	argvlist:  a pointer to the base of the current list.
595  *		   does not have to be initialized.
596  *	size:	   pointer to an integer, indicating the number
597  *		   of string installed in the list.  Must be
598  *		   initialized to zero.
599  *	alloc:	   pointer to an integer, indicating the amount
600  *		   of space allocated.  Must be initialized to
601  *		   zero.  For efficiency, we allocate the list
602  *		   in chunks and use it piece-by-piece.
603  *	str:	   the string to be inserted in the list.
604  *		   A copy of the string is malloc'ed, and
605  *		   appended at the end of the list.
606  * Returns:
607  *	a pointer to the possibly-moved argvlist.
608  *
609  * No attempt to made to free unused memory when the list is
610  * completed, although this would not be hard to do.  For
611  * reasonably small lists, this should suffice.
612  */
613 #define	INITIAL_LISTSIZE	32
614 #define	INCR_LISTSIZE		32
615 
616 char **
617 build_argvlist(argvlist, size, alloc, str)
618 	char	**argvlist;
619 	int	*size;
620 	int	*alloc;
621 	char	*str;
622 {
623 	if (*size + 2 > *alloc) {
624 		if (*alloc == 0) {
625 			*alloc = INITIAL_LISTSIZE;
626 			argvlist = (char **)
627 				zalloc(sizeof (char *) * (*alloc));
628 		} else {
629 			*alloc += INCR_LISTSIZE;
630 			argvlist = (char **)
631 				rezalloc((void *) argvlist,
632 				sizeof (char *) * (*alloc));
633 		}
634 	}
635 
636 	argvlist[*size] = alloc_string(str);
637 	*size += 1;
638 	argvlist[*size] = NULL;
639 
640 	return (argvlist);
641 }
642 
643 
644 /*
645  * Useful parsing macros
646  */
647 #define	must_be(s, c)		if (*s++ != c) return (0)
648 #define	skip_digits(s)		while (isdigit(*s)) s++
649 /* Parsing macro below is created to handle fabric devices which contains */
650 /* upper hex digits like c2t210000203708B8CEd0s0.			  */
651 /* To get the target id(tid) the digit and hex upper digit need to	  */
652 /* be processed.							  */
653 #define	skip_digit_or_hexupper(s)	while (isdigit(*s) || \
654 					(isxdigit(*s) && isupper(*s))) s++
655 
656 /*
657  * Return true if a device name matches the conventions
658  * for the particular system.
659  */
660 int
661 conventional_name(char *name)
662 {
663 	must_be(name, 'c');
664 	skip_digits(name);
665 	if (*name == 't') {
666 		name++;
667 		skip_digit_or_hexupper(name);
668 	}
669 	must_be(name, 'd');
670 	skip_digits(name);
671 	must_be(name, 's');
672 	skip_digits(name);
673 	return (*name == 0);
674 }
675 
676 #ifdef i386
677 /*
678  * Return true if a device name match the emc powerpath name scheme:
679  * emcpowerN[a-p,p0,p1,p2,p3,p4]
680  */
681 int
682 emcpower_name(char *name)
683 {
684 	char	*emcp = "emcpower";
685 	char	*devp = "/dev/dsk";
686 	char	*rdevp = "/dev/rdsk";
687 
688 	if (strncmp(devp, name, strlen(devp)) == 0) {
689 		name += strlen(devp) + 1;
690 	} else if (strncmp(rdevp, name, strlen(rdevp)) == 0) {
691 		name += strlen(rdevp) + 1;
692 	}
693 	if (strncmp(emcp, name, strlen(emcp)) == 0) {
694 		name += strlen(emcp);
695 		if (isdigit(*name)) {
696 			skip_digits(name);
697 			if ((*name >= 'a') && (*name <= 'p')) {
698 				name ++;
699 				if ((*name >= '0') && (*name <= '4')) {
700 					name++;
701 				}
702 			}
703 			return (*name == '\0');
704 		}
705 	}
706 	return (0);
707 }
708 #endif
709 
710 /*
711  * Return true if a device name matches the intel physical name conventions
712  * for the particular system.
713  */
714 int
715 fdisk_physical_name(char *name)
716 {
717 	must_be(name, 'c');
718 	skip_digits(name);
719 	if (*name == 't') {
720 		name++;
721 		skip_digit_or_hexupper(name);
722 	}
723 	must_be(name, 'd');
724 	skip_digits(name);
725 	must_be(name, 'p');
726 	skip_digits(name);
727 	return (*name == 0);
728 }
729 
730 /*
731  * Return true if a device name matches the conventions
732  * for a "whole disk" name for the particular system.
733  * The name in this case must match exactly that which
734  * would appear in the device directory itself.
735  */
736 int
737 whole_disk_name(name)
738 	char	*name;
739 {
740 	must_be(name, 'c');
741 	skip_digits(name);
742 	if (*name == 't') {
743 		name++;
744 		skip_digit_or_hexupper(name);
745 	}
746 	must_be(name, 'd');
747 	skip_digits(name);
748 	must_be(name, 's');
749 	must_be(name, '2');
750 	return (*name == 0);
751 }
752 
753 
754 /*
755  * Return true if a name is in the internal canonical form
756  */
757 int
758 canonical_name(name)
759 	char	*name;
760 {
761 	must_be(name, 'c');
762 	skip_digits(name);
763 	if (*name == 't') {
764 		name++;
765 		skip_digit_or_hexupper(name);
766 	}
767 	must_be(name, 'd');
768 	skip_digits(name);
769 	return (*name == 0);
770 }
771 
772 
773 /*
774  * Return true if a name is in the internal canonical form for 4.x
775  * Used to support 4.x naming conventions under 5.0.
776  */
777 int
778 canonical4x_name(name)
779 	char	*name;
780 {
781 	char    **p;
782 	int	i;
783 
784 	p = disk_4x_identifiers;
785 	for (i = N_DISK_4X_IDS; i > 0; i--, p++) {
786 		if (match_substr(name, *p)) {
787 			name += strlen(*p);
788 			break;
789 		}
790 	}
791 	if (i == 0)
792 		return (0);
793 	skip_digits(name);
794 	return (*name == 0);
795 }
796 
797 
798 /*
799  * Map a conventional name into the internal canonical form:
800  *
801  *	/dev/rdsk/c0t0d0s0 -> c0t0d0
802  */
803 void
804 canonicalize_name(dst, src)
805 	char	*dst;
806 	char	*src;
807 {
808 	char	*s;
809 
810 	/*
811 	 * Copy from the 'c' to the end to the destination string...
812 	 */
813 	s = strchr(src, 'c');
814 	if (s != NULL) {
815 		(void) strcpy(dst, s);
816 		/*
817 		 * Remove the trailing slice (partition) reference
818 		 */
819 		s = dst + strlen(dst) - 2;
820 		if (*s == 's') {
821 			*s = 0;
822 		}
823 	} else {
824 		*dst = 0;	/* be tolerant of garbage input */
825 	}
826 }
827 
828 
829 /*
830  * Return true if we find an occurance of s2 at the
831  * beginning of s1.  We don't have to match all of
832  * s1, but we do have to match all of s2
833  */
834 int
835 match_substr(s1, s2)
836 	char    *s1;
837 	char    *s2;
838 {
839 	while (*s2 != 0) {
840 		if (*s1++ != *s2++)
841 		return (0);
842 	}
843 
844 	return (1);
845 }
846 
847 
848 /*
849  * Dump a structure in hexadecimal, for diagnostic purposes
850  */
851 #define	BYTES_PER_LINE		16
852 
853 void
854 dump(hdr, src, nbytes, format)
855 	char	*hdr;
856 	caddr_t	src;
857 	int	nbytes;
858 	int	format;
859 {
860 	int	i;
861 	int	n;
862 	char	*p;
863 	char	s[256];
864 
865 	assert(format == HEX_ONLY || format == HEX_ASCII);
866 
867 	(void) strcpy(s, hdr);
868 	for (p = s; *p; p++) {
869 		*p = ' ';
870 	}
871 
872 	p = hdr;
873 	while (nbytes > 0) {
874 		err_print("%s", p);
875 		p = s;
876 		n = min(nbytes, BYTES_PER_LINE);
877 		for (i = 0; i < n; i++) {
878 			err_print("%02x ", src[i] & 0xff);
879 		}
880 		if (format == HEX_ASCII) {
881 			for (i = BYTES_PER_LINE-n; i > 0; i--) {
882 				err_print("   ");
883 			}
884 			err_print("    ");
885 			for (i = 0; i < n; i++) {
886 				err_print("%c",
887 					isprint(src[i]) ? src[i] : '.');
888 			}
889 		}
890 		err_print("\n");
891 		nbytes -= n;
892 		src += n;
893 	}
894 }
895 
896 
897 float
898 bn2mb(uint64_t nblks)
899 {
900 	float	n;
901 
902 	n = (float)nblks / 1024.0;
903 	return ((n / 1024.0) * cur_blksz);
904 }
905 
906 
907 diskaddr_t
908 mb2bn(float mb)
909 {
910 	diskaddr_t	n;
911 
912 	n = (diskaddr_t)(mb * 1024.0 * (1024.0 / cur_blksz));
913 	return (n);
914 }
915 
916 float
917 bn2gb(uint64_t nblks)
918 {
919 	float	n;
920 
921 	n = (float)nblks / (1024.0 * 1024.0);
922 	return ((n/1024.0) * cur_blksz);
923 
924 }
925 
926 float
927 bn2tb(uint64_t nblks)
928 {
929 	float	n;
930 
931 	n = (float)nblks / (1024.0 * 1024.0 * 1024.0);
932 	return ((n/1024.0) * cur_blksz);
933 }
934 
935 diskaddr_t
936 gb2bn(float gb)
937 {
938 	diskaddr_t	n;
939 
940 	n = (diskaddr_t)(gb * 1024.0 * 1024.0 * (1024.0 / cur_blksz));
941 	return (n);
942 }
943 
944 /*
945  * This routine finds out the number of lines (rows) in a terminal
946  * window. The default value of TTY_LINES is returned on error.
947  */
948 int
949 get_tty_lines()
950 {
951 	int	tty_lines = TTY_LINES;
952 	struct	winsize	winsize;
953 
954 	if ((option_f == (char *)NULL) && isatty(0) == 1 && isatty(1) == 1) {
955 		/*
956 		 * We have a real terminal for std input and output
957 		 */
958 		winsize.ws_row = 0;
959 		if (ioctl(1, TIOCGWINSZ, &winsize) == 0) {
960 			if (winsize.ws_row > 2) {
961 				/*
962 				 * Should be atleast 2 lines, for division
963 				 * by (tty_lines - 1, tty_lines - 2) to work.
964 				 */
965 				tty_lines = winsize.ws_row;
966 			}
967 		}
968 	}
969 	return (tty_lines);
970 }
971